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Boundary behavior of Dirichlet solutions
at regular boundary points

By Wataru OGAWA
(Received June 18, 1979)

Let G be a bounded domain in the complex plane. Let f be an extended
real-valued continuous function on the boundary \partial G of G. If f is bounded,
there exists the Dirichlet solution H_{f}^{G}([2]) and if p_{0} is a regular boundary
point, then

\lim_{G\ni zarrow p_{0}}H_{f}^{G}(z)=f(p_{0}) . (1)

From M. Brelot’s example ([1]) we can make an example which violates
lim H_{f}^{G}(z)=f(p_{0}) for an unbounded continuous resolutive f at a regular

boundaryG\ni zarrow p_{0} point p_{0} . Here we show that under a certain condition (1) holds
for an unbounded continuous resolutive f at a regular boundary point p_{0} .
Set f^{+}= \max\{f, 0\} and f^{-}= \max \{-f, 0\} . Our result is the following.

THEOREM. Let G be a bounded domain in the complex plane and p_{0}

be a regular boundary point of G. Let f be an extended real-valued
continuous and resolutive boundary function on \partial G .

(i) The case where f(p_{0}) is finite, \lim_{Garrow\ni pz}H_{f}^{G}(z)=f(p_{0}) holds if
\int\int_{G\cap V}H_{|f|}^{G}(z) dxdy<\infty for a neighborhood V of p_{0} .

(ii) The case where f(p_{0})=+ \infty.\lim_{G\ni zarrow p_{0}}H_{f}^{G}(z)=f(p_{0}) holds if
\int\int_{G\cap V}H_{f}^{e_{-}}(z) dxdy<\infty for a neighborhood V of p_{0} .

(iii) The case where f(p_{0})=- \infty.\lim_{G\ni zarrow p_{0}}H_{f}^{G}(z)=f(p_{0}) holds if
\int\int_{G\cap V}H_{f}^{G}+(z) dxdy<\infty for a neighborhood V of p_{0} .

PROOF. We first suppose f is non-negative. Let f_{n}= \min\{f, n\} , u_{n}=H_{f_{n}}^{G}

and u=H_{f}^{G} , then u_{n}\uparrow u(narrow\infty) . If f(p_{0})=+\infty , n= \lim u_{n}(z)\leqq_{G_{0}^{\frac{hm}{\ni zarrow p}}}.u(z) .
Letting narrow\infty , we obtain h.m u(z)=+\infty=f(p_{0}) . If f(p_{0})isGarrow pfifi^{0nite} , we denote

G\ni zarrow p_{0}

by \alpha the component of \partial G containing p_{0} .
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Case 1. Suppose \alpha=\{p_{0}\} . Let \Gamma be a Jordan curve in G surrounding
p_{0} which is sufficiently near p_{0} and does not meet o^{\neg}G . Let f2 be a domain
in the complex plane bounded by \Gamma There is a positive constant M such
that \max_{\partial\Omega\ni z}u(z)\leqq M. Since f is continuous and f(p_{0}) is finite, u_{n}-u_{n_{0}}=0 on
\partial G\cap\Omega-\gamma (n>n_{0}, cap \gamma=0) for a sufficiently large n_{0} . Hence

u_{n}(z)-u_{n_{0}}(z)\leqq M(1-\omega(z, \partial G\cap\Omega, G\cap\Omega)) (z\in G\cap\Omega)r

\omega(z, E, D) is the harmonic measure of E at the point z with respect to D.
Letting narrow\infty , then

u(z)-u_{n_{0}}(z)\leqq M(1-\omega(z, \partial G\cap\Omega, G\cap\Omega)) (z\in G\cap\Omega)

Therefore

0\leqq_{G\cap\Omega\ni zarrow p_{0}}\overline{h.m}(u(z)-u_{n_{0}}(z))

\leqq_{G\cap\Omega\ni zarrow p_{0}}\overline{h.m}M(1-\omega(z, \partial G\cap\Omega, G\cap\Omega))=0 .

This shows that G9^{\cdot}zarrow p_{0}G\cap\Omega^{\cdot}\ni zarrow p_{0}hmu(z)=hmu_{n_{0}}(z)=f(p_{0})1

Case 2. Suppose that \alpha is a continuum. Since

\int\int_{G\cap D(p_{0},r_{0})}u(p_{0}+re^{i\theta})rdrd\theta\leqq\int\int_{G\cap V}u(z)dxdy<\infty for a sufficiently small

positive r_{0}, where D(\zeta, r)=\{z;|z-\zeta|<r\} , \int_{G\cap\partial D(p_{0},r)}u(p_{0}+re^{i\theta})d\theta is finite for

almost all r(0<r\leqq r_{0}) . We shall show that \int_{G\cap\partial D(p_{0},r)}u(p_{0}+re^{i\theta})d\theta<\infty for

