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1. Introduction

The purpose of this seuqence of papers is to study and to apply G-
functors. The concept of G-functors was introduced by Green [10] during
the study of modular representation, particularly a relation between Brauer’s
theory of blocks and Green’s theory of indecomposable modules [9], and it
was quite useful for the arrangement of many concepts about representation
theory, cohomology theory, etc. Some interesting examples are found in
[10], \S 5. Afterward, Dress defined the concept Mackey functors which
are generalizations of G-functors and applied them to some fields (Dress

[3], [4], [5] ) . Lam’s theory also seems to contribute to their theories. These
concepts are frequently used rather in equivariant topology, theory of bilinear
forms, etc. than in finite group theory itself.

Now, let’s observe first the character ring of a finite group G. It is
well known that the following theorems about induced characters play im-
portant parts in representation theory.

(M) If H, K\leq G and \alpha\in ch(H) , then

\alpha_{K}^{G}=\sum\alpha_{H^{g}\cap K}^{gK} ,

where g runs over a complete set of representatives of H\backslash G/K.

(F) If H\leq G, \alpha\in ch(H) , \beta\in ch(G) , then

\alpha^{G}\cdot\beta=(\alpha\cdot\beta_{H})^{G}

The first formula follows from the Mackey subgroup theorem. The second
means essentially the same fact as the usual Frobeniud reciprocity. See,

for example, [16], Th. 2. 1, A, B. It is surprising that the formulas (M)

and (F) appear also in cohomology theory of finite groups ([2], Prop, 12. 9. 1;
[19], Prop. 4. 3. 7). The formula (M) is usually called the double coset for–
mula. Furthermore the following holds in this case.
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(C) If H\leq G, A is a G-module and \alpha\in H^{*}(G, A) , then
\alpha_{H}^{G}=|G : H|\alpha .

See [2], \S 12. 8 (6), [19], Cor. 2. 4. 9. The character rings do not satisfy (C).
Abstracting these formulas, Green defined G-functors and proved a

transfer theorem ([10], Th. 2 and Th. 3. 5 in this paper). His papers show
how to use the formulas (F) and (M). But there is still room for growth
in his theory. Using his theorem and the isomorphism H^{-2}(G, Z)\cong G/G’ ,
we have some transfer theorems for finite groups, for example, it is proved
that if a finite group G has an elementary abelian Sylow p subgroup P,
then P\cap G’=P\cap N_{G}(P)’r But by his theorem, we cannot prove not only
Wielandt’s theorem ([11], Th. 14. 4. 2, [12], Satz 4. 8. 1) but also D. Higman’s
focal subgroup theorem ([8], Th. 7. 3. 4) and Burnside’s theorem (.[|8] , Th.
7. 4. 3). See Example 6. 4, Remark 6. 2, and [20] \S 1.

In the present paper, we try to generalize these theorems to cohomol0-
gical G-functors. It is lucky that we can apply the method which has been
developed to prove many transfer theorems in finite group theory. In Sec-
tion 2, we define G-functors and give some examples. In Section 3, we
prove a generalization (Theorem 3. 2) of the focal subgroup theorem. In
Section 4, we generalize the concept of singularities which was introduced
in [20] \S 3. In Section 5, we treat conjugation families and prove an analogue
of [20], Th. 4. 9. In Section 6, we give some easy examples.

Notation and terminology are standard and taken from Gorenstein’s
book [8] for finite groups. The letter G denotes always a finite group, p
a prime, k a commutative ring with unit. The notation H<G means that
H is a proper subgroup of G (that is, H\neq G). We shall partially use RPN
(the reverse Polish notation) for maps and functors which is usually used
in finite group theory. The composition f:Xarrow Y and g : Yarrow Z is denoted
by fg : Xarrow Z. The image of an element or a subset or an object A of
X by f:Xarrow Y is denoted by Af, (A)f, Af, or f(A) . For a ring (or a
group) R, the category of right R-modules and R-homomorphisms is denoted
by \mathscr{M}_{R} . For H, K\leq G, a complete set of representatives of H\backslash G/K is
denoted simply H\backslash G/K if there is no damger of confusion. This set is
not uniquely defined, but it shall be used in the independent cases to the
choice of representatives. The commutator subgroup of G is denoted by
G’ The subgroup generated by G’ and all p’ -elements of G is denoted
by G’(p) . The abelian groups of linear characters of G is denoted by \hat{G}

or G^{\wedge} If X is an element or a subset of G and g is an element of G,
then we set X^{g}=g^{-1}Xg . When G acts on a set V (on the right), C_{V}(G)
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denotes the set of elements that all elements of G fix. If V is a G-module,
then this set is denoted by C_{V}(G) or c_{V}(G) . The socle of an R-module
V is the submodule of V generated by all minimal R-submodules of V and
is denoted by Soc{V). The Jacobson radical of a ring R is denoted by
J(R) .

2. G-functors

In this section, we give some definitions about Green’s G-functors and
some examples of them. After this, G is always a finite group, k is a com-
mutative ring with unit, and p is a prime.

DEFINITION 2. 1 (Green [10], Def. 1. 3 and Prop. 1. 83). A G functor
a=(a, \tau, \rho, \sigma) over k consists of k-modules a(H)(H\leq G) and k-maps

\tau^{K}=\tau_{H}^{K} : a(H)arrow a(K) : \alpha 1arrow\alpha^{K}’.
\rho_{H}=\rho_{H}^{K} : a(K)arrow a(H) : \beta|arrow\beta_{H} ,

\sigma^{g}=\sigma_{H}^{q} : a(H)-a(H^{g}) : \alpha|arrow\alpha^{g} ,

for all H\leq K\leq G, g\in G . These families must satisfy the following axioms:
Axioms for G-functors (In these aximos, D, H, K, L\leq G;g, g’\in G ;

\alpha\in a(H) , \beta\in a(K)) .

(G. 1) \alpha^{H}=\alpha, (\alpha^{K})^{L}=\alpha^{L} if H\leq K\leq L ,

(G. 2) \beta_{K}=\beta, (\beta_{H})_{D}=\beta_{D} if D\leq H\leq K ,

(G. 3) (\alpha^{g})^{g’}=\alpha^{gg’} , \alpha^{h}=\alpha if h\in H ,

(G. 4) (\alpha^{K})^{g}=(\alpha^{g})^{K^{g}}r,(\beta_{H})^{g}=\beta_{H^{g}}^{g} ,

(G. 5) {Mackey axiom) If H, K\leq L, then

\alpha_{K}^{L}=\sum_{g\in H_{\backslash }^{\backslash }L/K}\alpha_{H^{g}\cap K}^{qK} .

(where g runs over a complete set of representatives of H\backslash L/K. The sum
does not depend on the choice of representatives).

DEFINITION 2. 2 ([10], 1. 4). A G-functor a is called to be cohomolO-
gical if it satisfies Axiom C :

(C) Whenever H\leq K\leq G and \beta\in a(K) , \beta_{H^{K}}=|K:H|\beta .
Lemma 2. 1. Let a be a cohomological G-functor over k. Let H\leq

K\leq G and \alpha\in a(H) . Then

\alpha_{H}^{K}-|K:H|\alpha=\sum_{g\in H\backslash K/H}(\alpha_{H^{g}\cap H^{-\alpha_{H^{g}\cap H})^{H}}}^{g} .
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PROOF. This follows easily from the Mackey axiom and Axiom C.
Use the formula

\sum_{g\in H\backslash K/H}|H:H^{g}\cap H|=|K:H|

DEFINITION 2. 3 ([10], 1. 3 (G. 5) and 1. 4 (M); Dress [4], p. 195). Let
a, b and c be G-functors over k. Then a pairing a\cross b- c is defined to be
a family of k-linear maps

a(H)\cross b(H)arrow c(H) : (\alpha, \beta)^{1-} \alpha\cdot\beta(H\leq G) :

which satisfy the following axioms: If H\leq K\leq G and g\in G , then

(P. 1) (\alpha’\cdot\beta’)_{H}=\alpha_{H}’\cdot\beta_{H}’ (\alpha\acute{\in}a(K), \beta’\in b(K)) ,

(P. 2) (\alpha\cdot\beta)^{g}=\alpha^{g}\cdot\beta^{g} (\alpha\in a(H), \beta\in b(H)) ,

(P. 3) \alpha^{K}\cdot\beta’=(\alpha\cdot\beta_{H}’)^{K} (\alpha\in a(H), \beta’\in b(K)) ,

(P. 4) \alpha’\cdot\beta^{K}=(\alpha_{\acute{H}}\cdot\beta)^{K} (\alpha\acute{\in}a(K), \beta\in b(H))

The axioms (P. 3) and (P. 4) are called the Frobenius axioms in Green’s
paper [10].

DEFINITION 2. 4 ([4], p. 198). Let a be a G-functor over k with pairing
a\cross aarrow a . Then a is called a multiplicative G-functor. Furthermore, the
G-functor a is called a ring provided the bilinear map

a(H)\cross a(H)arrow a(H) : (\alpha, \beta’)|- \alpha\cdot\beta

makes a(H) into a ring with unity for each H\leq G . Let a and m be G-
functors over k with pairing m\cross a- m. Then the G-functor m is called
a (right) a -module provided a is a ring and each m(H) becomes a right
unitary a(H) -module by the bilinear map

m(H)\cross a(H)arrow m(H) : (\mu, \alpha)|– \mu\cdot\alpha

Lemma 2. 2. Let a be a G functor over k and H a subgroup of G.
Then the k-module a(H) is a N_{G}(H)/H-module by

\alpha\cdot \overline{g}:=\alpha^{g}(\alpha\in a(H), g\in N_{G}(H),\overline{g}=gH\in N_{G}(H)/H)

If furthermore a is a ring, then the action of N_{G}(H)/H on a(H) preserves
the multiplication.

This lemma is clear by the definitions. After this, a(H) is regarded
as a N_{G}(H)/H-module by this action if there is no special attention.

DEFINITION 2. 5 (Green [10], 1. 5). Let a=(a, \tau, \rho, \sigma) and a’=(a’, \tau’, \rho’, \sigma’)



226 T. Yoshida

be G-functors over k. Then a morphism of G-functors \theta:aarrow b is a family
(\theta(H))_{H\leq G} of k maps \theta(H):a(H)arrow b(H) such that

\theta(H)\tau_{H}^{\prime K}=\tau_{H}^{K}\theta(K) ,

\theta(K)\rho_{H}^{\prime K}=\rho_{H}^{K}\theta(H) ,

\theta(H)\sigma_{H}^{\prime g}=\sigma_{H}^{g}\theta(H^{g})

for all H\leq K\leq G and g\in G . Assume further that a and b are rings. Then
a ring homomorphism \theta=(\theta(H))_{H\leq G} : aarrow b is a morphism between G-functors
such that each \theta(H) is a homomorphism of rings (preserving the units).
Furthermore if a is a ring and if m and n are a-modules, then an a-hom0-
morphism \theta=(\theta(H))_{H\leq G} : aarrow b is a morphism of G-functors such that each
\theta(H):m(H)arrow n(H) is an a(H) homomorphism

We denote by \mathscr{M}_{k}(G) the category whoose objects are all G-functors
over k and with morphisms as just defined. Let \mathscr{M}_{k}(G)^{c} be the full sub-
category of \mathscr{M}_{k}(G) whose objects are cohomological. Similarly, the category
of rings \mathscr{A}_{k}(G) and the category of a-modules \mathscr{M}_{a} (and furthermore, \mathscr{A}_{k}(G)^{c}

and \mathscr{M}_{a}^{c}\rangle are defined. The category \mathscr{M}_{k}(G) , \mathscr{M}_{k}(G)^{c} , \mathscr{M}_{a}, \mathscr{M}_{a}^{c} are all abeh.an
categories. See Green [10\rfloor, 1.5.

DEFINITION 2. 6. Let a be a G-functor over k. Then a subf\backslash unctor b

of a is a map Harrow b(H)(H\leq G) such that each b(H) is a k-submodule of
a(H) and

\beta^{L}\in b(L) , \beta_{H}\in b(H) , \beta^{g}\in b(K^{g})

for all H\leq K\leq L\leq G, g\in G, \beta\in b(K) .
Let b be a subfunctor of a G-functor a. For H\leq K\leq L\leq G and g\in G,

let \tau_{K}^{\prime L}, \rho_{H}^{\prime K}, \sigma_{K}^{\prime g} be the restrictions of \tau_{K}^{L}, \rho_{H}^{K}, \sigma_{H}^{g}, respectively, to b(K) . Then
( b, \tau’, \rho’, \sigma\acute{)} is a G-functor.

DEFINITION 2. 7. Let a be a G-functor over k. Then a quotient functor
c of a is a map H\mapsto c(H)(H\leq G) such that there is a subfunctor b of a
such that c(H)=a(H)/b(H) for all H\leq G .

If c is a quotient functor of a G-functor a, then \tau , \rho , \sigma induce maps
\overline{\tau},\overline{\rho},\overline{\sigma} which makes (c, \overline{\tau},\overline{\rho},\overline{\sigma}) into a G-functor over k.

