On parabolic equations in n space variables and their solutions in regions with edges

By Ali Azzam and Erwin Kreyszig

(Received July 30, 1979 ; Revised September 19, 1979)

1. Introduction

In this paper we study the initial-Dirichlet problem for parabolic equations of the form

$$
\begin{align*}
& L u=f, \\
& L=a_{i k}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{k}}+a_{i}(x, t) \frac{\partial}{\partial x_{i}}+a(x, t)-\frac{\partial}{\partial t} . \tag{1.1}
\end{align*}
$$

Here f depends on $x=\left(x_{1}, \cdots, x_{n}\right)$ and t, and we use the summation convention (summations from 1 to n).

Equation (1.1) will be considered in a region $\Omega=G \times J \subset \boldsymbol{R}^{n+1}$, where $J=\{t \mid 0<t \leqq T\}$ and $G \subset \boldsymbol{R}^{n}$ has edges satisfying conditions to be specified below. L is assumed to have $C^{\alpha}(\bar{\Omega})$-coefficients, where $0<\alpha<1$, and $f \in C^{\alpha}(\bar{\Omega})$, too.

We shall prove that, under these assumptions and suitable conditions concerning the initial and boundary data, for bounded solutions u of that problem we have $D_{x} u \in C^{v}(\bar{\Omega})$, where $0<\nu<1$ and D_{x} denotes partial differentiation with respect to any $x_{i}, i=1, \cdots, n$. Also $D_{x}{ }^{2} u \in C^{0}(\bar{\Omega})$ under an additional assumption.

Our method is based on Schauder type estimates and barrier functions, and the results will extend those in [3] for $n=2$.

Furthermore, it is interesting to note that the method can be modified so that it yields similar results for bounded solutions of the Dirichlet problem for elliptic equations in n-dimensional regions with edges. This will be explained at the end of this paper.

We mention that an early paper on regions with edges was T. Carleman's thesis [4] for the n-dimensional Laplace equation. Mixed boundary value problems in two-dimensional regions with corners were also considered by N. M. Wigley [10]. Systems of the form $\Delta u=F(x, u, \operatorname{grad} u)$ in such regions were recently studied by G. Dziuk [5], who obtained results on the smoothness of solutions. Publications on elliptic equations with $n=2$ in regions
with corners are numerous (cf. the references in [7]), whereas for general n comparatively little is known, in particular with respect to parabolic equations. In the case of the Dirichlet problem for elliptic equations in n variables, a Sobolev space approach is due to V. A. Kondrat'ev [8].

The material in this paper is arranged as follows. Our main result (Theorem 1) is stated in Sec. 3. It will be obtained from Theorems 2-4 in Secs. 4-6. Theorem 2 in Sec. 4 concerns bounds for solutions u, and Theorem 3 in Sec. 5 gives bounds for partial derivatives of u. In both sections the region is of a special type, namely, a sector of a cylinder. In Theorem 4 (Sec. 6) we prove that $D_{x} u$ is of class C^{ν} in the closure of such a special region. In Sec. 7, Theorem 1 will then be obtained from Theorem 4. Finally, in Sec. 8 we shall be concerned with the Dirichlet problem for elliptic equations to which the present method, in a modified form, is also applicable.

We want to thank the referee of this paper for suggesting a modification of our barrier function, which entailed the additional result (3.5 b).

2. Some notations

This section contains some general notations needed throughout the paper. Let $G \subset \boldsymbol{R}^{n}$ be any bounded domain, $J=\{t \mid 0<t \leqq T\}$ with constant $T>0$, and set $\Omega=G \times J \subset \boldsymbol{R}^{n+1}$. In Ω we use the metric defined by

$$
d(P, Q)=\left(|x-\tilde{x}|^{2}+|t-\tilde{t}|\right)^{1 / 2}
$$

where $P:(x, t), Q:(\tilde{x}, \tilde{t})$ and

$$
|x|^{2}=\sum_{i=1}^{n} x_{i}^{2} \quad x=\left(x_{1}, \cdots, x_{n}\right) .
$$

For a function u on Ω we define, as usual (cf. [6]),

$$
\begin{aligned}
& \|u\|_{0}^{Q}=\sup _{\Omega}|u(x, t)| \\
& H_{\alpha}^{Q}(u)=\sup _{\substack{P, Q \in Q \\
P \neq Q}} \frac{|u(x, t)-u(\tilde{x}, \tilde{t})|}{d(P, Q)^{\alpha}} \quad(0<\alpha<1) \\
& \|u\|_{\alpha}^{Q}=\|u\|_{0}^{\Omega}+H_{\alpha}^{Q}(u) \\
& \|u\|_{2+\alpha}^{Q}=\|u\|_{\alpha}^{Q}+\sum\left\|D_{x} u\right\|_{\alpha}^{\Omega}+\sum\left\|D_{x}^{2} u\right\|_{\alpha}^{a}+\left\|D_{t} u\right\|_{\alpha}^{\Omega}
\end{aligned}
$$

provided each expression in the right-hand sides exists and is finite. Here, $D_{t}=\partial / \partial t$ and $D_{x}{ }^{j}$ denotes any partial derivative of order j with respect to x_{1}, \cdots, x_{n}.

Let $G_{0}=G \times\{t \mid t=0\}$ and $S=\partial G \times J$. Then

$$
\phi \in C^{2+\alpha}(A), \quad A=\bar{G}_{0} \cup S
$$

means that ψ is defined on A and there exists a function $\Psi \in C^{2+\alpha}(\bar{\Omega})$ such that $\left.\Psi\right|_{A}=\psi$. We then define

$$
\|\varphi\|_{2+\alpha}=\inf _{\tilde{\sigma}}\|\Psi\|_{2+\alpha},
$$

the infimum being taken over all those functions Ψ.

