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Boundary behavior of Dirichlet solutions

at regular boundary points

By Wataru Ocawa
(Received June 18, 1979)

Let G be a bounded domain in the complex plane. Let £ be an extended
real-valued continuous function on the boundary 4G of G. If fis bounded,
there exists the Dirichlet solution H? ([2]) and if p, is a regular boundary
point, then

lim HP(2)=f(po) . (1)

G320,

From M. Brelot’s example ([I]) we can make an example which violates
lim Hf(2)=f(p,) for an unbounded continuous resolutive f at a regular
G3z—Dp,

boundary point p,. Here we show that under a certain condition (1) holds
for an unbounded continuous resolutive f at a regular boundary point p,.

Set f*=max {f, 0} and f~=max {—f, 0}. Our result is the following.

THEOREM. Let G be a bounded domain in the complex plane and p,
be a regular boundary point of G. Let f be an extended real-valued
continuous and resolutive boundary function on aG.

(1) The case where f(p,) is finite. Glim Hf (2)=f(p,) holds if
3Pz
SSG VHﬁe, (2) dxdy < oo for a neighborhood V of p.
n

(ii) The case where f(py)=-+oo. lim H¥(2)=F(p,) holds if
(22

2—Dy

ﬁa HE-(2) dady< o for a neighborhood V. of pu
n

(i) The case where f(py)=—oco. lim HE(2)=f(p,) holds if

@320,

SSG y 7+ (2) dxdy < co for a neighborhood V of p,.
n

Proor. We first suppose f is non-negative. Let f,=min {f, n}, u,=HY,
and «=HFf, then w,tu (n—ooc). U flp)=40co0, n=limu,(2)< lim u(z).
Gyz—p, @3z,

Letting n—o00, we obtain lim u(2)=+oco=F(p,). If f(p,) is finite, we denote

G3z2—p,
by a the component of G containing p,.
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Case 1. Suppose a={py}. Let I' be a Jordan curve in G surrounding
po which is sufficiently near p, and does not meet 6G. Let 2 be a domain
in the complex plane bounded by I. There is a positive constant M such

that max «(2) <M. Since f is continuous and f{(p,) is finite, #,—u, =0 on
9032

dGNR—7y (n>ny, capy=0) for a sufficiently large n,. Hence
n(2) — tta, (2) < M(1—0(2,0G N 2, GN 2) (2eGnQ).

o(z, E, D) is the harmonic measure of E at the point 2 with respect to D.
Letting n—oco, then

u(2)—n,(2) < M(1—0(2,0GN 2, GN 2) (:eGnQ).
Therefore
0= Dim (u(2)—un,(2)

GN2Dz—Dp,

< Im M(l—w(z, oGN 2, Gng)) =0.

GNPz—D,

This shows that lim u(2) = Lm u, (2) =f(p).

@27, GNPz-D,
Case 2. Suppose that a is a continuum. Since

XS u(po+re) rdrdagﬁ u(2) dxdy < oo for a sufficiently small
GND(p,, 7y env

positive r, where D, r)={z; |2—{| <7}, S u(po+re?) d is finite for

GNaD(p,,m

almost all » (0<r=<r,). We shall show that S u(pot+re?) df< oo for

GNaD(p,y,T)
every r smaller than some 7, (0<7,=r) in the proposition. Let g be equal

to % on aD(py, NN G (0<r=<ry) and equal to zero on dD(p,, 7) —0D(pe, )N G.
Since 5 9g(po+re) df :S u(po+re?) df<co, then v=Hy"" is

aD(p,,7) aD(p,,N NG

finite. Let w be a harmonic function on D':D<p0,~§—r>—0G ﬂD(po, %)

with the boundary value v on 8D<Po, %r) and the value 0 on aGﬂD(po, %)

Then 0<w=<wv<oo on D'. Since w is bounded harmonic on D', lim w(2)=0.
D3z,

Since f is continuous and f{(p,) is finite, 0 =wu, —u, < w(n>n,) on

GﬂD(Pm%r) for a sufficiently large n,, We let n—oco to obtain

0=u—u, =w on GﬂD(po,-g—r) Hence
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0  Tm  (a(®—wu(2))= Im  w(@)=0.
an(po,%r)az—vpo GﬂD(po,%r)az—»po
This shows that lim u(2) = lim Un,(2) = f(Po) -

Gdz2-D, an(po’%r)az_.po

Proof of (i). Since H%=Hf+ Hf, both SS HFf: (2) dxedy and

env
SSG VHfG— (2) dxdy are finite. The above argument shows that
n
lim HE% (2) =f*(p,) and lim HE (2) =f(p,). Note that f*(p,) and f~(po)
G3z2—D,

G3z—p,
are finite. Thus

lim Hf(z)= lim H%(z)— lim HE (2)

=f*(po)—f(po) =Sf(po) -

Proof of (i) and (ii. We prove (ii). Part (jii) is proved similarly. Note
that f~ is non-negative and f~(p,)=0. By the hypothesis of f~ we obtain

lim HE (2)=0. Since f* is non-negative and /™ (po) = + oo, lim Hf (2)= + oo.
G32—-p, G32-D,
Thus lim Hf(2) = lim HE (2)— lim HE(2) = f(po).