The concepts of subfunctors and quotient functors are equivalent to
ones of subobjects and quotient objects in the category \mathscr{M}_{k}(G^{1}, . We shall
give some examples of these concepts.

EXAMPLE 2. 1. Let \theta:aarrow b be a morphism of G-functors over k.
Define three maps as follows :

Ker\theta : H1–Ker\theta(H)\subseteq a(H) ,
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Im\theta:H_{1}arrow Im\theta(H)\underline{\subset}b(H) ,

Coker \theta:HIarrow Coker \theta(H)=b(H)/Im\theta(H)(

Then Ker\theta is a subfunctor of a, and Im\theta is a subfunctor of b, and Coker\theta

is a quotient functor of b. These G-functors Ker\theta, Im\theta, Coker\theta represent
the kernel, the image, the cokernel, respectively, of \theta in the category \mathscr{M}_{k}(G) .

EXAMPLE 2. 2. Let a be a G-functor over k and \mathfrak{X} a family of sub-
groups of G. Let a^{\approx}(H) be the k-submodule of a(H) generated by all \alpha^{H},
where \alpha\in a(X^{g}\cap H) , g\in G, X\in \mathfrak{X} . Let aea(H) be the set of all elements \alpha

of H such that \alpha_{Y}=0 for all Y=X^{g}\cap H, where g\in G, X\in \mathfrak{X} . Then a^{\mathfrak{B}}

and aea are both subfunctors of a. If \mathfrak{X}=1=\{1\} , then a^{1} and a/1a are coh0-
mological. See Green [10], 5. 2. (This example was given by T. Okuyama.)

DEFINITION 2. 8. Let a=(a, \tau, \rho, \sigma) be a G-functor over k and M a
subgroup of G. Then a M functor a_{1M}=(a_{1M}, \tau’, \rho’, 0’) is defined by

(a_{|M})(H)=a(H) (H\leq M)

\tau_{H}^{\prime K}=\tau_{H}^{K}, \rho_{H}^{\prime K}=\rho_{H}^{K}, 0_{H}^{fm}=\sigma_{H}^{m} (H\leq K\leq L\leq M, m\in M) .
We shall give some examples of G-functors. Many of them are taken

from Green’s paper [10], \S 5 and Dress’ lecture note [3].

EXAMPLE 2. 3 ([10], 5. 1). The character ring functor ch is defined as
follows :

ch(H) ; the character ring of H ;
\tau_{H}^{K} : \alpha|arrow\alpha^{K} : the induced character;
\rho_{H}^{K} : \beta|arrow\beta_{H} : the restriction to H ;

\sigma_{H}^{g} : \alpha|arrow\alpha^{g} : the conjugation by g

( i. e. , \alpha^{g}(y)=\alpha(gyg^{-1}) for y\in H^{g}). This G-functor belongs to \mathscr{A}_{Z}(G) . The
Mackey axiom and the Frobenius axiom are well known as the Mackey
decomposition theorem and the Frobenius reciprocity.

EXAMPLE 2. 4 ([10], 5. 3). Let V be a kG-module. The (Tote) Coker
mology ring functor \hat{h}_{V}^{*}=\square n\in z\hat{h}_{V}^{n} is defined as follows.

\hat{h}_{V}^{*}(H):=\hat{h}^{*}(H, V)=\square \acute{h}^{n}(Hn\in Z’ V) : the Tate cohomology
group of H ;

\tau_{H}^{B^{r}} :=cor_{H,K} : the corestriction transfert ;

\rho_{H}^{K}:=res_{K,H} : the restriction ;
\sigma_{H}^{g}:=con_{H_{J}g} : the conjugation.
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Then h_{V}^{*} is a cohomological G-functor over k. The Mackey axiom is called
the double coset formula in [2], 12. 9. 2. Since \tau , \rho , \sigma preserve the gradua-
tion, we get G-functors \hat{h}_{V}^{n}, n\in Z. Let U, V, W be kG-modules and let
\theta:U\cross V- W be a G-pairing, that is, \theta is k-bilinear and \theta(u, v)g=\theta(ug, vg)

for all u\in U, v\in V, g\in G . Then \theta induces a pairing \bigcup_{\theta} : h_{U}^{*}\cross h_{V}^{*}.arrow h_{W}^{*}

which is called a cup product with respect to \theta . By this pairing, \hat{h}_{k}^{*} is
a ring and if V is a kG-module, then \hat{h}_{V}^{*} is an \hat{h}_{k}^{*} -module. Next, let 0arrow

f g
Uarrow Varrow W-0 be an exact sequence of kG-modules. Then there exist
three \hat{h}_{k}^{*} -homomorphisms f_{*} , g_{*} , \delta_{*} between \hat{h}_{k}^{*} -modules such that the follow-
ing sequence is exact :

\hat{h}_{U}^{*}\hat{h}_{V}^{*}\hat{h}_{W}^{*}\hat{h}_{U}^{*}.\hat{h}_{V}^{*}\underline{f_{*}}\underline{g_{*}}\underline{\delta_{*}}\underline{f_{*}} ,

where f_{*} and g_{*} are of degree 0, but \delta_{*} is of degree 1. See [19], 4. 2. 2,

4. 3. 7, 2. 1. 9.
Similarly, the cohomology ring functor h_{r}^{*}=\square n\geq 0h^{n}V is defined by h_{V}^{*}(H)

=H^{*}(H, V) . If n>0 , then h_{V}^{n}=\hat{h}_{V}^{n} . This G-functor h_{V}^{*} has similar properties
as \hat{h}_{V}^{*} . The cohomologies of groups of two kinds are found, for example,
in Cartan-Eilenberg [2], Chapter XII.

We get many cohomological G-functors which are subfunctors or qu0-

tient functors of cohomology ring functors as stated below.
EXAMPLE 2. 5. ([10], 5. 5). Let V be a kG-module. Then the cen-

tralizer functor c_{V} is defined as follows :

c_{V}(H)=\{v\in V|vh=v for all h\in H\} ;

\tau_{H}^{K} : \alpha|arrow\alpha^{K}=\sum_{g\in H\backslash K}\alpha g ;

\rho_{H}^{K} : \beta 1arrow\beta (the inclusion) ;

\sigma_{H}^{g} : \alpha Iarrow\alpha g1

Then c_{V} is a cohomological G-functor over k and c_{V} is isomorphic to h_{V}^{0}.
Similarly, the Tate centralizer functor \hat{c}_{V} which is a quotient functor

of c_{V} is defined by

\hat{c}_{V}(H)=c_{V}(H)/Vt_{H}, where t_{H}= \sum_{h\in H}h\in kH

Then \hat{c}_{V} is a cohomological G-functor over k and \hat{c}_{V}=\hat{h}_{V}^{0}. If V is a G-
algebra, then c_{V} and \hat{c}_{V} are rings.

By the way, we give explicit representations of two G-functors related
to cohomology ring functors. Define d_{V}:=h_{0}^{V} :=(d_{V}, \tau, \rho, \sigma) as follows:
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d_{V}(H)=h_{0}^{V}(H)=V/[V, H] , where [V, H] is the k-subspace generated by
vh - v for all v\in V, h\in H ;

\tau_{H}^{K} : v+[V, H]|arrow v+[V, K] (the natural map);

\rho_{H}^{K} : v+[V, K]_{1} arrow\sum_{g\in H_{\backslash }^{\backslash }K}vg+[V, H] ;

\sigma_{H}^{g} : v+[V, H]|arrow vg+[V, H^{g}]

The G-functor \hat{d}_{V}:=\hat{h}_{V}^{-1} is defined to be a subfunctor as follows:
\hat{d}_{V}(H)=\hat{h}_{V}^{-1}(H)=ann_{V}(t_{H})/[V, H] , where

ann_{V}(t_{H})=\{v\in V|vt_{H}=0\} , t_{H}= \sum_{h\in H}h\in kH

(Our notation: c_{V}(G) , Vt_{G}, [V, G] , ann_{V}(t_{G}) are different from usual one. See
[2], p. 236 and [19], p. 27.)

EXAMPLE 2. 6. The abelian factor functor ab is defined as follows :

ab{H)= H/H’ : the maximal abelian factor group, H’ is the
commutator subgroup of H ;

\tau_{H}^{K} : xH’1arrow xK’ : the natural map ;

\rho_{H}^{K} : yK’|arrow T(y)H’ : the group-theoretic transfer.
\sigma_{H}^{g} : xH1arrow x^{g}(H^{g})’ : the conjugation.

This G-functor over Z is cohomological and isomorphic to the cohomology
ring functor h_{Z}^{-2} . The Mackey axiom is proved by the pure group-theoretic
method. See [6], Prop. 1. 6. 2, [8], Th. 7. 3. 3, [18], Prop. 2. 3, etc. The
quotient functors ab_{p} , el_{p} is defined by ab_{p}(H) :=H/H’(p), el_{p}(H) :=H/
H^{p}H’ for a prime p. The functors ab_{p} is regarded as a G-functor over
the ring Z/p^{e}Z for a large e, and el_{p} is one over the field Z/pZ.

Next, the dual group functor ab’ is defined as follows:

ab’ (H)=\hat{H}:=Hom(H, C^{*}) ;

\rho_{H}^{K} : \betaarrow\beta_{1H} : the restriction ;

\sigma_{H}^{g} : \alphaarrow\alpha^{g} : the conjugation ;

\tau_{H}^{K} : \alphaarrow det(\alpha^{K}+1_{H}^{K}) , where
\alpha^{K}+1_{H}^{K} is the induced character and det is the determinant of the character.
This G-functor is isomorphic to \hat{h}_{T}^{1}(T:=R/Z) and h_{Z}^{2} . It is remarkable
that Axiom C follows from the Frobenius axiom for characters. For details,
see [20], \S 2. The subfunctors ab_{p}’ and el_{p}’ are defined as follows:
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ab_{p}’(H)=H_{p} is a unique Sylow p subgroup of ab’ (H).
el_{p}’(H) is the subgroup of ab’ (H) generated by all elements of order p.

EXAMPLE 2. 7. The multiplier functor M is defined to be H_{C^{*}}^{2} . The
group M(H) is the Schur multiplier of the group H. Let M_{p}(H) be a
unique Sylow p subgroup of M(H) . Then M_{p} is also a cohomological G-
functor

EXAMPLE 2. 8. Assume that G acts as an automorphism group on a
p group P with a descending central series P=P_{0}\geq P_{1}\geq\cdots Let L(P)=
\square _{i}(P_{i}/P_{i+1}) be the associated Lie ring of P([8], \S 5. 6) . Then G acts on
L(P) as a group of automorphisms of the Lie ring, and so we have the
centralizer functor c_{L(P)} (Example 2. 3). The G-functor is cohomological and
multiplicative. Each c_{L(P)}(H) is a Lie ring.

EXAMPLE 2. 9. The class function ring functor cl_{k} is defined as fol-
lows:

cl_{k}(H) : the set of class functions of H ro k ,

\tau_{H}^{K} : \alpha 1arrow\alpha^{K} : x Iarrow\sum_{u\in B\backslash K}’\alpha(uxu^{-1}) ,

where the sum is taken over representatives u such that uxu^{-1}\in H ;

\rho_{H}^{K} : \beta|arrow\beta_{H} : the restriction ;

\sigma_{H}^{g} : \alpha^{1}arrow\alpha^{q} : the conjugation.

By the element-wise sum and product, cl_{k}(H) is a ring and cl_{k} is a multiph.ca-
tive G-functor over k. If k=C, then ch is a subfunctor of cl_{C} (Example

2. 3).

EXAMPLE 2. 10. The G functor z is defined as follows:

z(H)=Z(kH) : the center of the group algebra.

For each subset X of G, we denote by \overline{X} the sum of the elements of X
in kG. Then Z(kH) has a basis {\overline{C}|C is a conjugate class of H}.

\tau_{H}^{K} : \alpha|arrow\sum_{g\in H\backslash K}g^{-1}\alpha g ;

\rho_{H}^{K} : \overline{D}1arrow\overline{D\cap H}, where D is a conjugate class of K ;

\sigma_{H}^{g} : \alpha\iotaarrow g^{-1}\alpha g .

If C is a conjugate class of H, and D is a conjugate class of K containing
C, and y\in C, then

\tau_{H}^{K} : \overline{c}_{I}arrow|C_{K}(y) : C_{H}(y)|\overline{D} .
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This G-functor z is neither multiplicative nor cohomological, but it is is0-
morphic to cl_{k} in the category \mathscr{M}_{k}(G) (see Example 2. 9). This isomor-
phism is given by

Z(kH)arrow cl_{k}(H)

\sum_{x\in H}\alpha_{x}x|arrow\alpha:x|arrow\alpha_{x} .

