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Note on Hadamard matrices of Pless type

To Goro Azumaya on his sixtieth birthday

Noboru ITO*
(Received May 14, 1979)

Let H be an Hadamard matrix of order n . Namely H is a \pm 1 matrix
of degree n such that HH^{t}=nI, where t denotes the transposition and I
is the identity matrix of degree n. We assume that n>1 . It is well known
that n=2 or n is divisible by 4.

Let P=\{1, \cdots, n, 1^{*}, \cdots, n^{*}\} be the set of 2n points, where we assume
that (i^{*})^{*}=i for 1\leqq i\leqq n . Then with each row vector a of H we associate
the block a, and n-subset of P, as follows, a contains j or j^{*} according
as the j-th entry of a is 1 or -1. The complement a^{*}=P-a of a is also
called a block. Let B be the set of 2n blocks. Then we call M(H)=
(P, B) the matrix design of H. M(H) is a 1-design, namely each point
belongs to exactly n blocks. Moreover it is almost a symmetric 2-design.
Namely by the orthogonality of column vectors of H each 2-subset of P

not of the form \{i, i^{*}\} is contained in exactly \frac{1}{2}n blocks, while \{i, i^{*}\} is
contained in no blocks.

Let G(H) be the set of all permutations s on P such that (i) s(B)=B
and that (ii) if s(a)=b then s(a^{*})=b^{*} . Then G(H) forms a subgroup of
the symmetric group on P, namely the automorphism group of H. Let
z= \prod_{i=1}^{n}(i, i^{*}) . Then z belongs to the center of G(H) and it interchanges a
with a^{*} for every a . We call z the * -element of G(H).

Now the purpose of this note is the following: (i) to show that an
Hadamard matrix of order 2 (q+1) , where q is a prime power with q\equiv 3

(mod 4), constructed by V. Pless in [6], H_{3}(q) in her notation, which we
call an Hadamard matrix of Pless type, is inequivalent to the Hadamard
matrix of order 2 (q+1) of Paley type, provided that q>3 . It is well known
that there exists exactly one equivalent class of Hadamard matrices of order
8; (ii) to determine the automorphism groups of two types of Hadamard
matrices of degree 2 (q+1) mentioned above.
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\S 1. Kimberley and Longyear number.

Let H be an Hadamard matrix of order n and M(H)=(P, B) the matrix
design. Let \{a, b\} be a 2-subset of B not of the form \{c, c^{*}\} . Then \mathscr{F}

(a, b) and K(a, b) denote the set and half of the number of 2-subsets \{c, d\}

of B such that a\cap b\cap c=a\cap b\cap d respectively. We notice that {a9b} and
\{a^{*}, b^{*}\} belong to \mathscr{F}(a, b) . We call K(H)= \max K(a, b)ta,b1 and L(H)=K(H^{t})

the Kimberley and Longyear numbers of H respectively. If G(H) is transitive
on B, then K(H)= \max_{b}K(a, b) for any given a. But we notice that this

is not the case in general. Clearly K(H) and L(H) are invariant under
the equivalence of Hadamard matrices.

Now let H=H_{1}\cross H_{2} be a Kronecker product of two Hadamard matrices
of orders n_{1} and n_{2} respectively. Then H is an Hadamard matrix of order
n=n_{1}n_{2} . Let M(H_{i})=(P_{i}, B_{i}) and M(H)=(P, B) be the matrix designs of
H_{i} and H respectively (i=1,2) . Then it is convenient to regard P as the
set of all ordered pairs (a_{1}, a_{2}) , where a_{i}\in P_{i}(i=1,2) , with the rule that
(a_{1}, a_{2})^{*}=(a_{1^{*}}, a_{2})=(a_{1}, a_{2^{*}}) and (a_{1}^{*}, a_{2^{*}})=(a_{1}, a_{2}) . Then we denote the block
of B corresponding to an ordered pair (a_{1}, a_{2}) of blocks, where a_{i}\in B_{i}

