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Introduction

Let M be a real hypersurface of a complex manifold M’ . As usual
we say that M is non-degenerate (resp. strongly pseud0-convex) if the Levi
form L_{x} at each point x of M is non-degenerate (resp. definite).

Now let E be the restriction of the holomorphic tangent bundle T^{1,0}(M’)

of M’ to M. By a holomorphic vector field on M, we mean a cross section
u of E, which satisfies the s0-called tangential Cauchy-Riemann equation.
It is clear that if X is a holomorphic vector field on M, then the restriction
u=X|M of X to M is a holomorphic vector field on M. Conversely we
know the following facts:

1) Let u be a holomorphic vector field on M. If both M and u are
real analytic, then there is a unique holomorphic vector field X defined on
a neighborhood of M such that X|M=u (cf. [12]).

2) If M is non-degenerate and is not strongly pseud0-convex, then
there is a neighborhood U of M such that any holomorphic vector field u
on M can be extended to a unique holomorphic vector field X on U (cf.
[9] ) . (A similar fact is also known even in the case where M is strongly
pseud0-convex.)

These facts show that the study of the holomorphic vector fields on
M is closely related to the study of the complex manifold M’ itself.

Let \mathfrak{g}(M) be the Lie algebra of all holomorphic vector fields on M, and
let a(M) be the Lie algebra of all infinitesimal automorphisms of the real
hypersurface M, which may be considered as a real subalgebra of \mathfrak{g}(M) .
It is well known that if M is non-degenerate, then a(M) is finite dimensional
(cf. [12]), and that if M is compact and if M is non-degenerate and is not
strongly pseud0-convex) then \mathfrak{g}(M) is finite dimensional (cf. [5]). It can
be also shown that if M is non-degenerate, then the natural homomorphism
Ca(M)arrow \mathfrak{g}(M) , Ca(M) being the complexification of a(M) , is injective, and
hence Ca(M) may be considered as a subalgebra of \mathfrak{g}(M) .
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In the present paper, we prove a series of structure theorems on the
Lie algebras \mathfrak{g}(M) and Ca\{M), assuming the following conditions: 1) M
is compact 2) M is non-degenerate, 3) M is normal in the sense of [14],

i . e. , M admits an infinitesimal automorphism \xi such that, at each point x
of M, \xi_{x} is transversal to the maximal complex subspace of the tangent

space T(M)_{x} , and 4) Certain conditions on the pair (M, \xi) , M being equipped
with the induced PC \backslash /orCR) structure. The theorems consist of decomp0-

sition theorems and vanishing theorems, and are stated in different forms
according as M is strongly pseud0-convex or not. See Theorems 3. 2, 3. 5,

3. 6, 5. 4, 5. 6 and 5. 7. We also exihibit some examples, and apply the
theorems to some problems on real hypersurfaces and complex manifolds.
In particular, we obtain a theorem (Theorem 6. 5) characterizing the hyper-
plane bundles over the complex projective spaces. See also Theorems 4. 5,

4. 7 and 6. 1.
In \S 1 we first recall several known facts on PC structures. Then we

introduce a space F(M) of functions on M satisfying a certain differential
equation, and construct a linear isomorphism of the Lie algebra \mathfrak{g}(M) onto

the space F(M) . Thus the study of \mathfrak{g}(M) is reduced to that of F(M) .
\S 2 is a preliminary to the subsequent sections. We define differential opera-

tors N, \coprod_{1} and \coprod_{2} on F(M) , and then describe F(M) in terms of these
operators. In \S 3 and \S 5, we state and prove the structure theorems. The
proofs are based on the decompositions F(M) into the eigenspaces of N,
\coprod_{1} and \coprod_{2} . \S 4 and \S 6 are devoted to the examples and applications.

The author would like to express his sincere thanks to Prof. N. Tanaka
who gave him valuable suggestions and kindly read through the manuscript

during the preparation of this paper.

Preliminary remarks
1) Throughout this paper we always assume the differentiability of

class C^{\infty} , and assume that the manifolds to be considered are connected.
2) Given a manifold M, C^{\infty}(M) denotes the space of all complex

valued differentiate functions on M. Let E be a vector bundle over M.
We denote by E^{*} the dual vector bundle of E and by \Gamma(E) the space of

all differentiate cross sections of E. For \phi\in\Gamma(p+1\wedge E^{*}) and X\in\Gamma(E) ,

X\lrcorner\phi\in\Gamma(p\Lambda E^{*}) is defined by
(X\lrcorner\phi)(Y_{1}, \cdots, Y_{p})=\phi(X, Y_{1}, \cdots, Y_{p})

for Y_{1} , \cdots , Y_{p}\in\Gamma(_{\backslash }E) .
3) In the case where M is a complex manifold and E is a holomorphic

vector bundle over M, we denote by \Gamma_{hol}(E) the space of all holomorphic
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cross sections of E, and by \Omega^{p}(E) the sheaf of germs of local holomorphic
E-valued p-forms. We denote by H^{q}(M, \Omega^{p}(E)) the q-th cohomology group
of the sheaf \Omega^{p}(E) . In particular if p=0, we use the notation H^{q}(M, E) in
stead of H^{q}(M, \Omega^{0}(E)) .

\S 1. Non-degenerate PC manifolds and the Lie algebras \mathfrak{g}(M)

and \mathfrak{a}(M)

1. 1. PC manifolds and the holomorphic tangent bundles (cf. [14]).
Let M be a differentiable manifold of dimension 2n-1 . A partially complex
structure (or briefly a PC structure) on M is a subbundle S of the com-
plexified tangent bundle CT(M) of M which satisfies the following condi-
tions :

(PC. 1) \dim_{c}S=n-1 , and S\cap\overline{S}=0 ;
(PC. 2) [\Gamma(S), \Gamma(S)]\subset\Gamma(S)

The manifold M equipped with the partially complex structure S is
called a partially complex manifold (or briefly a PC manifold).

Let M be a PC manifold. Let us recall the definition of the hol0-
morphic tangent bundle of M. We define a complex vector bundle \hat{T}(M)

over M by
\hat{T}(M)=CT(M)/\overline{S} (factor bundle)

and define a differential operator

\overline{\partial}:\Gamma(\hat{T}(M))-\Gamma(\hat{T}(M)\otimes\overline{S}^{*})

as follows. Let \pi:CT(M)arrow\hat{T}(M) be the natural projection. For any cross
section u of \hat{T}(M) and any cross section \overline{Y} of \overline{S}, we define a cross section
(\overline{\partial}u)(\overline{Y}) of \hat{T}(M) by

\overline{(\partial}u)(\overline{Y})=\pi([\overline{Y}, X]) :

where X is a cross section of CT(M) such that \pi(X)=u . Then it is easy
to see that (\overline{\partial}u)(\overline{Y}) does not depend on the choice of X and the assignment
\overline{Y}arrow\overline{(\partial}u)(\overline{Y}) gives a cross section \overline{\partial}u of \hat{T}(M)\otimes\overline{S}^{*} .

Here we notice that the complex vector bundle \hat{T}(M) together with
the operator \overline{\partial} becomes a holomorphic vector bundle in the sense of Tanaka
[14], that is, the following hold:

(HV. 1) \overline{Y}(fu)=(\overline{Y}f)u+f(\overline{Y}u) ;

(HV. 2) [\overline{Y},\overline{Z}]u=\overline{Y}(\overline{Z}u)-\overline{Z}(\overline{Y}u) ,

where u\in\Gamma(\hat{T}(M)) , f\in C^{\infty}(M),\overline{Y},\overline{Z}\in\Gamma(\overline{S}) , and \overline{Y}u denotes (\overline{\partial}u)(\overline{Y}) .
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The holomorphic vector bundle \hat{T}(M) thus obtained \overline{1}S called the hol0-
morphic tangent bundle of M, and a cross section u of \hat{T}(M) is called a
holomorphic cross section or preferably a holomorphic vector field on M,
if it satisfies the (tangential Cauchy-Riemann) equation

\overline{\partial}u=0

Let M’ be a complex manifold of dimension n and let M be a real
hypersurface of M’ . Let T^{1,0(}M’ )

\backslash be the holomorphic tangent bundle of the
complex manifold M’ or the vector bundle of complexified tangent vectors
of type (1, 0) to M’ . For each point x of M, we define a subspace S_{x} of
CT(M)_{x} by

S_{x}=CT(M)_{x}\cap T^{1,0}(M’)_{x} ,

and set S=\cup S_{x} . Then we see that S defines a PC structure on M, which
is called the induced PC structure.

Let i (resp. p’ ) denote the natural injection CT(M)arrow CT’(M’) (resp. the
natural projection CT(M’)arrow T^{1,0}(M’)) . Let E(M) denote the restriction of
T^{1,0}(M’) to M. Since Ker (p’\circ i)=\overline{S}, we see that the map p’\circ i induces an
isomorphism j of \hat{T}(M) onto E(M) as differentiate vector bundles in a
natural manner. Hereafter we will identify the two vector bundles \hat{T}(M)

and E(_{\backslash }M) by this isomorphism.
Let us now consider the Cauchy-Riemann operator of the holomorphic

vector bundle T^{1,0}(M) , which is the differential operator

\overline{\partial}’ : \Gamma(T^{1,0}(M’))-\Gamma(T^{1,0}(M)\otimes\overline{T^{1,0}(M’)^{*}})

defined by

\overline{\partial}’X(\overline{Y})=p’([\overline{Y}, X]) ,

where X, Y\in\Gamma(T^{1,0}(M’)) . Now let X be any cross section of T^{1,0}(M’) , it
is easy to verify that

(\overline{\partial}u)(\overline{Y})=(\overline{\partial}’X)(\overline{Y}) for all \overline{Y}\in\overline{S} .

where u denotes the restriction X|M of X to M.
It follows that if X is a holomorphic vector field on M’ or a holomorphic

cross section of T^{1,0}(M’) , then u=X|M is a holomorphic vector field on M
or a holomorphic cross section of \hat{T}(M)=E(M) .