every r smaller than some r_{1}(0<r_{1}\leqq r_{0}) in the proposition. Let g be equal
to u on \partial D(p_{0}, r)\cap G(0<r\leqq r_{1}) and equal to zero on \partial D(p_{0}, r)-\partial D(p_{0}, r)\cap G .
Since \int_{\partial D(p_{0},r)}g(p_{0}+re^{i\theta})d\theta=\int_{\partial D(p_{0},r)\cap G}u(p_{0}+re^{i\theta})d\theta<\infty : then v=H_{g}^{D(p_{0’}r)} is

finite. Let w be a harmonic function on D’=D(p_{0}, \frac{2}{3}r)-\partial G\cap\overline{D}(p_{0}, \frac{r}{3})

with the boundary value v on \partial D(p_{0}, \frac{2}{3}r) and the value 0 on \partial G\cap\overline{D}(p_{0}, \frac{r}{3}) .
Then 0\leqq w\leqq v<\infty on D’ , Since w is bounded harmonic on D’,D

’
h.mw(z)=0\ni zarrow p_{0} .

Since f is continuous and f(p_{0}) is finite, 0\leqq u_{n}-u_{n_{0}}\leqq w(n>n_{0}) on

G\cap D(p_{0}, \frac{2}{3}r) for a sufficiently large n_{0} . We let narrow\infty to obtain

0\leqq u-u_{n_{0}}\leqq w on G\cap D(p_{0}, \frac{2}{3}r) [ Hence
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0\leqq \overline{h.m} \overline{h.m}

G \cap D(p_{0},\frac{2}{3}r)\ni zarrow p_{0}G\cap D(p_{0},\frac{2}{3}r)\ni zarrow p_{0}(u(’z)-u_{n_{0}}(z))\leqq w(z)=0\tau

This shows that \lim_{G\ni zarrow p_{0}}u(z)= lim u_{n_{0}}(z)=f(p_{0})

G \cap D(p_{0},\frac{2}{3}r)\ni zarrow p_{0}

Proof of (i). Since H_{|f|}^{G}=H_{f}^{G}++H_{f}-, both \int\int_{G\cap V}H_{f}^{G}+(z) dxdy and

\int\int_{G\cap V}H_{J^{-}}^{G}(z) dxdy are finite. The above argument shows that

\lim_{G\ni zarrow p_{0}}H_{f}^{G}+(z)=f^{+}(p_{0}) and \lim_{G\ni zarrow p_{0}}H_{f^{-}}^{G}(z)=f^{-}(p_{0}) Note that f^{+}(p_{0}) and f^{-}(p_{0})

are finite. Thus

\lim_{G\ni zarrow p_{0}}H_{f}^{G}(z)=\lim_{G\ni zarrow p_{0}}H_{f}^{G}+(z)-\lim_{G\ni zarrow p_{0}}H_{f}^{G}-(z)

=f^{+}(p_{0})-f^{-}(p_{0})=f(p_{0})

Proof of (ii) and (iii). We prove (ii). Part (iii) is proved similarly. Note
that f^{-} is non-negative and f^{-}(p_{0})=0 . By the hypothesis of f^{-} we obtain
\lim_{G9zarrow p_{0}}H_{f}^{G}-(z)=0 . Since f^{+} is non-negative and f^{+}(p_{0})=+ \infty,\lim_{G\ni zarrow p_{0}}H_{f}^{G}+(z)=+\infty .
Thus \lim_{G\ni zarrow p_{0}}H_{f}^{G}(z)=h.mH_{f}^{G}+G\ni zarrow p_{0}(z)-\lim_{G\ni zarrow p_{0}}H_{f}-(z)=f(p_{0}) .

COROLLARY 1. Let G and p_{0} be the same as in Theorem. Let f be
a non-negative continuous resolutive boundary function of G.

(i) The case where f(p_{0}) is fifinite. \lim_{G\ni zarrow p_{0}}H_{f}^{G}(z)=f(p_{0}) holds if and only

if \int\int_{G\cap V}H_{f}^{G}(z) dxdy<\infty for a neighborhood V of p_{0} .

(ii) The case where f(p_{0})=+ \infty.\lim_{G9zarrow p_{0}}H_{f}^{G}(p_{0})=f(p_{0}) holds.

PROOF. “Only if” part in (i) is clear. The rest is already proved.

COROLLARY 2. Let G and f be the same as in Theorem and let
\{p ; f(p)=\pm\infty\} be of capacity zero. If \int\int_{G\cap V(p)}H_{Jf1}^{G}(z) dxdy<\infty holds at

every regular boundary point p with fifinite f(p) , where V(p) is a
neighborhood of p, then \lim_{G\ni zarrow p}H_{f}^{G}(z)=f(p) holds at every regular boundary

point.
PROOF. If f(p) is finite, the assertion is already proved. Let f(p)=+\infty .

