Note on Hadamard matrices of Pless type

To Goro Azumaya on his sixtieth birthday

Noboru Ito*

(Received May 14, 1979)

Let H be an Hadamard matrix of order n. Namely H is a ± 1 matrix of degree n such that $H H^{t}=n I$, where t denotes the transposition and I is the identity matrix of degree n. We assume that $n>1$. It is well known that $n=2$ or n is divisible by 4 .

Let $P=\left\{1, \cdots, n, 1^{*}, \cdots, n^{*}\right\}$ be the set of $2 n$ points, where we assume that $\left(i^{*}\right)^{*}=i$ for $1 \leqq i \leqq n$. Then with each row vector \boldsymbol{a} of H we associate the block \boldsymbol{a}, and n-subset of P, as follows. a contains j or j^{*} according as the j-th entry of \boldsymbol{a} is 1 or -1 . The complement $\boldsymbol{a}^{*}=P-\boldsymbol{a}$ of \boldsymbol{a} is also called a block. Let B be the set of $2 n$ blocks. Then we call $M(H)=$ (P, B) the matrix design of $H . \quad M(H)$ is a 1 -design, namely each point belongs to exactly n blocks. Moreover it is almost a symmetric 2 -design. Namely by the orthogonality of column vectors of H each 2 -subset of P not of the form $\left\{i, i^{*}\right\}$ is contained in exactly $\frac{1}{2} n$ blocks, while $\left\{i, i^{*}\right\}$ is contained in no blocks.

Let $G(H)$ be the set of all permutations \boldsymbol{s} on P such that (i) $\boldsymbol{s}(B)=B$ and that (ii) if $\boldsymbol{s}(a)=b$ then $\boldsymbol{s}\left(a^{*}\right)=b^{*}$. Then $G(H)$ forms a subgroup of the symmetric group on P, namely the automorphism group of H. Let $z=\prod_{i=1}^{n}\left(i, i^{*}\right)$. Then z belongs to the center of $G(H)$ and it interchanges \boldsymbol{a} with \boldsymbol{a}^{*} for every \boldsymbol{a}. We call \boldsymbol{z} the *-element of $G(H)$.

Now the purpose of this note is the following: (i) to show that an Hadamard matrix of order $2(q+1)$, where q is a prime power with $q \equiv 3$ $(\bmod 4)$, constructed by V. Pless in [6], $H_{3}(q)$ in her notation, which we call an Hadamard matrix of Pless type, is inequivalent to the Hadamard matrix of order $2(q+1)$ of Paley type, provided that $q>3$. It is well known that there exists exactly one equivalent class of Hadamard matrices of order 8 ; (ii) to determine the automorphism groups of two types of Hadamard matrices of degree $2(q+1)$ mentioned above.

§ 1. Kimberley and Longyear number.

Let H be an Hadamard matrix of order n and $M(H)=(P, B)$ the matrix design. Let $\{\boldsymbol{a}, \boldsymbol{b}\}$ be a 2 -subset of B not of the form $\left\{\boldsymbol{c}, \boldsymbol{c}^{*}\right\}$. Then \mathscr{K} $(\boldsymbol{a}, \boldsymbol{b})$ and $K(\boldsymbol{a}, \boldsymbol{b})$ denote the set and half of the number of 2 -subsets $\{\boldsymbol{c}, \boldsymbol{d}\}$ of B such that $\boldsymbol{a} \cap \boldsymbol{b} \cap \boldsymbol{c}=\boldsymbol{a} \cap \boldsymbol{b} \cap \boldsymbol{d}$ respectively. We notice that $\{\boldsymbol{a}, \boldsymbol{b}\}$ and $\left\{\boldsymbol{a}^{*}, \boldsymbol{b}^{*}\right\}$ belong to $\mathscr{K}(\boldsymbol{a}, \boldsymbol{b})$. We call $K(H)=\max _{(a, b)} K(\boldsymbol{a}, \boldsymbol{b})$ and $L(H)=K\left(H^{t}\right)$ the Kimberley and Longyear numbers of H respectively. If $G(H)$ is transitive on B, then $K(H)=\max _{b} K(\boldsymbol{a}, \boldsymbol{b})$ for any given \boldsymbol{a}. But we notice that this is not the case in general. Clearly $K(H)$ and $L(H)$ are invariant under the equivalence of Hadamard matrices.