G32-D, @32, G2—p,

CorROLLARY 1. Let G and p, be the same as in Theorem. Let f be

a non-negative continuous resolutive boundary function of G.

(i) The case where f(p,) is finite. lim Hf (2)=f(po) holds if and only
Gdz2-D,

if SSGWH}’ (2) dxdy< oo for a neighborhood V of p,.
(i) The case where f(po):+oo.elizr_goHﬁ (po) =f(po) holds.
ProoOF. “Only if” part in (i) is clear. The rest is already proved.
COROLLARY 2. Let G and f be the same as in Theorem and let
{p; f(p)==xco} be of capacity zero. If SSGW(p) @ (2) dxdy < oo holds at

every regular boundary point p with finite f(p), where V(p) is a
neighborhood of p, then lim Hf(2)=f(p) holds at every regular boundary
GIz—p

point.

Proor. If f(p) is finite, the assertion is already proved. Let f(p)= +co.
Note first that lim H%(z)=+oco. Choose >0 such that f* is finite on

GIz-D

0GNaD(p, ), f~ is zero on dGND(p,r) and 3D(p,r) meets no irregular
boundary point of G. Let ¢ be a boundary function of G.=GND(p,r)
which is equal to f~ on dGND(p,r) and equal to HE on GNaD(p,r).
Then ¢ is resolutive and H¥=H% on G,. Take q=dGNaD(p,r), then
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lim H% (2)=f"(9)=0 by the hypothesis. This implies that ¢ is bounded on
G324

0G,. From this fact we know that lim HZ (2)= lim H¢ (2)=¢(p)=0. Thus
G3z—-p G 2P

lim Hf (2) = lim HA (2)— lim HE (2) =f(p) .

Gyz2—Dp GIz—p GI3z—p
If f(p)=—o0, the assertion is proved similarly.
An existence of a finite S u(py+re?) df is most important in
GNaD{(p,, )

the proof of [Theorem. So we furthermore remark the following proposition.
ProrosiTioN. With the notation of Theorem we obtain the following.

(1) S (un(po—l-re”) —uno(po+re”)> d0 (n>n,) decreases as r—0
GnaD(p,,n
provided that r is smaller than some small positive number and n, is
sufficiently large.
) If g u(po+mre’) db is finite, where ry is sufficiently small,

GNaD(p,,r,)

then S u(potre?) d is finite for every r (0<r=<n).

GNaD(p,,r
Proor. Let v, be equal to u,—u, (n>ny) on GN3D(p,r) and equal
to zero on 0D(py, ) —GNOD(py, r). Then

1 .
H™m (o) = Z—ﬂSGﬂaD(p ) (ten =) (po-tre”) df

Since we can assume that u,—wu, =0 on 8GN D(py, r)—7 (cap y=0) provided
that » is smaller than some small positive number and 7, is sufficiently large,
we have H)®" Zu,—u, on GNdD(py,t) for each ¢ (0<t=<r). It follows
that Hp™7" = H)™® on D(pyt). In particular Hy%o7(py) = HY P9 (py).

This shows that

(wnlpotre) —an, (po-trei))

SGﬂaD(po,'r)

=

(walot2e") =2, (po+26)) 0 . (2)

SGnaD(po,t)
To prove (ii), we let r=r,, t=7r and n—oco in (2) to obtain

o

JGNaD(p,,r)

(ot rie)—tun, (pot-7ie®) @0

1\%

<u (Pot+7€")—un (po+ re’“’)) do .

SGnaD(po,r)

This shows that S u(po+re?’) dd < oo for every r (0<r<ry).

GNaD(p,,r)




Boundary behavior of Dirichlet solutions at regular boundary points 111

REMARK. We cannot remove the hypotheses of (i) and (iii) in [Theoreml
By modifying M. Brelot’s example ([I]), we obtain a Dirichlet solution Hf
such that f is an unbounded continuous and resolutive boundary function
and lim Hf(z)=-+occ at a regular boundary point p, where f{(p)=—oo.

G2z2—D,
For another sufficient condition, we refer to Z. Kuramochi and Y. Nagasaka

[3].
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