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Introduction

Let Q be a simple artinian ring. An order R in Q is called Krull if
there are a family \{R_{i}\}_{i\in r} and S(R) of overrings of R satisfying the following:

(K1) R=\cap i\in IR_{i}\cap S(R) , where R_{i} and S(R) are essential overrings of
R (cf. Section 2 for the definition), and S(R) is the Asano overrig of R ;

(K2) each R_{i} is a noetherian, local, Asano order in Q, and S(R) is
a noetherian, simple ring;

(K3) if c is any regular element of R, then cR_{i}\neq R_{i} for only finitely
many i in I and R_{k}c\neq R_{k} for only finitely many k in I.

If S(R)=Q, then R is said to be bounded. Author mainly investigated
the ideal theory in bounded Krull orders in Q (cf. [10], [11], [12] and [13]).
The class of Krull orders contains commutative Krull domains, maximal
orders over Krull domains, noetherian Asano orders and bounded noetherian
maximal orders. It is well known that if D is a commutative Krull domain,
then the polynomial and formal power series rings D[x] and D[[x]] are
both Krull, where the set x of indeterminates is finite or not.

The purpose of this paper is to show how the results above can be
carried over to non commutative Krull orders by using prime v-ideals and
localization functors. After giving some fundamental properties on poly-
nomial rings (Section 1), we shall show, in Section 2, that if R is a Krull
order in Q and if x is a finite set, then so is R[x] . In case x is an infinite
set, we can not show whether R[x] is Krull or not. But we shall show
that R[x] satisfies some properties interesting in multiplicative ideal theory
as follows :

(i) R[x]= \bigcap_{P}R[x]_{P}\cap S(R[x]) , where P ranges over all prime t;-ideals

of R[x] , the local ring R[x]_{P} is a noetherian and Asano order in the quotient
ring of R[x] and the Asano overring S(R[x]) is a simple ring.

(ii) The integral v-ideals of R[x] satisfies the maximum condition.
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In Section 4, we shall discuss on Krull orders over commutative Krull
domains. If \Lambda is a Krull D-0rder, where D is a commutative Krull domain,
then it is shown that \Lambda[x] and \Lambda[[x]] are both Krull D[x] and D[[x]]-
orders, respectively, where x is finite or not.

1. Preliminaries

Throughout this paper, each ring will be assumed to have an identity,
Q will denote a simple artinian ring and R will denote an order in Q^{1)} .
We refer to N. Jacobson [9] concerning the terminology on orders.

Let x=\{x_{a}\}_{\alpha\in A} be an arbitrary set of indeterminates over R subject to
the condition that rx_{\alpha}=x_{\alpha}r for any r\in R and for any x_{\alpha}\in x, where A is
an index set. The polynomial ring R[x] is defined to be the union of the
rings R[x’]=R[x_{\alpha_{1}}, \cdots,\cdot x_{\alpha_{n}}] , where x’=\{x_{\alpha_{i}}\}_{i=1}^{n} ranges over all finite subsets
of x. If x is an indeterminate over R, then Q[x] is a principal ideal ring by
Example 6. 3 of [16] and so it has a simple artinian quotient ring Q(Q[x])^{2)} .
Since Q[x] is an essential extension of R[x] as R[x] -modules and R[x]
is a prime ring, Q(R[x])=Q(Q[x]) . So R[x] is an order in Q(R[x]) .
Therefore R[x’] is also an order in Q(R[x’]) for any finite subset x’ of x.
Finally if x’ and x’ are subsets of x and if x’\subseteq x’,\cdot then we note that
Q(R[x’])\underline{\subset}Q(R[x’]) .

Lemma 1. 1. Let R be an order in Q. Then R[x] has a simple ar-
tinian quotient ring and Q(R[x])=\cup Q(R[d]) , where x’ runs over all finite
subsets of x, and dim R=\dim R\lceil.x] (dim R is always the Goldie dimension
of R).

PROOF. The lemma will be proved in four steps.
(i) Let A and B be any non-zero ideals of R[x] . There exists a

finite subset x’ of x such that A\cap R[x’]\neq 0 and B\cap R[x’]\neq 0 , because
A=\cup(A\cap R[x’]) , where x’ ranges over all finite subsets of x. Since
R[x’] is a prime ring, we get 0\neq(A\cap R[x’])(B\cap R[x’])\subseteq AB . Hence R[x]
is a prime ring. It is evident that the ring S=\cup Q(R[x’]) is an essential
extension of R[x] as R[x] -modules

(ii) If dim R=n, then we shall prove that dim R[x’]=n for any finite
subset x’ of x. It suffices to prove that dim R[x]=n. Since Q is the total
matrix ring (K)_{n} over a division ring K, we have Q[x]=(K)_{n}[x]--(K[x])_{n}

and K[x] is an Ore domain. Hence n=\dim Q[x]=\dim R[x] , because
Q(Q[x])=Q(R[x]) .
1) Conditions assumed on rings will always be assumed to hold on both sided; for

example, an order always means a right and left order.
2) The quotient ring of a ring T will be denoted by Q(T).
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(iii) If U is a uniform right ideal of R, then U[x’] is also a uniform
right ideal of R[x’] by (ii) for any finite subset x’ of x and so UQ(R[x’])
is a minimal right ideal of Q(R[x’]) . It follows that US is a minimal right
ideal of S.

(iv) If U_{1}\oplus\cdots\oplus U_{n} is an essential right ideal of R, where U_{i} are uniform
right ideals of R, then, since (U_{1}\oplus\cdots\oplus U_{n})Q=Q , we have S=(U_{1}\oplus\cdots\oplus U_{n})

S=U_{1}S\oplus\cdots\oplus U_{n}S and the U_{i}S are minimal right ideals of S by (iii). Hence
S is a simple artinian ring and is the classical right quotient ring of R[x] .
Similarly, it is the classical left quotient ring of R[x] . It is evident that
dim R=\dim R[x] .

Lemma 1. 2. Let A be a non-zero ideal of R[x] and let r(x) , c(x)=
c_{n}x^{n}+\cdots+c_{0} be elements of R[x] such that c_{n} is a regular element of R.
If r(x)A\underline{\subset}c(x) A and degr(x)<degc(x) , then r(x)=0(degr(x) is the
degree of the polynomial r(x)) .

PROPOSITION 1. 3. If R is a maximal order in Q, then R[x] is a
maximal order in Q(R[x]) .

PROOF. Let k be the minimum number of the set \{\deg f(x)|A\ni f(x)\neq 0\}

and A_{0}=\{f(x)\in A|\deg f(x)=k\}\cup\{O\} . Then it is an {R,R) -bimodule and so
A_{0}R[x] is an ideal of R[x] . If r(x)\neq 0 , then 0\underline{\prec-}r(x)A_{0}R[x]\underline{\subset}c(x)A . For
any non-zero element r(x)f(x)(f(x)\in A_{0}) , we have deg r(x)f(x)\leq\deg r(x)+k .
But the degree of non-zero element of c(x) A is larger that deg r(x)+k,

because c_{n} is a regular element of R and deg r(x)<\deg c(x) . This con-
tradiction implies that r(x)=0 .