Now let $H=H_{1} \times H_{2}$ be a Kronecker product of two Hadamard matrices of orders n_{1} and n_{2} respectively. Then H is an Hadamard matrix of order $n=n_{1} n_{2}$. Let $M\left(H_{i}\right)=\left(P_{i}, B_{i}\right)$ and $M(H)=(P, B)$ be the matrix designs of H_{i} and H respectively $(i=1,2)$. Then it is convenient to regard P as the set of all ordered pairs $\left(a_{1}, a_{2}\right)$, where $a_{i} \in P_{i}(i=1,2)$, with the rule that $\left(a_{1}, a_{2}\right)^{*}=\left(a_{1}{ }^{*}, a_{2}\right)=\left(a_{1}, a_{2}^{*}\right)$ and $\left(a_{1}{ }^{*}, a_{2}{ }^{*}\right)=\left(a_{1}, a_{2}\right)$. Then we denote the block of B corresponding to an ordered pair $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)$ of blocks, where $\boldsymbol{a}_{i} \in B_{i}$ $(i=1,2)$, by $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)$ itself. Since $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=\left(\boldsymbol{a}_{1}{ }^{*}, \boldsymbol{a}_{2}{ }^{*}\right),\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)$ contains $\left(a_{1}, a_{2}\right)^{*}$ if and only if exactly one of \boldsymbol{a}_{i} contains $\dot{a}_{i}(i=1,2)$.

Lemma 1. If $\left\{\boldsymbol{c}_{i}, \boldsymbol{d}_{i}\right\}$ belongs to $\mathscr{K}\left(\boldsymbol{a}_{i}, \boldsymbol{b}_{i}\right)(i=1,2)$, then $\{\boldsymbol{c}, \boldsymbol{d}\}$ belongs to $\mathscr{K}(\boldsymbol{a}, \boldsymbol{b})$, where $\boldsymbol{a}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right), \boldsymbol{b}=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right), \boldsymbol{c}=\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)$ and $\boldsymbol{d}=\left(\boldsymbol{d}_{1}, \boldsymbol{d}_{2}\right)$.

Proof is straightforward.
Conversely let us assume that $\boldsymbol{a} \cap \boldsymbol{b} \cap \boldsymbol{c}=\boldsymbol{a} \cap \boldsymbol{b} \cap \boldsymbol{d}$, where $\boldsymbol{a}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)$, $\boldsymbol{b}=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right), \boldsymbol{c}=\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)$ and $\boldsymbol{d}=\left(\boldsymbol{d}_{1}, \boldsymbol{d}_{2}\right)$. First we consider the case where $\boldsymbol{b}_{i} \neq \boldsymbol{a}_{i}$, $\boldsymbol{a}_{i} *(i=1,2)$. Then we have that either $\boldsymbol{a}_{i} \cap \boldsymbol{b}_{i} \cap \boldsymbol{c}_{i}=\boldsymbol{a}_{i} \cap \boldsymbol{b}_{i} \cap \boldsymbol{d}_{i}$ or $\boldsymbol{a}_{i} \cap \boldsymbol{b}_{i} \cap \boldsymbol{c}_{i}$ $=\boldsymbol{a}_{i} \cap \boldsymbol{b}_{i} \cap \boldsymbol{d}_{i}{ }^{*}(i=1,2)$. There remain the cases where $\boldsymbol{a}_{1}=\boldsymbol{b}_{1}$ and $\boldsymbol{b}_{2} \neq \boldsymbol{a}_{2}{ }^{*}$, or $\boldsymbol{a}_{2}=\boldsymbol{b}_{2}$ and $\boldsymbol{b}_{1} \neq \boldsymbol{a}_{1}, \boldsymbol{a}_{1}{ }^{*}$. If $\boldsymbol{a}_{1}=\boldsymbol{b}_{1}$, then let $\boldsymbol{d}_{1}=\boldsymbol{c}_{1}$ for any $\boldsymbol{c}_{1} \in B_{1}$. Now if $\left\{\boldsymbol{c}_{2}, \boldsymbol{d}_{2}\right\}$ belongs to $\mathscr{K}\left(\boldsymbol{a}_{2}, \boldsymbol{b}_{2}\right)$, then $\left\{\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right),\left(\boldsymbol{c}_{1}, \boldsymbol{d}_{2}\right)\right\}$ belongs to $\mathscr{K}(\boldsymbol{a}, \boldsymbol{b})$. The rest is similar. So we have the following lemma.

