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Q-projective transformations of an almost

quaternion manifold : 1I

By Shigeyoshi FujiMURA
(Received May 7, 1979)

Continued to the previous paper ([8]), we shall study infinitesimal Q-
projective transformations on the quaternion Kihlerian manifold® and prove
the following theorems :

THEOREM 4. If a complete quaternion Kdihlerian manifold (M, g, V)
with positive scalar curvature S admits an infinitesimal non-affine Q-
projective transformation, (M, g, V) is isometric to the quaternion projective
space of constant Q-sectional curvature S/dm(m-+2).

THEOREM 5. In a compact quaternion Kihlerian manifold, each vector
Sield which satisfies (3.4) is an infinitesimal Q-projective transformation.

Concerning infinitesimal projective transformations of a Riemannian
manifold or infinitesimal holomorphically projective transformations of a
Kghlerian manifold, we have known interesting analogous results, and we
can see them in [9], [10], [11], and etc..

§ 5. Proof of Theorem 4.
From (3.4),---,(3.7) and Ricci’s formula, we get

(5.1) A1)V jmy = F (TP n Xo—F ol XV 4T 77, X
_VthViXh+VthViXh

Transvecting (5.1) by 4}/ and substituting it into (5.1), we have
(5.2) 7= S{A% T Xu 70 Xo)
—(2m+3) (7; Xi+ 7 X))} [32m*(m+2)

where indices f and ¢ run over the range {1, ---,4m}. On the other hand,
from (1.1) and (3.1), we have

3) We assume that the dimension 4m of M=8.
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A8 Gon = 3054 5

A% gy = — A5} Qi »

At gy Ay = =31 Ogi+ 247 Oni »

A% guy AT, = A Gm -

Covariantly derivating (5. 2) and using (3. 4), (3.5) and (5. 3), we get

(5.4) VeV yme= —S(29 0+ Grsni+ Grs s

— A% g — A ) [16m(m+-2) .
7, being a gradient 1-form, from (5.4) and D, we can complete
the proof of [Theorem 4.

Combining Theorems 3 and 4, we can obtain

(5. 3)

COROLLARY 1. If a compact quaternion Kdhlerian manifold (M, g, V)
admits an infinitesimal non-affine Q-projective transformation, its scalar
curvature S is positive and (M, g, V) is isometric to the quaternion projective
space of constant Q-sectional curvature S[4m(m-+2).

§ 6. Proof of Theorem 5.

We call a vector field X to be a Q-projective vector field if X satisfies
(3.4). From (3.4),---,(3.6) and (5. 3), we have

6. 1) 3m {77, X9+ SX[4(m+2)} — A7 T X,
= —35X7/2(m~2)+ A% Ryyy; X
because Ak7in A% gfh:12mgﬂ and Aiin A%.i Opn= _39,71’ where Akjih:gkg gif Ag}l
On the other hand, from (3. 3) and Ricci’s formula, we have
(6.2) RuijlJpi— R I ot = TpariJet

where f,,,; are components of 8, and we put

ToakiTTawui =0,

712,65 = Vi Pre,i— V i Bra,k = Ba1, Bes,k — Btk Bas, i »
Tsrki = ViPa1,i—V i Bsr,ixt+ Pos, i Brei— Pas,i Brz, s »
723,65 — Vi PBas,i —V i Bas.kt Pro, i Bore — Prz.x Bst,j -

Transvecting the three equations of (6.2) with Ji s Joue and Js s respectively,
we get

1T R _
- Rkjlh Jl,i Jl,g + Rkjig =112,k Js,ig + 751,55 Jz,z‘g ’
1T R _
(6. 3) —Rijindst Jo.t + Rujig = Tes,u5J 1,60 T12,65 3,00 »
LT R _
— Rlcjlh, J3,1; JS,g + Rkjig = 7Vs1,kj J2,z'g + 723,k Jl,ig
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where Jpn,=Jp 10 Transvecting (6.3), with Jy,%, (6. 3), with J;% and (6. 3)s
with J,% respectively, we obtain
Rkath,lh = 2Mys1,kj s
(6. 4) Rijin Jz,lh = 2Mmy19,k5 5
Rkjlhl]l,lh = 2Mi9s k5
where J,%=J,%¢"". And we have
Rejind s, = — Runjid p,”"
from which, transvecting each equation of (6.3) with ¢, we obtain

Riy= —mys i —1suns o — T2 dsi »
Riy= —713s.05Jd1,] —MyausJog —ri2,6iJs »
Ry = —71es0id0d —7s1,05 2.l — M08 Js,7 -

Therefore, we have

( Tes, ki — RlciJl,,i;'/(m—l_z) ’
(6. 5) j Tat,ei — RkiJ2,§/<m+2) ’
712,65 — Ry J3,§-/(m—l-2)

(cf., (2.9) and (2.13) in [3]). From (6.4) and (6.5), we obtain
Rugind " = ST p,a/2(m+2) ,

from which, we get

(6. 6) A¥3 Ry = 38T} 12(m+-2) .

Thus, by virtue of (6.1), (6.6), Theorem 2 and the following E,
we can prove [Lheorem J:

TueorReEM E ([4]). In a compact quaternion Kdihlerian manifold, a
vector field X is an infinitesimal Q-transformation if and only if X satisfies

3m {77, X +SX/4(m+2)} — AT, F X, = 0.

COROLLARY 2. In a complete quaternion Kdhlerian manifold with
positive scalar curvature, each Q-projective vector field is an infinitesimal
Q-projective transformation.

COROLLARY 3. If a complete quaternion Kdhlerian manifold (M, g, V)
with positive scalar curvature S admits a non-affine Q-projective vector
field, (M, g, V) is isometric to the quaternion projective space of constant
Q-sectional curvature S[4dm(m+2).
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CorROLLARY 4. If a compact quaternion Kdhlerian manifold (M, g, V)
with scalar curvature S admits a non-affine Q-projective vector field, S is
positive and (M, g, V) is isometric to the quaternion projective space of con-
stant Q-sectional curvature S/dm(m+2).
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