PROOF. Firstly we shall prove the assertion in case x=\{x\} . Let A
be any non-zero ideal of R[x] and let B be the ideal of all leading coefficients
of polynomials in A. Let q=c(x)^{-1}r(x) be any non-zero element of O_{l}(A)=

\{q\in Q(R[x])|qA\subseteq A\} , the left order of A, and let c(x)=c_{n}x^{n}+\cdots+c_{0} , r(x)=
r_{m}x^{m}+\cdots+r_{0} be non-zero elements in R[x] . By the same way as in
Lemma 2 of [17], we may assume that c_{n} is a regular element of R. Since
r(x)A\underline{\subset}c(x)A , we have r_{m}B\underline{\subset}c_{n}B and c_{n}^{-1}r_{m}\in O_{l}(B)=R by Lemma 1. 2
of [2]. Thus r_{m}=c_{n}s_{m-n} for some s_{m-n}\in R . By Lemma 1. 2, n\leq m and so
r(x)=c(x)t_{1}(x)+r_{1}(x) , where t1(x)=s_{m-n}x^{m-n} , r_{1}(x)\in R[x] and deg r_{1}(x)<m ,
i . e. , c(x)^{-1}r(x)=t_{1}(x)+c(x)^{-1}r_{1}(x) . Hence (t_{1}(x)+c(x)^{-1}r_{1}(x))A\underline{\subset} A and
c(x)^{-1}r_{1}(x)A\underline{\subset}A . If n\leq\deg r_{1}(x) , then the process is repeated and we get
r_{1}(x)=c(x)t_{2}(x)+r_{2}(x)(t_{2}(x), r_{2}(x)\in R[x]) , deg r_{1}(x)>\deg r_{2}(x) and c(x)^{-1}r_{2}(x)

A\subseteq A . Continuing the process we obtain r_{i}(x)=c(x)t_{i+1}(x)+r_{i+1}(x)(t_{i+1}(x) ,
r_{i+1}(x)\in R[x]) , deg r_{i+1}(x)<\deg c(x) and c(x)^{-1}r_{i+1}(x)A\subseteq A . Then, by Lem-
ma 1. 2, r_{i+1}(x)=O and therefore c(x)^{-1}r(x)=t_{1}(x)+\cdots+t_{i+1}(x)\in R[x] . This
implies that O_{l}(A)=R[x] and, by symmetry, R[x]=O_{r}(A) , the right order
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of A. Hence R[x] is a maximal order in Q(R[x]) by the remark to Lemma
1. 2 of [2], By induction, R[x’] is a maximal order in Q(R[x’]) for any
finite subset x’ of x. Nextly we shall prove the assertion in case x is
arbitrary. Let A be any non-zero ideal of R[x] and let q be any element
of O_{l}(A) . Then there exists a finite subset x’ of x such that q\in Q(R[x’])

and 0\neq A\cap R[x’] . It follows that q(A\cap R[x’])\underline{\subset}A\cap Q(R[x’])=A\cap R[x’]

and so q\in O_{l}((A\cap R[x’]))=R[x’] . Hence O_{l}(A)=R[x] and, by symmetry,
O,. (A)=R[x] . This implies that R[x] is a maximal order in Q(R[x]) .

Let I be a right R-ideal. Following [1], we define I^{*}=(I^{-1})^{-1} . If I=I^{*} ,
then it is said to be a right v-ideal. In the same way one defines left
v -ideals and v-ideals.

Lemma 1. 4. If R is a maximal order in Q and if I is a (one-sided)

R-ideal, then I^{-1}[x]=(I[x])^{-1} . In particular, if I is a (one-sided) v-ideal,
then so is I[x] .

PROOF. We shall prove the lemma when I is a right R-ideal. Since
I^{-1}[x]I[x]\subseteq R[x] , we get I^{-1}[x]\underline{\subset}(I[x])^{-1} . To prove the inverse inclusion,
let q be any element in (I[x])^{-1} , i . e. , qI[x]\underline{\subset}R[x] . Since qc\in R[x] for
any regular element c in I, q\in Rc^{-1}[x]\underline{\subset}Q[x] . Therefore all coefficients
of q (as polynomials over Q) are contained in I^{-1} and so q\in I^{-1}[x] . Hence
I^{-1}[x]=(I[x])^{-1} , as desired.

2. R[x]

Let R be an order in Q and let F be a right additive topology on R.
We denote by R_{F} the ring of quotients of with respect to F (cf. [18]). An
overring R’ of R is said to be right essential if it satisfies the following
two conditions :

(i) There is a perfect right additive topology F on R such that R’=
R_{F} (cf. p74 of [18]).

(ii) If I\in F, then R’I=R’ .

If R_{F} is a right essential overring of R, then F consists of all right
ideals I of R such that IR_{F}=R_{F} . So each element of F is an essential
right ideal of R. So if R is a maximal order in Q, then R_{F}=\cup^{-1}(I\in F) .

An overring R’ of R is said to be essential if it is right and left es-
sential. If P is a prime ideal of R, then we denote by C(P) those elements
of R which are regular mod . (P). If R satisfies the Ore condition with
respect to C(P) , then we denote by R_{P} the ring of quotients of R with
respect to C(P) . We call an order R an Asano order if its R-ideals form
a group under multiplication. An order R is said to be local if its Jacobson
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radical J is the unique maximal ideal and R/J is an artinian ring. Let R

be a noetherian, local and Asano order. Then, by Proposition 1. 3 of [8],
R is a bounded, hereditary, principal right and left ideal ring. Following
[8], we define S(R)=\cup B^{-1} , where B ranges over all non-zero ideals of R

and call it an Asano overring of R.
Let R be a maximal order in Q and let P be an ideal of R. Then

the following are equivalent (cf. p. 11 and Theorem 4. 2 of [1]) :
(i) P is a prime v ideal of R.
(ii) P is a maximal element in the lattice of integral v -ideals of R.
(iii) P is a meet-irreducible in the lattice of integral v -ideals of R.
If P satisfies one of the conditions above, then it is a minimal prime

ideal of R by Theorem 1. 6 of [2]. The set D(R) of all v -ideals becomes
an abelian group under the multiplication ”\circ ” defined by A^{*}\circ B^{*}=(AB)^{*}=

(A^{*}B)^{*}=((AB^{*}))=(A^{*}B^{*})^{*} for any R-ideals A and B (cf. Lemma 2 of [12]).
If the integral v-ideals satisfies the maximum condition, then D(R) is a direct
product of infinite cyclic groups with prime v-ideals as their generators (cf.