Lemma 2. If $\boldsymbol{b}_{1}=\boldsymbol{a}_{1}$ and $\boldsymbol{b}_{2} \neq \boldsymbol{a}_{2}, \boldsymbol{a}_{2}{ }^{*}$ then $K(\boldsymbol{a}, \boldsymbol{b})=n_{1} K\left(\boldsymbol{a}_{2}, \boldsymbol{b}_{2}\right)$. If $\boldsymbol{b}_{2}=\boldsymbol{a}_{2}$ and $\boldsymbol{b}_{1} \neq \boldsymbol{a}_{1}, \boldsymbol{a}_{1}^{*}$ then $K(\boldsymbol{a}, \boldsymbol{b})=n_{2} K\left(\boldsymbol{a}_{1}, \boldsymbol{b}_{1}\right)$. If $\boldsymbol{b}_{i} \neq \boldsymbol{a}_{i}, \boldsymbol{a}_{i}^{*}(i=1,2)$ then $K(a, b)=2 K\left(a_{1}, b_{1}\right) K\left(a_{2}, b_{2}\right) . \quad$ In particular, $K(H) \geqq \max \left\{n_{1} K\left(H_{2}\right), n_{2} K\left(H_{1}\right)\right\}$.

Now let G_{i} and G denote the automorphism groups of $M\left(H_{i}\right)$ and $M(H)$ respectively $(i=1,2)$. Let $1_{i}, z_{i}, 1$ and z denote the identity and $*_{\text {-elements }} G_{i}$ and G respectively $(i=1,2)$. Let $s_{i} \in G_{i}(i=1,2)$. Then consider the mapping $\boldsymbol{s}_{1} \boldsymbol{s}_{2}\left(a_{1}, a_{2}\right)=\left(\boldsymbol{s}_{1} a_{1}, \boldsymbol{s}_{2} a_{2}\right)$ of P. Since $\boldsymbol{s}_{1} \boldsymbol{s}_{2}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=\left(\boldsymbol{s}_{1} \boldsymbol{a}_{1}\right.$, $\boldsymbol{s}_{2} \boldsymbol{a}_{2}$), it induces an element of G. Clearly $z_{1} 1_{2}$ and $1_{1} z_{2}$ induce the same element of G. On the other hand, let $\boldsymbol{s}_{1} \boldsymbol{s}_{2}$ induce the identity element of
G. Then $\left(s_{1} a_{1}, s_{2} a_{2}\right)=\left(a_{1}, a_{2}\right)$ for every $\left(a_{1}, a_{2}\right) \in P$. So $s_{1} a_{1}=a_{1}$ and $s_{2} a_{2}=a_{2}$, or $\boldsymbol{s}_{2} a_{1}=a_{1}^{*}$ and $\boldsymbol{s}_{2} a_{2}=a_{2}{ }^{*}$ for every $\left(a_{1}, a_{2}\right)$. Thus we have the following lemma.

Lemma 3. G contains a subgroup isomorphic to $G_{1} \times G_{2} /\left\langle z_{1} z_{2}\right\rangle$. In particular, if G_{i} is transitive on P_{i} (or $\left.B_{i}\right)(i=1,2)$, then G is transitive on P (or B).

Lemma 4. Let T be an Hadamard matrix of order 2. Then $G(T)$ is a dihedral group of order 8 .

Proof. Let $T=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$. Then the permutations $\left(1,1^{*}\right)$ and $(1,2)$ $\left(1^{*}, 2^{*}\right)$ generate $G(T)$.

Remark. It is easy to see that if $K(H) L(H)>1$ then $n \equiv 0(\bmod 8)$.