EXAMPLE 2. 11 (Dress [4], \S 5). The Burnside ring functor f2 is de-
fined as follows: Let c(H) be the free k-module with basis \{D^{H}|D\leq H\} .
Define

\tau_{H}^{K} : c(H)arrow c(K) : D^{H}/arrow D^{K} ;

\rho_{H}^{K} : c(K)arrow c(H) : E^{K_{1}} arrow\sum_{g\in E\backslash K/H}(E^{g}\cap H)^{H}

\sigma_{H}^{g} : c(H)arrow c(H^{g}) : D^{H_{1}}arrow(D^{g})^{H^{g}}

Then c=(c, \tau, \rho, \sigma) is a G-functior over k. Let c’(H) be the &-submodule
of c(H) generated by D^{H}-(D^{h})^{H} for all D\leq H and h\in H. Then c’ is a
subfunctor of c. The Burnside ring functor \Omega is defined to be c/c’ . Each
\Omega(H) is the Grothendieck ring of the category of finite H-sets. Define the
multiplication of elements D^{H} and E^{H} of c(H) by

D^{H} \cdot E^{H}=\sum_{h\in D\backslash H/E}(D^{h}\cap E)^{H} ,

so \Omega is a ring. (This product in c(H) depends on the choice of the re-
presentatives of D\backslash H/E, but doesn’t in f2 (H) ) . The important fact is that
each G-functor a is an \Omega-module. The pairing a\cross\Omegaarrow a is given by

(\alpha, D^{H})|arrow\alpha_{D}^{H}(\alpha\in a(H) , D\leq H)

Define a ring homomorphism \epsilon:\Omegaarrow c_{k} by

\epsilon(H) : f2 (H)arrow c_{k}(H)=k:D^{H}/arrow|H:D|

Then a G-functor a is cohomological if and only if Ker\epsilon annihilates a.
The Burnside ring functor is constructed also as a quotient functor of the
relative free G-functor of the constant G-semifunctor ([10], 5. 6).

3. The focal subgroup theorem

In this section, we give a transfer theorem which is a generalization of
the focal subgroup theorem ([8], Th. 7. 3. 4) of D. Higman.

Lemma 3. 1. Let (a, \tau, \rho, \sigma) be a cohomological G functor over k and
H a subgroup of G. Assume that k has an inverse of |G:H| . Then the
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following hold:
(a) \rho_{H}^{G} : a(G)arrow a(H) is a monomorphism,
(b) \tau_{H}^{G} : a(H)arrow a(G) is an epimorphism,
(c) a(H)=Im\rho_{H}^{G}\oplus Ker\tau_{H}^{G}, and so

a(G) is isomorphic to a direct summand of a(H) .
PROOF. Set n=|G:H| . By Axiom C and the assumption, the &-map

\rho\tau=n\cdot id:a(G)arrow a(G) : \beta^{1}arrow\beta_{H}^{G}=n\beta

is an isomorphism. Thus \rho is a mono and \tau is an epi . Let \alpha be an element
of a(H) . Then by Axiom C,

(\alpha-n^{-1}a_{H}^{G})^{G}=\alpha^{G}-n^{-1}\alpha_{H}^{GG}

=\alpha^{G}-n^{-1}|G:H|\alpha^{G}

=0 ,

and so \alpha-n^{-1}\alpha_{H}^{G}\in Ker\tau_{H}^{G}. Since

\alpha=(n^{-1}\alpha^{G})_{H}+(\alpha-n^{-1}\alpha_{H}^{G}) ,

we have that \alpha\in Im\rho_{H}^{G}+Ker\tau_{H}^{G}. Thus a{ H)=Im\rho_{H}^{G}+Ker\tau_{H}^{G}. Finally let \alpha

be an element of Im\rho_{H}^{G}\cap Ker\tau_{H}^{G}, so that there is \beta\in a(G) such that \alpha=\beta_{H}.
But then 0=\alpha^{G}=\beta_{H}^{G}=n\beta , and so \beta=0 by the assumption. Thus Im\rho_{H}^{G}\cap

Ker\tau_{H}^{G}=0 . Hence a(H)=Im\rho_{H}^{G}\oplus Ker\tau_{H}^{G}. Then lemma is proved.
THEOREM 3. 2 (Generalized focal subgroup theorem). Let (a, \tau, \rho, \sigma) be

a cohomological G functor over k and H a subgroup of G. Assume that
k has an inverse of |G:H| . Then the following hold:

(a) Im\rho_{H}^{G}= {\alpha\in a(H)|\alpha_{H\cap H^{g}}^{g}=\alpha_{H\cap H^{g}} for all g\in G}.
(b) Ker\tau_{H}^{G} is the k-submodule of a(H) generated by \beta^{gH}-\beta^{H}, where

g\in G and \beta\in a(H\cap gHg^{-1}) .
PROOF. (a) Let \alpha be an element of a(H) such that

(1) \alpha_{H\cap H^{g}}^{g}=\alpha_{H\cap H^{g}} for all g\in G

Then by Lemma 2. 1,

\alpha_{H}^{G}-|G:H|\alpha=\sum_{\in H\backslash G/H}(\alpha_{H\cap H}^{g}-\alpha_{H\cap H^{g}})^{H}

=01

Thus \alpha=(|G : H|^{-1}\alpha^{G})_{H}\in Im\rho_{H}^{G}. Conversely, let \alpha be an element of Im\rho_{H}^{G}.
Take an element \beta of a(G) such that \alpha=\beta_{H}. Let g\in G and set D=H\cap H^{g} .
Then by the axioms for G-functors, we have that

\alpha_{D}^{g}=\beta_{H^{q}D}=(\beta^{\sigma_{H^{g}}})_{D}=\beta^{\sigma_{D}}=\beta_{D}=\alpha_{D}
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Thus \alpha satisfies (1). Hence the statement (a) is proved.
(b) let M be the k-submodule of a(H) generated by \beta^{gH}-\beta^{H}, where

g\in G and \beta\in a(H\cap gHg^{-1}) . We must show Ker\tau_{H}^{G}=M. It follows easily
from the axioms for G-functors that Ker\tau_{H}^{G} contains M. Let \alpha be an ele-
ment of Ker\tau_{H}^{G}. Then by Lemma 2. 1,

(2) |G:H|\alpha=|G:H|\alpha-\alpha_{H}^{G}

= \sum_{g\in H\backslash G/H}(\alpha_{H\cap H^{g}}-\alpha_{H\cap H^{g}}^{g})^{H} .

Let g be any element of G and set D=H\cap H^{\sigma}, \beta=\alpha_{D}^{g} . By the axioms
for G-functors,

\beta^{g^{-1}H}=|H:gDg^{-1}|\alpha=\alpha_{D}^{H} ,

and so
(\alpha_{D}-\alpha_{D}^{g})^{H}=\beta^{g^{-1}H}-\beta^{H} .

Thus each term of the sum (2) is contained in M. Since |G:H|^{-1}\in k, we
have that \alpha is also in M. Thus Ker\tau_{H}^{G} is contained in M. Hence (b) is
proved.

EXAMPLE 3. 1 (Focal subgroup theorem). Let P be a Sylow p subgroup
of G. Then P\cap G’ is generated by x^{-1}gxg^{-1} , where g\in G and x\in P\cap P^{g} .

PROOF. Apply Theorem 3. 2 (b) to ab_{p} (Example 2. 6). Since Ker\tau_{P}^{G}=

(P\cap G’)/P’ the statement follows directly from the theorem. See also Ex-
ample 6. 5.

EXAMPLE 3. 2 (Car\tan\backslash-Eilenberg [2], Th. 12. 10. 1). Let A be a kG-
module. Then R^{*}(G, A)_{p} is isomorphic to the submodule:

\{\alpha\in H^{*}(P, A)|\alpha_{P\cap P^{g}}^{g}=\alpha_{P\cap P^{g}} for g\in G\}

PROOF. This follows directly from Theorem 3. 2 (a) and Lemma 3. 1 (a).

Lemma 3. 3. Let (a, \tau, \rho, \sigma) be a cohomological G functor over k and
let H be a subgroup of G. Assume that |G:H|^{-1}\in k .

(a) Defifine a quotient functors \overline{a}=a/J(k)a=(\overline{a}, \overline{\tau},\overline{\rho},\overline{\sigma}) of a by

\overline{a}(K)=a(K)/J(k)a(K) for all K\leq G

Assume that a(H) is fifinite generated as k-module and that \overline{\rho}_{H}^{G} : \overline{a}(G)arrow\overline{a}(H)

is an isomorphism. Then \rho_{H}^{G} : a(G)arrow a(H) is also an isomorphism.
(b) Defifine a subfunctor Soc (a) of a by

Soc (a) (K)=Soc(a(K)) for all K\leq G .

Assume that a(H) is Artinean and the \rho_{H}^{G} : Soc(a) (G)arrow Soc(a)(H) is an
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isomorphism. Then \rho_{H}^{G} : a(G)arrow a(H) is also an isomorphism. (Remark: J
and Soc are defifined in the Introduction.)

PROOF. (a) Set A=a(H), j=J(k) , I=Im\rho_{H}^{G}. Then we have that
Im\overline{\rho}_{H}^{G}=I+jA/jA . Since \downarrow\overline{o}_{H}^{G} is an isomorphism, A=I+jA. Thus A=I
by the well-known Nakayama’s lemma. By Lemma 3. 1 (a), we have that
\rho_{H}^{G} is an isomorphism, as required.

(b) It is easily proved that any k-map Aarrow B induces a k-map Soc (A)arrow

Soc (B). Thus Soc (a) is surely a G-functor. By Lemma 3. 1, a(H)=Im\rho_{H}^{G}

\oplus Ker\tau_{H}^{G}. Furthermore, by the assumption, we have that

Soc (a(H))=(Soc(a(G)))\rho_{H}^{G}

\underline{\subset} Soc (Im\rho_{H}^{G})

Thus Soc(Ker\tau_{H}^{G})=0 , and so Ker\tau_{H}^{G}=0 , because a(H) is Artinean. By
Lemma 3. 1, \rho_{H}^{G} is an isomorphism. The lemma is proved.

EXAMPLE 3. 3. (Tate’s theorem, e . g. , [10], L2.5(1)). Let H be a
subgroup of G of index prime to p. Assume that G/G^{p} G’\cong H/H^{p} H’ . Then
G/G’(p)\cong H/H’(p) . (Here H^{p}=\langle x^{p}|x\in H\rangle )

PROOF. Take the G-functor a:=ab_{p} over k, where Z/peZ for a large
integer e (Example 2. 6). Then J(k)=pk, and so we have that (a/pa)(K)=
K/K^{p}K’=el_{p}(K) for K\leq G . By the assumption, \rho : (a/pa)(G)arrow(a/pa)(H) is
an isomorphism. Thus by Lemma 3. 3 (a), a(G) is isomorphic to a(H), and
so G/G’(p)\equiv H/H’(p) , as required.

We shall argue about the duality principle on G-functors. This concept
is very useful, but this technique is not used in the present paper and we
introduce only the outline here. Observing the definition of G-functors, we
know that we can define G-functors into any abelian category \mathscr{C} . So if
(a, \tau, \rho, \sigma) is a G-functor into \mathscr{C} , then each a(H) is an object of \mathscr{C} , and
\tau_{H}^{K}, etc. are morphisms in \mathscr{C} , and the axioms for G-functors are represented
as commutativity of diagrams.

Lemma 3. 4. Let (a, \tau, \rho, \sigma) be a G functor into an abelian category
\mathscr{C} . Let F:\mathscr{C}arrow \mathscr{D} be a contravariant additive functor between abelian
categories. Then we have a G functor (a^{F}, \tau’, \rho’, \sigma’) into \mathscr{D} which is defifined
as follows :

(a^{F})(H)=F(a(H)) ;

\tau_{H}^{\prime K}=F(\rho_{H}^{K}) ;
\rho_{H}^{\prime K}=F(\tau_{H} ;
\sigma_{\acute{H}}^{g}=F(\sigma_{H^{g}}^{\sigma^{-1}})(
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We omit the proof of this lemma. By this lemma, we know that there
is the dual statement of every statement on G-functors and that using the
duality principle in category theory, we do not need to prove the dual state-
ments, provided the ordinary statements are already proved in any abelian
category. For example, the dualization of Im\rho_{II}^{G} is Coim\tau_{H}^{G} by Lemma 3. 4
and Ker (Coim \tau_{H}^{G}) =Ker\tau_{IJ}^{G}. Furthermore, Theorem 3. 2 (b) and its proof are
the dualization of (a). We give some other examples. First Lemma 3. 1 (b)
is the dual of Lemma 3. 2 (a), and Lemma 3. 1 (c) is self-dual. Applying
Lemma 3. 4 to the contravariant functor \mathscr{M}_{kG}arrow \mathscr{M}_{kG} : V-.>V^{*}=Hom_{k}(V, k) ,
we have that h_{V}^{0},\grave{h}_{V}^{0} in Example 2. 5 are the dual of h_{0}^{V},\hat{h}_{V}^{-1} , respectively.
Axion C and the Mackey axiom are self-dual, but the axiom for pairings
is not. See [14], p. 32.

Finally, we state Green’s transfer theorem. Note that it gives only
weak results but it is powerful to not only cohomological but also non-
cohomological G-functors. See [9], \S 5.