Theorem 4. 2 of [1] ) . These results are frequently used in this paper without
references.

An order R in Q is called Krull if there are a family \{R_{i}\}_{i\in F} and S(R)

of overrings of R satisfying the following:
(K1) R=\cap i\in rR_{i}\cap S(R) , where R_{i} and the Asano overring S(R) are

essential overrings of R,
(K2) each R_{i} is a noetherian, local, Asano order, and S(R) is a noe-

therian, simple ring, and
(K3) for every regular element c in R we have cR_{i}\neq R_{i} for only finitely

many i in I and R_{k}c\neq R_{k} for only finitely many k in I.
If R is a Krull order in Q, then it is a Krull ring in the sense of [10].

In non-commutative rings, it seems to me that the definition above is more
natural than one of Krull rings in [10].

In this section, P_{i}’ will denote the unique maximal ideal of R_{i} and P_{i}=

P_{i}’\cap R(i\in I) . By Proposition 1. 1 of [10], P_{i} is a prime ideal of R and
R_{i}=R_{P_{i}} .

PROPOSITION 2. 1. Let R be a Krull order in Q. Then
(1) R is a maximal order in Q.
(2) The integral right and left v -ideals satisfy the maximum condi-

tion.
(3) If A is a non-zero ideal of R, then AS{R) S(R) A=S(R) .
(4) Let P be an ideal of R. Then it is a prime v-ideal of R if and

only if P=P_{i} for some i in I.



68 H. Marubayashi

PROOF. Since a simple ring is a maximal order, (1) follows from the
same way as in Proposition 1.3 of [11].

(2) let I be any right v -ideal. Then I=\cap iIRi\cap IS(R) by Corollary
4. 2 of [10]. So (2) is evident from the definition of Krull orders.

(3) Let S(R)=R_{F}=R_{F_{l}} , where F and F_{l} are perfect right and left
additive topologies on R, respectively. Since S(R) AS(R)=S(R), we write
1=\Sigma_{i=1}^{n}t_{i}a_{i}s_{i} , where t_{i} , s_{i}\in S(R) and a_{i}\in A . There are elements B and C
in F and F_{l} respectively, such that Ct_{i} , s_{i}B\underline{\subset}R . So CB\underline{\subset}A , which implies
that S(R)\supseteq S(R)A\supseteq S(R)CB=S(R) . Hence S(R)=S(R) A and, by symmetry
S(R)=AS(R) .

(4) Let P be a prime v-ideal. Then P=\cap {}_{i}PR_{i}\cap S(R) . There are
finitely many 1, \cdots , k\in I only such that PR_{i}\neq R_{i}(1\leq i\leq k) . Since R_{i} is
bounded, there are natural numbers n_{i} such that P_{i^{n_{i}}}’\subseteq PR_{i} . It follows that
P_{1}^{n_{1}}\cap\cdots\cap P_{k}^{n_{k}}\subseteq P . Hence P_{i}\subseteq P for some i and thus P_{i}=P. The fact
that each P_{i} is a prime v-ideal follows from the same way as in Lemma
1. 5 of [11].

Lemma 2. 2. Let R be a maximal order in Q and let S(R) be the
Asano overring of R. If AS(R) I S(R) I S(R) A for every non-zero ideal
A of R, then S(R) is an essential overring of R and is a simple ring.

PROOF. Let F=\{I|I is a right ideal of R and contains a non-zero ideal
of R}. We shall prove that F is a right additive topology on R. To prove
this let I be any element of F and let A be a non-zero ideal of R such
that I\supseteq A . Then, for any r\in R , we have r^{-1}I=\{x\in R|rx\in I\}\supseteq r^{-1}A\supseteq A

and so r^{-1}I\in F . If I\in F and J is a right ideal of R such that a^{-1}J\in F for
all a\in I, then we obtain S(R)\supseteq JS(R)\supseteq\Sigma_{a\in I}a(a^{-1}J)S(R)=\Sigma_{a\in I} IS(R) IS(R)
=S(R) . Hence S(R)=JS(R) . Put 1=\Sigma_{i=1}^{n}a_{i}t_{i} , where a_{i}\in J and t_{i}\in S(R) .
There is a non-zero ideal B of R such that t_{i}B\subseteq R . It follows that B\subseteq J

and J\in F. Thus F is a right additive topology on R by Lemma 3. 1 of
[18]. By the assumption, it is clear that S(R)=R_{F} and that it is a right
essential overring of R. By symmetry, S(R) is a left essential overring of
R and therefore it is an essential overring of R. It is clear that S(R) is
a simple ring.

Lemma 2. 3. Let R be an order in Q and let R be a simple ring.
Then

(1) The correspondence

(*) P_{-}P’=PQ[x]
is one-tO-One between the family of all maximal ideals of R[x] and the
family of all maximal ideals of Q[x] . The inverse of (^{*}) is given by
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the correspondence P’arrow P’\cap R[x] .
(2) R[x]_{P}=Q[x]_{P’} , and is a noetherian, local, Asano order for every

maximal ideal P of R[x] .
(3) S(R[x]) is an essential overring of R[x] , is a simple ring and

S(R[x])\underline{\subset}S(Q[x]) . In particular, if R is noetherian, then so is S(R[x]) .
PROOF. The same proof as in Example 6. 1 of [16] gives that R[x]

is an ipri and ipli-ring. So R[x] is an Asano order in Q(R[x]) .
(1) Let P’ be a maximal ideal of Q[x] and P=P’\cap R[x] . It is evident

that P is a maximal ideal of R[x] . Since Q[x] is an essential overring
of R[x] by Lemma 5.3 of [10], we have P’=PQ[x]=Q[x]P. Conversely
let P be a maximal ideal of R[x] and let P’=Q[x]PQ[x] . Assume that
P’=Q[x] and write 1=\Sigma_{i=1}^{n}q_{i}p_{i}g_{i} , where q_{i} , g_{i}\in Q[x] and p_{i}\in P. There
are regular elements c, d in R such that cq_{i} , g_{i}d\in R[x] . It follows that

RcdR QP, which is a contradiction. Hence P’ is a proper ideal of Q[x]
so that P’\cap R[x] is also a proper ideal of R[x] . This implies that P=
P’\cap R[x] and thus P’=PQ[x]=Q[x]P, since Q[x] is an essential overring
of R[x] . It is clear that P’ is a maximal ideal of Q[x] .

(2) By Example 6. 3 of [16], Q[x] is a Dedekind prime ring. So
Q[x]_{P’} is a noetherian, local, Asano order in Q(R[x]) by Theroem 2. 6 of
[8]. Since P=P’\cap R[x] , we get Q[x]_{P’}=R[x]_{P} by Proposition 1. 1 and
Lemmas 5. 2, 5. 3 of [10].