(i=1,2) , by (a_{1}, a_{2}) itself. Since (a_{1}, a_{2})=(a_{1}^{*}, a_{2}^{*}) , (a_{1}, a_{2}) contains (a_{1}, a_{2})^{*}

if and only if exactly one of a_{i} contains a_{i}(i=1,2) .
Lemma 1. If \{c_{i}, d_{i}\} belongs to \mathscr{F}(a_{i}, b_{i})(i=1,2) , then \{c, d\} belongs

to ,\mathscr{F}(a, b) , where a=(a_{1}, a_{2}) , b=(b_{1}, b_{2}) , c=(c_{1}, c_{2}) and d=(d_{1}, d_{2}) .
Proof is straightforward.
Conversely let us assume that a\cap b\cap c=a\cap b\cap d, where a=(a_{1}, a_{2}) ,

b=(b_{1}, b_{2}) , c=(c_{1}, c_{2}) and d=(d_{1}, d_{2}) . First we consider the case where b_{i}\neq a_{i} ,
a_{i}^{*}(i=1,2) . Then we have that either a_{i}\cap b_{i}\cap c_{i}=a_{i}\cap b_{i}\cap d_{i} or a_{i}\cap b_{i}\cap c_{i}

=a_{i}\cap b_{i}\cap d_{i^{*}}(i=1,2) . There remain the cases where a_{1}=b_{1} and b_{2}\neq a_{2}^{*} ,
or a_{2}=b_{2} and b_{1}\neq a_{1} , a_{1}^{*} . If a_{1}=b_{1} , then let d_{1}=c_{1} for any c_{1}\in B_{1} . Now if
\{c_{2}, d_{2}\} belongs to.\mathscr{B}^{\cdot}(a_{2}, b_{2}) , then \{(c_{1}, c_{2}), (c_{1}, d_{2})\} belongs to \mathscr{F}(a, b) . The
rest is similar. So we have the following lemma.

Lemma 2. If b_{1}=a_{1} and b_{2}\neq a_{2} , a_{2}^{*} then K(a, b)=n_{1}K(a_{2}, b_{2}) . If
b_{2}=a_{2} and b_{1}\neq a_{1} , a_{1}^{*} then K(a, b)=n_{2}K(a_{1}, b_{1)}^{\backslash } . If b_{i}\neq a_{i} , a_{i}^{*}(i=1,2) then
K(a, b)=2K(a_{1}, b_{1})K(a_{2}, b_{2}) . In particular, K(H) \geqq\max\{n_{1}K(H_{2}), n_{2}K(H_{1})\} .

Now let G_{i} and G denote the automorphism groups of M(H_{i}) and
M(H) respectively (i=1,2) . Let 1_{i} , z_{i} , 1 and z denote the identity and
* -elements of G_{i} and G respectively (i=1,2) . Let s_{i}\in G_{i}(i=1,2) . Then
consider the mapping s_{1}s_{2}(a_{1}, a_{2})=(s_{1}a_{1}, s_{2}a_{2}) of P. Since s_{1}s_{2}(a_{1}, a_{2})=(s_{1}a_{1} ,
s_{2}a_{2}) , it induces an element of G. Clearly z_{1}1_{2} and 1_{1}z_{2} induce the same
element of G. On the other hand, let s_{1}s_{2} induce the identity element of
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G. Then (s_{1}a_{1}, s_{2}a_{2})=(a_{1}, a_{2}) for every (a_{1}, a_{2})\in P. So s_{1}a_{1}=a_{1} and s_{2}a_{2}=a_{2} ,
or s_{2}a_{1}=a_{1^{*}} and s_{2}a_{2}=a_{2^{*}} for every (a_{1}, a_{2}) . Thus we have the following
lemma.

Lemma 3. G contains a subgroup isomorphic to G_{1}xG_{2}/\langle z_{1}z_{2}\rangle . In
particular, if G_{i} is transitive on P_{i} (or B_{i}) (i=1,2) , then G is transitive on
P (or B).

Lemma 4. Let T be an Hadamard matrix of order 2. Then G(T)
is a dihedral group of order 8.