\S 2. Hadamard matrices of Pless type.

Let $G F(q)$ be a field of q elements, where q is a prime power such that $q \equiv 3(\bmod 4)$, and x the quadratic character of $G F(q)$ with $x(0)=0$.

Let $S=\left(\begin{array}{cccc}0 & 1 & \cdots & 1 \\ -1 & & 1 \\ \vdots & \boldsymbol{x}(b-a) \\ -1 & & \end{array}\right]$, where $\boldsymbol{x}(b-a)$ is the (a, b)-entry of $S(a, b \in G F(q))$.
Here we give the label ∞ to the first column and row of S, but we omit to indicate an ordering of elements of $G F(q)$. Then $H_{0}=I+S$ is called an Hadamard matrix of order $q+1$ of quadratic residue type.

We begin with the following lemma.
Lemma 5. Let H_{0} be the Hadamard matrix of order $q+1$ of quadratic residue type. Then $K\left(H_{0}\right)=L\left(H_{0}\right)=1$ for $q>7$.

Proof. By a theorem of M. Hall Jr. [2] $H_{0}{ }^{t}$ is equivalent to H_{0}. So it suffices to show that $K\left(H_{0}\right)=1$. Since $G\left(H_{0}\right)$ is doubly transitive on the set $\left\{\left\{\boldsymbol{a}(\infty), \boldsymbol{a}(\infty)^{*}\right\},\left\{\boldsymbol{a}(a), \boldsymbol{a}(a)^{*}\right\}, a \in G F(q)\right\}$, it suffices to show that $K(\boldsymbol{a}(\infty)$, $\boldsymbol{a}(0))=1$. Now assume that $K(\boldsymbol{a}(\infty), \boldsymbol{a}(0))>1$. Then there exist $a, b \in G F(q)$ with $a \neq b$ such that $Q \cap Q+a=Q \cap Q+b$, where $Q=\left(G F(q)^{\times}\right)^{2}$. This implies that $Q \cap Q-a=Q \cap Q+b-a$ and that $Q \cap Q+a c=Q \cap Q+b c, c \in Q$. So we have that $K(a(\infty), a(0))=\frac{1}{2}(q+1)$. Then by a theorem of C. Norman [5] H_{0} is equivalent to the character table of an elementary Abelian 2-group. By theorems of W. Kantor [4] this is a contradiction for $q>7$.

Remark. Ronald Evans (UCSD, La Jolla, CA) has obtained a more informative proof for Lemma 5.

Now let $H_{1}=T \times H_{0} . \quad H_{1}$ is called an Hadamard matrix of Paley type. Then it follows from Lemma 2 that $K\left(H_{1}\right)=L\left(H_{1}\right)=q+1$.

On the other hand, in [6] V. Pless has constructed a series of Hadamard matrices of order $2(q+1)$ of the following type

$$
H_{2}=\left(\begin{array}{rr}
I+S & I+S \\
I-S & -I+S
\end{array}\right)
$$

which we call Hadamard matrices of order $2(q+1)$ of Pless type. Moreover, V. Pless has shown that $G\left(H_{2}\right)$ is transitive on both P and B, where $M\left(H_{2}\right)=(P, B)$. Multiplying the second, third, $\cdots,(q+1)$-st rows of H_{2} by -1 we normalize H_{2}, and from now on H_{2} indicates the normalized matrix.

Putting subscripts 1 and 2 to $\{\infty\} \cup G F(q)$, we indicate the left and right halves, and top and bottom halves of H_{2}. Moreover, we put

$$
P=\left\{\infty_{1}, G F(q)_{1}, \infty_{2}, G F(q)_{2}, \infty_{1}^{*}, G F(q)_{1}^{*}, \infty_{2}^{*}, G F(q)_{2}^{*}\right\}
$$

and $Q_{i}=\left(G F(q)_{i}^{\times}\right)^{2} \quad(i=1,2)$. Let $\boldsymbol{a}\left(\infty_{i}\right)$ and $\boldsymbol{a}\left(a_{i}\right)$ denote the blocks corresponding to the rows ∞_{i} and a_{i} respectively ($i=1,2 ; a \in G F(q)$). Then we have that