THEOREM 3. 5 (Green [10], Theorem 2). Let (a, \tau, \rho, \sigma) be a G functor
over k, and let D\leq H\leq G . Set

\mathfrak{X}=\{D\cap D^{g}|g\in G-H\}2 and

\mathfrak{Y}=\{H\cap D^{g}|g\in G-H\}

Let a(\mathfrak{X})^{H}, etc. be the k-submodule of a(H) generated by Im\tau_{X}^{H} for X\in \mathfrak{X} ,
etc. Assume that

a(\mathfrak{X})^{H}=a(D)^{H}\cap a(\mathfrak{Y})^{H}

(This assumption is satisfified if for example, the subgroup D is a Sylow
subgroup of G and H=N_{G}(D).) Then \tau_{H}^{G} and \rho_{H}^{G} induce isomorphisms

t:a(D)^{H}/a(\mathfrak{X})^{H}arrow a(D)^{G}/a(\mathfrak{X})^{G} ,

r:a(D)^{G}/a(\mathfrak{X})^{G}arrow a(D)^{H}/a(\mathfrak{X})^{H} ,

which are the inverse of each other. If, furthermore, a is multiplicative,
then t and r are multiplicative k-maps.

4. Singularities

In this section, we study transfer theorems for cohomological G-func-
tors which are generalizations of Wielandt type theorems for finite groups
(Huppert [12], Satz 4. 8. 1). The concept of singularities is essential for
transfer theorems of this type. This concept was introduced in Yoshida
[20], \S 3 for the dual group functor (Example 2. 4) and was very effective
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to prove some transfer theorems for finite group theory (for example, [20],
Th. 4. 2). See also Glauberman [6] and Suzuki [18]. The definition of
singularities for cohomological G-functors is imitation of [20] as is shown
below, but it seems to be very difficult to study singularities for general
cohomological G-functors, for example, even for Schur multiplier functors,
and there remain many unsolved questions. The results in this section are
very basic.

DEFINITION. Let H be a finite group and (a, \tau, \rho, \sigma) be a cohomological
H-functor. Let S and X be subgroups of H and let \alpha be an element of
a(S) . Then the triplet (S, \alpha, X) is called a singularity for a (or in H) pr0-

vided
(S. 1) \alpha_{X}^{H}\neq 0 , and
(S. 2) if Y\leq S and |Y|<|X| , then \alpha_{Y}=0 .

The subgroup S is called the singular subgroup of the singularity (S, \alpha, X) .
Furthermore, a subgroup which is the singularity of a singularity also is
called a singular subgroup. If the singular subgroup of a singularity in H
is a proper subgroup of H, then the singularity is called to be proper.

REMARK 1. There is another definition of singularities. It is given by
replacing the above condition (S. 2) by the following :

(S. 2’) If Y is a subgroup which is conjugate to a proper subgroup of
X in H, then \alpha_{Y}=0 .
Clearly, if (S. 2) holds, then so does (S. 2’). The triplet (S, \alpha, X) which satisfies
(S. 1) and (S. 2’) is called also a singularity. The second definition is a
direct generalization of singularities for the dual group functors. See [20],
Def. 3. 1. In this paper, we adopt the first definition (S. 1+S. 2). The
results and their proofs are almost the same in either case.

REMARK 2. The concept of singularities is not self-dual and thus cosin-
gularities are defined by the dualization as follows: Let S, X\leq H and a
be a cohomological H-functor over k. Then (S, B, X) is called a cosingularity
provided B is a k-submodule of a(S) and

(C S. 1) a(S) \tau^{H}\rho_{S}gB, and
(C S. 2) if Y\leq S and |Y|<|X| , then

a(Y)\tau^{S}\underline{\subset}B .
Similarly, (C S. 2’) is stated. This concept is useful to study Ker\tau_{H}^{G}. When
a is the abelian factor functor of H, this concept is the same as one in
Suzuki [18], Def. 2. 4. But in the present paper, we shall use singularities
rather than cosingularities.

Lemma 4. 1. Let {a,\tau,\rho,\sigma) be a cohomological G functor over k and
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H a subgroup of G such that k has the inverse of |G:H| . Let B be
a k-submodule of a(H) containing Im\rho_{H}^{G}. Assume that B\neq Im\rho_{H}^{G}. Then
the following hold:

(a) B=Im\rho_{H}^{G}\oplus(B\cap Ker\tau_{H}^{G}) , and so there is a nonzero element \beta of
B\cap Ker\tau_{H}^{G}.

(b) Let \beta be any nonzero element of Ker\tau_{H}^{G}. Then there exist g\in

G-H and X\leq H such that (S, \alpha, X) is a singularity for a_{IH}, where \alpha=

\beta^{\sigma_{S}}-\beta_{S} and S=H\cap H^{g} . (Note: Let \mathfrak{X} be the set of all subgroups Y of H
with \beta_{Y}\neq 0 . Then as the above subgroup X, we can take a member of \mathfrak{X}

of minimal order.)

PROOF. The statement (a) follows from Lemma 3. 1 (c). Take a sub-
group X as in the Note. By the assumption and Lemma 2. 1,

0\neq-|G:H|\beta_{X}

=(\beta_{H}^{G}-|G : H|\beta)_{X}

= \sum_{g\in H\backslash G/H}(\beta_{H\cap H^{g}}^{g}-\beta_{H\cap H^{g}})_{X}^{H} ,

and so there is an element g of G such that
(1) \alpha_{X}^{H}\neq 0 :

where \alpha=\beta_{S}^{g}-\beta_{S} and S=H\cap H^{\sigma} . Clearly g is in G-H. Let Y be a sub-
group of S with |Y|<|X| . Then Y, gYg^{-1}\not\in.

\mathfrak{X} by the minimality of the
order of X. Thus

(2) \alpha_{Y}=(\beta_{gYg^{-1}})^{g}-\beta_{Y}=0

(1) and (2) mean that (S, \alpha, X) is a singularity for a_{1H}. The lemma is proved.
The following lemma is basic to study singularities, which corresponds

to [20], L3.2. The same results were independently proved by Sasaki in
his paper [17], Lemma 2. For singularities which are defined by (S. 1 ) +
(S. 2), the corresponding results hold.

Lemma 4. 2. Let (a, \tau, \rho, \sigma) be a cohomological Hfunctor over k for
a fifinite group H. Let (S, \alpha, X) be a singularity for a. Then the following
hold:

(a) Let u, v\in H. Then (S^{u}, \alpha^{u}, X^{v}) is also a singularity for a.
(b) X is contained in a conjugate of S.
(c) Let T be a subgroup of S such that k has an inverse of |S:T| .

Then (T, \alpha_{T}, X) is also a singularity for a.
(d) Let S\leq R\leq H. Then (R, \alpha^{R}, X) is also a singularity for a.
(e) Let S\leq D\leq H. Then there is a conjugate Z of X such that

(S, \alpha, Z) is a singularity for a_{1D} .
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(f) Let X\leq D\leq H. Then there is an element h of H such that
(T, \alpha_{T}^{h}, X) is a singularity for a_{ID} , where T=S^{h}\cap D.

(g) Let S\leq R\leq H. If there is an element \beta of a(R) such that \alpha=\beta_{S},

then |R:S|\neq 0 in k .
(h) Let \beta be an element of a(S) such that \beta_{Y}=0 for each Y\leq S with

|Y|<|X| . Then (S, \beta, X) or (S, \alpha-\beta, X) is a singularity in H.
PROOF. We will prepare an easy result before starting to prove the

lemma.

(1) If h\in H, and Z\leq S^{h}, and \alpha_{Z}^{h}\neq 0 , then |Z|\geq|X|

Set Y=hZh^{-1}\leq S. Then 0\neq\alpha_{Z}^{h}=(\alpha_{Y})^{h} , and so \alpha_{Y}\neq 0 . By the condition
(S. 2) in the definition of singularities, we have that |Y|=|Z|\geq|X| , proving (1).

Now, we start the proof of the lemma.
(a) Clear.
(b) By the Mackey axiom, we have

0 \neq\alpha_{X}^{H}=\sum_{h\in S\backslash H/x}(\alpha_{xns^{h)^{X}}}^{h}

Thus there is an element h of H such that \alpha_{T}^{h}\neq 0 , where T=X\cap S^{h} . By
(1), |T|\geq|X| . Thus T=X\leq S^{h} , as required.

(c) Since a is cohomological, \alpha_{T}^{H}=(\alpha_{T}^{S})^{H}=|S:T|\alpha^{H}. Since \alpha_{X}^{H}\neq 0 and
|S:T|^{-1}\in k , we have that \alpha_{TX}^{H}=0 , so (T, \alpha_{T}, X) satisfies (S. 1) Let Y be
a subgroup of T(\leq S) with |Y|<|X| . Then (\alpha_{T})_{Y}=\alpha_{Y}=0 by (S. 2). Thus
(T, \alpha_{T}, X) satisfies (S. 1) and (S. 2), and so it is a singularity for a.

(d) Clearly (\alpha^{R})_{X}^{H}=\alpha_{X}^{H}\neq 0 , so (R, \alpha^{R}, X) satisfies (S. 1) Let Y be a
subgroup of R with |Y|<|X| . \prime I^{\backslash }hen

\alpha_{Y}^{R}=\sum_{t\in s\backslash R/Y}\alpha_{S^{\gamma}\cap Y}^{rY}

by the Mackey axiom. By (1), we have that \alpha_{Y}^{R}=0 . Hence (R, \alpha^{R}, X)

satisfies also (S. 2) and it is a singularity for a , as required.
(e) By the Mackey axiom,

0\neq\alpha_{X}^{H}=(\alpha^{D})_{X}^{H}

= \sum_{h\in D\backslash H/x}(\alpha^{D})_{D^{h}\cap x^{x_{1}}}^{h}

Thus there is an element h of H such that
(\alpha^{D})_{D^{h}\cap X}^{h}\neq 0t

Set Z=D\cap hXh^{-1} , so that \alpha_{Z}^{D}\neq 0 . Again by the Mackey axiom,

0 \neq\alpha_{Z}^{D}=\sum_{/cx\epsilon s\backslash D,z}\alpha_{S}^{tl}a_{\cap z^{Z}}
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Thus by (1), there is an element d of D such that |X|\leq|S^{ol}\cap Z|\leq|Z| . Since
Z=D\cap hXh^{-1} , this implies that Z=hXh^{-1} . It is already shown that (S, \alpha, Z)

satisfies (S. 1) for a_{ID} (that is, \alpha_{Z}^{D}\neq 0). Furthermore, it is clear that it satisfies
also (S. 2) for a_{1D} (that is if Y\leq S and |Y|<|Z| , then \alpha_{Y}=0). Hence (S, \alpha, X)

is a singularity, as required.
(f) By the Mackey axiom,

0\neq\alpha_{X}^{H}=(\alpha_{D}^{H})_{X}

= \sum_{h\in S\backslash _{H/D}}\alpha_{S^{h}\cap DX}^{hD} .

Thus there is an element h of H such that (\alpha_{T}^{h})_{X}^{D}\neq 0 , where T=D\cap S^{h} .
Let Y be a subgroup of T=D\cap S^{h} such that |Y|<|X| . Then (1) yields
(\alpha_{T}^{h})_{Y}=\alpha_{Y}^{h}=0 . Hence (T, \alpha_{T}^{h}, X) is a singularity, as required.

(g) By Axiom C, have 0\neq\alpha_{X}^{H}=(\beta_{S^{R}})^{H}=|R:S|\beta_{X}^{H}, and so |R:S|\neq 0

in k.
(h) Set \gamma=\alpha-\beta . If \beta_{X}^{H}=\gamma_{X}^{H}=0 , then \alpha_{X}^{H}=(\beta+\gamma)_{X}^{H}=0 , a contradic-

tion. Thus \beta_{X}^{H}\neq 0 or \gamma_{X}^{H}\neq 0 . Since \beta_{Y}=\gamma_{Y}=0 for a subgroup Y of S with
|Y|<|X| , we have that (S, \beta, X) or (S, \gamma, X) is a singularity according to
\beta_{X}^{H}\neq 0 or \gamma_{X}^{H}\neq 0 . The proof of the lemma is completed.

Lemma 4. 3. Let H be a fifinite group and (a, \tau, \rho, \sigma) be a cohomological
Hfunctor over k. Let D and S be subgroups such that H=DS. Assume
that there are X\leq D and \alpha\in a(S) such that (D, \alpha_{S\cap D}, X) satisfifies the conditions
(S. 1) and (S. 2’) for a_{1D} . Then (S, \alpha, X) also satisfifies (S. 1) and (S. 2’) for a.

PROOF. Set T=D\cap S. We must show that (S. 1) \alpha_{X}^{H}\neq 0 and (S. 2) if
Y is a subgroup of S which is conjugate to a proper subgroup of X, then
\alpha_{Y}=0 . First since H=DS, it follows from the Mackey axiom that \alpha_{D}^{H}=

\alpha_{T}^{D} . Thus \alpha_{X}^{H}=(\alpha_{T})_{X}^{D}\neq 0 by (S. 1) for (T, \alpha_{T}, X) , and so (S, \alpha, X) also satisfies
(S. 1). Next, take any subgroup Y of S such that Y^{h}<X for an element
h of H. We must show \alpha_{Y}=0 . Choose d\in D and s\in S with h=sd. Set
Z=Y^{s} . Then Z<dXd^{-1} , and so Y^{s}=Z\leq S\cap D=T Thus Z is a subgroup
of T which is conjugate to a proper subgroup of X in D. By (S. 2’) for
(T, \alpha_{T}, X) , we have that \alpha_{Z}=0 . Thus (\alpha_{Y})^{s}=\alpha_{Z}^{s}=\alpha_{Z}=0 , so \alpha_{Y}=0 , as required.
Hence (S, \alpha, X) satisfies (S. 1) and (S. 2’). The lemma is proved.