PROOF. Let T=(\begin{array}{ll}1 11 -1\end{array}) . Then the permutations (1, 1^{*}) and (1, 2)

(1^{*}, 2^{*}) generate G(T) .
REMARK. It is easy to see that if K(H)L(H)>1 then n\equiv 0 (mod 8).

\S 2. Hadamard matrices of Pless type.

Let GF(q) be a field of q elements, where q is a prime power such
that q\equiv 3 (mod 4), and x the quadratic character of GF(q) with x(0)=0 .

Let S=\{\begin{array}{lllll}0 1 \cdots 1 1-1 \vdots x(b-a)-1 -1 \end{array}\} , where x(b-a) is the {a,b) -entry of S(a, b\in GF(q)) .

Here we give the label oo to the first column and row of S, but we omit
to indicate an ordering of elements of GF(q) . Then H_{0}=I+S is called an
Hadamard matrix of order q+1 of quadratic residue type.

We begin with the following lemma.
Lemma 5. Let H_{0} be the Hadamard matrix of order q+1 of quadratic

residue type. Then K(H_{0})=L(H_{0})=1 for q>7 .
PROOF. By a theorem of M. Hall Jr. [2] H_{0^{t}} is equivalent to H_{0} . So

it suffices to show that K(H_{0})=1 . Since G(H_{0}) is doubly transitive on the set
\{\{a(\infty), a(\infty)^{*}\}, \{a(a), a(a)^{*}\}, a\in GF(q)\} , it suffices to show that K(a(\infty) ,
a(0))=1 . Now assume that K(a(\infty), a(0))>1 . Then there exist a, b\in GF(q)

with a\neq b such that Q\cap Q+a=Q\cap Q+b, where Q=(GF(q)^{\cross})^{2} . This implies
that Q\cap Q-a=Q\cap Q+b-a and that Q\cap Q+ac=Q\cap Q+bc, c\in Q . So we

have that K(a( \infty), a(0))=\frac{1}{2}(q+1) . Then by a theorem of C. Norman [5]
H_{0} is equivalent to the character table of an elementary Abelian 2-gr0up.
By theorems of W. Kantor [4] this is a contradiction for q>7 .

REMARK. Ronald Evans (UCSD, La Jolla, CA) has obtained a more
informative proof for Lemma 5.

Now let H_{1}=T\cross H_{0} . H_{1} is called an Hadamard matrix of Paley type.
Then it follows from Lemma 2 that K(H_{1})=L(H_{1})=q+1 .
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On the other hand, in [6] V. Pless has constructed a series of Hadamard
matrices of order 2 (q+1) of the following type

H_{2}=(\begin{array}{ll}I+S I+SI-S -I+S\end{array}) ,

which we call Hadamard matrices of order 2 (q+1) of Pless type. Moreover,

V. Pless has shown that G(H_{2}) is transitive on both P and B, where
M(H_{2})=(P, B) . Multiplying the second, third, \cdots , (q+1) -st rows of H_{2} by
-1 we normalize H_{2} , and from now on H_{2} indicates the normalized matrix.

Putting subscripts 1 and 2 to \{\infty\}\cup GF(q) , we indicate the left and
right halves, and top and bottom halves of H_{2} . Moreover, we put

P=\{\infty_{1} , GF(q)_{1} , \infty_{2}, GF(q)_{2}, \infty_{1^{*}} , GF(q)_{1^{*}} , \infty_{2^{*}} , GF(q)_{2^{*}}\}

and Q_{i}=(GF(q)_{i}^{x})^{2}(i=1,2) . Let a(\infty_{i}) and a(a_{i}) denote the blocks cor-
responding to the rows \infty_{i} and a_{i} respectively (i=1,2 ; a\in GF(q)) . Then
we have that

a(\infty_{1})=\{\infty_{1} , GF(q)_{1} , \infty_{2} , GF(q)_{2}\}

a(\infty_{1})\cap a(a_{1})=\{\infty_{1}, - Q_{1}+a_{1}, \infty_{2}, - Q_{2}+a_{2}\}