(3) Since R[x] is an Asano order in Q(R[x]) , S(R[x]) is an essential
overring of R[x] and is a simple ring by Lemma 2. 2. Let A=P_{1}^{n_{l}}\cdots P_{t}^{n_{t}}

be any non-zero ideal of R[x] , where P_{i} are maximal ideals of R[x] . Then
we get A^{-1}\underline{\subset}Q[x]A^{-1}=(AQ[x])^{-1}=(P_{1}^{\prime n_{1}}\cdots P_{t}^{\prime n_{t}})^{-1}\underline{\subset}S(Q[x]) . Hence S(R[x])
\underline{\subset}S(Q[x]) . HR is a noetherian and simple ring, then so is S(R[x]) by
[8, p. 446], because R[x] is a noetherian Asano order.

THEOREM 2.4. If R is a Krull order in Q, then R[x] is a Krull
order in Q(R[x]) .

PROOF. Let R=\cap iRP_{i}\cap S(i\in I) , where P_{i} ranges over all prime v-
ideals of R and S=S(R) is the Asano overring of R. Then R[x]=\cap

R[x]_{P_{i^{[x]}}}\cap Q[x]\cap S[x] by the proof of Theorem 5. 4 of [10]. Since Q[x]
and S[x] are both noetherian Asano orders by Example 6. 1 of [16], we
obtain Q[x]=\cap j\in\gamma Q_{j}^{*}\cap S(Q[x]) and S[x]=\cap j\in JS^{*}j\cap S(S[x]) by Theorem
3. 1 of [8]. Here Q_{j}^{*}=S_{j}^{*} are noetherian, local, Asano orders, S(S[x])\subseteq

S(Q[x]) , and S(S[x]) is a noetherian, simple ring and is an essential over-
ring of R[x] by Lemmas 5. 2, 5. 3 of [10] and Lemma 2. 3. Let Q_{j}’ be the
unique maximal ideal of Q_{j}^{*}(j\in J) . We consider the following diagram;
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position 2. 1, the following:
(i) R[x] satisfies the condition (K3) .
(ii) The integral one-sided v -ideals satisfies the maximum condition.
(iii) P_{i}[x] , Q_{j}(i\in I,j\in J) are all prime v-ideals of R[x] .

R[x]\subseteq S[x]\subseteq Q[x]\subseteq Q_{j}^{*}

\cup \cup \cup \cup

Q_{j}\underline{\subset}Q_{j}’\underline{\subset}Q_{j}’\underline{\subset}Q_{j}’

where Q_{j}=R[x]\cap Q_{j}’ , Q_{j}’=S[x]\cap Q_{j}’ and Q_{j}’=Q[x]\cap Q_{j}’ . Then Q_{j}^{*}
. =

R[x]_{Q_{j}} by Proposition 1. 1 of [10]. Thus we have

(*) R[x]=\cap i\in rR[x]_{P_{i}[x]}\cap\cap j\in JR[x]_{Q_{j}}\cap S(S[x])

In the expression (^{*}) of R[x] , we get, as in Theorem 5. 4 of [10] amd PrO-

To prove that these only are prime v-ideals of R[x] , let P be a prime
v-ideal of R[x] . If P\cap R\neq 0 , then, since (P\cap R)^{*}[x]=((P\cap R)[x])^{*}\underline{\subset}P^{*}=P

by Lemma 1. 4, P\cap R is also a prime v-ideal of R so that P\cap R=P_{i} for
some i\in I by Proposition 2. 1. Hence P\supseteq P_{i}[x] and thus P=P_{i}[x] . If
P\cap R=0 , then it follows that Q[x]PQ[x] - Q[x] , and so Q[x]PQ[x]\subseteq Q_{j}’

for some j\in J. Since \{Q_{j}’|j\in J\} are the set of maximal ideals of Q[x] .
Hence P\underline{\subset}Q_{j} so that P=Q_{j} , as claimed. It remains to prove that S(S[x])=
S(R[x]) . To prove this let A be a non-zero ideal of R[x] . We write
A^{*}=(P_{1}[x]^{m_{1}}\cdots P_{s}[x]^{m}s\cdot Q_{1}^{n_{1}}\cdots Q_{t}^{n_{l}})^{*} . Then S[x]\supseteq A^{*}S[x]\supseteq Q_{1}^{n_{1}}\cdots Q_{t}^{n_{t}}S[x]

=Q_{1}^{\prime\prime\prime n_{1}}\cdots Q_{l}^{\prime\prime\prime n_{l}} by Proposition 2. 1. Thus we have S(S[x])\supseteq A^{*}S(S[x])\supseteq

Q_{1}^{\prime\prime\prime n_{1}}\cdots Q_{l}^{\prime\prime\prime n_{l}}S(S[x])=S(S[x]) and so S(S[x])=A^{*}S(S[x]) . It follows that
A^{-1}\underline{\subset}A^{-1}S(S[x])=A^{-1}A^{\backslash *}S(S[x])\underline{\subset}S(S[x]) . Hence S(R[x])\subseteq S(S[x]) . To
prove the inverse inclusion, let q be any element of S(S[x]) . We may assume
that q is a regular element in Q(R[x]) by Lemma 2. 2 of [10]. There is
a non-zero ideal B’ of S[x] such that qB’\underline{\subset}S[x] and so qB\underline{\subset}S[x] , where
B=B’\cap R[x] , Write B^{*}=(b_{1}R[x]+\cdots+b_{n}R[x])^{*} for some elements b_{i} of B.
Then there exists a non-zero ideal C of R such that qb_{i}C\subseteq R[x] so that
qb_{i}C[x]\subseteq R[x] . It follows that q(b_{1}R[x]+\cdots+b_{n}R[x])C[x]\subseteq R[x] and
thus we have R[x]\supseteq(q(b_{1}R[x]+\cdots+b_{n}R[x])C[x])^{*}=q((b_{1}R[x]+\cdots+b_{n}R

[x])^{*}C[x])^{*}=q(B^{*}C[x])^{*}=q(BC[x])^{*} by Lemma 2 of [12], which implies
q\in(BC[x])^{-1}\subseteq S(R[x]) . Hence S(R[x])\supseteq S(S[x]) and S(R[x])=S(S[x]) , as
desired.

COROLLARY 2. 5. If R is a Krull order in Q, then R[X_{1}^{ },\cdots, X_{n}] is
a Krull order in Q(R[x_{1}, \cdots, x_{n}]) .
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3. R[x]

In the remainder of this paper, x=\{x_{\alpha}|\alpha\in A\} denotes an arbitrary set
of indeterminates over R which commutes with any element of R. We
shall study, in this section, the polynomial ring R[x] over Krull order R.