We define a differential operator \overline{\partial}:C^{\infty}(M)arrow\Gamma(\overline{S}^{*}) by

(\overline{\partial}f)(\overline{Y})=\overline{Y}f’. \overline{Y}\in\overline{S}
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Then a function f on M is called a holomorphic function if it satisfies the
(tangential Cauchy-Riemann) equation

\overline{\partial}f=0

Now let u be a cross section of \hat{T}(M)=E(M) , and let z^{1}, \cdots , z^{n} be any
local complex coordinate system of M’ . The restrictions u_{i} , 1\leqq i\leqq n , of the
vector fields \partial/\partial z^{i} to M form a local (holomorphic) frame of \hat{T}(M) , and
hence u can be expressed as follows:

u= \sum_{i}f^{i}u_{i}

f^{i} being local functions on M. Then we remark that u is a holomorphic
vector field if and only if all the components f^{i} of u are local holomorphic
functions on M.

1. 2. The Lie algebras \mathfrak{g}(M) and a(M) . Let M be a PC manifold.
We denote by \mathfrak{g}(M) the space of holomorphic vector fields on M. We show
that \mathfrak{g}(M) is endowed with the structure of a complex Lie algebra. Let
u_{i}\in \mathfrak{g}(M) , i=1,2, and let us choose cross sections X_{i} such that u_{i}=\pi(X_{i}) .
Then we define a cross section [u_{1}, u_{2}] of \hat{T}(M) by

[u_{1}, u_{2}]=\pi([X_{1}, X_{2}]) .

Since [X_{i}, \Gamma(\overline{S})]\subset\Gamma(\overline{S}) and [\Gamma(\overline{S}), \Gamma(\overline{S})]\subset\Gamma(\overline{S}) , we see that [u_{1}, u_{2}] does not
depend on the choices of X_{1} and X_{2} . By using the Jacobi identity for vector
fields on M, we also see that [u_{1}, u_{2}]\in \mathfrak{g}(M) and that the vector space
\mathfrak{g}(M) equipped with this bracket operation becomes a complex Lie algebra.

Let X be a real vector field on M, and let \phi_{t} be the local l-parameter
group of local transformations generated by X. Then X is called an infini-
tesimal automorphism of M if each \phi_{t} is a local automorphism, i. e_{-} , preserves
the PC structure S of M. Note that X is an infinitesimal automorphism
if and only if [X, \Gamma(S)]\subset\Gamma(S) . We denote by a(M) the Lie algebra of
infinitesimal automorphisms of M.

Let X\in a(M) . Then it is easy to see that \pi(X)\in \mathfrak{g}(M) and that the
assignment Xarrow\pi(X) gives an injective homomorphism of a(M) to \mathfrak{g}(M) as
real Lie algebras. Thus we may regard a(M) as a real subalgebra of \mathfrak{g}(M) .

Finally let us consider a real hypersurface M of a complex manifold
M’ . Let X be a holomorphic vector field on M’\wedge Then we see that X|M
is an infinitesimal automorphism of M if and only if the real part of X is
tangent to M at each point of M.

1. 3. Non-degenerate PC manifolds. Let \theta be a real valued l-form
defined on a neighborhood of x which satisfies the following conditions:
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1) \theta_{x}\neq 0 ,
2) \theta annihilates S.
Then we define a hermitian form L_{x}=L_{x}^{\theta} by

L_{x}^{\theta}(X, Y)=-\sqrt{-1}(d\theta)(X,\overline{Y}) , X, Y\in S_{x} ,

which is called the Levi form of M at x (corresponding to the 1-form \theta).
Let \theta’ be another 1-form satisfying the condition above. Then \theta’ can be
expressed as \theta’=f\theta with a function f defined on a neighborhood of x, and
we can easily see that

L_{x}^{\theta’}=f(x)L_{x}^{\theta} .

It follows that neither the dimension of the null space of L_{x} nor the signature
of L_{x} (up to sign) depends on the choice of \theta . This being said, we define

a non-negative integer \lambda(x)(\leqq\frac{n-1}{2}) by

\lambda(x)={\rm Min}(\lambda_{+}(x), \lambda_{-}(x)) .

where \lambda_{+}(x) (resp. \lambda_{-}(x) ) stands for the number of positive (resp. negative)
eigenvalues of the hermitian form L_{x} .

We say that the PC manifold M is non-degenerate and of index r, if
the Levi form L_{x} is non-degenerate and \lambda(x)=r at each point x of M. In
particular, we say that M is a strongly pseud0-convex (or briefly s . p . c.)
manifold if it is non-degenerate of index 0 or equivalently the Levi form
L_{x} is definite at each point x of M.

PROPOSITION 1. 1. Let M be a non-degenerate PC manifold. Then
the subspaces a(M) and \sqrt{-1}a(M) of \mathfrak{g}(M) satisfy a(M)n\sqrt{-1}a(M)=0 ,
and hence the subalgebra a(M)+\sqrt{-1}a(M) of \mathfrak{g}(M) may be considered as
the complexifification Ca(M) of a(M) .

PROOF. We define a subbundle T_{1} of \hat{T}(M) by

T_{1}=(T(M)+\overline{S})/\overline{S} .
Then we have

T_{1}n\sqrt{-1}T_{1}=(S+\overline{S})/\overline{S}

Take any element u of a(M)n\sqrt{-1}a(M) . From the remark above, we can
find a cross section X of S such that u=\pi(X) . Since u\in a(M) , we obtain
[X, \Gamma(\overline{S})]\subset\Gamma(\overline{S}) , and hence

L_{x}(X_{x}, Y_{x})=-\sqrt{-1}(d\theta)(X_{x},\overline{Y}_{x})

=-\sqrt{-1}\{X_{x}\theta(\overline{Y})-\overline{Y}_{x}\theta(X)-\theta([X,\overline{Y}]_{x})\}=0 ,
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where Y\in\Gamma(S) . Since L_{x} is non-degenerate at each point x of M, it
follows that X=0. q . e_{-}d .

1. 4. Condition (C. 1) and the canonical affine connections (cf. [14]).

Let M be a PC manifold. We assume the following condition:
(C. 1) There exists an infinitesimal automorphism \xi such that \xi_{x}\not\in(S+\overline{S})_{x}

for any point x of M.
From now on we will be concerned with the pair (M, \xi) . We denote

by P the 1-dimensional complex subbundle of CT(M) spanned by \xi :

P_{x}=C\xi_{x} , x\in Mt

Then we have

CT(M)=S+\overline{S}+P (direct sum)

We define a real valued 1-form \theta by

\theta(\xi)=1 ,

\theta(X)=0’. X\in(S+\overline{S})_{x} ,

and consider the Levi form L_{x}=L_{x}^{\theta} corresponding to the 1-form \theta .

PBOPOSITION 1. 2 (cf. [14]). Let M be a non-degenerate PC manifold.
Assume that M satisfifies condition (C. 1), then there is a unique affine con-
nection

\nabla : \Gamma(T(M))\backslash -\Gamma(T(M)\otimes T(M)^{*})

on M satisfying the following conditions:
1) S is parallel with respect to \nabla .
2) \xi , \theta, and d\theta are all parallel.
3) The torsion tensor T of \nabla has the following properties:

T(X, Y)=0 .
T(X,\overline{Y})=(d\theta)(X,\overline{Y})\xi_{x}(=\sqrt{-1}L_{x}(X, Y)\xi_{x}),\cdot

T(\xi_{x}, Y)\in\overline{S}_{x} ,

where X, Y\in S_{x} .
The connection \nabla in Proposition 1. 2 is called the canonical affine con-

nection of (M, \xi) . We denote by R the curvature tensor of \nabla .
PROPOSITION 1. 3 (cf. [14]). Let X, Y, Z, W\in\Gamma(S) .
(1) T(\xi, X)=0 .
(2) \nabla_{\xi}X=\mathscr{L}_{\xi}X.
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(3) (d\theta)(R(X,\overline{Y})Z,\overline{W})+(d\theta)(Z, R(X,\overline{Y})\overline{W})=0 .
(4) R(X,\overline{Y})Z=R(Z,\overline{Y})X\in\Gamma(S) .
(5) R(X, Z)=0 .
(6) R(\xi, X)=0 .
PROOF. Since \nabla_{\xi}X and [\xi, X] are cross sections of S, and since \nabla_{X}\xi=0 ,

we have T(\xi, X)\in\Gamma(S) . On the other hand, we know that T(\xi, X)\in\Gamma(\overline{S})

by Proposition 1. 2. Hence we have T(\xi, X)=0 , proving (1). (2) follows from
(1). (3) follows immediately from the fact that \nabla d\theta=0 . From Bianchi’s first
identity and (1) together with the fact that \nabla T=0 , we have

(1. 1) R(X,\overline{Y})Z+R(\overline{Y}, Z)X+R(Z, X)\overline{Y}=0 .
Since the subbundle S is parallel with respect to the canonical affine con-
nection \nabla , we have R(X,\overline{Y})Z\in\Gamma(S) , R(\overline{Y}, Z)X\in\Gamma(S) and R(Z, X)\overline{Y}\in\Gamma(\overline{S}) .
By taking the S-component of (1. 1), we obtain

R(X,\overline{Y})Z+R(\overline{Y}, Z)X=0.
,

implying(4). In the same manner, we obtain
R(Z, X)\overline{Y}=0 .

Since \nabla d\theta=0 , we have

(d\theta)(R(X, Z)W,\overline{Y})+(d\theta)(W, R(X, Z)\overline{Y})=0 .
Hence it follows that

L (R(X, Z)W, Y)=-\sqrt{-1}(d\theta)(’R(X, Z)W,\overline{Y})=0 .

Since the Levi form L is non-degenerate, it follows that

R(X, Z)W=0 .
Hence we have proved (5). Since the vector field \xi leaves invariant the
PC structure S and the vector field \xi , it follows that \xi is an infinitesimal
affine transformation. Hence \xi satisfies the following

(1. 2) [\xi, \nabla_{X}\overline{Y}]-\nabla_{X}([\xi,\overline{Y}])-\nabla_{\mathfrak{c}\xi,XJ}\overline{Y}=0

By (1) we have \nabla_{\xi}\langle\nabla_{X}\overline{Y}) =[\xi, \nabla_{X}\overline{Y}] and \nabla_{\xi}\overline{Y}=[\xi,\overline{Y}] . Hence the left hand
side of (1. 2) is equal to R(\xi, X)\overline{Y}_{} which implies R(\xi, X)\overline{Y}=0 . Similarly
we have R(\xi, X)Y=0 , proving (6). q . e . d .