$$
\begin{aligned}
& \boldsymbol{a}\left(\infty_{1}\right)=\left\{\infty_{1}, G F(q)_{1}, \infty_{2}, G F(q)_{2}\right\} \\
& \boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(a_{1}\right)=\left\{\infty_{1},-Q_{1}+a_{1}, \infty_{2},-Q_{2}+a_{2}\right\} \\
& \boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(\infty_{2}\right)=\left\{\infty_{1}, G F(q)_{2}\right\}
\end{aligned}
$$

and

$$
\boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(a_{2}\right)=\left\{\infty_{1}, a_{1},-Q_{1}+a_{1}, Q_{2}+a_{2}\right\}
$$

where $a \in G F(q)$. Now let us consider $K\left(\boldsymbol{a}\left(\infty_{1}\right), \boldsymbol{a}\left(\infty_{2}\right)\right)$. We have that $\boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(\infty_{2}\right) \cap \boldsymbol{a}\left(a_{1}\right)=\left\{\infty_{1},-Q_{2}+a_{2}\right\}$ and $\boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(\infty_{2}\right) \cap \boldsymbol{a}\left(a_{2}\right)=\left\{\infty_{1}, Q_{2}+\right.$ $\left.a_{2}\right\}$. Thus $K\left(\boldsymbol{a}\left(\infty_{1}\right), \boldsymbol{a}\left(\infty_{2}\right)\right)=1$, unless $q=3$. The rest is similar. So we have the followin proposition.

Poroposition 1. $K\left(H_{2}\right)=1$. In particular, H_{1} and H_{2} are inequvalent for $q>3$.

Porposition 2. $\quad L\left(H_{2}\right)=q+1$.
Proof. Let us consider $H_{2}{ }^{t}$. Then using the same notation as above we have that

$$
\begin{aligned}
& \boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(a_{1}\right)=\left\{\infty_{1}, Q_{1}+a_{1}, a_{2} Q_{2}+a_{2}\right\} \\
& \boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(\infty_{2}\right)=\left\{\infty_{1}, G F(q)_{1}\right\}
\end{aligned}
$$

and

$$
\boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(a_{2}\right)=\left\{\infty_{1} Q_{1}+a_{1}, \infty_{2},-Q_{2}+a_{2}\right\}
$$

So we have that $\boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(\infty_{2}\right) \cap \boldsymbol{a}\left(a_{1}\right)=\boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(\infty_{2}\right) \cap \boldsymbol{a}\left(a_{2}\right)=\left\{\infty_{1}, Q_{1}+a_{1}\right\}$ for every $a \in G F(q)$ and hence $K\left(\boldsymbol{a}\left(\infty_{1}\right), \boldsymbol{a}\left(\infty_{2}\right)\right)=q+1$.

Remark. (i) If $q=7$, then H_{1} and H_{2} are equivalent to H_{1} and H_{4} of [1] respectively. (ii) If $q=11$, then H_{1} and H_{2} are equivalent to H_{1} and H_{10} of [3] respectively.

§ 3. Automorphism groups.

For $q=7$ and $11 G\left(H_{1}\right)$ and $G\left(H_{2}\right)$ are determined in [1,3]. So from now on we assume that $q>11$.

Proposition 3. $G\left(H_{1}\right)$ is isomorphic with $G(T) \times G\left(H_{0}\right) /\left\langle\boldsymbol{z}_{T} \boldsymbol{z}_{0}\right\rangle$, where z_{T} and z_{0} are $*_{\text {-elements of }} G(T)$ and $G\left(H_{0}\right)$ respectively.