Lemma 3. 1. Let R be a Krull order in Q and let P be a prime v-
ideal of R. Then

(1) R[x] satisfifies the Ore condition with respect to C(P[x]) and
R[x]_{P[]}x= \bigcup_{x’}R[x’]_{P\ddagger x’}] , where x’ ranges over all fifinite subsets of x.

(2) R[x]_{P1x}] is a neotherian, local and Asano order in Q(R[x]) .
PROOF. (1) Let x’ and x’ be any finite subsets of x such that x’\subsetneqq x’ .

Since R[x’]=R[x’][x’-x’] and P[x’]=P[x’][x’-x’] , where x’-x’ is
the complement set of x’ in x’ . it is evident that C(P[x’])\underline{\subset}C(P[x’]) .
Firstly we shall prove that C(P[x])= \bigcup_{x}{}_{\acute{0}}C(P[x_{0}’]) , where x_{0}’ ranges over
all finite subsets of x. If c(x’)f(x)\in P[x] , where x’ is a finite subset of
x, c(x’)\in C(P[x’]) and f(x)\in R[x] , then there exists a finite subset x’(\supseteq x’)

of x such that f(x)\in R[x’] and c(x’)f(x)\in P[x’] . Hence f(x)\in P[x’] and
so C(P[x’])\subseteq C(P[x]) . Conversely, let c(x) be any element of C(P[x])
and assume that c(x)\in R[x’] . If c(x)g(x)\in P[x’] , where g(x)\in R [x’] ,

then g(x)\in R[x’]\cap P[x]=P[x’] . This implies that c(x)\in C(P[x’]) . Hence
C(P[x])=\cup {}_{x_{\acute{0}}}C(P[x_{0}’]) . Next we shall prove that R[x] satisfies the Ore
condition with respect to C(P[x]) . To prove this let c(x) and a(x) be any
element of R[x] with c(x)\in C(P[x]) . Then there is a finite subset x’ of
x such that a(x) , c(x)\in R[x’] . By Proposition 2. 1 and Corollary 2. 5, there
exist b(x) , d(x) in R[x’] and d(x)\in C(P[x’]) such that a(x)d(x)=c(x)b(x) .
Hence R[x] satisfies the right Ore condition with respect to C(P[x]) and
R[x]_{P[]}x= \bigcup_{x’}R[x’]_{P\ddagger x’}] . The other Ore condition is shown to hold by a
symmetric proof.

(2) Let P’ be the unique maximal ideal of R_{P} and let x’ be any finite
subset of x. Since R[x’]_{PIx’}] is a noetherian, local and Asano order, we
obtain that P[x’]R[x’]_{PIx’}]=R[x’]_{PIx’}]P[x’] and that it is the Jacobson radical
of R[x’]_{PIx’}] . Let P’=pR_{P}=R_{P}p for some regular element p in P. Then we
have pR[x’]_{P1x’}]=P[x’]R[x’]_{P\ddagger x’}]=R[x’]_{PIx’}]p, because R[x’]_{P1x’}]=(R_{P}[x’])_{P’Ix’}] .
Put P’=P[x]R[x]_{P\ddagger x}] . Then we obtain that P’=pR[x]_{P[]}x= \bigcup_{x’}(pR[x’]_{P\ddagger x’}])

=\cup(R[x’]_{P\ddagger x’}]p)=R[x]_{P[]}xp=R[x]_{P\ddagger x}]P[x] , where d’ ranges over all finite
subsets of x. Hence P’ is an ideal of R[x]_{P\ddagger x}] and is invertible. It is evi-
dent that P’\cap R[x]_{PIxJ}=P[x] . Since R[x]/P[x]-\sim R/P[x] and R[x]_{PIx}]/P’

is the quotient ring of R[x]/P[x] , it follows that R[x]_{P1x}]/P’ is a simple,
artinian ring. So P’ is a maxima ideal of R[x]_{P\ddagger x}] . To prove that P’ is the
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Jacobson radical of R[x]_{PIx}] , let V be any maximal right ideal of R[x]_{P\ddagger x}] .
Assume that V\not\equiv P’ . Then R[x]_{P[]}x=V+P’ Write 1=v+p’ , where v\in V

and p’\in P’ . There is a finite subset x’ of x such that v\in R[x’]_{P\ddagger x’}] and
p’\in P[x’]R[x’]_{P\ddagger x’}] . Then v is a unit in R[x’]_{PIx’}] and so it is a unit in
R[x]_{PIx}] . Thus we get V=R[x]_{P\ddagger x}] , which is a contradiction. Hence V\supseteq P’

and so P’ is the Jacobson radical of R[x]_{P\ddagger x}] . Let I be any essential right
ideal of R[x]_{P\ddagger x}] . Then there is a finite subset x’ of x such that I\cap R[x’]_{PIx’}]

is an essential right ideal of R[x’]_{P\ddagger x’}] . It follows that I\cap R[x’]_{P\ddagger x’}]\supseteq

(P[x’]R[x’]_{P\ddagger x’}])^{n} for some natural number n . Hence we have I\supseteq P^{\prime\prime n} . this
implies that the essential right ideals of R[x]_{PIx}] satisfies the maximum con-
dition, because R[x]_{P\ddagger x}]/P’ is artinian and P’ is invertible. Further, since
dim R[x]_{PIx}] is finite, R[x]_{P\ddagger x}] is right noetherian. Similarly, it is left noe-
therian. Hence R[x]_{P[\eta]} is a noetherian, local and Asano order in Q(R[x])
by Proposition 1. 3 of [8].

let I be a right R[x] -ideal. Then qI\underline{\subset} I for some regular element q
in Q(R[x]) . There is a finite subset x_{0}’ of x such that q\in Q(R[x_{0}’]) and
I\cap Q(R[x_{0}’]) is a right R[x_{0}’] -ideal, because I=\cup(I\cap Q(R[x’]) , where x’
runs over all finite subsets of x. For any finite subset x’ of x with x’\supseteq x_{0}’ ,
I\cap Q(R[x’]) is a right R[x’] -ideal. Thus we have I=\cup(I\cap Q(R[x’])) .
Here x’ ranges over all finite subsets of x such that each I\cap Q(R[x’]) is
a right R[x’] -ideal. We define \tilde{I}=\cup(I\cap Q(R[x’]))^{*} . Clearly I\subseteq\tilde{I} and es-
pecially, for right v -ideals, we have

Lemma 3. 2. Let R be a maximal order in Q and let I be a right
v ideal of Q(R[x]) . Then I=\tilde{I}.

PROOF. Let c be a unit in Q(R[x]) . It is evident that cR[x]=c\tilde{R}[x] .
So the lemma immediately follows from Proposition 4. 1 of [10].