REMARK 3. This lemma doesn’t hold for singularities adopted in this
paper (S. 1+S. 2). This lemma bridges the gap in [20], L3.4.

When we try to apply transfer theorems for cohomological G-functors,
we have to solve first the following problem:

PROBLEM 1. Let (a, \tau, \rho, \sigma) be an H-functor over k . For what kinds
of H and a does there exist no proper singularity ?
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The importance of this problem is obvious by the following lemma.
Lemma 4. 4. Let P be a Sylow p-subgroup of G and (a, \tau, \rho, \sigma) be

a cohomological G functor over k. Assume that |G:P|^{-1}\in k and that P
has no proper singularity for a_{1P} . Then a(G) is isomorphic to a(N_{G}(P)) .

This lemma follows directly from Lemma 4. 1 and Lemma 3. 1. See
also [17], Th. 1.

In general, it is very hard to solve Problem 1 for any given H-functor.
In practice, it suffices to consider Problem 1 only in the case where H is
a p-group and k is a field of characteristic p. As an example, we take
cohomology ring functor (Example 2. 4). Let P be a Sylow p-subgroup of
G and T=Q/Z. Set N=N_{G}(P) . For what kind of P can we say that
H^{n}(G, T)_{p}\cong H^{n}(N, T)_{p}?. Define a subfunctor h^{n} of H_{T}^{n} by h^{n}(H)=\{\overline{\alpha}\in H^{n}

(H, T)|p\alpha=0\} . By Lemma 3. 3 and Lemma 4. 4, we know that this problem
solves if the following solves:

PROBLEM 2. Characterize p-groups without proper singularities for h^{n} .
When n=1, this problem was happily solved, that is, a p group P has

no proper singularity for h^{1}(=el_{p}’) if and only if P has no epimorphism
onto the wreath product Z_{p}JZ_{p} . Thus if G has such a p group P as a
Sylow p-subgroup, the P\cap G’=P\cap N_{G}(P)’ . Refined proofs are found in [6]
and [18].

Sasaki is studying Problem 2 in the case n=2 . He made clear the
machinery of the proof of Holt’s theorem ([17]) and he proved that if cl(P)<
p/2, then P has no proper singularity for h^{2} . He furthermore announced
that some p-groups, for example, 2-groups of maximal class has no proper
singularity for h^{2} . The problem is more complicated than the case of n=1 .
When n=2, the above problem is completely rewritten by the language of
pure group theory. Nevertheless, it is still hard to solve the problem.

Finally, we add another easy result about singularities which we need
later.

Lemma 4. 5. Let P be a p-group and (a, \tau, \rho, \sigma) be a cohomological
Pfunctor over k, where k is a fifield of characteristic p. Let S\underline{\triangleleft}P and
set \overline{P}=P/S. If S is a singular subgroup for a, then the k\overline{P}-module a(S)

{Lemma 2. 2) contains a regular k\overline{P}-submodule k\overline{P}. When S=1, the converse
also holds.

PROOF. Assume first that (S, \alpha, X) is a singularity for a. By Lemma
4. 2 (b), X is contained in S. Thus \alpha_{X}^{P}=(\alpha_{S}^{P})_{X}\neq 0 , and so by the Mackey
axiom,

0 \neq\alpha_{S}^{P}=\sum_{x\in P’S},\alpha^{x}t
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Set \beta\overline{x}=\beta^{x} for \beta\in a(S) , x\in P,\overline{x}=xS\in\overline{P}. Set \overline{t}=\sum_{\overline{x}\in\overline{P}}\overline{x}\in k\overline{P}, so that \alpha\overline{t}\neq 0 .
Set I=\{y\in k\overline{P}|\alpha y=0\} . Then I is an ideal of k\overline{P} which does not contain
\overline{t} , and \alpha\cdot k\overline{P}\cong k\overline{P}/I. The minimal right ideal of k\overline{P} is only k\overline{t} . This fact
follows from the fact that only irreducible k\overline{P}-module is a trivial one. But
since \overline{t}\not\in I, we have that I=0, and so a(S)\supseteq\alpha\cdot k\overline{P}\cong k\overline{P}, as required. Assume
next that a(1) contains a regular kP-module. Then there is \alpha\in a(1) such
that \alpha\cdot kP\cong kP, and so \alpha\cdot\overline{t}=\alpha_{1}^{P}\neq 0 . Thus (1, \alpha, 1) is a singularity. The
lemma is proved.

COROLLARY 4. 6. Let P be a p-group, and k be a fifield of characteristic
p, and V be a fifinite generated kP-module. Assume that \hat{c}_{V}(P)=0 (Example
2. 5). Then V is a free kP-module.

PROOF. We shall argue by the induction on dim_{k} V. We may assume
that V is indecomposable. We shall consider the P-functor (c_{V}, \tau, \rho, \sigma) in
Example 2. 5. Then the assumption \hat{c}_{V}(P)=0 means that \tau:=\tau_{1}^{P} : Varrow

c_{V}(P) is an epimorphism. Let v be a nonzero element of c_{V}(P) , so that v
is written as the form v=u\tau for an element u of V. Thus we have that
(1, u, 1) is a singularity for c_{V}. By the lemma, V has a regular kP-submodule
U. Since U(\cong kP) is an injective kP-module, U is a direct summand of
V, and so U=V\cong kP, for V is indecomposable, as required. (The injectivity
of kP follows, for example, from the fact that the dual module (kP)^{*} is
isomorphic to kP.)

5. Conjugation families

In this section, we treat the relations between transfer theorems for
G-functors and conjugation families. The purpose of this section is to ge-
neralize Alperin [1], Th. 4. 2 and Yoshida [20], Th. 4. 9. In order to make
sure, we begin with the definition of conjugation families.

DEFINITION 5. 1. Let P be a Sylow p-subgroup of G. A family \mathscr{F}

for P is a set of pairs (F, N), where F\leq P and F\underline{\triangleleft}N\leq G . A family \mathscr{F}

for P is called a conjugation family (for P in G) provided whenever A and
B are subsets of P and A^{g}=B for an element g of G, then there exist
members (F_{1}, N_{1})\cdots , (F_{m}, N_{m}) of \mathscr{F} and elements g_{1} , \cdots , g_{m} of G such that

g_{i}\in N_{i} , g=g_{1} , \cdots , g_{m} ,

A^{g_{1}\cdots gi}\underline{\subset}F_{i} (i=1, \cdots, m)

By the well known Alperin’s theorem ([1], Main theorem), there exists
a conjugation family. In practice, we desire conjugation families of which
members satisfy especial properties. For the purpose, some kinds of con-
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jugation families are known (for example, Goldschmidt [7], Puig [15], etc.).

DEFINITION 5. 2. Let \mathscr{F} be a family for a Sylow p-subgroup P of
G and let a=(a, \tau, \rho, \sigma) be a cohomological G-functor over k. Then we say
that \mathscr{F} controls transfer for a provided Im\rho_{P}^{G} equals the set of all \alpha\in a(P)

such that
\alpha_{F}^{n}=\alpha_{F} for all (F, N)\in \mathscr{F} and n\in N

THEOREM 5. 1. Let {a,\tau,\rho,\sigma) be a cohomological G functor over a

fifield k of characteristic p and \mathscr{F} be a conjugation family for a Sylow p-
subgroup P of G. Let \mathscr{F}^{*} be the set of all (F, N) in \mathscr{F} such that for
some y\in G, P\cap P^{y}=P\cap F^{y} is a singular subgroup for a_{1P} . Then \mathscr{F}^{*}con -

trols transfer for a.
PROOF. Let B be the set of all element \alpha of a(P) such that \alpha_{F}^{n}=\alpha_{F}

for all (F, N)\in \mathscr{F}^{*} and n\in N. Then it follows easily from the axioms for
G-functors that B contains Im\rho_{P}^{G} . Suppose the theorem is false, By Lemma
4. 1, there are \beta\in B, X\leq P, g\in G such that (S, \beta_{S}^{g}-\beta, X) , where S=P\cap P^{g}

is a singularity for a_{IP} and X is of minimal order under the condition that
\beta_{X}\neq 0 . (See also Note in Lemma 4. 1.) Set R=gSg^{-1} . Take (F_{i}, N_{i})\in \mathscr{F}

and g_{i}\in N_{i} for i=1 , \cdots , m which satisfy

R^{g_{1}\cdots gi}\subseteq F_{i} for i=1 , \cdots , m ,

g =g_{1}\cdots g_{m}

For each i, set

g_{i}’=g_{i+1}\cdots g_{m}, g_{0}’=g, g_{m}’=1 :

\beta_{i}=\beta_{S}^{g_{\acute{i}}} .

Then each \beta_{i} is well-defined. We have that

0 \neq(\beta_{s}^{g}-\beta_{S})_{X}^{P}=\sum_{i}(\beta_{i-1}-\beta_{i})_{X}^{P} .

Thus there exists i such that (\beta_{i-1}-\beta_{i})_{X}^{P}\neq 0 . Furthermore, if Y is a sub-
group of S with |Y|<|X| , then (\beta_{i-1})_{Y}=(\beta_{i})_{Y}=0 . This follows from the
minimality of X. Thus (S, \beta_{i-1}-\beta_{i}, X) is a singularity for a_{IP} . Set F=F_{i} ,
h=g_{i}’ , x=g_{i} , and T=P\cap F^{x} . Then

\beta_{i-1}-\beta_{i}=\beta^{ns_{S}}-\beta_{S}^{x}

=((\beta_{F}^{n}-\beta_{F})^{x_{T}})_{S} .

Since T contains S and |T:S| is a power of p(=chk), Lemma 4. 2 (g)
yields that S=P\cap F^{x}=T Next by Lemma 4. 2 (h), we have that (S, \beta^{y}, X)
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is a singularity for y=x or nx. Since P\cap P^{y}\underline{\supset}P\cap F^{y}=P\cap F^{x}=S, it follows
again from Lemma 4. 2 (g) that P\cap F^{y}=S. The theorem is proved.

DEFINITION 5. 3. Let M be a proper subgroup of G. Then M is called
a strongly p-embedded subgroup of G provided M has a nontrivial Sylow
\rho subgroup and M\cap M^{g} is a p’ -group for each g\in G-M.

Let M be a proper subgroup of G with nontrivial Sylow p subgroup
P. Then M is strongly p-embedded in G if and only if M contains the
subgroup

\langle N_{G}(Q)|1\neq Q\leq P\rangle

It is well known that if M is a strongly p-embedded subgroup of G and
M does not contain O_{P’}(G) (for example, G is p-solvable), then a Sylow
p subgroup of G is cyclic or generalized quaternion.

DEFINITION 5. 4. Let P be a Sylow p-subgroup of G. A subgroup
A of P is called tame (for P) if N_{P}(A) is a Sylow p subgroup of N_{G}(A) .

THEOREM 5. 2. Let (a, \tau, \rho, \sigma) be a cohomological G functor over a
fifield k of characteristic p and let P be a Sylow p-subgroup of G. let \mathscr{F}

be the family of pairs (F, N), where F<P and N_{P}(F)\leq N\leq N_{G}(F) , which
satisfy the following conditions (a) to (g) :

(a) F is tame, that is, T=N_{P}(F) is a Sylow p-subgroup of L:=N_{G}(F) .
(b) There is an element \beta of a(T) such that \overline{M}:=M/F is strongly

p-embedded in \overline{L}:=L/F, where M:=\{g\in L|\beta_{F}^{g}=\beta_{F}\}\leq L . In particular,
F=O_{p}(L) .

(c) N\not\leq M and F=O_{p}(N) . Furthermore, if \overline{K}\underline{\triangleleft}\overline{N}, then either \overline{K}\leq

O_{p’}(\overline{N}) or \overline{K}\geq O^{p}(\overline{N}) . In particular, O^{p’}(N)=N and O^{p}(N/O_{pp’}(N)) is 1
or noncyclic simple.

(d) Assume that F is not a Sylow p subgroup of O_{p’p}(L) . Then
N=O_{pp’p}(N) and \overline{T} :=T/F is cyclic or generalized quaternion. If p\neq 2 ,
then L is p-solvable.

(e) If C_{T}(F)\not\leq F, for example, if N is not p-constrained, then O^{p}(N)\leq

C_{G}(F) .
(f) The subgroup F is a singular subgroup for a_{1M} . The k\overline{T}-module

a(F) (see Lemma 2. 2) contains a submodule isomorphic to k\overline{T} (that is, a
regular k\overline{T}-submodule).