Proof. Let $M(T)=\left(P_{T}, B_{T}\right), M\left(H_{0}\right)=\left(P_{0}, B_{0}\right)$ and $M\left(H_{1}\right)=(P, B)$ be the matrix designs of T, H_{0} and H_{1} respectively. Let $\boldsymbol{a}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right), \boldsymbol{b}=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right)$ and $\boldsymbol{c}=\left(\boldsymbol{a}_{1}, \boldsymbol{c}_{2}\right)$ be three blocks of B such that $\boldsymbol{b}_{1} \neq \boldsymbol{a}_{1}, \boldsymbol{a}_{1}{ }^{*}$ and $\boldsymbol{c}_{2} \neq \boldsymbol{a}_{2}, \boldsymbol{a}_{2}{ }^{*}$. Then by Lemmas 2 and 5 we have that $K(\boldsymbol{a}, \boldsymbol{b})=q+1, K(\boldsymbol{a}, \boldsymbol{c})=2$ and $K(\boldsymbol{b}, \boldsymbol{c})=1$. Let $G\left(H_{0}\right)_{\left.a_{2}, \boldsymbol{a}_{2}^{* *}\right\}}$ and $G\left(H_{1}\right)_{\boldsymbol{a}}$ be the stabilizers of $\left\{\boldsymbol{a}_{2}, \boldsymbol{a}_{2}{ }^{*}\right\}$ and \boldsymbol{a} in $G\left(H_{0}\right)$ and $G\left(H_{1}\right)$ respectively. Then there is no element of $G\left(H_{1}\right)_{a}$ which transfers \boldsymbol{b} to \boldsymbol{c}. So $G\left(H_{1}\right)_{a}$ is isomorphic with $G\left(H_{0}\right)_{\left(a_{2}, a_{2}{ }^{*}\right\}}$. Since $\left[G\left(H_{1}\right): G\left(H_{1}\right)_{a}\right]=4(q+1)$ and by a theorem of W. Kantor [4] $\left|G\left(H_{0}\right)\right|=$ $(q+1) q(q-1) m$, where $q=p^{m}$ with p a prime, we have proved Proposition 3.

Proposition 4. $G\left(H_{2}\right)$ is isomorphic to the semi-direct product of a two-dimensional semi-linear group over $G F(q)$ and a cyclic group of order 2.

Proof. First we remark that the automorphisms of H_{2} (or the code $C(q)$ in [6]) corresponding to the automorphisms of $G F(q)$ are not explicitly mentioned in [6].

Now $G\left(H_{2}\right)$ and $G\left(H_{2}^{t}\right)$ are clearly isomorphic. So we consider $G\left(H_{2}^{t}\right)$ instead of $G\left(H_{2}\right)$. Then the automorphism of $H_{2}{ }^{t}$ corresponding to Z_{2} in [6] is the generator of the cyclic group of order 2 mentioned in Proposition 4, and takes the following form $; Z_{2}=\left(\infty_{2}, \infty_{2}^{*}\right) \prod_{a \in G F(q)}\left(a_{2}, a_{2}\right)^{*} . \quad Z_{2}$ interchanges $\boldsymbol{a}\left(\infty_{1}\right)$ with $\boldsymbol{a}\left(\infty_{2}\right)$, and $\boldsymbol{a}\left(a_{1}\right)$ with $\boldsymbol{a}\left(a_{2}\right)(a \in G F(q))$.

Now in the notation of Proposition 2, we have that

$$
\begin{aligned}
& \boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(a_{1}\right) \cap \boldsymbol{a}\left(b_{1}\right) \\
&=\left\{\infty_{1},\left(Q_{1}+a_{1}\right) \cap\left(Q_{1}+b_{1}\right),\left\{a_{2}, Q_{2}+a_{2}\right\} \cap\left\{b_{2}, Q_{2}+b_{2}\right\}\right\}, \\
& \boldsymbol{a}\left(\infty_{1}\right) \cap \boldsymbol{a}\left(a_{1}\right) \cap \boldsymbol{a}\left(c_{2}\right) \\
&=\left\{\infty_{1},\left(Q_{1}+a_{1}\right) \cap\left(Q_{1}+c_{1}\right),\left\{Q_{2}, Q_{2}+a_{2}\right\} \cap\left\{\infty_{2},-Q_{2}+c_{2}\right\}\right\},
\end{aligned}
$$

and that

$$
\begin{aligned}
\boldsymbol{a}\left(\infty_{1}\right) & \cap \boldsymbol{a}\left(a_{2}\right) \cap \boldsymbol{a}\left(c_{2}\right) \\
& =\left\{\infty_{1},\left(Q_{1}+a_{1}\right) \cap\left(Q_{1}+c_{1}\right), \infty_{2},\left(-Q_{2}+a_{2}\right) \cap\left(-Q_{2}+c_{2}\right)\right\} .
\end{aligned}
$$