3. Main result

We shall now state our main theorem (Theorem 1, below), which is concerned with the smoothness of solutions of parabolic equations in regions with edges. The proof will be based on results to be obtained in the next three sections and will be given in Sec. 7.

We start from a bounded domain $G \subset \boldsymbol{R}^{n}, n \geqq 2$, whose boundary ∂G consists of hypersurfaces $\Gamma_{1}, \cdots, \Gamma_{m}$ of class $C^{2+\alpha}$, where $0<\alpha<1$. We assume that Γ_{i} intersects only with Γ_{i-1} and Γ_{i+1}, these intersections being ($n-2$)dimensional edges E_{i-1} and E_{i}, respectively. (Here Γ_{m+1} means Γ_{1}). We now introduce $\Omega=G \times J$, where $J=\{t \mid 0<t \leqq T\}$. In Ω we consider the initialDirichlet problem

$$
\begin{align*}
& L u=f \tag{3.1}\\
& u(x, 0)=0, \quad x \in \bar{G} \tag{3.2a}\\
& \left.u\right|_{\partial G \times \bar{J}}=\phi(x, t), \tag{3.2b}
\end{align*}
$$

assuming that
(i) $a_{i k} \in C^{\alpha}(\bar{G})$
(ii) $a_{i}, a, f \in C^{\alpha}(\bar{\Omega})$
(iii) $\phi(x, 0)=0$ and

$$
\phi \in C^{2+\alpha}\left[\left(\partial G \backslash \bigcup_{i} E_{i}\right) \times \bar{J}\right] \cap C^{0}(\partial G \times \bar{J})
$$

It is known (cf. [6]) that any solution of (3.1), (3.2) satisfying (i)-(iii) is of class

$$
C^{2+\alpha}\left[\left(\bar{G} \backslash \bigcup_{i} E_{i}\right) \times \bar{J}\right] \cap C^{0}(\bar{\Omega})
$$

The presence of the edges E_{i} affects only the smoothness of the functions $D_{x} u$ and $D_{x}{ }^{2} u$. In Theorem 1 we give sufficient conditions for $D_{x} u$ to be Hölder continuous. This needs a short preparation, as follows.

Let $P: x^{0}$ be any point on E_{i}. Let π_{1} and π_{2} be the two hyperplanes which touch Γ_{i} and Γ_{i+1} at P making there an angle $\gamma(P)$. We now trans-
form the equation

$$
\begin{equation*}
a_{i k}\left(x^{0}\right) u_{x_{i} x_{k}}^{*}=0 \tag{3.3}
\end{equation*}
$$

to canonical form. Note that this is an equation with constant coefficients, since P is fixed. That transformation maps π_{1} and π_{2} onto two hyperplanes which at the image of P make an angle $\omega(P)$. It is this angle that we need for stating Theorem 1. In fact, the theorem shows that $\omega(P)$ plays a significant role in determining the smoothness of the solution u of our problem near $\cup E_{i} \times \bar{J}$.

Theorem 1. Let u be a solution of (3.1), (3.2) in $\Omega=G \times J$, and assume (i)-(iii) to be satisfied. Suppose further that $\omega(P)<\pi$ for every $P \in \cup_{i} E_{i}$. Then there exist numbers $\nu, \kappa, \chi, 0<\nu, \kappa, \chi<1$, such that

$$
\begin{equation*}
D_{x} u \in C^{\nu}(\bar{\Omega}) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{u} \in C^{x}(\bar{\Omega}) \quad \text { where } \quad \tilde{u}(x, t)=\delta^{*} D_{x}{ }^{2} u(x, t) \tag{3.5a}
\end{equation*}
$$

$\chi=\min (\alpha, \kappa+\nu-1)$ and δ is the distance from (x, t) to $\bigcup_{i} E_{i} \times \bar{J}$. Furthermore, if $\omega(P)<\pi / 2$ for every $P \in \cup_{i} E_{i}$, then

$$
\begin{equation*}
D_{x}{ }^{2} u \in C^{0}(\bar{\Omega}) . \tag{3.5b}
\end{equation*}
$$

4. Bounds for solutions

As indicated in the Introduction, in this and the next two sections we shall obtain results for special regions, from which the theorem on the smoothness of solutions in a general region with edges will then follow in Sec. 7.

Let $x_{1}=r \cos \theta, x_{2}=r \sin \theta, x^{\prime}=\left(x_{3}, \cdots, x_{n}\right)$ and

$$
B_{\sigma}=\left\{\left(r, \theta, x^{\prime}\right)\left|r<\sigma, \beta<\theta<\beta+\omega,\left|x_{i}\right|<\sigma, i>2\right\}\right.
$$

where $\sigma>0,0<\omega<\pi$ and $\beta=(\pi-\omega) / 2$. Let Π_{1} and Π_{2} denote the two portions of the hyperplanes

$$
\begin{aligned}
& x_{2}=x_{1} \tan \beta \\
& x_{2}=x_{1} \tan (\beta+\omega)
\end{aligned}
$$

by which the sector B_{o} is bounded laterally. Furthermore, let

$$
N_{c}=\left\{x\left|x \in B_{o},|x|<c\right\} \quad(c>0) .\right.
$$

Denote by S_{c} the portion of the boundary of N_{c} which lies on $\Pi_{1} \cup \Pi_{2}$.