1. 5. The space F(M) . We define a subbundle T of CT(M) by T=
S+P. Then we have

CT(M)=T+\overline{S} (direct sum)
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and the pro!ecti\prime on\pi:CT(M)arrow\hat{T}(M) induces a bundle isomorphism P of T
onto \hat{T}(M) . Let u be a cross section of \hat{T}(M) , and let the capital letter U
denote the corresponding cross section of T Then u is a holomorphic cross
section of \hat{T}(M) if and only if the cross section U satisfies the condition

(1. 3) [U, \Gamma(\overline{S})]\subset\Gamma(\overline{S})

Let us denote by U^{S} (resp. by U^{P}) the S-component of U (resp. the
P-component of U). We interpret (1. 3) in terms of U^{S} and U^{P} Then, for
any \overline{Y}\in\Gamma(\overline{S}) , we have

(1. 4) [\overline{Y}, U^{P}]^{P}+[\overline{Y}, U^{S}]^{P}=0_{:}

(1. 5) [\overline{Y}, U^{s}]^{s}=0 ,

where we use the fact that [\overline{Y}, U^{P}]^{S}=0 ,
We define a function f_{u} by

f_{u}=\theta(U)

Then we have U^{P}=f_{u}\xi . By using the canonical affine connection \nabla , we
obtain

( 1. 4)’ \nabla_{\overline{Y}}f_{u}+(d\theta)(U^{S},\overline{Y})=0 :

( 1. 5)’ \nabla_{\overline{r}}U^{S}=0 ,

where \overline{Y}\in\overline{S}_{x} . It follows from (1. 4)’ and (1. 5)’ that

(1. 6) \nabla_{\overline{Y}}\nabla_{\overline{Z}}f_{u}=0 , \overline{Y},\overline{Z}\in\overline{S}_{x} .
Here we define a subspace F(M) of C^{\infty}(M) by

F(M)=\{f\in C^{\infty}(M)|\nabla_{\overline{Y}}\nabla_{\overline{Z}}f=0 for any \overline{Y},\overline{Z}\in\overline{S}_{x} and x\in M\}

PROPOSITION 1. 4. The assignment uarrow f_{u} gives a linear isomorphism

of \mathfrak{g}(M) onto F(M) .

PROOF. Let u\in \mathfrak{g}(M) . Suppose that f_{u}=0 . By ( 1. 4)’ , we have

L(U^{S}, Y)=-\sqrt{-1}(d\theta)(U^{S},\overline{Y})=0 for any \overline{Y}\in\overline{S}_{x} .
Since the Levi form L_{x} is non-degenerate at each point x of M, it follows
that U^{S}=0 , which implies u=0 . Conversely let f be a function contained
in F(M) . Since the Levi form L_{x} is non-degenerate at each point x of M,

we can take a unique cross section U^{S} of S satisfying (1. 4)’ . S_{\overline{1}}ncef satisfies
(1. 6), it follows that (1-5)’ holds. If we put U=f\xi+U^{S}, then we see that
U satisfies (1. 3). Therefore the cross section u of \hat{T}(M) corresponding to

U is a holomorphic vector field satisfying f_{u}=f. q . e . d .
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We define a subspace \overline{F}(M) of C^{\infty}(M) by

\overline{F}(M)=\{\overline{f}|f\in F(M)\}

Then we have the following

PROPOSITION 1. 5. Let u\in \mathfrak{g}(M) . Then u\in a(M) if and only if f_{u} is
a real valued function. Hence the assignment uarrow f_{u} gives a linear isomor-
phism of Ca\{M) onto F(M)\cap\overline{F}(M) .

PROOF. First assume that u is conta\overline{l}ned in a(M) . Then we have an
infinitesimal automorphism X such that \pi(X)=u . Let X^{T} be the T-com-
ponent of X. Then it follows that U=X^{T} and

f_{u}=\theta(U)=\theta(X^{T})=\theta(X)f

implying that f_{u} is a real valued function.
Conversely assume that f_{u} is a real valued function. We define a real

vector field X by

X=f_{u}\xi+U^{S}+\overline{U}^{s} .
Then we see that \pi(X)=u , and X is an infinitesimal automorphism.

q. e. d .

\S 2. The fundamental equalities

2. 1. Condition (C. 2), and the operators \coprod_{i} and N. Let M be a non-
degenerate PC manifold of index r satisfying condition (C. 1). In this and
the subsequent sections, we assume that M is compact and satisfies the
following condition:

(C. 2) There exist subbundles S^{1} and S^{2} satisfying the following:
1) \dim_{c}S^{1}=r, and \dim_{c}S^{2}=s , where s=n-r-1 .
2) S=S^{1}+S^{2} (direct sum).
3) Both S^{1} and S^{2} are parallel with respect to the canonical affine

connection \nabla .
4) At each point x of M, the Levi form L_{x} is negative definite (resp.

positive definite) on S_{x}^{1} (resp. on S_{x}^{2}), and S_{x}^{1} and S_{x}^{2} are mutually orthogonal
with respect to L_{x} .

First of all, let us define a Riemannian metric q* on M by
[1] g_{x}(X,\overline{Y})=-L_{x}(X, Y) , X, Y\in S_{x}^{1} ;
[2] g_{x}(X,\overline{Y})=L_{x}(X, Y) , X, Y\in S_{x}^{2} ;
[3] g_{x}(\xi_{x}, \xi_{x})=1 ;
[4] The other components of g_{x} vanish.
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We easily see that the Riemannian metric g thus defined is parallel
with respect to the canonical affine connection \nabla . Let us denote by dV the

volume element \frac{1}{(n-1)!}\theta\wedge(d\theta)^{n-1} , which is noth_{\overline{1}}ng but the volume element

associated with g. We define a herm\overline{l}tian inner product ( ., ) in the space
C^{\infty}(M) by

(f, g)= \int_{M}\langle f, g\rangle dV

where \langle f, g\rangle is the function defined by
\langle f, g\rangle(x)=f(x)\overline{g(x)} , x\in M

In the following, the three indices a, b, c range over the integers 1, \cdots ,

r while the three indices \alpha, \beta , \gamma range over the integers r+1 , \cdots , n-1 .
Let x be any po\overline{l}nt of M, and let e_{1} , \cdots , e_{r} (resp. e_{r+1} , \cdots , e_{n-1}) be a base of
S_{x}^{1} (resp. of S_{x}^{2}) such that g(ea, eb)=\delta_{ab} (resp. g(e_{\alpha},\overline{e}_{\beta})=\delta_{\alpha\beta}). Then the 2n-1
vectors \xi , e_{1}, -\cdot- , e_{r} , e_{r+1} , \cdots , e_{n-1},\overline{e}_{1} , \cdots,\overline{e}_{r},\overline{e}_{r+1} , \cdots,\overline{e}_{\iota-1}. form a base of CT(M)X.
By using these bases, we will express various tensor fields in terms of their
components.

We define a bilinear form R^{*}-\cdot S_{x}\cross\overline{S}_{x}arrow C by

R^{*}(X, \overline{Y})=\sum_{i=1}^{n-1}g(R(X,\overline{Y})e_{\overline{l}},\overline{e}_{\overline{l}}).
, X, Y\in S_{x} .

It is easy to see that

R^{*}(X,\overline{Y})=\overline{R^{*}(Y,\overline{X})}

The tensor R^{*} thus defined will be called the Ricci tensor.

PROPOSITION 2. 1.

(1) R^{*}(X, \overline{Y})=\sum_{a}g(R(X,\overline{Y})e_{a},\overline{e}_{a}) for X, Y\in S_{x}^{1}

R^{*}(X, \overline{Y})=\sum_{\alpha}g(R(X,\overline{Y})e_{\alpha},\overline{e}_{\alpha}) for X, Y\in S_{x}^{2}

(2) R^{*}(X,\overline{Y})=0 for X\in S_{x}^{1} and Y\in S_{x}^{2}

PROOF. Let X\in S_{x}^{1} . By Proposition 1. 3 and the fact that S^{1} and S^{2}

are parallel with respect to \nabla , we have
R(X,\overline{Y})e_{\alpha}=R(e_{\alpha},\overline{Y})X\in S_{x}^{1}\cap S_{x}^{2}=0,\cdot

which implies the first assertion of (1). The second assertion of (1) is proved
in the same manner. Now let X\in S_{x}^{1} and Y\in S_{x}^{2} . By Proposition 1. 3 and
the fact that \nabla g=0 , we have
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g(R(X,\overline{Y})e_{i},\overline{e}_{\overline{l}})=g(R(e_{i},\overline{e}_{\overline{l}})X,\overline{Y})

Since S^{1} is parallel with respect to \nabla , it follows that
R(e_{i},\overline{e}_{i})X\in S_{x}^{1}

Therefore we have

R^{*}(X, \overline{Y})=\sum_{i}g(R(e_{i},\overline{e}_{i})X,\overline{Y})=0.,

proving (2). q . e . d .
We define the scalar curvatures \sigma_{1} and \sigma_{2} by

\sigma_{1}=\frac{1}{r(r+1)}\sum_{a}R^{*}(e_{a},\overline{e}_{a}) ,

\sigma_{2}=\frac{1}{s(s+1)}\sum_{\alpha}R^{*}(e_{\alpha},\overline{e}_{\alpha})

We also define differential operators \coprod_{1} , \coprod_{2} and N on C^{\infty}(M) respec-
tively by

\coprod_{1}f=-\sum_{a}\nabla_{a}\nabla_{\overline{a}}f , \coprod_{2}f=-\sum_{\alpha}\nabla_{\alpha}\nabla_{a}f_{j}
Nf=\sqrt{-1}\xi f .

for f\in C^{\infty}(M) .
PROPOSITION 2. 2. The operators \coprod_{1} , \coprod_{2} and N are self-adjoint opera-

tors, moreover \square _{1} and \coprod_{2} are positive semi-defifinite.
PROOF. Let f, f’\in C^{\infty}(M) . Then we have

\sum_{a}\nabla_{a}\langle\nabla_{\overline{a}}f,f’\rangle=\sum_{a}\langle\nabla_{a}\nabla_{\overline{a}}f,f’\rangle+\sum_{a}\langle\nabla_{a}\neg f, \nabla_{\overline{\alpha}}f’\rangle(

Define a cross section Z of S^{1} by

Z= \sum_{a}\langle\nabla_{\overline{a}}f,f’\rangle e_{a} .

and a (complexified) tensor field A_{Z} of type (\begin{array}{l}11\end{array}) by

A_{Z}(X)=\nabla_{X}Z+T(Z, X) , X\in CT(M)_{x} .