(g) F contains a conjugate of a singular subgroup for a_{IP} .
Now, let \mathscr{F}_{0} be a family for P which contains (P, N_{G}(P)) and satisfifies the
follows:

(^{*}) For each (F, N)\in \mathscr{F}_{i} there are g\in G and N_{0}\leq N_{G}(F^{g}) such that
(F^{g}, N_{0})\in \mathscr{F}_{0}, N^{g}\leq N_{0} and F^{g} is tame for P.
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Then \mathscr{F}0 controls transfer for a.
To prove this theorem, we need the following lemma:
Lemma 5. 3. Let a be a cohomological G functor over a fifield of cha-

racteristic p, and P be a Sylow p-subgroup of G. Let \alpha be an element of
a(P)-Im\rho_{P}^{G} such that \alpha^{n}=\alpha for all n\in N_{G}(P) . Then there are F<P and
N\leq G satisying the following :

(i) The conditions (a) to (g) in Theorem 5. 2 hold. We can take \beta=\alpha_{T}

as the element \beta in (b), and so \alpha_{F}^{n}\neq\alpha_{F} for some element n of N.
(ii) Let E be a tame subgroup of P conjugate to F in G. Then there

is a G conjugate N_{1} of N such that (E, N_{1}) also satisfifies the conditions (a)

to (g) in the theorem. We can take \alpha_{U} as \beta in (b), where U=N_{P}(E) , so
\alpha_{E}^{m}\neq\alpha_{E} for some m\in N_{1} .

PROOF. For each subgroup F of P, we set

M(F)=\{n\in N_{G}(F)|\alpha_{F}^{n}=\alpha_{F}\}

Then N_{P}(F)\leq M(F)\leq N_{G}(F) . Let \mathscr{F}’ be the set of all subgroups F of P
satisfying the following conditions :

(1) F contains a conjugate of a singular subgroup for a_{1P} ;
(2) M(F)\neq N_{G}(F) , that is, there is n\in N_{G}(F) such that \alpha_{F}^{n}\neq\alpha_{F}.

By Alperin’s theorem, the family of all subgroup of P together with the
normalizers is a conjugation family for P. Thus \mathscr{F}’\neq\phi by Theorem 5. 1.
Since \alpha_{p}^{n}=\alpha_{P} for all n\in N_{G}(P) , we have that P\not\in \mathscr{F}’ and so if F\in \mathscr{F}’ ,

then F<N_{P}(F) . Let \mathscr{F}^{*} be the set of elements of \mathscr{F}’ of maximal order.
We shall first show the following assertion:

(3) If a subgroup E is G-conjugate to a member F of \mathscr{F}^{*} , then there
is an element g of G such that M(E)=M(F)^{g} and E=F^{g} . In particular,
E\in \mathscr{F}^{*}

By Alperin’s theorem, we can take D_{i}\leq P and g_{i}\in N_{G}(D_{i}) , i=1 , \cdots , m,
such that

F^{1gt}\ldots\subseteq D_{i} , i=1 , \cdots , m ,

E=F^{g} , g=g_{1} , \cdots , g_{m} .

Assume that |D_{f}|=|F| for a number j. Then

\Pi 1\ldots g_{j}=D_{J}=D_{r^{\beta j}} ,

and so F^{U’}=E, where g’=g_{1}\cdots g_{j-1}g_{j+1}\cdots g_{m} . Thus we can exclude such
(D_{j}, g_{f}) from the series (D_{1}, gi) , \cdots , (D_{m}, g_{m}) . We may now assume that |D_{i}|>

|F| for each i. We will show that for each i,
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M(F)^{g_{1}\cdots g_{i}}=M(F^{g_{1}\cdots g_{i}})

Set x=g_{1} , A=F^{x}, D=D_{1} . By the induction argument, it will suffice to
show that M(F)^{x}=M(A) . Let n\in N_{G}(F) and set n’=n^{x} . Then the axioms
for G-functors yield the following :

(4) (\alpha_{F}^{n}-\alpha_{F})^{x}=(\alpha_{D}^{x}-\alpha_{D})_{A}^{n’}-(\alpha_{D}^{x}-\alpha_{D})_{A}+(\alpha_{A}^{n’}-\alpha_{A})1

Suppose \alpha_{D}^{x}\neq\alpha_{D} . Then D satisfies (1) and (2), and so F\leq D\in \mathscr{F} . Since
F is an element of \mathscr{F} of maximal order, we have that F=D, a contradic-
tion. Thus \alpha_{D}^{x}=\alpha_{D} . By (4),

(\alpha_{F}^{n}-\alpha_{F})^{x}=(\alpha_{A}^{n’}-\alpha_{A}) , A=F^{x}, n’=n^{x}\tau

Thus we have that n\in M(F) if and if and only if n^{x}\in M(F^{x}) , and hence
M(F)^{x}=M(F^{x}) , as required. (3) is proved.

Let \mathscr{F}^{**} be the set of pairs (F, N) satisfying the following conditions:
(5) F\in \mathscr{F}^{*} and F is tame for P ;
(6) NP(E)\leq N\leq N_{G}(F) and N is not contained in M(F) ;
(7) N is a minimal subject to (6).

By Sylow’s theorem and (3), there is a subgroup F satisfying (5). Further-
more, for such a subgroup F, since M(F)<N_{G}(F) by (2), there is a sub-
group N satisfying (6) and (7). Thus \mathscr{F}^{**}\neq\phi . We claim the following:

(8) If (F, N)\in \mathscr{F}^{**} and a tame subgroup E of P is G-conjugate to
F, then there is g\in G such that E=F^{g}, M(E)=M(F)^{g}, N_{P}(E)=N_{P}(F)^{g} and
(E, N^{g})\in \mathscr{F}^{**} .

To prove this, first take an element g of G such that E=F^{g} and M(E)=
M(F)^{\sigma} . By (3), there is such an element g. Set T=N_{P}(F) and S=N_{P}(E) .
Then T is a Sylow p-subgroup of M(F) and S is a Sylow p subgroup of
M(E)=M(F)^{g} . Since S and T^{g} are both Sylow p subgroup of M(E)=M(F)^{g} ,
there is m\in M(E)\leq N_{G}(E) such that T^{gm}=S. Exchanging gm with g, we
may assume that T^{g}=S. Finally, by these facts, we can easily check that
(E, N^{g})\in \mathscr{F}^{**} . Thus (8) is proved.

We shall next show the following:
(9) If (F, N)\in \mathscr{F}^{**} and we set \beta=\alpha_{T}, T=N_{P}(F) . Then (F, N) t0-

gether with \beta satisfifies the conditions (a) to (g) in Theorem 5. 2.
To prove this, set T=N_{P}(F) , L=N_{G}(F) , M=M(F)=\{n\in L|\alpha_{F}^{n}=\alpha_{F}\} ,

\overline{L}=L/F,\overline{M}=M/F,\overline{T}=T/F. By (1), the condition (g) holds. By (5), T is
a Sylow p-subgroup of L, so (a) holds. By (2), M<L . Let F<E\leq T and
y\in N_{L}(E) . Then \alpha_{E}^{y}=\alpha_{E} by the maximality of |F| , and so \alpha_{F}^{y}=\alpha_{F}. Thus
N_{L}(E)\leq M. This means that \overline{M}=M/F is a strongly p-embedded subgroup
of \overline{L}=L/F, proving (b). By (6), we have that N is not contained in M.
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Since \overline{M} is strongly p-embedded in \overline{L} , we have that O_{p}(\overline{N})=1 , and so O_{p}(N)

=F, so the first statement of (c) holds. Assume that F<K\underline{\triangleleft}N and \overline{K}=K/F

is not a p’ -group. Then by the Frattini argument, N=N_{N}(K\cap T)K\leq MK,
because F<K\cap T and \overline{M} is strongly p-embedded in \overline{L} . Thus K is not
contained in M. By the minimality of N, we have that N=KT, and so K
contains OP\{N). Thus \overline{K}\geq O^{p}(\overline{N}) . To complete the proof of (c), we need
to show that O^{p}(\overline{N}O_{p’}(\overline{N})) is simple or 1. But this follows from the fact
that this group also has strongly p-embedded subgroup or it is covered
by M. (c) is proved.

Let E be a Sylow p subgroup of O_{p’p}(L) . Clearly, F\leq E. Assume
that F\neq E. By the Frattini argument and (b), L=O_{p’}(L)N_{L}(E)=O_{p’}(L)M.
Thus O_{p’}(L) is not contained in M, and so

O_{p’}(L)\neq\langle C_{L}(t)\cap O_{p’}(L)|t\in T-F\rangle (\leq M) .

Thus T/F is of p-rank 1 ([8], Th. 5. 3. 16).
Assume that \overline{T} is cyclic. This assumption holds if p\neq 2 . Since

L=O_{p’}(L)N_{L}(E)

=O_{p’}(L)C_{L}(E/F)N_{L}(T)

by the Frattini argument and since C_{L}(E/F)/F has a normal p-complement by
Burnside’s theorem, we have that L=O_{p’pp’}(L) . By (c), N=O^{p’}(N)=O_{p’p}(N)

=O_{pp’p}(N) . In the cyclic case, (d) holds. Next assume that \overline{T} is generalized
quaternion. Set \overline{Z}=Z(T/F) . By Brauer-Suzuki’s theorem, O_{p’}(\overline{N})\overline{Z}\sim\overline{N}, and
so \overline{N}=O_{p’}(\overline{N})(\overline{M}\cap\overline{N}) . By the minimality of N, and (6), and (7), we have
that \overline{N}=O_{p’}(\overline{N})\overline{T}, so N=O_{pp’p}(N) , proving (d). Assume that C_{T}(F) is not
contained in F. Since C_{N}(F)F\underline{\triangleleft}N, (c) implies that O^{p}(N)\leq C_{N}(F)F. Thus
O^{p}(N)\leq C_{N}(F) , proving (e).

We shall finally prove that (F, N) satisfies (f). Set

\gamma=\beta_{M}^{L}-|L : M|\beta^{M}-
, where \beta=\alpha_{T} .

Then \gamma^{L}=0 . Claim :

(10) M=\{g\in L|\gamma_{p^{\rho}}=\gamma_{F}\} and \gamma_{F}\neq 01

Indeed since M=\{g\in L|\beta {}_{li}P=\beta_{F}\} and FaL,

\beta_{F}^{M}=\sum_{m\in T\backslash M/J}\beta^{m_{T^{m}\cap F^{F}}}

= \sum_{m\in T\backslash M}\beta_{F}^{m}

=|M:T|\beta_{F}
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by the Mackey axiom. Thus we have that

\gamma_{F}=\beta_{F}^{L}-|L:M|\beta_{F}^{M}

=\beta_{F}^{L}-|L:T|\beta_{F} .
If g\in L , then \beta_{F^{g}}^{L}=\beta^{Lg_{F}}=\beta_{F}^{L}. Thus for each g\in L ,

\gamma_{F}^{q}-\gamma_{F}=-|L:T|(\beta {}_{P}P-\beta_{F}) .

Since |L:T| is prime to p(=chk) ,

M=\{g\in L|\beta_{f}^{p}=\beta_{F}\}

=\{g\in L|\gamma_{F^{g}}=\gamma_{F}\}

Furthermore, since M<L, we have that \gamma_{f}\rho\neq\gamma_{F} for an element g of L,
and so \gamma_{F}\neq 0 . Hence (10) is proved. Next take a subgroup X of F of
minimal order such that \gamma_{X}\neq 0 . By the Mackey axiom and Axiom C, we
have that

0\neq-|L : T|\gamma_{X}

=|M:T|\gamma_{X}^{L}-|L:T|\gamma_{X}

=\gamma_{\tau^{L}x}-|L : M|\gamma_{TX}^{M}

= \sum_{g\in T\backslash L/M}(\gamma\emptyset_{T^{g}\cap M^{-\gamma_{T^{g}\cap M}}})_{X}^{M} .

Thus there is an element g of L such that

\delta_{X}^{M}\neq 0 , there \delta=\gamma_{S}^{q}-\gamma_{S}, S=\Pi’\cap M .

Claim :

(11) g\in L-M and S=T^{g}\cap M=F.
Indeed by the Mackey axiom,

0 \neq\delta_{X}^{M}=\sum_{m\in S\backslash M/F}\delta_{S^{m}\cap FX}^{mF}

= \sum_{m\in S\backslash M}\delta_{FX}^{m} .

Thus \delta_{F}=\gamma^{\sigma_{F}}-\gamma_{F}\neq 0 . By (10), g\not\in M, and so S=\mathcal{D}\cap M=F, because M is
strongly p-embedded in L, proving (11). Claim :

(12) (F, \delta, X) is a singularity for a_{\mathfrak{l}M}.