Let $E_{c}=\Pi_{1} \cap \Pi_{2} \cap \bar{N}_{c}$, so that E_{c} is the portion of the edge of B_{c} in \bar{N}_{c}. In $N_{c} \times J$ we consider the problem

$$
\begin{align*}
& L u=f \tag{4.1}\\
& \left.u\right|_{t=0}=0 \tag{4.2a}\\
& \left.u\right|_{s_{c}}=\psi(x, t) \tag{4.2b}
\end{align*}
$$

with parabolic L as in (1.1) under the following assumptions.
(i) $a_{i k} \in C^{0}\left(\bar{N}_{c}\right)$ and $a_{i k}(0)=\delta_{i k}$ when $i, k=1,2$.
(ii) $a_{i k}(i>2$ or $k>2), a_{i}, a$ and f are bounded in $\bar{N}_{c} \times J$.
(iii) $\quad \psi \in C^{2}\left(\left(S_{c} \backslash E_{c}\right) \times J\right) \cap C^{0}\left(S_{c} \times J\right), \psi(x, 0)=0$.
(iv) On E_{c} the function ψ is zero together with its first partial derivatives in the directions perpendicular to E_{c} and such that $\theta=\beta$ or $\theta=\beta+\omega$, and its second derivatives in those directions are bounded.

Note that, by (ii), in this and the next two sections the coefficients $a_{i k}$ with $i>2$ or $k>2$ may also depend on t.

In the present section we shall obtain bounds for solutions of the problem (4.1), (4.2) and in the next section bounds for partial derivatives of these solutions with respect to the $x_{i}{ }^{\prime}$ s.

Theorem 2. Let u be a bounded solution of the problem (4.1), (4.2) in $N_{c} \times J$. Suppose that the assumptions (i)-(iv) are satisfied. Then there exists a number $c_{1}<c / 3$ such that in $\bar{N}_{c_{1}} \times J$ we have

$$
|u(x, t)| \leqq K r^{\mu}
$$

where $K>0$ is constant, $r^{2}=x_{1}^{2}+x_{2}^{2}$, and

$$
\mu=\left\{\begin{array}{ccc}
2 & \text { if } & \omega<\pi / 2 \\
\frac{\pi}{\omega}-\varepsilon & \text { if } & \omega \geqq \pi / 2
\end{array}\right.
$$

with arbitrarily small $\varepsilon>0$.
Proof. Let $\xi \in C^{3}\left(\bar{N}_{3 c_{1}}\right)$ with c_{1} to be determined later and

$$
\xi(|x|)=\left\{\begin{array}{lll}
1 & \text { if } & 0 \leqq|x| \leqq c_{1} \\
0 & \text { if } & 2 c_{1} \leqq|x| \leqq 3 c_{1}
\end{array}\right.
$$

Then $w=\xi u$ is defined in the region $N_{3 c_{1}} \times J$, which in this proof will be simply denoted by \mathscr{N}. In \mathscr{N} the function w satisfies the equation

$$
\begin{equation*}
L w=F \tag{4.3}
\end{equation*}
$$

where

$$
F=\xi f-2 a_{i k} \xi_{x_{i}} u_{x_{k}}-a_{i k} \xi_{x_{i} x_{k}} u-a_{i} \xi_{x_{i}} u .
$$

Furthermore, the function $\psi_{1}=\left.w\right|_{S_{c}}$ satisfies the above conditions (iii) and (iv).
We now introduce the function

$$
v(x)=-K r^{\mu} \cos \lambda\left(\theta-\frac{\pi}{2}\right)
$$

defined in $N_{3 c_{1}}$, where $K>0$ will be specified later and

$$
1<\mu<\lambda=\frac{\pi-2 \eta}{\omega}
$$

with $0<\eta<\pi / 2$. Here, if $\pi / \omega \leqq 2$, we take $\eta>0$ arbitrarily small, whereas if $\pi / \omega>2$, we take $\eta<\pi / 2-\omega$ and $\mu=2$.

We can rewrite $L w$ in the form

$$
L w=w_{x_{1} x_{1}}+w_{x_{2} x_{2}}+\tilde{a}_{i k} w_{x_{i} x_{k}}+a_{i} w_{x_{i}}+a w-w_{t}
$$

where

$$
\tilde{a}_{i k}= \begin{cases}a_{i k}-\delta_{i k} & \text { if } \quad i, k=1,2 \\ a_{i k} & \text { otherwise }\end{cases}
$$

In particular,

$$
\begin{aligned}
& L v(x)=K\left(\lambda^{2}-\mu^{2}\right) r^{\mu-2} \cos \lambda\left(\theta-\frac{\pi}{2}\right) \\
& \quad+K \tilde{a}_{i k}(x) h_{i k}(x) r^{\mu-2}+K h_{1}(x, t) r^{\mu-1}+K h_{2}(x, t) r^{\mu}
\end{aligned}
$$

where $h_{i k}$ and h_{i} are bounded functions, say,

$$
\sum_{i=1}^{n} \sum_{k=1}^{n}\left|h_{i k}(x)\right|+\sum_{i=1}^{n}\left|h_{i}(x, t)\right| \leqq K_{0} \quad(x, t) \in \mathscr{N} .
$$

Since the $\tilde{a}_{i k}$ are continuous in $\bar{N}_{3 c_{1}}$ and zero at $x=0$, we can find a positive c_{1} so small that

$$
\left|\tilde{a}_{i k}(x)\right|<\varepsilon / 4 K_{0} \quad \text { when } \quad|x|<3 c_{1} .
$$

Also, for $\beta \leqq \theta \leqq \beta+\omega$ we have $\cos \lambda\left(\theta-\frac{\pi}{2}\right) \geqq \sin \eta$. Hence in \mathscr{N} we obtain

$$
\begin{equation*}
L v(x) \geqq K\left[\left(\lambda^{2}-\mu^{2}\right) \sin \eta-\varepsilon-K_{0} r-K_{0} r^{2}\right] r^{\mu-2} . \tag{4.4}
\end{equation*}
$$