Then we have

d(Z\lrcorner dV)=Trace(A_{Z})dV

We know that \nabla_{X}Z\in S^{1} for X\in CT(M)_{x} and T(Z, X)\in P_{x} , for X\in(S+\overline{S})_{x} ,
and T(Z, \xi)=0 . Hence we have

Trace (A_{Z})= \sum_{a}(\nabla_{a}Z)^{a} .
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Since the subbundle S^{1} is parallel with respect to \nabla , we have

\sum_{a}(\nabla_{a}Z)^{a}=\sum_{a}\nabla_{a}\langle\nabla_{\varpi}f,f’\rangle

Hence, by using Stokes’ theorem, we obtain

( \coprod_{1}f,f’)=-\sum_{a}(\nabla_{a}\nabla_{\overline{a}}f,f’)=\sum_{a}(\nabla_{a}f, \nabla_{\overline{a}}f’) .
Similarly, we obtain

( \coprod_{2}f,f’)=-\sum_{\alpha}(\nabla_{\alpha}\nabla_{\overline{a}}f,f’)=\sum_{\alpha}(\nabla_{\overline{a}}f, \nabla_{\overline{\alpha}}f’)(

Therefore we see that \coprod_{1} and \coprod_{2} are positive semi-definite self-adjoint
operators.

Finally since \mathscr{L}_{\xi}g=0 , we have

\xi(\langle f,f’\rangle)=\langle\xi f,f’\rangle+\langle f, \xi f’\rangle

Since \xi(\langle f,f’\rangle)dV=d(\langle f,f’\rangle\xi\lrcorner dV) , it follows from Stokes’ theorem that

(\xi f,f’)+(f, \xi f’)=0 ,

and hence

(Nf,f’)=(f, Nf’) ,

implying that N is a self-adjoint operator. q . e . d .
We need the following lemma.

LEMMA 2. 3 (The Ricci formula cf. [14]). Let f\in C^{\infty}(M) and let X,
Y, Z\in T(M)_{x} .

(1) \nabla_{X}\nabla_{Y}f=\nabla_{Y}\nabla_{X}f-\nabla_{T(X,Y)}f .

(2) \nabla_{X}\nabla_{Y}\nabla_{Z}f=\nabla_{Y}\nabla_{X}\nabla_{Z}f-\nabla_{T(X,Y)}\nabla_{Z}f-\nabla_{R(X,Y)Z}f

PROPOSITION 2. 4. Let \overline{\coprod}_{1} , \overline{\coprod}_{2} and \overline{N} denote the conJ\overline{u}gate operators

of \coprod_{1} , \coprod_{2} and N respectively.

(1) \coprod_{1}N=N\coprod_{1} , \coprod_{2}N=N\coprod_{2} , and \coprod_{1}\coprod_{2}=\coprod_{2}\coprod_{1}\tau

(2) \overline{\coprod}_{1}-\coprod_{1}=rN, \overline{\coprod}_{2}-\coprod_{2}=-sN

(3) \overline{N}=-N

PROOF. By Proposition 1. 3, we have T(\xi, X)=0 and R(\xi, X)=0 for
X\in T(M) . It follows from the Ricci formula that \xi\coprod_{1}=\coprod_{1}\xi and \xi\prod_{2}=

\coprod_{2}\xi , which implies the first and the second equalities of (1). Similarly by
using the Ricci formula and the facts that T(e_{a},\overline{e}_{\alpha})=0 and R(e_{a},\overline{e}_{\alpha})=0 , we
have \coprod_{1}\coprod_{2}=\coprod_{2}\coprod_{1} , implying the third equality of (3).
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By using the Ricci formula again, we see that
\overline{\coprod}_{1}=-\sum\nabla_{\sigma}\nabla_{a}=-\sum\nabla_{a}\nabla_{\overline{a}}-\sum T(e_{a},\overline{e}_{a})=\coprod_{1}+rN-.

In the same manner, We have the second equa1_{\overline{1}}ty of (2).
Finally (3) is clear from the definition of N. q . e . d .
2. 2. The space F(M) , and the operators A_{i} . We define a cross sec-

tion W_{1} (resp. W_{2}) of S^{1} (resp. of S^{2}) by

W_{1}= \sum_{a,b}\nabla_{\overline{a}}R_{a\overline{b}}^{*}e_{b\prime}, W_{2}= \sum_{\alpha,\beta}\nabla_{\overline{\alpha}}R_{\alpha 8}^{*}e_{\beta}
,

Lemma 2. 5. Let f, f’\in C^{\infty}(M) .
(1) \sum_{a,b}(\nabla_{\overline{\alpha}}\nabla_{\overline{b}}f, \nabla_{\overline{a}}\nabla_{\overline{b}}f’)

=( \coprod_{1}^{2}f-\coprod_{1}Nf+\sum_{a,b}R_{a\overline{b}}^{*}\nabla_{b}\nabla_{\overline{a}}f+\overline{W}_{J}f,f’)

(2) \sum_{\alpha,\beta}(\nabla_{\overline{\alpha}}\nabla_{\beta}f, \nabla_{\overline{\alpha}}\nabla_{\beta}f’)

=( \coprod_{2}^{2}f+\coprod_{2}Nf+\sum_{\alpha,\beta}R_{\alpha 3}^{*}\nabla_{\beta}\nabla_{\alpha}f+\overline{W}_{2}f,f’)

(3) \sum_{a,\alpha}(\nabla_{\overline{a}}\nabla_{\overline{\alpha}}f, \nabla_{\overline{a}}\nabla_{\overline{a}}f’)=(\coprod_{2}\coprod_{1}f,f’)=(\coprod_{1}\coprod_{2}f,f’) .

(4) \sum_{a,\alpha}(\nabla_{a}\nabla_{\overline{a}}f, \nabla_{a}\nabla_{\overline{a}}f’)=(\coprod_{2}\overline{\coprod}_{1}f,f’)=(\overline{\coprod}_{1}\coprod_{2}f,f’) ,

\sum_{a,\alpha}(\nabla_{\alpha}\nabla_{\overline{\alpha}}f, \nabla_{\alpha}\nabla_{\overline{a}}f’)=(\overline{\coprod}_{2}\coprod_{1}f,f’)=(\coprod_{1}\overline{\coprod}_{2}f,f’)

PROOF. First we have

\sum_{a.b}\nabla_{a}\langle\nabla_{\overline{a}}\nabla_{\overline{b}}f, \nabla_{\overline{b}}f’\rangle

= \sum_{a,b}\langle\nabla_{a}\nabla_{\overline{\alpha}}\nabla_{\overline{b}}f, \nabla_{\overline{b}}f’\rangle+\sum_{a,b}\langle\nabla_{\varpi}\nabla_{\overline{b}}f, \nabla_{\overline{a}}\nabla_{\overline{b}}f’\rangle

Define a cross section Z of S^{1} by

Z= \sum_{a,b}\langle\nabla_{\overline{a}}\nabla_{\overline{b}}f, \nabla_{\overline{b}}f’\rangle e_{a} .

As in the proof of Proposition 2. 2, we have

\sum_{a,b}\nabla_{a}\langle\nabla_{\overline{oa}}\nabla- f, \nabla- f’\rangle dV=d(Z\lrcorner dV)

It follows from Stokes’ theorem that

\sum_{a,b}\langle\nabla_{\overline{a}}\nabla_{\overline{b}}f, \nabla_{\overline{a}}\nabla_{\overline{b}}f’\rangle=-\sum_{a,b}(\nabla_{a}\nabla_{\overline{a}}\nabla_{\overline{b}}f, \nabla_{\overline{b}}f’)

Now we see from the Ricci formula that

\nabla_{a}\nabla_{\overline{a}}\nabla_{\overline{b}}f=\nabla_{a}\nabla_{\overline{b}}\nabla_{\overline{a}}f

=\nabla_{\overline{b}}\nabla_{a}\nabla_{a}f+\delta_{ab}\nabla_{\overline{a}}(Nf)+(R(\overline{e}_{b}, e_{\alpha})\overline{e}_{a})f
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By Proposition 1. 3, we have
R(\overline{e}_{b}, e_{a})\overline{e}_{a}=R(\overline{e}_{a}, e_{a})\overline{e}_{b}t

Therefore we obtain

\sum_{a}\nabla_{a}\nabla_{\overline{a}}\nabla_{\overline{b}}f=-\nabla_{\overline{b}}(\coprod_{1}f)+\nabla_{\overline{b}}(Nf)+\sum_{a}R_{a\overline{b}}^{*}\nabla_{\overline{a}}f\ulcorner

It follows from Stokes’ theorem that

\sum_{a,b}(\nabla_{\overline{a}}\nabla_{\overline{b}}f, \nabla_{\overline{\alpha}}\nabla_{\overline{b}}f’)

=( \coprod_{1}^{2}f-\coprod_{1}Nf+\sum_{a,b}R_{a\overline{b}}^{*}\nabla_{b}\nabla_{\overline{a}}f+\overline{W}_{1}f,f’) ,

proving (1). The proof of (2) is quite similar.
Next, by using Stokes’ theorem, we obtain