Note first that lim H_{f}^{G}+(z)=+\infty . Choose r>0 such that f^{+} is finite on
\partial G\cap\partial D(p, r) , f^{-}isG\ni zarrow p zero on \partial G\cap\overline{D}(p, r) and \partial D(p, r) meets no irregular
boundary point of G. Let g be a boundary function of G_{r}=G\cap D(p, r\rangle

which is equal to f^{-} on \partial G\cap\overline{D}(p, r) and equal to H_{f}- on G\cap\partial D(p, r) .
Then g is resolutive and H_{g}^{G_{\gamma}}=H_{f}- on G_{r} . Take q\in\partial G\cap\partial D(p, r) , then
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h.mH_{f^{-}}^{G}(z)=f^{-}(q)=0 by the hypothesis. This implies that g is bounded on
G\ni zarrow q

\partial G_{r} . From this fact we know that \lim_{G\ni zarrow p}H_{f^{-}}^{G}(z)=\lim_{G_{\gamma}\ni zarrow p}H_{g}^{G_{\gamma}}(z)=g(p)=0 . Thus

\lim_{G9zarrow p}H_{f}^{G}(z)=\lim_{G\ni zarrow p}H_{f}^{G}+(z)-\lim_{G\ni zarrow p}H_{f^{-}}^{G}(z)=f(p) .

If f(p)=-\infty , the assertion is proved similarly.

An existence of a finite \int_{G\cap\partial D(p_{0},r)}u(p_{0}+re^{i\theta})d\theta is most important in
the proof of Theorem. So we furthermore remark the following proposition.

PROPOSITION. With the notation of Theorem we obtain the following.

(i) \int_{G\cap\partial D(p_{0},r)}(u_{n}(p_{0}+re^{i\theta})-u_{n_{0}}(p_{0}+re^{i\theta}))d\theta(n>n_{0}) decreases as rarrow 0

provided that r is smaller than some small positive number and n_{0} is
sufficiently large.

(ii) If \int_{G\cap\partial D(p_{0},r_{1})}u(p_{0}+r_{1}e^{i\theta})d\theta is fifinite, where r_{1} is sufficiently small,

then \int_{G\cap\partial D(p_{0},r)}u(p_{0}+re^{i\theta})d\theta is fifinite for every r(0<r\leqq r_{1}) .

PROOF. Let v_{r} be equal to u_{n}-u_{n_{0}}(n>n_{0}) on G\cap\partial D(p_{0}, r) and equal
to zero on \partial D(p_{0}, r)-G\cap\partial D(p_{0}, r) . Then

H_{v_{r}}^{D(p_{0},r)}(p_{0})= \frac{1}{2\pi}\int_{G\cap\partial D(p_{0},r)}(u_{n}-u_{n_{0}})(p_{0}+re^{i\theta})d\theta c

Since we can assume that u_{n}-u_{n_{0}}=0 on \partial G\cap D(p_{0}, r)-\gamma (cap \gamma=0) provided
that r is smaller than some small positive number and n_{0} is sufficiently large,
we have H_{v_{r}}^{D(p_{0},r)}\geqq u_{n}-u_{n_{0}} on G\cap\partial D(p_{0}, t) for each t(0<t\leqq r) . It follows
that H_{v_{r}}^{D(p_{0},r)}\geqq H_{v_{t}}^{D(p_{0},t)} on D(p_{0}, t) . In particular H_{v_{r}}^{D(p_{0},r)}(p_{0})\geqq H_{v_{t}}^{D(p_{0},t)}(p_{0}) .
This shows that

\int_{G\cap\partial D(p_{Q\prime}r)}(u_{n}(p_{0}+re^{i\theta})-u_{n_{0}}(p_{0}+re^{i\theta}))d\theta

\geqq\int_{G\cap\partial D(p_{0},t\rangle}(u_{n}(p_{0}+te^{i\theta})-u_{n_{0}}(p_{0}+te^{i\theta}))d\theta . (2)

To prove (ii), we let r=r_{1} , t=r and narrow\infty in (2) to obtain

\infty>\int_{G\cap\partial D(p_{0},r_{1})}(u(p_{0}+r_{1}e^{i\theta})-u_{n_{0}}(p_{0}+r_{1}e^{i\theta}))d\theta

\geqq\int_{G\cap\partial D(p_{0},r)}(u(p_{0}+re^{i\theta})-u_{n_{0}}(p_{0}+re^{i\theta}))d\theta .

This shows that \int_{G\cap\partial D(p_{0},r)}u(p_{0}+re^{i\theta})d\theta<\infty for every r(0<r\leqq r_{1}) .
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REMARK. We cannot remove the hypotheses of (ii) and (iii) in Theorem.
By modifying M. Brelot’s example ([1]), we obtain a Dirichlet solution H_{f}^{G}

such that f is an unbounded continuous and resolutive boundary function
and \varlimsup H_{f}^{G}(z)=+\infty at a regular boundary point p_{0} , where f(p_{0})=-\infty .

For G\niarrow p_{0}another sufficient condition, we refer to Z. Kuramochi and Y. Nagasaka
[3].
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