We now take $\varepsilon<\left(\lambda^{2}-\mu^{2}\right) \sin \eta$ and then c_{1} so small that the expression in the brackets [\cdots] in (4.4) is positive. Since $\mu \leqq 2$, by taking c_{1} sufficiently small and K sufficiently large we get

$$
L v(x) \geqq F(x, t)
$$

in \mathscr{N}. It follows that

$$
L(w-v)(x, t) \leqq 0 \text { in } \mathscr{N} .
$$

We now show that $w-v$ can be made nonnegative on $\partial N_{3 c_{1}} \times J$ by taking K sufficiently large. We first consider $S_{3 c_{1}} \times J$, which in this proof we simply denote by \mathscr{S}. On \mathscr{S} we have $w=\psi_{1}$, where

$$
\begin{equation*}
\psi_{1}\left(0,0, x^{\prime}, t\right)=D_{\beta} \psi_{1}\left(0,0, x^{\prime}, t\right)=D_{\beta+\omega} \psi_{1}\left(0,0, x^{\prime}, t\right)=0 \tag{4.5}
\end{equation*}
$$

here $D_{\beta} \psi_{1}$ and $D_{\beta+\omega} \psi_{1}$ are the derivatives of ψ_{1} in the directions perpendicular to E_{c} and such that $\theta=\beta$ and $\theta=\beta+\omega$ respectively. Hence at any point $(x, t) \in \mathscr{S}$ we have

$$
\begin{align*}
D_{l} \psi_{1}(x, t) & =\int_{\left(0,0, x^{\prime}, t\right)}^{\left(x_{1}, x_{2}, x^{\prime}, t\right)} D_{l}{ }^{2} \psi_{1}\left(\tilde{x}_{1}, \tilde{x}_{2}, x^{\prime}, t\right) d \tilde{r} \tag{4.6}\\
l & =\beta, \beta+\omega
\end{align*}
$$

Now $D_{l}{ }^{2} \psi_{1}$ is bounded, say,

$$
\begin{equation*}
\left|D_{l}{ }^{2} \psi_{1}(x, t)\right| \leqq 2 \hat{K}_{1} \quad \text { on } \quad \mathscr{S} \tag{4.7a}
\end{equation*}
$$

Hence from (4.6) we obtain

$$
\begin{equation*}
\left|D_{l} \psi_{1}(x, t)\right| \leqq 2 \widehat{K}_{1} r \quad \text { on } \quad \mathscr{S} \tag{4.7b}
\end{equation*}
$$

and in a similar fashion

$$
\begin{equation*}
\left|\phi_{1}(x, t)\right| \leqq \hat{K}_{1} r^{2} \quad \text { on } \quad \mathscr{S} \tag{4.7c}
\end{equation*}
$$

On \mathscr{S} we thus have

$$
w(x, t)-v(x)=\psi_{1}(x, t)+K r^{\mu} \sin \eta \geqq-\widehat{K}_{1} r^{2}+K r^{\mu} \sin \eta
$$

which can be made nonnegative by taking K sufficiently large. On the remaining part of $\partial N_{3 c_{1}} \times J$ we have $w=0$ and thus

$$
w(x, t)-v(x) \geqq K r^{\mu} \sin \eta \geqq 0
$$

Our intermediate result is $L(w-v)(x, t) \leqq 0$ in \mathscr{N}, whereas $w(x, t)-v(x) \geqq 0$ on $\partial N_{3 c_{1}} \times J$. Applying the maximum principle for parabolic equations (cf. [9], pp. 174-175) we conclude that $w(x, t)-v(x) \geqq 0$ in \mathscr{N}. Hence

$$
w(x, t) \geqq-K r^{\mu} \operatorname{oos} \lambda\left(\theta-\frac{\pi}{2}\right) \geqq-K r^{\mu}
$$

By a similar argument we can show that in \mathscr{N},

$$
w(x, t) \leqq K r^{\mu},
$$

provided K is taken sufficiently large and $c_{1}>0$ sufficiently small. Together,

$$
|w(x, t)| \leqq K r^{\mu} .
$$

Since $w=u$ in $N_{c_{1}} \times J$, we obtain the desired result, and the proof is complete.

5. Bounds for $\boldsymbol{D}_{x} u$ and $\boldsymbol{D}_{x}{ }^{2} \boldsymbol{u}$

Having estimated bounded solutions u of the problem (4.1), (4.2), we now estimate their derivatives $u_{x_{i}}$ and $u_{x_{i} x_{k}}$.

For this purpose we shall need the following subregions of $N_{c_{1}}$:

$$
R_{s}=\left\{x\left|2^{-s-2} c_{2} \leqq r \leqq 2^{-s-1} c_{2},\left|x_{i}\right| \leqq 2^{-s} c_{2} \text { for } i>2\right\} \cap N_{c_{1}}\right. \text {; }
$$

here $s=-1,0,1, \cdots$. We also define

$$
\tilde{R}_{s}=R_{s-1} \cup R_{s} \cup R_{s+1} \quad s=0,1, \ldots
$$

Here $c_{2}>0$ is assumed sufficiently small so that $\tilde{R}_{0} \subset N_{\mathrm{c}_{1} / 2}$.
Instead of assumptions (i)-(iv) we now make the following ones.
(i*) $a_{i k} \in C^{\alpha}\left(\bar{N}_{\mathrm{c}}\right)$ and $a_{i k}(0)=\delta_{i k}$ for $i, k=1,2$
(ii*) $a_{i k}(i>2$ or $k>2), a_{i}, a, f \in C^{\alpha}\left(\bar{N}_{c} \times J\right)$.
(iii*) $\quad \psi \in C^{2+\alpha}\left(\left(S_{c} \backslash E_{c}\right) \times J\right) \cap C^{0}\left(S_{c} \times J\right), \psi(x, 0)=0$.
(iv*) Same as (iv) in Sec. 4.
Theorem 3. Let u be a bounded solution of the problem (4.1), (4.2) in $N_{c} \times J$. Suppose that the assumptions (i*)-(iv*) are satisfied. Then if $\omega<\pi$ in B_{o}, in $N_{c, 12} \times J$ we have

$$
\left|D_{x^{j}}^{j} u(x, t)\right| \leqq K_{j} r^{\mu-j} \quad j=1,2,
$$

with μ as in Theorem 2.
Proof. Let $\tilde{\Gamma}_{s}$ denote the portion of the boundary of \tilde{R}_{s} which lies on $\Pi_{1} \cup \Pi_{2}$, and let us use in this proof the notations

$$
\mathscr{R}_{s}=R_{s} \times J, \widetilde{\mathscr{R}}_{s}=\tilde{R}_{s} \times J, \widetilde{\mathscr{G}}_{s}=\tilde{\Gamma}_{s} \times J .
$$