\sum_{a,\alpha}(\nabla_{\overline{a}}\nabla_{\overline{a}}f, \nabla_{\overline{a}}\nabla_{\overline{\alpha}}f’)=-\sum_{a,\alpha}(\nabla_{a}\nabla_{\overline{a}}\nabla_{\alpha}f, \nabla_{\overline{\alpha}}f’)c

From the Ricci formula and the fact that T(e_{a},\overline{e}_{\alpha})=0 , T(\overline{e}_{a},\overline{e}_{\alpha})=0 and
R(e_{a},\overline{e}_{\alpha})\overline{e}_{a}=0 , we obtain

\sum_{a}\nabla_{a}\nabla_{\overline{a}}\nabla_{\overline{\alpha}}f=\sum_{a}\nabla_{a}\nabla_{\overline{a}}\nabla_{\overline{a}}f=\sum_{a}\nabla_{\overline{\alpha}}\nabla_{a}\nabla_{\overline{\alpha}}f\cup

It follows that

\sum_{a,\alpha}(\nabla_{\overline{a}}\nabla_{\overline{a}}f, \nabla_{\overline{a}}\nabla_{\overline{\alpha}}f’)=(\coprod_{2}\coprod_{1}f, f’) ,

proving (3). In the same manner we obtain (4). q . e . d .
We define differential operators A_{i} , i=1,2,3 , on C^{\infty}(M) respectively by

(2. 1) A_{1}f= \coprod_{1}^{2}f-\coprod_{1}Nf+\sum_{a,b}R_{a\overline{b}}^{*}\nabla_{b}\nabla_{\overline{a}}f+\overline{W}_{1}f ,

(2. 2) A_{2}f= \coprod_{2}^{2}f+\coprod_{2}Nf+\sum_{\alpha,\beta}R_{\alpha\overline{\beta}}^{*}\nabla_{\beta}\nabla_{\overline{a}}f+\overline{W}_{2}f ,

(2. 3) A_{3}f=\coprod_{1}\coprod_{2}f=\coprod_{2}\coprod_{1}f’.
for f\in C^{o}(M) .

By (1), (2) and (3) of Lemma 2. 5, we have the following proposition.

PROPOSITION 2. 6. Let f\in C^{\infty}(M) . TAen the following conditions are
mutually equivalent:

(1) f\in F(M) .
(2) A_{i}f=0, i=1,2,3 .
(3) (A_{i}f,f)=0 , i=1,2,3 .

PROPOSITION 2. 7. The operators A_{i} , i=1,2,3 , are positive semi-defifinite
self-adjoint operators and satisfy A_{i}N=NA_{i} .
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PROOF. By Lemma 2. 5, we see that A_{i} are positive semi-definite self-
adjoint operators. By Lemma 1. 3 and condition (C. 2), we have

\mathscr{L}_{\xi}(\Gamma(S^{i}))\subset\Gamma(S^{i}) and \mathscr{L}_{\xi}g=0 .

Hence it follows that

\sum_{a,b}(\nabla_{\overline{a}}\nabla_{\overline{b}}Nf, \nabla_{\overline{a}}\nabla_{\overline{b}}f’)=\sum_{a,b}(\nabla_{\overline{\alpha}}\nabla_{\overline{b}}f, \nabla_{\overline{\alpha}}\nabla_{\overline{b}}Nf’)

for any f, f’\in C^{\infty}(M) , which implies A_{1}N=NA_{1} . The other assertions can

be proved in the same manner. q . e . d .
Let us denote by \overline{A}_{i} the conjugate operator of A_{i} . Then we have

the following

PROPOSITION 2. 8. The operators \overline{A}_{i} , i=1,2,3 , are positive semi-defifinite
self-adjoint operators and satisfy the following

(1) A-1^{=A_{1}+(r+1)(rN^{2}-r\sigma_{1}N+2\coprod_{1}N)+W_{1}-{?}_{1}} ;

(2) \overline{A}_{2}=A_{2}+(s+1)(sN^{2}+s\sigma_{2}N-2\coprod_{2}N)+W_{2}-\overline{W}_{2} ;

(3) \overline{A}_{3}=A_{3}-s\coprod_{1}N+r\coprod_{2}N-rsN^{2} .

PROOF. It follows from the Ricci formula that

\overline{\sum_{a,b}R_{a\overline{b}}^{*}\nabla_{b}\nabla}_{\overline{oa}}=\sum_{a,b}R_{b\overline{a}}^{*}\nabla_{\overline{b}}\nabla_{a}=\sum_{a,b}R_{b\overline{a}}^{*}(\nabla_{a}\nabla_{\overline{b}}+T(e_{a},\overline{e}_{b}))

= \sum R_{b\overline{\sigma}}^{*}.\nabla_{a}\nabla_{\overline{b}}-(r+1)r\sigma_{1}N

Hence (1) follows from Proposition 2. 3 and (2. 1). The other equalities

can be proved quite similarly. q . e . d .

\S 3. The structures of the Lie algebras \mathfrak{g}(M) and C\mathfrak{a}(M)

(the non-degenerate case)

3. 1. A general structure theorem on the Lie algebras \mathfrak{g}(M) and Ca(M) .

Let M be a non-degenerate PC manifold of index r satisfying conditions

(C. 1) and (C. 2). First of all, let us recall the following fact.

THEOREM A (cf. [5])- Let M be a compact non-degenerate PC mani-

fold of index r. If r\geqq 1 , then \mathfrak{g}(M) is fifinite dimensional.
Let us assume that r\geqq 1 . By Proposition 2. 4 and Theorem A, we see

that F(M) is a finite dimensional vector space. For each \nu\in R, we define

a subspace F_{(\nu)} of F(M) and a subspace \tilde{F}_{(_{\nu})} of F(M)\cap\overline{F}(M) respectively by

F_{(_{\nu})}=\{f\in F(M)|Nf=\nu f\} ,

F_{(_{\nu})}=\{f\in F(M)\cap\overline{F}(M)|Nf=\nu f\}
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PROPOSITION 3. 1. Let M be a compact non-degenerate PC manifold
of index r. Assume that r\geqq 1 and M satisfies conditions (C. 1) and (C. 2).

(1) F(M)= \sum_{\nu}F_{(_{\nu})} (d_{t}^{-}rect sum), F(M) \cap\overline{F}(M)=\sum_{\nu}\tilde{F}_{(_{\nu})} ( d\overline{\iota}rect sum) and
dim F_{(\nu)}=\dim\tilde{F}_{()}-\nu .

Assume further that the scalar curvatures \sigma_{1} and \sigma_{2} are equal to real
constants c_{1} and c_{2} .

(2) The case where c_{1}=c_{2}(=c)>0 : F_{(_{\nu})}=\tilde{F}_{(\nu)}=0 for \nu\neq 0 , -c, c,
F_{(0)}--fF_{(0)} , F_{(-c)}=F_{(-c)} and F_{(C)}=\tilde{F}_{(C)} .

(3) The case where both c_{1} and c_{2} are non-positive-. F(M)=\overline{F}(M)=

F_{(0)}=F_{(0)} .
(4) The case where c_{1}>{\rm Max}(0, c_{2}):F_{(_{\nu})}=0 for \nu>0 or \nu<-c_{1},\tilde{F}_{(_{\nu})}=0

for \nu\neq 0 , and F_{(0)}=\tilde{F}_{(0)} . The case where c_{2}>{\rm Max}(0, c_{1}):F_{(_{y})}=0 for \nu<0

or \nu>c_{2},\tilde{F}_{(_{\nu})}=0 for \nu\neq 0 , and F_{(0)}=\tilde{F}_{(0)} .
PROOF. We see from Propositions 2. 6 and 2. 7 that the operator N

leaves invariant the finite dimensional subspace F(M) of C^{\infty}(M) and from
Proposition 2. 2 that N is a self-adjoint operator with respect to the inner
product ( , ) on F(M) . Hence we have

F(M)= \sum_{\nu}F_{(\nu)} (direct sum) t

Similarly we see that the operator N leaves invariant the subspace F(M)\cap
\overline{F}(M) of C^{\infty}(M) and hence we obtain

F(M) \cap\overline{F}(M)=\sum_{\nu}F_{(_{\nu})} (direct sum)

By Proposition 2. 4, we see that the correspondence farrow\overline{f} gives an isomor-
phism of \tilde{F}_{(_{\nu})} onto \tilde{F}_{()}-\nu

’ and hence

dim F_{(_{\nu})}=\dim\tilde{F}_{()}-\nu :

proving (1).
Hereafter we assume that \sigma_{i} are constant. We first assert that \overline{W}_{1}=0 .

Indeed, for any X\in S_{x}^{1} , we have

g(X, \overline{W}_{1})=g(X,\sum_{a,b}\nabla_{b}R_{a\overline{b}}^{*}\overline{e}_{a})=g(X,\sum_{a,b}\nabla_{a}R_{b\overline{b}}^{*}\overline{e}_{a})

=r(r+1)X\sigma_{1}=0 ,

and hence obtain \overline{W}_{1}=0 . In the same way, we can show that \overline{W}_{2}=0 .
Let f\in F_{(p)} . By Proposition 2. 6, we have

A_{i}f=0 , i=1,2,3 .
It is easy to see from Proposition 2. 8 that if \nu=0 , then
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\overline{A}_{i}f=0 , i=1,2,3 .
Hence we have F_{(0)}=\tilde{F}_{(0)}\subset\overline{F}(M) .

Suppose that there is a positive number \nu such that F_{(\nu)}\neq 0 . We claim
that \nu\leqq c_{2} and c_{1}\leqq c_{2} . For this purpose, let f be a non-trivial function con-
tained in F_{(_{\nu})} . By Proposition 2. 8, we have

(3. 1) r(r+1)\nu(\nu-c_{1})(f,f)+2(r+1)\nu(\coprod_{1}f,f)=(\overline{A}_{1}f,f)\geqq 0 ;

(3. 2) s(s+1)\nu(\nu+c_{2})(f,f)-2(s+1)\nu(\coprod_{2},f,f)=(\overline{A}_{2}f,f)\geqq 0 ,

(3. 3) -s\nu(\coprod_{1}f,f)+r\nu(\coprod_{2}f,f)-rs\nu^{2}(f,f)=(\overline{A}_{3}f,f)\geqq 0

Hence we obtain

\frac{1}{r}(\coprod_{1}f,f)\geqq\frac{1}{2}(c_{1}-\nu)(f,f)i

\frac{1}{s}(\coprod_{2}f,f)\leqq\frac{1}{2}(c_{2}+\nu)(f,f)’.