Lemma 3. 3. Let R be a maximal order in Q and let P be a proper
ideal of R[x] . Then P is a prime v-ideal if and only if P=P’ [x-x’]
where x’ is a fifinite subset of x and P’ is a prime v ideal of R[x’] .

PROOF. The sufficiency is clear from Lemma 1. 4. Assume that P is
a prime v-ideal. There is a finite subset x’ of x such that P\cap R[x’] is
a non-zero. It is a prime ideal of R[x’] . If (P\cap R[x’])^{*}=R[x’] , then P=
R[x] by Lemma 3. 2, which is a contradiction. Hence (P\cap R[x’])_{\overline{\overline{=\dagger}}}^{*}=R[x’]

so that P\cap R[x’] is a prime v ideal of R[x’] by Proposition 1. 7 of [2].
Thus (P\cap R[x’])[x-x’] is a prime v-ideal of R[x] contained in P. There-
fore P=(P\cap R[x’])[x-x’] , as desired.

Lemma 3. 4. Let R be a Krull order in Q. Then the integral v-
ideals of R[x] satisfifies the maximum condition.
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PROOF. Let P_{1} , \cdots , P_{S} be any prime v-ideals of R[x] and let n_{1} , \cdots , n_{S}

be any natural numbers. Then we obtain by the same as in Asano orders
that the integral v-ideals containing (P_{1}^{n_{1}}\cdots P_{s}^{n_{s}})^{*} are the ideals (P_{1}^{m_{1}}\cdots P_{s}^{m_{S}})^{*}

only (0\leq m_{i}\leq n_{i}) . So it suffices to prove that any integral v -ideal of R[x]
contains an integral v -ideal of such forms. To prove this let A be any
proper integral v-ideal of R[x] . There exists a finite subset x’ of x such
that (A\cap R[x’])^{*} is a proper integral v -ideal of R[x’] . Write (A\cap R[x’])^{*}=

(P_{1}^{n_{1}}\cdots P_{t}^{n_{l}})^{*} , where P_{i} are prime v ideals of R[x’] . By Lemmas 1. 4 and
3. 2, we get A\supseteq(A\cap R[x’])^{*}[x-x’]=(P_{1}^{n_{1}}\cdots P_{t}^{n_{t}}[x-x’])^{*}=((P_{1}[x-x’])^{n_{1}}\cdots

(P_{t}[x-x’])^{n_{t}})^{*} . Each P_{i}[x-x’] is a prime v-ideal of R[x] by Lemma 3. 3.
Lemma 3. 5. Let R be a Krull order in Q. Then S(R[x])= \bigcup_{x’}S(R[x’]) ,

where x’ ranges over all fifinite subsets of x’ , it is an essential overring of
R[x] and is a simple ring.

PROOF. Let A be any non-zero ideal of R[x’] , where x’ is a finite
subset of x. Then we have A^{-1}\underline{\subset}A^{-1}[x-x’]=(A[x-x’])^{-1} and A[x-x’]
is an ideal of R[x] . Hence S(R[x]) \supseteq\bigcup_{x’}S(R[x’]) . Conversely let q be any
element of S(R[x]) . There is an ideal B of R[x] such that qB\underline{\subset}R[x] . Since
B^{-1-1-1}=B^{-1} , we may assume that B is a v -ideal. Write B=(P_{1}^{n_{1}}\cdots P^{n_{t}},)^{*} ,
where P_{i} are prime v-ideals of R[x] . There are finite subsets x’ , x_{i}’(1\leq i\leq t)

of x and prime v ideals P_{i}’ of R[x_{i}’] such that q\in Q(R[x’]) , P_{i}=P_{i}’[x-x_{i}’]

by Lemma 3. 3. We set x’=x’\cup x_{1}’\cup\cdots\cup x_{t}’ and P_{i}’=P_{i}’[x’-x_{i}’] , which is
a prime v-ideal of R[X’] . It follows that q\in Q(R[x’]) and P_{i}=P_{i}’[x-x’] .
Hence we have B=((P_{1}’[x-x’])^{n_{1}}\cdots(P’,[x-x’])^{n_{t}})^{*}=((P_{1}^{\prime\prime n_{1}}\cdots P_{t}^{\prime\prime n_{t}})[x-x’])^{*}

and so B^{-1}=(P_{1}^{\prime\prime n_{1}}\cdots P_{t}^{\prime\prime n_{l}})^{-1}[x-x’] . Hence q\in(P_{1}^{\prime\prime n_{1}}\cdots P_{t}^{\prime\prime n_{l}})^{-1}[x-x’]\cap

Q(R[x’])=(P_{1}^{\prime\prime_{n_{1}}}.\ldots P_{t}^{\prime\prime n_{t}})^{-1} , which imph.es that S(R[x]) \underline{\subset}\bigcup_{x’}S(R[x’]) . Hence
S(R[x])= \bigcup_{x’}S(R[x’]) . To prove that S(R[x]) is an essential overring of
R[x] , let C be any non-zero ideal of R[x] . Then there is a finite subset
x’ of x such that 0\neq C\cap R[x’] . By Proposition 2. 1 and Corollary 2. 5,
(C\cap R[x’])S(R[x’])=S(R[x’]) and hence CS(R[x])=S(R[x]) and, by sym-
metry, S(R[x])C=S(R[x]) . Hence S(R[x]) is an essential overring of R[x]
and is a simple ring by Lemma 2. 2.

Lemma 3. 6. Let R be a Krull order in Q and let P be a prime v-
ideal of R[x] . Then R[x]=P^{-1}\cap R[x]_{P} .

PROOF. Clearly R[x]\subseteq P^{-1}\cap R[x]_{P} . Since P^{-1}\cap R[x]_{P} is an R[x]-
ideal contained in P^{-1} , we get, by Lemma 2 of [12], the following :

P^{-1}\cap R[x]_{P}\subseteq P^{-1}\circ P\circ(P^{-1}\cap R[x]_{P})^{*}=P^{-1}\circ(P(P^{-1}\cap R[x]_{P}))^{*}

\subseteq P^{-1}\circ(PP^{-1}\cap PR[x]_{P})^{*}\underline{\subset}P^{-1}\circ(R[x]\cap PR[x]_{P})^{*}=P^{-1}\circ P=R[x]
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Hence R[x]=P^{-1}\cap R[x]_{P} .

THEOREM 3. 7. Let R be a Krull order in Q. Then
(1) R[x]=\cap R[x]_{P}\cap S(R[x]) , where P ranges over all prime v-ideals

of R[x] . R[x]_{P} is a noetherian, local, Asano order. S(R[x]) is a simple
ring and is an essential overring of R[x] .

(2) R[x] satisfifies the condition (K3) .