We now apply the transformation

$$
\begin{equation*}
x=2^{-s} y \quad y=\left(y_{1}, \cdots, y_{n}\right) \tag{5.1}
\end{equation*}
$$

which maps R_{s}, \tilde{R}_{s} and $\tilde{\Gamma}_{s}$ onto R_{0}, \tilde{R}_{0} and $\tilde{\Gamma}_{0}$, respectively. In $\tilde{\mathscr{R}}_{0}$ the function $U(y, t)=u\left(2^{-s} y, t\right)$ is defined and satisfies the parabolic equation

$$
\begin{equation*}
b_{i k} U_{y_{i} y_{k}}+2^{-s} b_{i} U_{y_{i}}+2^{-2 s} b U-2^{-2 s} U_{t}=2^{-2 s} g \tag{5.2}
\end{equation*}
$$

where $b_{i k}, b_{i}$ and b are the coefficients of L in the new variables, and $g(y, t)=f(x, t)$. Clearly $U(y, 0)=0$. The boundary value ψ_{2} of U on $\widetilde{\mathscr{G}}_{0}$ is given by

$$
\begin{equation*}
\psi_{2}(y, t)=\psi\left(2^{-s} y, t\right) \tag{5.3}
\end{equation*}
$$

We now apply a Schauder type estimate for parabolic equations (cf. [6]) to the solution U of (5.2) in \mathscr{R}_{0} and $\check{\mathscr{P}}_{0}$, finding

$$
\begin{equation*}
\|U\|_{2+\alpha}^{a_{0}} \leqq A_{1}\left(\|U\|_{0}^{\tilde{x}_{0}}+2^{-2 s}\|g\|_{\alpha}^{\tilde{x}_{0}}+\left\|\psi_{2}\right\|_{2+\alpha}^{\tilde{F}_{0_{0}}}\right) \tag{5.4}
\end{equation*}
$$

We estimate each term on the right-hand side of (5.4). In $\widetilde{\mathscr{R}}_{s}$ we have (cf. Theorem 2)

$$
|u(x, t)| \leqq K r^{\mu}
$$

and thus in $\widetilde{\mathscr{P}}_{0}$,

$$
|U(y, t)| \leqq A_{2} 2^{-s \mu}
$$

and

$$
\begin{equation*}
\|U\|_{0_{0}}^{x_{0}} \leqq A_{3} 2^{-s \mu} \tag{5.5a}
\end{equation*}
$$

Since $f \in C^{\alpha}\left(\widetilde{\mathscr{X}}_{s}\right)$, it follows that $\|g\|_{a}^{\tilde{S}_{0}}$ in the next term is indeed finite. From (5.3) we have

$$
\frac{\partial \psi_{2}}{\partial y_{i}}=2^{-s} \frac{\partial \psi}{\partial x_{i}}, \quad \frac{\partial^{2} \psi_{2}}{\partial y_{i} \partial y_{k}}=2^{-2 s} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{k}}
$$

Similarly,

$$
H_{\alpha}^{\tilde{s}_{0}}\left(D_{y}{ }^{2} \psi_{2}\right)=2^{-s(2+\alpha)} H_{\alpha}^{\tilde{s}_{s}}\left(D_{x}^{2} \psi\right)
$$

Consequently, by (4.7) we obtain

$$
\begin{equation*}
\left\|\psi_{2}\right\|_{2+\alpha}^{\tilde{\xi}_{0}} \leqq A_{4} 2^{-2 s} \tag{5.5b}
\end{equation*}
$$

Hence (5.4) and (5.5) now yield

$$
\begin{equation*}
\|U\|_{2+\alpha}^{\boldsymbol{x}_{0}} \leqq A_{5} 2^{-s \mu} \tag{5.6}
\end{equation*}
$$

Remembering that $u\left(2^{-s} y, t\right)=U(y, t)$, we see that

$$
\begin{equation*}
\frac{\partial U}{\partial y_{i}}=2^{-s} \frac{\partial u}{\partial x_{i}}, \quad \frac{\partial^{2} U}{\partial y_{i} \partial y_{k}}=2^{-2 s} \frac{\partial^{2} u}{\partial x_{i} \partial x_{k}} \tag{5.7}
\end{equation*}
$$

Furthermore, in \mathscr{R}_{0} we have

$$
\begin{equation*}
\left|\frac{\partial U}{\partial y_{i}}\right| \leqq\|U\|_{2+\alpha}^{a_{0}} \tag{5.8a}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\left|\frac{\partial^{2} U}{\partial y_{i} \partial y_{k}}\right| \leqq\|U\|_{2+\alpha}^{x_{0}} \tag{5.8b}
\end{equation*}
$$

From (5.6)-(5.8) we obtain the estimates for the derivatives $u_{x_{i}}$ and $u_{x_{i} x_{k}}$, $i, k=1, \cdots, n$, stated in the theorem, and the proof is complete.