Since \delta_{X}^{M}\neq 0 , it will suffice to show that \delta_{Y}=0 for each subgroup Y of F
with |Y|<|X| . Indeed, set Z=gYg^{-1} for such a subgroup Y. Then

\delta_{Y}=\gamma^{\sigma_{Y}}-\gamma_{Y}=\gamma l-\gamma_{Y} .
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Since |Y|=|Z|<|X| , it follows from the minimality of X that \gamma_{Z}=\gamma_{Y}=0 ,
and so \delta_{Y}=0 , as required. Thus (12) is proved and the first statement of
(f) holds. By Lemma 4. 2 (e), F is a singular subgroup of a_{1T} . Thus the
k\overline{T}-module a(F) (Lemma 2. 2) contains a regular k\overline{T}-submodule by Lemma
4. 5, proving (f). Hence the proof of (9) is completed.

Take a member (F, N) of \mathscr{F}^{**} . Then it satisfies (i) of the lemma by (9).
We shall prove that it satisfies also (ii). Let E be a subgroup of P conjugate
to F in G such that U:=N_{P}(E) is a Sylow p subgroup of N_{G}(E) . By (8),
there is an element g of G such that E=F^{g}, N_{P}(E)=N_{P}(F)^{g}, (E, N^{g})\in \mathscr{F}^{**} .
By (9), (E, N^{g}) also satisfies the condition (a) to (g) in Theorem 5. 2. By the
definition of M(F) , we can take \alpha_{U} as the element \beta in (b). The lemma
is proved.

PROOF of THEOREM 5. 2. Suppose the theorem false. Then there is
an element \alpha of a(P)-Im\rho_{P}^{G} satisfying

(1) \alpha_{F}^{y}=\alpha_{F} for all (F, N_{0})\in \mathscr{F}_{0}, y\in N_{0} .
By Lemma 5. 3, there is (E, N_{1})\in \mathscr{F} which satisfies the conditions (i), (ii) in
the lemma. By (^{*}) in the theorem, there is g\in G and N_{0}\leq G such that

(2) F:=E^{g}\approx N_{0} , (F, N_{0})\in \mathscr{F}_{0} .
F is tame for P and N_{1}^{g}\leq N_{0} . Since (E, N_{1}) satisfies (ii) of Lemma 5. 3,
there is a G conjugate N:=N_{1}^{x} of N_{1} such that (F, N)\in \mathscr{F} and \beta in (b) is
taken to be \alpha_{T}, where T=N_{P}(F) . Set L=N_{G}(F) and M=\{n\in L|\alpha_{F}^{n}=\alpha_{F}\}

as in the theorem. Then N_{0}\leq M by (1). Set n=x^{-1}g . By (2), we have that
(3) T^{n}\leq N^{n}=N\leq N_{0}\leq M and n\in L .

Thus T and T^{n} are both Sylow p-subgroups of M, and so n\in N_{L}(T)M by
Sylow’s theorem. But M is strongly p-embedded in L by the condition (b),
and so n\in N_{L}(T)M=M. Since N^{n}\leq M by (3), we have that N\leq nMn^{-1}=M.
This contradicts the fact that (F, N)\in \mathscr{F} and so N is not contained in M
by (c). The theorem is proved.

REMARK. Let \mathscr{F} be the family given in the theorem and set \mathscr{F}_{1}=

\mathscr{F}\cup\{(P, N_{G}(P)\} . Then \mathscr{F}_{1} controls transfer. Define an equivalent relation
\approx on\mathscr{F}_{1} by (F, N)\overline{\sim}(F_{1}, N_{1}) if and only if N_{1} is conjugate in G to N. Let

\mathscr{F}_{2} be a complete set of representatives of equivalent classes of \mathscr{F}_{1} . Then
\mathscr{F}_{2} controls transfer. Next, for any subgroup H of P, we set

P_{1}=N_{P}(H) , N_{1}=N_{G}(H)

and define recursively

P_{i+1}=N_{P}(P_{i}) , N_{i+1}=N_{G}(P_{i})t
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We say that H is well-placed in P provided each P_{i} is a Sylow p subgroup
of N_{i} . It is known that any subgroup of the Sylow p subgroup P is con-
jugate in G to a well-placed subgroup of P ([8], Th. 8. 4. 6). Let \mathscr{F}_{3} be
the set of members (F, N)\in \mathscr{F}_{1} such that F is well-placed in P. Then \mathscr{F}_{3}

controls transfer. These results follow from the theorem.
EXAMPLE 5. 1. We consider the dual group function ab_{p}’ as an example.

Let a:=el_{p}’ , that is,

a(H)=\{\alpha\in ab’(H)|p\alpha=0\}=Hom(H, Z/pZ)\tau

(See Example 2. 7) Let (F9N) be a pair which satisfies the condition of
Theorem 5. 3. By the speciality of the G-functors el_{p}’ and ab_{p}’ , we can
show that (F9N) satisfies further conditions. First, the assumption of (d)
does not hold, that is, F is a Sylow p subgroup of O_{p’p}(L) . Next, we are
not included in the situation of (e), that is, N and L are p-constrained.
Furthermore, if p=2 and T/F is neither cyclic nor generalized quaternion,
then k[N/F] -module a(F) (and also F/\Phi(F) ) contain the Steinberg modules
of the Bender group N/O_{22’}(N) . This fact follows from (f) and [20], L. 4. 8.
As a conclusion, Theorem 5. 2 and special properties of the dual group
functors as above mentioned yield [20], Th. 4. 9. However, these facts
which hold in the dual group functor (and the abelian factor functor) are
not expected in general cases. We can find counter examples by using, for
example, the centralizer functor.

6. Examples

In this section, we give some examples about cohomological G-functors.
These examples are well known in finite group theory, but we have not
considered some of them as transfer theorems.

EXAMPLE 6. 1 ([8], Th. 5. 2. 3). Let V be a kG-module. Assume
that |G|^{-1}\in k . Then V=C_{V}(G)\oplus[V, G] , where [V, G] is a k-submodule
generated by vx- v for v\in V, x\in G .

PROOF. We shall consider the centralizer functor c_{V} (Example 2. 5).

By Lemma 3. 1 (c), V=c_{V}(1)=Im\rho_{1}^{G}\oplus Ker\tau_{1}^{G} . Since \rho_{1}^{G} is the inclusion
map c_{V}(G)arrow V, we have that Im\rho_{1}^{G}=c_{V}(G) . Next it follows from the ge-
neralized focal subgroup theorem (Theorem 3. 2 (b)) that Ker\tau_{1}^{G}=[V, G] .
Hence V=C_{V}(G)\oplus[V, G] , as required.

EXAMPLE 6. 2 (Gasch\"utz, e . g. , [11], Th. 15, 8. 6). Let V be an abelian
p-group on which G acts. Let G be an extension of G with kernel V.
Assume that a Sylow p subgroup of \tilde{G} is split. Then G also is split.
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PROOF. Consider the G-functor h_{V}^{2} (Example 2. 4). Then the statement
follows from the injectivity of \rho (Lemma 3. 1 (a)).

EXAMPLE 6. 3 (Maschke, D. Higman, e . g. , [16], \S 5. 1, Example 2).
Let W be a kG-module and P a Sylow p-subgroup of G. Assume that
|G:P| has an inverse in k. Then W is \^i-projective.

PROOF. Take any P-split exact sequence of kG modules

(1) 0arrow Uarrow VWarrow 0\underline{\psi}

Set D=Hom_{k}(V, W) and E=End_{k}(W) . Then D and E are kG modules
by (v) \varphi^{x} :=(vx^{-1})\varphi x for v\in V, x\in G, \varphi\in D, etc. Consider the G-functors
c_{D} and c_{E} . The composition

D\cross Earrow D:(\varphi, \theta)|arrow\varphi\theta

induces a pairing (cup product) c_{D}\cross c_{E}arrow c_{D} . Furthermore, for each H\leq G,
c_{D}(H) and c_{E}(H) are the modules of kH-homomorphisms of D and E, re-
spectively. Now, by Lemma 3. 1 (b), \tau_{P}^{G} : c_{E}(P)arrow c_{E}(G) is an epimorphism,
and so there is \theta\in c_{E}(P) such that \theta^{G}=1_{W} . Since (1) is F-split, there is
a kP-homomorphism \psi’ : Warrow V such that \psi’\psi=1_{W} . By Frobenius axioms,

(\theta\psi’)^{G}\psi=(\theta\psi’\psi_{P})^{G}

=(\theta 1_{W})^{G}=\theta^{G}

=1_{W} .

Since (\theta\psi’)^{G} is a kG-homomorphism of W to V, this means that (1) is a
split exact sequence of kG-modules. Hence W is P-projective.

REMARK 1. The above proof is no more than rewriting the standard
proof ([16], Th. 5. 1). By the similar way, we can prove the defect group
contains the vertex ([16], Th. 5. 5).

EXAMPLE 6. 4. Let’s examine transfer theorems of three kinds to the
dual group functor ab_{p}’ . Let P be a Sylow p-subgroup of G. Then the
following holds :

(a) If P is elementary abelian, then P\cap G’=P\cap N_{G}(P’) . (Compare
with Johnson [13], Th. 2.)

(b) P\cap G’ is generated by elements x^{-1}x^{g} , where g\in G, x\in P\cap gPg^{-1} .
(c) If P has no epimorphism onto Z_{p}lZ_{p} , then P\cap G’=P\cap N_{G}(P)’

PROOF. Set a=ab_{p}’ , N=N_{G}(P) . For any finite group X, the dual
group Hom(X, C^{*}) is denoted by X^{\wedge} or \hat{X}. A unique Sylow p-subgroup
of \hat{X} is denoted by \hat{X}_{p} . Thus a(H)=H_{p} for any H\leq G .

(a) We shall apply Green’s theorem (Theorem 3. 5). Set
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\mathfrak{X}=\{P\cap P^{g}|g\in G-N\}

Then we have that
a(P)^{G}/a(\mathfrak{X})^{G}\cong a(P)^{N}/a(\mathfrak{X})^{N}

Let X be any element of \mathfrak{X} . Since X is a proper subgroup of P and P
is elementary, we have that \tau_{X}^{P}=0 by an easy calculation. Thus a(\mathfrak{X})^{P}=0 ,
and so a(P)^{G}\cong a(P)^{N} . By Lemma 3. 1 (b), \tau_{P}^{\theta} and \tau_{P}^{N} are both epimorphisms.
Thus a(G)=(G/G’(p)\grave{)}^{\wedge} is isomorphic to a(N)=(N/N’(p))^{\wedge} . and so G/G’(p)\cong

N/N’(p) . The statement (a) follows easily from this.
(b) We proved this in Example 3. 1. But we again prove it by using

a=ab_{p}’ . Since G/G’(p)\cong P/P\cap G’ , we have that Im\rho_{P}^{G}=(P/P\cap G’)^{\wedge} By
the generalized focal subgroup theorem (Theorem 3. 2 (a)),

Im\rho_{P}^{G}=\{\alpha\in a(P)|\alpha_{P\cap P}^{g}=\alpha_{P\cap P^{g\}}}

It follows from the duality theorem of abelian groups that the right side
equals to P/K, where

K=\langle_{\backslash }.x^{-1}x^{g}|g\in G, x\in P\cap gPg^{-1\backslash }

’
Thus (b) is proved.

(c) Since \rho_{P}^{G} and \rho_{P}^{N} are monomorphisms, it will suffice to show that
Im\rho_{P}^{G}=Im\rho_{P}^{N} . Suppose false. Then by Lemma 4. 1 (a), there is a nonzero
element \beta of Im\rho_{P}^{N}\cap Ker\tau_{P}^{G} . We may assume that p\beta=0 . (See also Lemma
3. 3.) By Lemma 4. 1 (b), P has a singularity {S,\alpha,X), where S=P\cap P^{g},
\alpha=\beta_{S}^{g}-\beta_{S} for an element g of G. Since \beta\in Im\rho_{P}^{N} and \alpha\neq 0 , we see that
g\not\in N, and so S is a proper subgroup of P. Thus P has a proper singularity.
However, since P has no epimorphism onto Z_{p}1Z_{p} , this is a contradiction
by [20], Lemma 3. 7, proving (c).

REMARK 2. (a) seems to be weakest of three transfer theorems. How-
ever, we can apply this method even if P is not Sylow p subgroup of G.
For example, if W is a weakly closed subgroup in a Sylow p subgroup S
of G, then

\Omega_{1}(C_{S}(W))\cap G’=\Omega_{1}(C_{S}(W))\cap N_{G}(W)’

This is Zappa’s theorem. The key point of transfer theorems of this type
is to characterize p groups P such that \tau_{M}^{P}=0 for every maximal subgroup
M of P. See [20], Cor. 4. 4. 1. Green’s theorem seems to have further
possibilities, because the present theorem does not yields directly only Zappa’s
theorem. Next (b) extends to the problems about conjugation families and
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conjugation functors. Some parts of results on them are generalized to
cohomological G-functors. Finally, (c) is the strongest of three. The the0-
rems of this type (for the G-functors ab_{p} , ab_{p}’) are a little useful to finite
group theory. One of the reasons is that we can know many facts about
singularities in p-groups. It is usually difficult to study singularities for G-
functors, and we cannot often understand what they mean even if all sin-
gularities for a given G-functor are known.

EXAMPLE 6. 5. Let M be a strongly p-embedded subgroup of G with
Sylow p subgroup P (Definition 5. 3). Let a be a G-functor over k. Then
the following hold:

(a) Let Q be a p-subgroup of M. Then a(Q)^{G}/a(1)^{G} is isomorphic
to a(Q)^{M}/a(1)^{M} .