So it follows that $K\left(\boldsymbol{a}\left(\infty_{1}\right), \boldsymbol{a}\left(a_{1}\right)\right)=K\left(\boldsymbol{a}\left(\infty_{1}\right), \boldsymbol{a}\left(a_{2}\right)\right)=2$.
Let $X=G\left(H_{2}^{t}\right)_{a\left(\infty_{1}\right)}$ be the stabilizer of $\boldsymbol{a}\left(\infty_{1}\right)$ in $G\left(H_{2}^{t}\right)$. Then X leaves $\left\{\boldsymbol{a}\left(\infty_{2}\right), \boldsymbol{a}\left(\infty_{2}\right)^{*}\right\}$ invariant, and so it leaves $\left\{\infty_{1}, G F(q)_{1}\right\}$ and $\left\{\infty_{2}, G F(q)_{2}\right\}$ invariant or interchanges them. X is an automorphism group of an Hadamard 3-design of $H_{2}{ }^{t}$ at $\boldsymbol{a}\left(\infty_{1}\right)$. So if X does not leave $\left\{\infty_{1}, \infty_{2}\right\}$ invariant, then it follows that an Hadamard 3-design of H_{0} at $\infty_{i} \cup G F(q)_{i}(i=1$ or 2) has a doubly transitive automorphism group, which is against a theorem of W. Kantor [4], since $I-S$ is equivalent to H_{0} by a theorem of M. Hall, Jr. [2]. So X leaves $\left\{\infty_{1}, \infty_{2}\right\}$ invariant.

Let Y be a subgroup of X of index at most 2 leaving $\left\{\infty_{1}\right\}$ and $G F(q)_{1}$ invariant. Then Y can be represented as an automorphism group of the matrix design corresponding to $I-S$. The kernel of this representation leaves ∞_{1} and $G F(q)_{1}$ pointwise. Hence it is trivial by the construction of $C(q)$ [6].

Finally we show that $Y=X$. Otherwise, we have an involution r which interchanges ∞_{1} with ∞_{2} and $G F(q)_{1}$ with $G F(q)_{2} . \quad \boldsymbol{r}$ leaves $\left\{\boldsymbol{a}\left(a_{2}\right), a \in G F(q)\right\}$ invariant. Since q is odd, r fixes at least one of them, say $\boldsymbol{a}\left(b_{2}\right)$. Then r interchanges b_{1} with $b_{2}, Q_{1}+b_{1}$ with $-Q_{2}+b_{2}$ and $-Q_{1}+b_{1}$ with $Q_{2}+b_{2}$. Now if \boldsymbol{r} fixes another $\boldsymbol{a}\left(c_{2}\right)$, then r interchanges c_{1} with c_{2}. Since c_{1} and c_{2} are both squares or non-squares, this contradicts the above. If \boldsymbol{r} interchanges $\boldsymbol{a}\left(c_{2}\right)$ with $\boldsymbol{a}\left(c_{2}^{\prime}\right)$, we get the similar contradiction.

By theorems of V. Pless [6] this proves Proposition 4.

Bibliography

[1] M. Hall Jr.: Hadamard matrix of order 16. J.P.L. Research Summary No. 36-10, 1 (1961), 21-26.
[2] M. Hall Jr.: Note on Mathieu group M_{12}. Arch. Math. 13 (1962), 334-340.
[3] N. Ito, J. Leon and J. Longyear: Classification of 3-(24, 12, 5) designs, to appear.
[4] W. KANTOR: Automorphism groups of Hadamard matrices, JCT 6 (1969) 279281.
[5] M. E. Kimberley: On the construction of certain Hadamard designs. MZ 119 (1971) 41-59.
[6] V. Pless: Symmetry codes over $G F(3)$ and new five-designs, JCTA 12 (1972), 119-142.

* This work is partially supported by NSF Grant. MCS 7810017

> Department of Mathematics
> University of Illinois at Chicago Circle