6. Smoothness of solutions

We shall now obtain a theorem on the smoothness of first derivatives of bounded solutions u of the problem (4.1), (4.2), namely, that the $D_{x} u$ are Hölder continuous, as well as on the smoothness of second derivatives multiplied by a suitable factor $r^{*}, 0<\kappa<1$, which products are proved to be Hölder continuous. We also show that for small angles, the $D_{x}{ }^{2} u$ are continuous. In the present section this will be proved for a cylindrical sector (as considered in Secs. 4 and 5) and in the next section for a general region $\Omega=G \times J$.

ThEOREM 4. Under the assumptions of Theorem 3 there exist constants $c_{3}>0$ and $\kappa, \chi \in(0,1)$ such that

$$
D_{x} u \in C^{\nu}\left(\bar{N}_{c_{3}} \times J\right), \quad \nu=\mu-1
$$

and

$$
r^{*} D_{x}^{2} u \in C^{x}\left(\bar{N}_{c_{3}} \times J\right), \quad \chi=\min (\alpha, \kappa+\nu-1)
$$

If $\omega<\pi / 2$, then

$$
D_{x}^{2} u \in C^{0}\left(\bar{N}_{c_{3}} \times J\right) .
$$

Proof. We take $c_{3}>0$ sufficiently small so that, by Theorem 3, in $\bar{N}_{c_{3}} \times J$ we have

$$
\begin{equation*}
\left|D_{x}^{j} u(x, t)\right| \leqq K_{j} r^{1+\nu-j}, \quad j=1,2 \tag{6.1}
\end{equation*}
$$

In that region we consider any two points P and Q, whose distance from $E_{c_{3}} \times J$ we denote by r_{1} and r_{2}, respectively, assuming that $0 \leqq r_{2} \leqq r_{1} \leqq c_{3}$, without restriction. If $r_{2} \leqq r_{1} / 2$, then $d(P, Q) \geqq r_{1} / 2$, so that in this case we have

$$
\begin{equation*}
\frac{\left|D_{x} u(P)-D_{x} u(Q)\right|}{d(P, Q)^{\nu}} \leqq \frac{2 K_{1} r_{1}^{\nu}}{\left(r_{1} / 2\right)^{\nu}}=K_{3} \tag{6.2}
\end{equation*}
$$

We show that in the other case, $r_{2}>r_{1} / 2$, we also have such an inequality. Let $P:\left(x_{1}{ }^{0}, x_{2}{ }^{0}, \cdots, x_{n}{ }^{0}, t\right)$. Let

$$
G_{P}=\left\{x\left|x \in N_{c_{3}}, r_{1} / 2 \leqq r \leqq r_{1},\left|x_{i}-x_{i}^{0}\right| \leqq r_{1} / 2, i>2\right\}\right.
$$

where $r^{2}=x_{1}{ }^{2}+x_{2}{ }^{2}$, as before. We now apply the transformation

$$
\begin{array}{rll}
x_{i}=M z_{i} & \text { if } \quad i=1,2, \quad M=2 r_{1} / c_{3} . \tag{6.3}
\end{array}
$$

This transformation maps G_{P} onto the region

$$
G_{P}^{\prime}=\left\{z\left|c_{3} / 4 \leqq \rho \leqq c_{3} / 2,\left|z_{i}-x_{i}{ }^{0}\right| \leqq c_{3} / 4, i>2\right\}\right.
$$

where $\rho^{2}=z_{1}{ }^{2}+z_{2}{ }^{2}$. In $G_{P}^{1} \times J$ the function $W(z, t)=u(x, t)$ satisfies the parabolic equation

$$
\begin{equation*}
B_{i k} W_{z_{i} z_{k}}+M B_{i} W_{z_{i}}+M^{2} B W-M^{2} W_{t}=M^{2} F \tag{6.4}
\end{equation*}
$$

where $B_{i k}, B_{i}, B$ and F are the coefficients in $L u=f$, represented in terms of the new variables. We also consider the region

$$
G_{P}^{\prime \prime}=\left\{z\left|c_{3} / 8 \leqq \rho \leqq c_{3},\left|z_{i}-x_{i}^{0}\right| \leqq c_{3} / 4, i>2\right\}\right.
$$

We again apply the Schauder-type estimate, writing $\Lambda^{\prime}=G_{P}^{\prime} \times J, \Lambda^{\prime \prime}=G_{P}^{\prime \prime} \times J$ and $\Lambda^{*}=\Gamma_{P}^{\prime \prime} \times J$, for simplicity; here $\Gamma_{P}^{\prime \prime}$ is the part of the boundary of $G_{P}^{\prime \prime}$ which lies on the hyperplanes Π_{1} and Π_{2}. The estimate is

$$
\|W\|_{2+\alpha}^{1^{\prime}} \leqq A_{6}\left[\|W\|_{0}^{1^{\prime \prime}}+M^{2}\|F\|_{\alpha}^{\Lambda^{\prime \prime}}+\left\|\psi_{3}\right\|_{2+\alpha}^{\alpha^{*}}\right]
$$

Using an idea similar to that in the proof of Theorem 3, we conclude that

$$
\|W\|_{2+\alpha}^{1^{\prime}} \leqq A_{7} r_{1}^{\mu}, \quad \mu=1+\nu
$$

Furthermore,

$$
\left\|D_{z} W\right\|_{\nu}^{\Lambda^{\prime}} \leqq\|W\|_{2^{\prime}+\alpha}^{1^{\prime}}
$$

and

$$
\left\|D_{z}^{2} W\right\|_{x}^{\Lambda^{\prime}} \leqq\|W\|_{2+\alpha}^{\Lambda^{\prime}} \quad(0<\chi \leqq \alpha)
$$

Also

$$
D_{2}^{k} W=M^{k} D_{x}^{k} u \quad(k=1,2)
$$

and

$$
H_{\nu}^{\Lambda^{\prime}}\left(D_{z} W\right)=M^{\mu} H_{\nu}^{\tilde{x}}\left(D_{x} u\right), \quad \tilde{\Lambda}=G_{P} \times J
$$