PROOF. (1) Let P be a prime v-ideal of R[x] . By Lemma 3. 3, there
exist a finite subset x’ of x and a prime v-ideal P’ of R[x’] such that P=
P’[x-x’] . Hence, by Corollary 2. 5 and Lemma 3. 1, R[x] satisfies the
Ore condition with respect to C(P) and R[x]_{P} is a noetherian, local, Asano
order. The Asano overring S(R[x]) is a simple ring and essential overring
of R[x] by Lemma 3. 5. It remains to prove that R[x]=\cap R[x]_{P}\cap S(R[x]) .
But, by using Lemmas 3. 4 and 3. 6, the proof of this proceeds just like
that of Theorem 3. 1 of [8].

(2) Let V(P) be the set of all prime v-ideals of R[x] and, for any
finite subset x’ of x, let V(P_{x’}) be the set of all prime v-ideals P such that
P=P’[x-x’] for some prime v-ideal P’ of R[x’] . If c is a regular element
of R[x] , then there is a finite subset x_{0} of x such that c\in R[x_{0}] . By Cor-
ollary 2. 5, cR[x_{0}]_{P_{0}}\neq R[x_{0}]_{P_{0}} for only finitely many prime v-ideals P_{0} of R[x_{0}]

and so, by Lemma 3. 1, cR[x]_{P}\neq R[x]_{P} for only finitely many P in V(P_{x_{0}}) .
Hence it suffices to prove that cR[x]_{P}=R[x]_{P} for all P in V(P)-V(P_{x_{0}}) .
To prove this let P be any element in V(P)-V(P_{x_{0}}) . There are a finite
subset x’ of x and a prime v-ideal P’ of R[x’] such that P=P’[x-x’] by
Lemma 3. 3, i . e. , P\in V(P_{x’}) . Since P\in V(P_{x’\cup x_{0}}) and P\not\in V(P_{x_{0}}) , we may
assume that x’ is a minimal element of the set { x’|x^{\prime\neg}\overline{\neq}x_{0} and P\in V(P_{x’})}.
Let x be any element in x’ but not in x_{0} and let x’=x’-\{x\} . In case
x’=x_{0} , we consider the following;

Q(T)\cup \subset Q(T)[x]\cup

T=R[x_{0}]\subset T[x](=R[x’])

In case x^{\prime\prime\overline{\sim}}\neq x_{0} , we consider the following;

Q(R[x_{0}])\subset Q(T) \subset Q(T)[x]

\cup \cup \cup

R[x_{0}] \subset T=R[x’]\subset T[x](=R[x’])

In both cases, there is a prime ideal Q’ of Q(T)[x] such that P’=Q^{j}\cap

R[x’] and R[x’]_{P’}=Q(T)[x]_{Q’} by the proof of Theorem 2. 4. Since c is
a unit in Q(R[x_{0}]) , it is a unit in R[x’]_{P’} . Hence, since R[x]_{P}\supseteq R[x’]_{P’} , we
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have cR[x]_{P}=R[x]_{P} , as desired. By a symmetric proof, we have R[x]_{P}c\neq

R[x]_{P} for only finitely many P in V(P) .

4. Polynomial and Formal Power Series Extensions

In this section, D will denote a commutative Krull domain with field
of quotients K. As is well known, D[x] and D[[x]] are both Krull domains
(cf [6, p. 532] and Theorem 2. 1 of [5]). Here the formal power series
ring D[[x]] is defined to be the union of the rings D[[x’]] , where x’ ranges
over all finite subsets of x. We denote the fields of quotients of D[x] and
D[[x]] by K(x) and K((x)) , respectively.

Let \Sigma be a central simple K-algebra with finite dimension over K and
let \Lambda be a D-0rder in \Sigma in the sense of [4| . Then \Sigma(x)=\Sigma\otimes_{K}K(x) is a
central simple K(x) -algebra and \Lambda[x](\cong\Lambda\otimes_{D}D[x]) is a D[x] -0rder in \Sigma(x^{1}, .
So, from Proposition 4. 2 of [11] and Proposition 1. 3, we have.

PROPOSITION 4. 1. Let \Sigma be a central simple K-algebra and let \Lambda be
a maximal D-Order in \Sigma . Then \Lambda[x] is a maximal D[x] -Order in \Sigma(x) .

In case x is a finite set, this result was obtained by Fossum (cf. Theorem
1. 11 of [4] ) .

Lemma 4. 2. Let \Sigma be a central simple K-algebra and let \Lambda be a
D-Order in \Sigma . Then

(1) The quotient ring Q(\Lambda[[x]]) of \Lambda[[x]] is \Lambda[[x]]\otimes_{D[[\eta]]}K((x)) and
is a simple artinian ring with fifinite dimension over K((x)) .

(2) Q(\Lambda[[x]]) is central as a K((x)) -algebra.
(3) \Lambda[[x]] is a D[[x]] -Order in Q(\Lambda[[x]]) .
PROOF. First we note that \Lambda[[x]] is a prime ring and that each non-

zero element of D[[x]] is regular in \Lambda[[x]] .
(1) By Proposition 1. 1 of [4], there exists a finitely generated D-

free module F in \Sigma such that \Lambda\underline{\subset}F. Then F[[x]] is a finitely generated
D[[x]] -free module and so F[[x]]\otimes_{D[[]]}xK((x)) is a finite dimensional K((x))-
space. Thus \Lambda[[x]]\otimes_{D[[]]}xK((x)) is also a finite dimensional K((x)) -space,
which implies that it is an artinian ring. Further, \Lambda[[x]]\otimes_{D[[]]}xK((x)) is
an essential extension of \Lambda[[x]] as D[[x]] -modules (hence, as \Lambda[[x]] -modules).
It follows that \Lambda[[x]]\otimes_{D[[]]}xK((x)) is a simple artinian ring and is a quotient
ring of \Lambda[[x]] , since \Lambda[[x]] is a prime ring.

(2) Since \Lambda[[x]] is D[[x]] -torsion-free, we may assume that

\Lambda[[x]]\otimes_{D[[]]}xK((x))=\Lambda[[x]]K((x))

as in [3, p. 1045], and hence it contains \Sigma . let \{f_{i}\}q be any element of
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\Lambda[[x]]\otimes_{D[[]]}xK((x)) , where \{f_{i}\}_{i=1}^{\infty}\in\Lambda[[x’]] for some finite subset x’=\{x_{1}, \cdots,x_{s}\}

of x, each f_{i}\in\Lambda[x’] and f_{i} is either 0 or a form of degree i . Suppose that
\{f_{i}\}q is an element in the center of \Lambda[[x]]\otimes K((x)) and that \{f_{i}\}q\neq 0 .
Then \sigma(\{f_{i}\}q)=(\{f_{i}\}q)\sigma for every \sigma\in\Sigma . Since \{\sigma f_{i}\}q=\{f_{i}\sigma\}q , we get
\sigma f_{i}=f_{i}\sigma for all i . Write f_{i}=a_{i1}x_{l}^{n_{1l}}\cdots x_{s}^{n_{lS}}+\cdots+a_{it}x_{1}^{n_{t}.n_{ts}}1.. , where n_{j1}+\cdots

+n_{js}=i for j=1 , \cdots , t and a_{ij}\in\Lambda . Then a_{ij}\sigma=\sigma a_{ij} implies that a_{ij} belongs
to the center of \Lambda and so a_{ij}\in D. Hence \{f_{i}\}q\in K((x)) . This implies that
Q(\Lambda[[x]]) is central as K((x)) -algebras.