a(\infty_{1})\cap a(\infty_{2})=\{\infty_{1} , GF(q)_{2}\}

and
a(\infty_{1})\cap a(a_{2})=\{\infty_{1}, a_{1}, - Q_{1}+a_{1}, Q_{2}+a_{2}\} ,

where a\in GF(q) . Now let us consider K(a(\infty_{1}), a(\infty_{2})) . We have that
a(\infty_{1})\cap a(\infty_{2})\cap a(a_{1})=\{\infty_{1}, - Q_{2}+a_{2}\} and a(\infty_{1})\cap a(\infty_{2})\cap a(a_{2})=\{\infty_{1} , Q_{2}+

a_{2}\} . Thus K(a(\infty_{1}), a(\infty_{2}))=1 , unless q=3. The rest is similar. So we
have the followin proposition.

PROOF. Let us consider H_{2}^{t} . Then using the same notation as above
we have that

a(\infty_{1})\cap a(a_{1})=\{\infty_{1}, Q_{1}+a_{1}, a_{2}Q_{2}+a_{2}\}

a(\infty_{1})\cap a(\infty_{2})=\{\infty_{1} , GF(q)_{1}\}

and
a(\infty_{1})\cap a(a_{2})=\{\infty_{1}Q_{1}+a_{1}, \infty_{2}, - Q_{2}+a_{2}\}

POROPOSITION 1. K(H_{2})=1 . In particular, H_{1} and H_{2} are inequvalent

for q>3 .
PORPOSITION 2. L(H_{2})=q+1 .
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So we have that a(\infty_{1})\cap a(\infty_{2})\cap a(a_{1})=a(\infty j\cap a(\infty_{2})\cap a(a_{2})=\{\infty_{1}, Q_{1}+a_{1}\}

for every a\in GF(q) and hence K(a(\infty_{1}), a(\infty_{2}))=q+1 .
REMARK. (i) If q=7, then H_{1} and H_{2} are equivalent to H_{1} and H_{4} of

[1] respectively. (ii) If q=11 , then H_{1} and H_{2} are equivalent to H_{1} and
H_{10} of [3] respectively.

\S 3. Automorphism groups.

PROPOSITION 3. G(H_{1}) is isomorphic with G(T)\cross G(H_{0})/\langle z_{T}z_{0}\rangle , where
z_{T} and z_{0} are * -elements of G(T) and G(H_{0}) respectively.

PROPOSITION 4. G(H_{2}) is isomorphic to the semi-direct product of a
twO-dimensional semi-linear group over GF(q) and a cyclic group of order 2.

For q=7 and 11 G(H_{1}) and G(H_{2}) are determined in [1, 3] . So from
now on we assume that q>11 .

PROOF. Let M(T)=(P_{T}, B_{T}) , M(H_{0})=(P_{0}, B_{0}) and M(H_{1})=(P, B) be the
matrix designs of T, H_{0} and H_{1} respectively. Let a=(a_{1}, a_{2}) , b=(b_{1}, b_{2})

and c=(a_{1}, c_{2}) be three blocks of B such that b_{1}\neq a_{1} , a_{1}^{*} and c_{2}\neq a_{2} , a_{2}^{*} .
Then by Lemmas 2 and 5 we have that K(a, b)=q+1 , K(a, c)=2 and
K(b, c)=1 . Let G(H_{0})_{1a_{2},a_{2}^{*}1} and G(H_{1})_{a} be the stabilizers of \{a_{2}, a_{2}^{*}\} and
a in G(H_{0}) and G(H_{1}) respectively. Then there is no element of G(H_{1})_{a}

which transfers b to c . So G(H_{1})_{a} is isomorphic with G(H_{0})_{\mathfrak{l}a_{2},a_{2}^{*}1} . Since
[G(H_{1}):G(H_{1})_{a}]=4(q+1) and by a theorem of W. Kantor [4] |G(H_{0})|=

(q+1)q(q-1)m, where q=p^{m} with p a prime, we have proved Proposition 3.