Consequently,

$$
H_{\nu}^{\tilde{A}}\left(D_{x} u\right) \leqq K_{4}
$$

as well as

$$
H_{x}^{\tilde{x}}\left(D_{x}^{2} u\right) \leqq K_{5} r^{\mu-2-x}
$$

To obtain (6.2) in the case when $r_{2}>r_{1} / 2$, besides P and Q we also consider the point P_{1} defined as follows. If

$$
P:\left(r_{1} \cos \theta_{1}, r_{1} \sin \theta_{1}, x^{\left.()^{\prime}\right)}, t\right)
$$

and

$$
Q:\left(r_{2} \cos \theta_{2}, r_{2} \sin \theta_{2}, x^{(2)^{\prime}}, t\right)
$$

then P_{1} has the coordinates

$$
P_{1}:\left(r_{1} \cos \theta_{2}, r_{1} \sin \theta_{2}, x^{(2)^{\prime}}, t\right)
$$

If $d\left(P, P_{1}\right) \leqq r_{1} / 2$, then $Q \in \tilde{\Lambda}$, where $D_{x} u \in C^{\nu}(\tilde{\Lambda})$. If $d\left(P, P_{1}\right)>r_{1} / 2$, then $d(P, Q) \geqq d\left(P, P_{1}\right)>r_{1} / 2$ and $d(P, Q) \geqq d\left(P_{1}, Q\right)$. Hence in this case,

$$
\begin{align*}
& \frac{\left|D_{x} u(P)-D_{x} u(Q)\right|}{d(P, Q)^{\nu}} \leqq \frac{\left|D_{x} u(P)-D_{x} u\left(P_{1}\right)\right|}{d\left(P, P_{1}\right)^{v}} \tag{6.5}\\
& \quad+\frac{\left|D_{x} u\left(P_{1}\right)-D_{x} u(Q)\right|}{d\left(P_{1}, Q\right)^{\nu}}
\end{align*}
$$

Since

$$
\frac{\left|D_{x} u(P)-D_{x} u\left(P_{1}\right)\right|}{d\left(P, P_{1}\right)^{\nu}} \leqq \frac{2 K_{1} r_{1}^{\nu}}{\left(r_{1} / 2\right)^{\nu}}=K
$$

and $Q \in G_{P_{1}} \times J$, we conclude that the right-hand side of (6.5) is bounded. This proves the first statement of the theorem. The other statements are obtained in a similar fashion.

7. Proof of Theorem 1

Without loss of generality we can take $m=2$. Then $\partial G=\Gamma_{1} \cup \Gamma_{2}$ and $\Gamma_{1} \cap \Gamma_{2}=E_{1}=E$ is the single edge. It suffices to prove the theorem in a neighborhood of an arbitrary point $P:\left(x_{1}, \cdots, x_{n}{ }^{0}, t\right) \in E \times \bar{J}$. To P there corresponds $P_{0}:\left(x_{1}{ }^{0}, \cdots, x_{n}{ }^{0}\right) \in E$. Suppose that in a neighborhood of P_{0} the two hypersurfaces intersecting at E have the representations

$$
x_{1}=h_{1}\left(x_{2}, x^{\prime}\right) \quad \text { and } \quad x_{2}=h_{2}\left(x_{1}, x^{\prime}\right)
$$

respectively, where h_{1} and h_{2} are of class $C^{2+\alpha}$. The transformation

$$
y_{i}=\left\{\begin{array}{lll}
\frac{x_{i}-h_{i}}{x_{i}-x_{i}^{0}} & \text { if } \quad i=1,2 \tag{7.1}\\
\text { if } \quad i>2
\end{array}\right.
$$

maps P_{0} onto the origin of the y-coordinate system, and transforms those two hypersurfaces into the hyperplanes $y_{1}=0$ and $y_{2}=0$. Furthermore, from (3.1) we obtain another parabolic equation with the y_{i} as the independent variables. The latter equation we transform again by a linear transformation such that afterwards the coefficients $A_{i k}$ of the resulting principal part have the property

$$
A_{i k}(0)=\delta_{i k} \quad i, k=1, \cdots, n
$$

and the hyperplanes $y_{1}=0$ and $y_{2}=0$ are mapped onto two hyperplanes making an angle $\omega=\omega\left(P_{0}\right)<\pi$. Such a transformation exists, and its Jacobian is not zero. We finally choose $\beta=(\pi-\omega) / 2$ and apply a rotation such that afterwards the hyperplanes have the representations

$$
\begin{equation*}
z_{2}=z_{1} \tan \beta \quad \text { and } \quad z_{2}=z_{1} \tan (\beta+\omega) \tag{7.2}
\end{equation*}
$$

Let $N_{P_{0}, c_{1}} \subset G$ be the intersection of G and a ball of radius c_{1} about P_{0}. In z-space this intersection corresponds to a domain $N_{0, c_{2}}$ bounded by the two hyperplanes and a surface having a distance $c_{2}>0$ from the origin of the z-coordinate system. Let $N_{c}, c<c_{2}$, denote the intersection of $N_{0, c_{2}}$ and a ball of radius $c>0$ about the origin. In $N_{c} \times J$ the function $V(z, t)=u(x, t)$ satisfies a parabolic equation of the form (4.1) with coefficients such that (i*) and (ii*) (cf. Sec. 5, Theorem 3) hold. Clearly, $V(z, 0)=0$, and the boundary function $\Phi(z, t)$ satisfies $\left(\right.$ iiii$\left.^{*}\right)$ on $S_{c} \times J$ with S_{c} as in Sec. 4. We shall now determine a function $q(z) \in C^{2+\alpha}\left(\bar{N}_{c}\right)$ such that $U=V-q$ and its boundary value $\phi(z, t)$ on $S_{c} \times J$ satisfy all the conditions in Theorem 4.