- \frac{1}{r}(\coprod_{1}f,f)+\frac{1}{s}(\coprod_{2}f,f)\geqq\nu(f,f)

From the second and the third inequalities, we have

\frac{1}{r}(\coprod_{1}f,f)\leqq\frac{1}{2}(c_{2}-\nu)(f,f)

Since \coprod_{1} is a positive semi-definite operator, we have \nu\leqq c_{2} . By using the
first and the fourth inequalities, we have c_{1}\leqq c_{2} . These prove our assertions.
Similarly we can prove that if there is a negative number \nu such that
F_{(y)}\neq 0 , then \nu\geqq-c_{1} and c_{2}\geqq c_{1} . From these facts, we obta\overline{l}n(3) and (4).

Let us prove (2). Assume that c_{1}=c_{2}(=c)>0 . Let \nu be a positive
number such that F_{(\nu)}\neq 0 . Take any f\in F_{(_{\nu})} . It is easily verified that
equalities hold \overline{1}n(3.1) , (3. 2) and (3. 3). Hence it follows from Proposition

2. 6 that f\in\tilde{F}_{(_{\nu})} . By Proposition 2. 8, we have \coprod_{1}f=\frac{r}{2}(c-\nu)f and \coprod_{2}f=

\frac{s}{2}(c+\nu)f. Since A3f=0, we have

\coprod_{1}\coprod_{2}f=\frac{rs}{4}(c-\nu)(c+\nu)f=0 .

If f\neq 0 , then we have \nu=c . We have thus shown that F_{(_{y})}=0 for \nu\neq c,

and F_{(_{\nu})}=\tilde{F}_{(_{y})} . Ill the same manner, we can prove that, for a negative
number \nu , F_{(_{\nu})}=0 except \nu=-c, and F_{(-C)}=F_{(-6)} . We have thus completed
the proof of Proposition 3. 1. q. e . d .

For each \nu\in R , we define a subspace \mathfrak{g}_{(y)} of \mathfrak{g}(M) and a subspace
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\tilde{\mathfrak{g}}_{(\nu)} of Ca(M) respectively by

\mathfrak{g}_{(_{\nu})}=\{u\in \mathfrak{g}(M)|\sqrt{-1}[\xi, u]=\nu u\} ,

\tilde{\mathfrak{g}}_{(_{\nu})}=\{u\in Ca(M)|\sqrt{-1}[\xi, u]=\nu u\}

It is easy to see that the assignment uarrow f_{u} gives an isomorphism of \mathfrak{g}_{(y)}

onto F_{(_{\nu})} and an isomorphism of\mapsto \mathfrak{g}_{(_{\nu})} onto \tilde{F}_{(_{\nu})} .

THEOREM 3. 2. Let M be a compact non-degenerate PC manifold of
index r. Assume that r\geqq 1 and M satisfifies conditions (C. 1) and (C. 2).

(1) \mathfrak{g}(M)=\sum \mathfrak{g}_{(_{\nu})} , Ca(M)= \sum\tilde{\mathfrak{g}}_{(_{y})} (d\iota^{-}rect sum) and d_{\overline{1}}m\tilde{\mathfrak{g}}_{(_{\nu})}=\dim\tilde{\mathfrak{g}}_{(-\nu}

).

Moreover \mathfrak{g}(M) and Ca(M) become graded Lie algebras with respect to
these decompositions.

(2) If an infifinitesimal automorphism X of M is contained in a(M)\cap

\mathfrak{g}_{(0)} , then X satisfifies [X, \Gamma(S^{i})]\subset\Gamma(S^{i}) , \iota^{-}=1,2 .
Assume further that the scalar curvatures \sigma_{1} and \sigma_{2} are equal to real

constants c_{1} and c_{2} .
(3) The case where c_{1}=c_{2}(=c)>0:\mathfrak{g}_{(\nu)}=0 for \nu\neq 0 , - c, c, \mathfrak{g}_{(0)}=\tilde{\mathfrak{g}}_{(0)} ,

\mathfrak{g}_{(c)}=\tilde{\mathfrak{g}}_{(c)} , \mathfrak{g}_{(-C)}=\tilde{\mathfrak{g}}_{(-C)} and \mathfrak{g}(M)=Ca(M)=\mathfrak{g}_{(0)}+\mathfrak{g}_{(C)}+\mathfrak{g}_{(-C)} .
(4) The case where both c_{1} and c_{2} are non-posl-tive-. \mathfrak{g}_{(_{\nu})}=\dot{\check{\mathfrak{g}}}_{(_{y})}=0 for

\nu\neq 0 , \mathfrak{g}_{C0)}=\tilde{\mathfrak{g}}_{(0)} and \mathfrak{g}(M)=Ca(M)=\mathfrak{g}_{(0)} .
(5) The case where c_{1}>{\rm Max}(0, c_{2}):\mathfrak{g}_{(_{\nu})}=0 for \nu>0 or \nu<-c_{1},\tilde{\mathfrak{g}}_{(_{\nu})}=0

for \nu\neq 0 , \mathfrak{g}_{(0)}=\tilde{\mathfrak{g}}_{(0)} and Ca(M)=\mathfrak{g}_{(0)} . The case where c_{2}>{\rm Max}(0, c_{1}):\mathfrak{g}_{(_{y})}=0

for \nu<0 or \nu>c_{2},\tilde{\mathfrak{g}}_{(\nu)}=0 for \nu\neq 0 , \mathfrak{g}_{(0)}=\tilde{\mathfrak{g}}_{(0)} and Ca(M)=\mathfrak{g}_{(0)} .

PROOF. We prove only (2). The other assertions follow immediately
from Proposition 3. 1. Let X be an infinitesimal automorphism of M which
is contained in a(M)\cap \mathfrak{g}_{(0)} . Then we see that the function f_{X} corresponding
to X satisfies \coprod_{1}\coprod_{2}f_{X}=Nf_{X}=0 . By Proposition 2. 4, we have \coprod_{2}\coprod_{1}f_{X}=

\coprod_{1}\coprod_{2}f_{X}=0 . Take any cross section Y (resp. W) of S^{1} (resp. of S^{2}). Then
we have

\nabla_{Y}\nabla_{\overline{W}}f_{X}=\nabla_{W}\nabla_{\overline{Y}}f_{X}=0 ,

which implies that
(d\theta)(\nabla_{Y}X^{S},\overline{W})=(d\theta)(\nabla_{W}X^{S},\overline{Y})=0\eta

,

where X^{S} is the S-component of X. Therefore we have \nabla_{Y}X^{S}\in\Gamma(S^{1}) and
\nabla_{W}X^{S}\in\Gamma(S^{2})- From the fact that X is an \overline{1}nfifinitesimal automorphism and
the fact that P and S are parallel with respect to the canonical affine con-
section \nabla , we obtain
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[X, Y]=[X, Y]^{S}=[f_{X}\xi, Y]^{S}+[X^{s}, Y]^{S}+[\overline{X}^{S}, Y]^{S}

=f_{X}\nabla_{\xi}Y+\nabla_{X}sY-\nabla_{Y}X^{S} .
Since S^{1} is parallel with respect to \nabla , we have [X, Y]\in\Gamma(S^{1}) . Similarly we
obtain [X, W]\in\Gamma(S^{2}) . Therefore we have [X, \Gamma(S^{i})]\subset\Gamma(S^{i}) . q . e . d .

3. 2. Condition (C. 3) and the space F(M) . In the rest of this section,
we further assume the following condition:

(C. 3) The Ricci tensor R^{*} satisfies
R^{*}(X,\overline{Y})=(r+1)c_{1}g(X,\overline{Y}) for any X, Y\in S_{x}^{1}

,\cdot

R^{*}(X,\overline{Y})=(s+1)c_{2}g(X,\overline{Y}) for any X, Y\in S_{xj}^{2}

where c_{1} and c_{2} are real constants.
First of all, we remark the following equalities :

A_{1}=\coprod_{1}^{2}-\coprod_{1}N-(r+1)c_{1}\coprod_{1} .

A_{2}=\coprod_{2}^{2}+\coprod_{2}N-(s+1)c_{2}\coprod_{2} ,

A_{3}=\coprod_{1}\coprod_{2}=\coprod_{2}\coprod_{1} .
\overline{A}_{1}--A_{1}+(r+1)(rN^{2}-rc_{1}N+2\coprod_{1}N) ,

\overline{A}_{2}=A_{2}+(s+1)(sN^{2}+sc_{2}N-2\coprod_{2}N) ,

\overline{A}_{3}=A_{3}-s\coprod_{1}N+r\coprod_{2}N-rsN^{2} .

We also remark that the operators A_{i} , \coprod_{i} and N commute one another.
For each triple (\lambda_{1}, \lambda_{2}, \nu) of real numbers, we define a subspace F_{(\lambda_{1},\lambda_{2},\nu)} of
C^{\infty}(M) by

F_{(\lambda_{1},\lambda_{2},\nu)}= \{f\in C^{\infty}(M)|\prod_{1}f=\lambda_{1}f, \coprod_{2}f=\lambda_{2}f, Nf=\nu f\}

Moreover we define subspaces F^{i} , i=0 , \cdots , 4 of C^{\infty}(M) as follows : First
we put F^{0}=F_{(0,0,0)} . If c_{1}\neq 0 , then we put F^{1}=F_{((r+1)c_{1},0,0)} and F^{3}=F_{(rc_{1},0,-c_{1})} ,
and if c_{1}=0 , then we put F^{1}=F^{3}=0 . S_{\overline{1}}mi1ar1y if c_{2}\neq 0 , then we put F^{2}=

F_{(0,(s+1)c_{2},0)} and F^{4}=F_{(0,sc_{2},c_{2})} , and if c_{2}=0 , then we put F^{2}=F^{4}=0-

PROPOSITION 3. 3. Let M be a compact non-degenerate PC manifold of
index r. Assume that r\geqq 1 and M satisfifies conditions (C. 1), (C 2) and (C_{-}3) .