PROOF. First we remark that the automorphisms of H_{2} (or the code
C(q) in [6] ) corresponding to the automorphisms of GF(q) are not explicitly
mentioned in [6],

Now G(H_{2}) and G(H_{2}^{t}) are clearly isomorphic. So we consider G(H_{2}^{t})

instead of G(H_{2}) . Then the automorphism of H_{2}^{l} corresponding to Z_{2} in
[6] is the generator of the cyclic group of order 2 mentioned in Proposition
4, and takes the following form; Z_{2}=( \infty_{2}, \infty_{2^{*}})\prod_{a\in GF(q)}(a_{2}, a_{2})^{*} . Z_{2} interchanges
a(\infty_{1}) with a(\infty_{2}) , and a(a_{1}) with a(a_{2})(a\in GF(q)) .

Now in the notation of Proposition 2, we have that
a(\infty_{1})\cap a(aJ\cap a(b_{1})

=\{\infty_{1} , (Q_{1}+a_{1})\cap(Q_{1}+b_{1}) , \{a_{2}, Q_{2}+a_{2}\}\cap\{b_{2}, Q_{2}+b_{2}\}\} ,

a(\infty_{1})\cap a(a_{1})\cap a(c_{2})

=\{\infty_{1} , (Q_{1}+a_{1})\cap(Q_{1}+c_{1}) , \{Q_{2}, Q_{2}+a_{2}\}\cap\{\infty_{2}, - Q_{2}+c_{2}\}\} ,

and that
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a(\infty_{1})\cap a(a_{2})\cap a(c_{2})

=\{\infty_{1} , (Q_{1}+a_{1})\cap(Q_{1}+c_{1}) , \infty_{2}, (-Q_{2}+a_{2})\cap(-Q_{2}+c_{2})\}

So it follows that K(a(\infty_{1}), a(a_{1}))=K(a(\infty_{1}), a(a_{2}))=2 .
Let X=G(H_{2}^{t})_{a(\infty_{1})} be the stabilizer of a(\infty_{1}) in G(H_{2}^{t}) . Then X leaves

\{a(\infty_{2}), a(\infty_{2})^{*}\} invariant, and so it leaves \{\infty_{1}, GF(q)_{1}\} and \{\infty_{2}, GF(q)_{2}\}

invariant or interchanges them. X is an automorphism group of an Hada-
mard 3-design of H_{2}^{t} at a(\infty_{1}) . So if X does not leave \{\infty_{1}, \infty_{2}\} invariant,

then it follows that an Hadamard 3-design of H_{0} at \infty_{i}\cup GF(q)_{i} ( i=1 or 2)

has a doubly transitive automorphism group, which is against a theorem of
W. Kantor [4], since I-S is equivalent to H_{0} by a theorem of M. Hall, Jr.
[2]. So X leaves \{\infty_{1}, \infty_{2}\} invariant.

Let Y be a subgroup of X of index at most 2 leaving \{\infty_{1}\} and GF(q)_{1}

invariant. Then Y can be represented as an automorphism group of the
matrix design corresponding to I-S. The kernel of this representation
leaves \infty_{1} and GF(q)_{1} pointwise. Hence it is trivial by the construction of
C(q)[6] .

Finally we show that Y=X. Otherwise, we have an involution r which
interchanges \infty_{1} with \infty_{2} and GF(q)_{1} with GF(q)_{2} . r leaves \{a(a_{2}), a\in GF(q)\}

invariant. Since q is odd, r fixes at least one of them, say a(b_{2}) . Then r
interchanges b_{1} with b_{2} , Q_{1}+b_{1} with - Q_{2}+b_{2} and - Q_{1}+b_{1} with Q_{2}+b_{2} .
Now if r fixes another a(c_{2}) , then r interchanges c_{1} with c_{2} . Since c_{1} and c_{2}

are both squares or non-squares, this contradicts the above. If r interchanges
a(c_{2}) with a(c_{2}’) , we get the similar contradiction.

By theorems of V. Pless [6] this proves Proposition 4.
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