(3) It only remains to prove that each element of \Lambda[[x]] is integral
over D[[x]] . To prove this let p be a minimal prime ideal of D[[x]] . Then
\Lambda[[x]]\otimes_{D[[]]}xD[[x]]_{p}\underline{\subset}F[[x]]\otimes_{D[[]]}xD[[x]]_{p} , where F is a finitely generated
D-free module in \Sigma such that F\underline{\supset}\Lambda , the latter is finitely generated as D[[x]]_{p} -

modules and so is the former. Hence each element of \Lambda[[x]]\otimes_{D[[]]}xD[[x]]_{p}

is integral over D[[x]]_{p} by Theorem 8. 6 of [15]. Hence each element of
\Lambda[[x]] is integral over D[[x]] by Theorem 1. 14 of [15], because \Lambda[[x]]\underline{\subset}\cap

\Lambda[[x]]\otimes_{D[[]]}xD[[x]]_{p} and D[[x]]=\cap D[[x]]_{p} , where p ranges over all minimal
prime ideals of D[[x]] .

PROPOSITION 4. 3. Let \Sigma be a central simple K-algebra and le\tau\Lambda be
a maximal D-Order in \Sigma . Then \Lambda[[x]] is a maximal D[[x]] -Order in
\Lambda[[x]]\otimes_{D[[]]}xK((x)) .

PROOF. By Proposition 4. 2 of [11] and Lemma 4. 2, it suffices to prove
that \Lambda[[x]] is a maximal order in Q(\Lambda[[x]]) as rings. Firstly we shall
prove this in case x=\{x\} . Let A be any non-zero ideal of \Lambda[[x]] and q

be any element of O_{l}(A) . By the same way as Lemma 2’ of [17], there
is a regular element c(x)=c_{n}x^{n}+c_{n+1}x^{n\dagger 1}+\cdots ( c_{n} : regular) of \Lambda[[x]] such
that c(x)q=\lambda(x)\in\Lambda[[x]] . We get c(x)^{-1}=x^{-n}d(x) for some d(x)\in\Sigma[[x]]

by the method of [6, p. 7]. Thus q=c(x)^{-1}\lambda(x)=x^{-n}d(x)\lambda(x) and put e(x)=
d(x)\lambda(x)=e_{0}+e_{1}x+\cdots+e_{n}x^{n}+\cdots\in\Sigma[[x]] . We set A_{i}=\{a_{i}|a_{i}x^{i}+a_{i+1}x^{i+1}+

\ldots\in A\}\cup\{0\} for non-negative integers i and set A^{*}= \bigcup_{i}A_{i} . Assume that
A_{0}=A_{1}=\cdots=A_{i-1}=O and A_{i}\neq 0 . Since A_{i} is an ideal of \Lambda , there is a re-
gular element a_{i} in A_{i} by Goldie’s theorem [7] and is an element a(x)\in A

such that a(x)=a_{i}x^{i}+a_{i+1}x^{i+1}+\cdots . Then we get that qa(x)=x^{-n}e(x)a(x)
\in A and e(x) a (x)\in x^{n}A . Hence e_{0}=e_{1}=\cdots=e_{n-1}=O , because (x^{n}A)_{0}=\cdots

=(x^{n}A)_{n+i-1}=0 and a_{i} is regular. Hence q=x^{-n}e(x)\in\Sigma[[x]] , and write
q=q_{0}+q_{1}x+\cdots+q_{n}x^{n}+\cdots , where q_{i}\in\Sigma . For any non-zero element b_{k} of
A^{*} , there exists b(x)=b_{k}x^{k}+b_{k+1}x^{k+1}+\cdots in A. Then q_{0}b_{k}\in A^{*} , because
qb(x)\in A and so q_{0}\in O_{l}(A^{*})=\Lambda . Assume that q_{0}, \cdots , q_{j-1}\in\Lambda and put
q_{j}(x)=q(x)-(q_{0}+q_{1}x+\cdots+q_{j-1}x^{j-1}) . Then since q_{j}(x)A\subseteq q(x)A-(q_{0}+q_{1}x

+\cdots+q_{j-1}x^{j-1})A\subseteq A , it follows that q_{j}\in\Lambda by the same way as the above.
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Hence q\in\Lambda[[x]] by an induction. Thus O_{l}(A)=\Lambda[[x]] and, by symmetry,
O_{r}(A)=\Lambda[[x]] . Hence \Lambda[[x]] is a maximal order in Q(\Lambda[[x]]) . In particular
if x is finite, then \Lambda[[x]] is a maximal order in Q(\Lambda[[x]]) . Assume that x
is infinite and let B be any non-zero ideal of \Lambda[[x]] . If q is any element
of O_{l}(B) , then there exists a finite subset x’ of x such that B\cap\Lambda[[x’]] is
non-zero and q\in Q(\Lambda[[x’]]) . It follows that q(B\cap\Lambda[[x’]])\underline{\subset}B\cap Q(\Lambda[[x’]])=

B\cap Q(\Lambda[[x’]])\cap\Lambda[[x’]]=B\cap\Lambda[[x’]] . Hence q\in O_{l}(B\cap\Lambda[[x’]])=\Lambda[[x’]] and
thus O_{l}(B)=\Lambda[[x]] . By symmetric proof, we get O_{r}(B\grave{)}=\Lambda[[x]] and therefore
\Lambda[[x]] is a maximal order in Q(\Lambda[[x]]) .

REMARK. (1) In case x=\{x\} and D is a regular local ring, the pr0-

position was proved by Ramras [14].
(2) Let \Sigma be a central simple K-algebra and let \Lambda be a D order in

\Sigma . If \Lambda is a Krull order in \Sigma , then \Lambda[x] and \Lambda[[x]] are both Krull orders
by Proposition 4. 2 of [11] and Propositions 4. 1 and 4. 3.

(3) Let R be a noetherian prime Goldie ring with quotient ring Q.
By [17], R[[x]] is also a noetherian prime Goldie ring with quotient ring
Q(R[[x]]) . The same proof as Proposition 4. 3 gives that if R is a maximal
order in Q, then R[[x]] is a maximal order in Q(R[[x]]) .
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