(1) F(M)= \sum_{i1}^{4}F^{i} ( d\iotarest sum).

(2) F^{0} consists of all constant functions.
(3) If c_{1}\leqq 0 (resp. If c_{2}\leqq 0), then F^{1}=0 (resp. F^{2}=0).
(4) If c_{1}<c_{2} or c_{1}\leqq 0 (resp. If c_{1}>c_{2} or c_{2}\leqq 0), then F^{3}=0 (resp. F^{4}=0).

PROOF. We first show that F^{i}\subset F(M) , i=0, \cdots , 4. Let f\in F^{i}- By
(3. 4), (3. 5) and (3. 6), we have
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A_{i}f=0 , i=1,2,3r
Hence it follows from Proposition 2. 6 that f\in F(M) , which proves our
assertion. Conversely we will show that F(M) \subset\sum_{i}F^{i} . First of all, we

remark that dim F(M)<+\infty and that the operators \coprod_{1} , \coprod_{2} and N are
self-adjoint and leave F(M)invar\overline{l}ant and commute one another. Therefore
we obtain

F(M)= \sum F_{(\lambda_{1},\lambda_{2},\nu)}^{*} ,

where F_{(\lambda_{1},\lambda_{2},\nu}^{*} ) is the subspace of F(M) defined by

F_{(y}^{*}\lambda_{1},\lambda_{2},)=F(M)\cap F_{(_{\lambda_{1},\lambda_{2},\nu})}

Let (\lambda_{1}, \lambda_{2}, \nu) be a triple such that F_{(\lambda_{1},\lambda_{2},\nu)}^{*}\neq 0 . We must show that F_{(\lambda_{1},\lambda_{2},\nu}^{*})

is contained in some F^{i} . Since A_{i}f=0 , we have

(3. 4) \lambda_{1}^{2}-\nu\lambda_{1}-(r+1)c_{1}\lambda_{1}=0f

(3. 5) \lambda_{2}^{2}+\nu\lambda_{2}-(s+1)c_{2}\lambda_{2}=0’.

(3. 6) \lambda_{1}\lambda_{2}=0

Since \coprod_{1} , \coprod_{2}, \overline{\coprod}_{1} and \overline{\coprod}_{2} are positive semi-definite operators, we obtain

(3. 7) \lambda_{1}\geqq 0 ,

(3. 8) \lambda_{2}\geqq 0 .

(3. 9) \lambda_{1}+r\nu\geqq 0 ,

(3. 10) \lambda_{2}-s\nu\geqq 0 .

Moreover since \overline{A}_{i} are posit\overline{l}vesem\overline{l} -definite operators, it follows that

(3. 11) (r+1)(r\nu^{2}-rc_{1}\nu+2\lambda_{1}\nu)\geqq 0 ,

(3. 12) (s+1)(s\nu^{2}+sc_{2}\nu-2\lambda_{2}\nu)\geqq 0 ,

(3. 13) -s\lambda_{1}\nu+r\lambda_{2}\nu-rs\nu^{2}\geqq 0 .

By (3. 6), (3. 7) and (3. 8), it suffices to consider the following three cases.
1] The case where \lambda_{1}=\lambda_{2}=0 : By (3. 9) and (3. 10), we have \nu=0 .
2] The case where \lambda_{1}>0 and \lambda_{2}=0 : By (3. 4), we obtain

\lambda_{1}=\nu+(r+1)c_{1}

Substituting \lambda_{1}=\nu+(r+1)c_{1} into (3. 9), we have

\nu+c_{1}\geqq 0

By (3. 10), we have \nu\leqq 0 . Hence we obtain



Holomorphic vector fifields on real hypersurfaces 83

-c_{1}\leqq\nu\leqq 0

On the other hand, it follows from (3. 11) that

\nu(\nu+c_{1})\geqq 0

From these facts, we see that \nu=0 or \nu=-c_{1} . If \nu=0 , then we have
(\lambda_{1}, \lambda_{2}, \nu)=((r+1)c_{1},0,0) and c_{1}\geqq 0 . If \nu=-c_{1} , then we have (\lambda_{1}, \lambda_{2}, \nu)=

(rc_{1},0, - c_{1}) and c_{1}\geqq 0 . Moreover by (3. 12), we have c_{1}\geqq c_{2} .
3] The case where \lambda_{1}=0 and \lambda_{2}>0 : In the same manner as in 2],

we see that the triple (\lambda_{1}, \lambda_{2}, \nu) coincides with (0, (s+1)c_{2},0) or (0, sc_{2}, c_{2}) .
Furthermore we see that if (\lambda_{1}, \lambda_{2}, \nu)=(0, (s+1)c_{2},0) , then c_{2}\geqq 0 and if (\lambda_{1}, \lambda_{2}, \nu)

=(0, sc_{2}, c_{2}) then c_{2}\geqq 0 and c_{2}\geqq c_{1-}

We have thus shown that F(M) \subset\sum F^{i} and hence have completed the
proof of (1). (3) and (4) follow immediately from the discussions in 1], 2],
and 3]. Let f be a function contained in F^{0} , then we have \coprod_{1}f=\coprod_{2}f=

Nf=0. By Propos\overline{l}tion2.4 , we have \overline{\coprod}_{1}f=\overline{\coprod}_{2}f=0 . Hence it follows that
\nabla f=0 . Thus f is constant, proving (2). q . e . d .

Let f\in F_{(_{\lambda_{1},\lambda_{2},\nu})} . Then we see that \overline{f}\in F_{(\lambda_{1}+r\nu,\lambda_{2}-S\nu,-\nu}). Therefore putting
\tilde{F}^{i}=F^{i}\cap\overline{F}(M) , we obtain

COROLLARY 3. 4. ( 1) F(M) \cap\overline{F}(M)=\sum\tilde{F}^{i} (direct sum).
(2) F^{0}=F^{0}, F^{1}=\tilde{F}^{1} and F^{2}=\tilde{F}^{2}-

(3) If c_{1}=c_{2}, then F^{3}=\tilde{F}^{3} and F^{4}=\tilde{F}^{4} .
(4) If c_{1}\neq c_{2}, then \tilde{F}^{3}=\tilde{F}^{4}=0 .

3. 3. Condition (C. 3) and the structure theorems on the Lie algebras
\mathfrak{g}(M) and Ca(M) . Let us denote by \mathfrak{g}^{i} the subspace of \mathfrak{g}(M) which cor-
responds to F^{i} through the isomorphism uarrow f_{u} of \mathfrak{g}(M) onto F(M) .

THEOREM 3. 5. Let M be a compact non-degenerate PC manifold of
index r. Assume that r\geqq 1 and M satisfies conditions (C. 1), (C. 2) and
(C. 3).

(1) \mathfrak{g}(M)=\sum_{i=1}^{4}\mathfrak{g}^{i} (vector space direct sum).

(2) \mathfrak{g}^{0}=\{C\xi\} , \mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}=\{u\in \mathfrak{g}(M)|[\xi, u]=0\}(=\mathfrak{g}_{(0)}) . If c_{1}\neq 0 , then
\mathfrak{g}^{3}=\{u\in \mathfrak{g}(M)|\sqrt{-1}[\xi, u]=-c_{1}u\}(=\mathfrak{g}_{(-C_{1})}) . If c_{2}\neq 0 , then \mathfrak{g}^{4}=\{u\in \mathfrak{g}(M)|\sqrt{-1}

[\xi, u]=c_{2}u\}(=\mathfrak{g}_{(c_{2})}) .
(3) If u\in \mathfrak{g}^{1} or u\in \mathfrak{g}^{3} (resp. If u\in \mathfrak{g}^{2} or u\in \mathfrak{g}^{4}), then the cross section

U^{S} of S corresponding to u satisfifies U_{x}^{s}\in S_{x}^{1} (resp. U_{x}^{s}\in S_{x}^{2}) at any point x
of M.

(4) \mathfrak{g}^{i} , i=0,1,2, are subalgebras of \mathfrak{g}(M) , and \mathfrak{g}_{(0)}=\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2} (direct
sum of Lie algebras).
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(5) [\mathfrak{g}^{\overline{l}}, \mathfrak{g}^{3}]\subset \mathfrak{g}^{3}, i=0,1,2, and [\mathfrak{g}^{i}, \mathfrak{g}^{4}]\subset \mathfrak{g}^{4} , i=0,1,2 .
(6) If c_{1}\leqq 0 (resp. If c_{2}\leqq 0), then \mathfrak{g}^{1}=0 (resp. \mathfrak{g}^{2}=0) -

(7) If c_{1}<c_{2} or c_{1}\leqq 0 (resp. If c_{2}<c_{1} or c_{2}\leqq 0), then \mathfrak{g}^{3}=0 (resp. \mathfrak{g}^{4}=0).
(8) If c_{1}=c_{2}>0 , then [\mathfrak{g}^{3}, \mathfrak{g}^{4}]\subset \mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2} .

PROOF. (1) follows immediately from (1) of Proposition 3. 3.
From (2) of Proposition 3_{-}3 , we have \mathfrak{g}^{0}=\{C\xi\} . It follows from PrO-

position 3. 3 that F^{0}+F^{1}+F^{2}=F_{(0)} , if c_{1}\neq 0 , then F^{3}=F_{(-C_{1})} , and if c_{2}\neq 0 ,

then F^{4}=F_{(c_{2})} . This implies that \mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}=\mathfrak{g}_{(0)} , if c_{1}\neq 0 , then \mathfrak{g}^{3}=\mathfrak{g}_{(-c_{1})} ,

and if c_{2}\neq 0 then \mathfrak{g}^{4}=\mathfrak{g}_{(c_{2})} , prov\overline{l}ng(2) .
Now let us prove (3). Let u\in \mathfrak{g}^{1} . Then the corresponding function

f_{u} satisfies \coprod_{2}f_{u}=0 , which implies that \nabla - f_{u}=0 for any \overline{Y}\in\overline{S}_{x}^{2} . We have
(d\theta)(U_{x}^{S},\overline{Y})=-\nabla_{\overline{Y}}f_{u}=0 :

and hence U_{x}^{s}\in S_{s}^{1} . The other assertions of (3) are quite similar.
Let u , v\in \mathfrak{g}_{([]\rangle} . Let us denote by U and V the cross sections of T(=S

+P) which correspond to u and v . We first remark that \xi f_{u}=\xi f_{v}=0 and
[\xi, U^{S}]=[\xi, V^{S}]=0 and [U, V]= (U^{S}f_{v} -- V^{S}f_{u})\xi+[U^{S}, V^{S}] . Therefore we ob-
tain f_{[u,v]}=U^{S}f_{v}-V^{S}f_{u} and Nf_{[u,v]}=0 .