Indeed, consider the function

$$
\begin{aligned}
& q(z, t)=\Phi\left(0,0, z^{\prime}, t\right)+\left(z_{1} \cos \beta+z_{2} \sin \beta\right) \Phi_{\beta}\left(0,0, z^{\prime}, t\right) \\
& \quad+\operatorname{cosec} \omega\left(-z_{1} \sin \beta+z_{2} \cos \beta\right)\left[\Phi_{\omega+\beta}\left(0,0, z^{\prime}, t\right)\right. \\
& \left.\quad-\Phi_{\beta}\left(0,0, z^{\prime}, t\right) \cos \omega\right]
\end{aligned}
$$

where $z^{\prime}=\left(z_{3}, \cdots, z_{n}\right)$ and Φ_{β} and $\Phi_{\omega+\beta}$ are the first derivatives of Φ in the directions $\theta=\beta$ and $\theta=\beta+\omega$, respectively, and perpendicular to E_{c}. Since $\psi(z, t)$ now satisfies $\left(\right.$ iii $\left.^{*}\right)$ and (iv*) (cf. Sec. 5), and $U=V-q$ is a solution of an equation of the form (4.1), all the conditions (4.2) and (i^{*})-(iv*) hold true. Hence from Theorem 4 it follows that there exist constants $c_{3}>0$ and $\nu, \kappa, \chi, 0<\nu, \kappa, \chi<1$, such that

$$
D_{z} U \in C^{\nu}\left(\bar{N}_{c_{s}} \times \bar{J}\right)
$$

and

$$
\rho^{\varepsilon} D_{z}^{2} U \in C^{x}\left(\bar{N}_{c_{3}} \times \bar{J}\right)
$$

where $\rho^{2}=z_{1}^{2}+z_{2}{ }^{2}$. We return to the x-space. Since q is of class $C^{2+\alpha}$ and each of the above transformations is of that class and has a nonzero Jacobian, we conclude that in a neighborhood $N=\bar{N}_{P_{0}, c_{4}} \times \bar{J}, 0<c_{4}<c$, we have

$$
D_{x} u \in C^{\nu}(N) \text { as well as } \delta^{\star} D_{x}^{2} u \in C^{x}(N) .
$$

Furthermore, if $\omega\left(P_{0}\right)<\pi / 2$ for all $P_{0} \in \bigcup_{i} E_{i}$, we can take $\mu=2$ and obtain $D_{x}{ }^{2} u \in C^{0}(N)$. Theorem 1 is proved.

8. Dirichlet problem for elliptic equations

As it was mentioned in the Introduction, the present method can also be applied to the Dirichlet problem

$$
\begin{align*}
& L_{0} u=f \quad \text { in } \quad G \tag{8.1}\\
& \left.u\right|_{\partial G}=\phi \tag{8.2}
\end{align*}
$$

where L_{0} is an elliptic operator defined by

$$
L_{0}=a_{i k}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{k}}+a_{i}(x) \frac{\partial}{\partial x_{i}}+a(x) .
$$

Here, $x=\left(x_{1}, \cdots, x_{n}\right)$, and G is a domain with edges as in Sec. 3 (and the other notations used below are as in Sec. 3, too).

Indeed, by suitable modifications of the present method the following theorem can be obtained (see A. Azzam [2]).

Theorem 5. Let u be a bounded solution of (8.1), (8.2), where $a_{i k}$, $a_{i}, a, f \in C^{\alpha}(\bar{G})$ and

$$
\phi \in C^{2+\alpha}\left(\partial G \backslash \cup E_{i}\right) \cap C^{0}(\partial G) .
$$

For every $P \in \cup E_{i}$, let $\omega(P)<\pi$. Then there exist constants $\nu, \kappa, \chi, 0<\nu, \kappa, \chi$ <1, such that

$$
u \in C^{1+\nu}(\bar{G})
$$

and

$$
w \in C^{x}(\bar{G}) \quad \text { where } \quad w(x)=\rho^{\varepsilon} D^{2} u(x)
$$

and ρ is the distance from x to $\cup_{i} E_{i}$.

Acknowledgement. This research was supported by the Natural Sciences and Engineering Research Council of Canada under grant A 9097.

References

[1] Agmon, S., Douglis, A. and Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Comm. Pure Appl. Math. 12, 623-727 (1959).
[2] Azzam, A.: On Dirichlet's problem for elliptic equations in sectionally smooth n-dimensional domains. SIAM J. Math. Anal. 11, 248-253 (1980).
[3] Azzam, A., Kreyszig, E.: On solutions of parabolic equations in regions with edges. Bull. Austral. Math Soc. 22, 219-230 (1980).
[4] Carleman, T.: Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken. Dissertation, Uppsala, 1916.
[5] DZIUK, G.: Das Verhalten von Lösungen semilinearer elliptischer Systeme an Ecken eines Gebietes. Math. Z. 159, 89-100 (1978).
[6] Friedman, A.: Partial differential equations of parabolic type. Englewood Cliffs, N. J.: Prentice-Hall 1964.
[7] Grisvard, P.: Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In : Numerical solutions of partial differential equations III (ed. B. Hubbard). New York: Academic Press 1976.
[8] Kondrat'ev, V. A.: The smoothness of a solution of Dirichlet's problem for second order elliptic equations in a region with a piecewise smooth boundary. Differencial'nye Uravnenija 10, 1831-1843 (1970).
[9] Protter, M. H. and Weinberger, H. F.: Maximum principles in differential equations. Englewood Cliffs, N. J.: Prentice-Hall 1967.
[10] Wigley, N. M.: Mixed boundary value problems in plane domains with corners. Math. Z. 115, 33-52 (1970).

> Department of Mathematics, University of Windsor, Windsor, Ont., N9B 3P4, Canada