(b) Assume that a is cohomological and k has an inverse of |G:P| .
Then a(G)/a(1)^{G} is isomorphic to a(M)/a(1)^{M} . Furthermore, if \alpha^{g}=\alpha for
all \alpha\in a(1) , g\in G , then a(G) is isomorphic to a(M) .

(c) Assume that a is cohomological and k is a field of characteristic
p. If the kP-module a(1) contains no regular kP-submodule, then a(G) is
isomorphic to a(M) .

PROOF. It is easily proved that the following hold:
(1) Set b(H)=a(H)/a(1)^{H} for each H\leq G . Then b is a quotient func-

tor of a. (Using the notation as in Example 2. 2, b=a/a^{1}).
(a) This follows directly from Green’s transfer theorem ([8], Th. 2).

But we give the proof here. By (1), we may assume that a(1)=0. Then
\tau_{M}^{G} induces

T:a(Q)^{M}arrow a(Q)^{G} : \alpha^{M}|arrow\alpha^{G}

Furthermore, let \alpha be an element of a(Q) . Then since \alpha_{1}=0 and Q^{g}\cap M=1

for all g\in G– M, we have

\alpha_{M}^{G}=\sum_{g\in Q\backslash G/M},\alpha_{M\cap Q^{g^{M}}}^{g}

=\alpha^{M}

Thus \rho_{M}^{G} induces
R:a(Q)^{G}arrow a(Q)^{M} : \alpha^{G}Iarrow\alpha^{M}

Since R and T are inverses of each other, we conclude that a(Q)^{G} is is0-
morphic to a(Q)^{M}, as required.

(b) Assume first that \alpha^{g}=\alpha for each \beta\in a(1) , g\in G . For each g\in G, set

I(g)=\{\alpha\in a(P)|\alpha_{P\cap P^{g}}^{g}=\alpha_{P\cap P^{g\}}}
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By the focal subgroup theorem (Theorem 3. 2 (a)),

Im \rho_{P}^{G}=\bigcap_{g\in G}I(g) , and

(2) Im \rho_{P}^{M}=\bigcap_{m\in M}I(m)

Let g\in G-M. Since M is strongly p-embedded, P\cap P^{g}=1 . Thus by the
assumption,

I(g)=\{\alpha\in a(P)|\alpha_{1}^{g}=\alpha_{1}\}

=a(P)

By (2), Im\rho_{P}^{G}=Im\rho_{P}M, and so a(G) is isomorphic to a(M) by the injectivity
of \rho (Lemma 3. 1 (a)), as required. Next, for a general cohomological G-
functor a, define the quotient G-functor b of a by (1), so b(H)=a(H)/a(1)^{H}
and b(1)=0 . Thus b(G) is isomorphic to b(M) by the isomorphism which
is already proved. Hence (b) is proved.

(c) Assume that the kP-module a(1) contains no regular kp-submodules
and suppose a(G) is not isomorphic to a(M) . Then we have that Im\rho_{P}^{M}\neq

Im\rho_{P}^{G} by Lemma 3. 1 (a). By Lemma 4. 1, we have that there are 0\neq\beta\in

Ker\tau_{P}^{G}\cap Im\rho_{P}^{M}, and g\in G , and X\leq P such that (S, \alpha, X) is a singularity for
a_{1P}, where S=P\cap P^{g} and \alpha=\beta_{S}^{g}-\beta_{S} . If g\in M, then \alpha=0 by Theorem 3. 1
(a) or an easy calculation. But this is a contradiction by the definition of
singularities (S. 1). Thus g\not\in M, and so S=P\cap P^{g}=1 . By Lemma 4. 5,
a(1) has a regular kP-submodule, a contradiction. Hence a(G) is isomor-
phic to a(M), proving (c).

EXAMPLE 6. 6 (Hall-Higman, e . g. , [8], Th. 11. 1. 1). Let G be a p-
solvable group of linear transformation in which O_{p}(G)=1 acting on a finite
dimensional vector space V over a field k of characteristic p. Let x be
an element of G of order p^{n} of which minimal polynomial on V is of degree
r. Then one of the following holds:

(a) r=p^{n} , or
(b) p is a Fermat prime, and G has a nonabelian Sylow 2-subgr0up,

and p^{n}-p^{n-1}\leq r\leq p^{n} , or
(c) p=2, and G has a nonabelian Sylow q-subgroup, and q is a Mer-

senne prime <2^{n} , and 2^{n}q/(q+1)\leq r\leq 2^{n} .
PROOF. Suppose false and let (G, V) be a counterexample in which

|G|+dim_{k}V is minimal. Then P=\langle x\rangle is a Sylow p-subgroup of G, and
G has a normal p-complement Q, and Q is an elementary or extraspecial
q-group for a prime q such that P acts irreducibly on Q/Q’ and trivially
on Q’ , These facts follow easily from the induction argument ([8], Th.
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11. 1. 4). First assume that Q is elementary. Then P\cap P^{g}=1 for each
g\in G–P, and so 0=\hat{c}_{v}(G)=\hat{c}_{V}(P) by Example 6. 5 (b) or an easy calculation.
Thus V is kP-free by Corollary 4. 6, and so r=p^{n} . Assume next that Q

is extra-special. We may assume that k is algebraic closed. Set E=End_{k}(V) ,

so that E is a kG-module by (v) \varphi^{g}=(vg^{-1})\varphi g for v\in V, \varphi\in E, g\in G . By
the irreducibility of V, we have that V_{Q} is a direct sum of isomorphic ir-
reducible kQ-modules. (Note that G acts on \{v\in V|vz=\omega v\} , where z is
a generator of Q’ and \omega\in k .) The fact that V_{Q} is an irreducible kQ-module
is proved as follows (see also the Proof of [8], Th. 11. 1. 4 (ii)). Assume
that V_{Q} is the direct sum of t isomorphic irreducible kQ-submodules Y_{1} , \cdots ,
Y_{t} . Then we have that M : cE(Q)=End_{kQ}(V)\cong M(t, k) , the algebra of all
t\cross t matrices over k (e . g. , see [8], Th. 3. 5. 4). Since P normalizes Q and
c_{E}(G)=k, we have that the element x of P acts on M as an algebra-aut0-
morphis, and c_{M}(x)=k . By a calculation (e. g. , Jordan’s canonical form),
we have that the automorphisms of M=M(t, k) are all inner. Since c_{M}(x)=

k, we have that t=1 . Thus Q acts irreducibly on V, and so c_{E}(Q)\cong M

(1, k)=k. Since a generator of Q’ induces a scalar transformation on V,
we have that Q’ acts trivially on E. Thus E is regarded as a G/Q’ -module.
Set \overline{G}=G/Q’ and \overline{Q}=Q/Q’ . By Example 6. 1, E=c_{E}(\overline{Q})\oplus[E,\overline{Q}]=k\oplus[E,\overline{Q}] .
By the similar way as the elementary abelian case, Corollary 4. 6 yields
that [E,\overline{Q}] is a free kP-module. By these facts and a calculation, the ex-
ample is proved. See [21] for details.

EXAMPLE 6. 7. Let V be a finite generated kG-module, k a field of
characteristic p, P a Sylow p-subgroup of G. Assume that for each maximal
subgroup Q of P, the k[P/Q] -module C_{V}(Q) (Lemma 2. 2) has no regular
k[P/Q] -submodules. Then C_{V}(G)=C_{V}(N_{G}(P)) .

PROOF. We shall apply Lemma 4. 4 to the G-functor c_{V}=(c_{V}, \tau, \rho, \sigma)

(Example 2. 5). Suppose P has a proper singular subgroup S. Then by
Lemma 4. 2 (d), a maximal subgroup Q of P which contains S is also a
singular subgroup of P. Since Q\underline{\triangleleft}P, it follows from Lemma 4. 5 that the
k[P/Q] -module c_{V}(Q) has a regular k[P/Q] -submodule. This contradicts the
assumption. Thus P has no proper singularities. By Lemma 4. 4, we have
the desired conclusion.

REMARK 3. Set G=SL(n, q) , q=p^{r} , and let V be a standard kG-
module of G, where k=GF(q) . Let P be a Sylow p-subgroup of G. We
can observe when the assumption of this example holds. In fact, for any
maximal subgroup Q of P, the three cases occur:

(1) If r\geqq 2 , then C_{V}(P)=C_{V}(Q) , and so the assumption of this example
holds.



On G-functors (I): transfer theorems for cohomological G-functors 255

(2) If p\geqq 3 and r=1 , then dimC_{V}(P)=1 and dim Cv\{Q) \leqq 2 . Thus
C_{V}(Q) can not have regular k[P/Q] -submodules, and so the assumption of
this example holds.

(3) If p=2 and r=1 , then C_{V}(Q)\neq C_{V}(P) for some Q. Thus in this
case, the assumption of this example doesn’t hold.
Furthermore, it is easily checked that the conclusion of this example holds
in the cases (1) and (2), and doesn’t hold in the case (3).

REMARK 4. Let V be a nontrivial finite generated irreducible kG-module
Applying this example, we have that either

(1) for some maximal subgroup Q of P, the k[P/Q] -module C_{V}(Q)

has a regular submodule, or

(2) C_{V}(N_{G}(P))=C_{V}(G)=0

If p=2, then (1) is equivalent to the fact that
(1)’ C_{V}(P)\neq C_{V}(Q) for some maximal subgroup Q of P.

If p=2 and N_{G}(P)=P, then (2) cannot hold, and so (1)’ holds. We have
similar results about \hat{c}_{V}, etc. However, the author doesn’t know whether
these results are valuable and whether they can be proved by the ordinary
modular representation theory.

EXAMPLE 6. 8. Assume that G has a Sylow p subgroup P of order p.
Take x\in P such that P=\langle x\rangle . Let V be a finite generated kG-module
where k is a field of characteristic p. Set N=N_{G}(P) . Then the following
hold :

(a) \hat{c}_{V}(G)\equiv\hat{c}_{V}(N),\hat{d}_{V}(G)\equiv\hat{d}_{V}(N) ,
(b) If the minimal polynomial of x on V is of degree <p , then c_{V}(G)=

c_{V}(N) , d_{V}(G)=d_{V}(N) .
(c) Assume that the minimal polynomial of x on V is of degree \leq p/2

and that V is indecomposable as a kG-module. Then V is indecomposable
also as a kN-module

PROOF. (a) Since \hat{c}_{V}(1)=\hat{d}_{V}(1)=0 by the definition (Example 2. 5), P
has no proper singularities for these G-functors. Thus (a) follows directly
Lemma 4. 4. See also Example 6. 5 (b), (c).

(b) This is proved by Example 6. 7.
(c) Set E=End_{k}(V) . Then E is a kG-module by (v) \varphi^{g} :=(vg^{-1})\varphi^{g} for

v\in V, g\in G, \varphi\in E. By the assumption, the minimal polynomial of x on
E is of degree <p . By (b), c_{E}(G)=c_{E}(N) . Thus End_{kG}(V)=End_{kN}(V) .
Since V is kG indecomposable End_{kG}(V) and also End_{kN}(V) are local rings,
and so V is indecomposable as a kN-module, as required.
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7. Concluding remark

I note down here my personal thought on G-functors. So much re-
mains to be studied on this subject and there appears to be five courses
that we have to follow. Intuitionally saying, the philosophy of the theory
of G-functors is to handle representations not only of G but also of all
subgroups of G. First, the concept of G-functors is an excellent language
to describe representation theory, cohomology theory, and transfer theory
of finite groups (see the cohomology exact sequence in Example 2. 4). By
rewriting these theories in the language of G-functors, we can separate parts
about transfer from them. Secondly, it is also interesting to apply the results
(transfer theorems, etc.) on G-functors to modular representation theory
(Examples 6. 7, 6. 8). We get perhaps some new results.

Next, let’s change our subject to studying G-functors themselves. The
category of G-functors is very like the category of G-modules. There are
rings and modules in the category (Definition 2. 4), and we can furthermore
define tensor products, induced G-functors, relative projective G-functors,
etc. The category of G-functors contains all necessities to develop “an
abelian group theory.” Following modular representation theory and h0-
mology algebra of modules, we can develop the theory of G-functors to
some extent. A great difference between G-functors and G modules is the
fact that every G-functor involves a complex internal structure. Transfer
theorems which is the subject of this paper tells the information on the
inside of a G-functor.

I am much interested in using G-functors in order to join some fields.
Using methods in transfer theory [20], we can prove some results about
representation and cohomology of groups (Section 6), but these results have
no relation to G-functors in appearance and we can prove them even without
using G-functors. I want to try using G-functors as mediators on a large
scale. Can we state any transfer theorem for Dress’ Mackey functors p.
This is not an easy problem (but see Dress’ works, [4], \S 5 etc.) It was
difficult even to define “cohomological” Mackey functors. But once they
are done, we find ourselves being in a peculiar world which is not related
to finite group theory in any way but in which we can develop transfer
theory as before. This theory will be presented in future papers.
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