Assume that u, v\in \mathfrak{g}^{1} . By a direct calculation, we have

\coprod_{1}(U^{S}f_{v})=U^{S}(\coprod_{1}f_{v})+\sqrt{-1}\sum_{a,b}\nabla_{a}\nabla_{\overline{\sigma}},f_{u}\nabla_{b}\nabla_{\overline{a}}f_{v}+U^{S}(Nf_{v})+\sqrt{-1}\coprod_{1}f_{u}Nf_{v}

=(r+1)c_{1}U^{S}f_{v}+ \sqrt{-1}\sum_{\alpha,b}\nabla_{a}\nabla_{\overline{b}}f_{u}\nabla_{b}\nabla_{\overline{a}}f_{v}

In the same manner, we obtain

\coprod_{1}(V^{S}f_{u})=(r+1)c_{1}V^{S}f_{u}+\sqrt{-1}\sum_{a,b}\nabla_{a}\nabla_{\overline{b}}f_{u}\nabla_{b}\nabla_{\overline{a}}f_{v} ,

Therefore we obtain
\coprod_{1}f_{[u,v]}=(r+1)c_{1}f_{\iota u,vI} .

Sim\overline{l}larly we obtain
\coprod_{2}f_{[u,v]}=0 .

From these facts we obtain f_{[u,v]}e Fl, implying that [\mathfrak{g}^{1}, \mathfrak{g}^{1}]\subset \mathfrak{g}^{1} . In the same
manner, we have [\mathfrak{g}^{2}, \mathfrak{g}^{2}]\subset \mathfrak{g}^{2} .

Let u\in \mathfrak{g}^{1} and v\in \mathfrak{g}^{2} By (3), we have U_{x}^{S}\in S_{x}^{1} and V_{x}^{S}\in S_{x}^{2} . Since \overline{\coprod}_{2}f_{u}=

\overline{\coprod}_{1}f_{v}=0 , we have
fi_{u,v\overline{\rfloor}}=U^{S}f_{v}-V^{S}f_{u}=0’.

implying that [u, v]=0 . Therefore
proved (4).

we have [\mathfrak{g}^{1}, \mathfrak{g}^{2}]=0 . We have thus
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(5) follows directly from (2). (6) and (7) are also immediate from (3)
and (4) of Proposition 3.3. Finally (8) follows from (2). q . e . d .

As a consequence of Corollary 3. 4, we have

THEOREM 3. 6. Let M be a compact non-degenerate PC manifold of
index r. Assume that r\geqq 1 and Msat\iota^{-}sfifies conditions (C. 1), (C. 2) and
(C. 3) -

(1) If c_{1}=c_{2} , then Ca(M)= \sum_{i1}^{4}\mathfrak{g}^{i} . In particular, if c_{1}=c_{2}\leqq 0 , then
Ca(M)=\mathfrak{g}(M)=\mathfrak{g}^{0} .

(2) If c_{1}\neq c_{2}, then Cc\iota(M)=\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2} .

\S 4. Applications and examples (the non-degenerate case)

4. 1. Some general facts on holomorphic line bundles. Let \overline{M} be an
(n-1) -dimensional complex manifold, and F a holomorphic line bundle over
\overline{M} with a hermitian metric h . Let P be the principal C^{*}=GL(1, C) -bundle
associated with F, and \pi the projection of P onto \overline{M}. For each a\in C^{*} ,
let R_{a} denote the right translation, that is, R_{a}x=xa , x\in P .

Let \{U_{\alpha}\} be an open covering of \overline{M} (with sufficiently small U_{\alpha} ’s), and,
for each \alpha , let e^{\alpha} be a local frame of F defined on U_{\alpha} . Let us consider
the corresponding holomorphic trivializations xarrow(\pi(x), z^{\alpha}(x)) of \pi^{-1}(U_{\alpha}) onto
U_{a}\cross C^{*} , and the corresponding system of transition functions, \{\tau_{a\beta}\} . Then
we have

z^{\alpha}(xa)=z^{\alpha}(x)a , x\in\pi^{-1}(U_{\alpha}) , a\in C^{*} ,

z^{\alpha}(x)=\tau_{\alpha\beta}(\pi(x))z^{\beta}(x) , x\in\pi^{-1}(U_{\alpha}\cap U_{\beta})

For each \alpha we define a function h^{\alpha} on U_{\alpha} by h^{\alpha}(y)=h(e_{y}^{a}, e_{\tau}^{\alpha},) , y\in U_{\alpha} ,

and put \omega_{\alpha}=\partial logh^{\alpha}- As is well known, the 1-forms \pi^{*}\omega^{\alpha}+\frac{1}{z_{\alpha}}dz^{a} on
\pi^{-1}(U_{\alpha}) define a global 1-form \omega on P, which is a connection form in the
principal bundle P and represents the canonical connection of the hermitian
holomorphic line bundle F (cf. [7]). Let us now consider the curvature
form \Omega=d\omega of \omega . Then we know that there is a unique 2-form \Phi on \overline{M}

such that \pi^{*}\Phi=\frac{\sqrt{-1}}{2\pi}\Omega , which \overline{1}S usually called the first Chern form of F.
Note that \Phi is a real form of type (1. 1).

Let M be the U(1) -reduction of P defined by h, which is a real hyper-
surface of P, and let S be the induced PC structure on M. It is easy to
see that M\cap\pi^{-1}(U_{\alpha})\overline{1}S defined by the equation \pi^{*}h^{\alpha}|z^{\alpha}|^{2}=1 . From this fact
we easily obtain
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PROPOSITION 4. 1 (cf. [7]). For each x\in M, S_{x} consists of all X\in

T^{1,0}(P)_{x} such that \omega(X)=0 .
Let \xi_{P} be the vector field on P induced from the 1-parameter group

of right translations R_{e\swarrow\overline{-1}l} , t\in R . Clearly \xi_{P} is tangent to M, and hence
the restriction \xi of \xi_{P} to M becomes an infinitesimal automorphism of the
PC manifold M. We define a 1-form \theta on M by

\theta=-\sqrt{-1}i^{*}\omega ,

i being the injection Marrow P. Then we have \theta(\xi)=1 and \theta(S)=0 (Proposi-

tion 4. 1). Especially we see from this fact that M satisfies condition (C. 1)

with respect to \xi . Let L be the Levi form on M corresponding to the
real 1-form \theta . Then we have

PROPOSITION 4_{-}2 . L(X, Y)=-\Omega(X,\overline{Y}) , X, Y\in S_{x} .
Let us now consider the Lie algebra \mathfrak{g}(M) of all holomorphic vector

fields on M and its subspaces \mathfrak{g}_{(_{\nu})} (see \S 1 and \S 3). From the definition of
\xi we easily obtain

PROPOSITION 4. 3. (1) If \nu is not an integer, then \mathfrak{g}_{(_{y})}=0 .
(2) If \nu is equal to an integer m, then

\mathfrak{g}_{(m)}=\{u\in \mathfrak{g}(M)|R_{a}.u=a^{m}u , u\in U(1)\}

We denote by \mathfrak{g}(P) the Lie algebra of all holomorphic vector fields on
P, and, for any integer m, define a subspace \mathfrak{g}(P)_{(m)} by

\mathfrak{g}(P)_{(m)}=\{X\in \mathfrak{g}(P)|R_{a}.X=a^{m}X,a\in C^{*}\}
‘

Then we have

PROPOSITION 4. 4. The assignment Xarrow X|M gives an isomorphism of
\mathfrak{g}(P)_{(m)} onto \mathfrak{g}_{(m)} .

By virture of this fact the study of \mathfrak{g}_{(m)} is reduced to that of \mathfrak{g}(P)_{(m)} .
We denote by C^{\infty}(P)_{(m)} the space of all funct\overline{l}onsf on P such that

R_{a}^{*}f=a^{-m}f, a\in C^{*} . We will construct a linear mapping farrow\tilde{f} of C^{\infty}(P)_{(m)}

to \Gamma(F^{m}) , where F^{m} denotes the m-th tensor product of F if m\geqq 0 , and
the (-m)-th tensor product of the dual bundle F^{*} of F if m<0 . Take
any f\in C^{\infty}(P)_{(m)} . For each \alpha we define a function f^{\alpha} on \pi^{-1}(U_{\alpha}) by f^{\alpha}=

(z^{\alpha})^{m}f. Then we have R_{a}^{*}f^{\alpha}=f^{a} , a\in C^{*} , and hence there \overline{1}S a unique function
\tilde{f}^{\alpha} on U_{\alpha} such that f^{\alpha}=\pi^{*}\tilde{f}^{a} . We have \tilde{f}^{a}=(\tau_{\alpha\beta})^{m}\tilde{f}^{\beta} . Therefore the local
cross sections \tilde{f}^{\alpha}\otimes(e^{\alpha})^{m} of F^{m} give rise to a global cross section \tilde{f} of F^{m} ,
where (e^{\alpha})^{m} denotes the local frame of F^{m} naturally induced from e^{\alpha} . This
completes our construction. It is easy to see that the assignment farrow; gives
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an isomorphism of C^{\infty}(P)_{(m)} onto \Gamma(F^{m}) and that f is holomorphic if and
only if \tilde{f} is holomorphic.

We now denote by \Gamma(T^{1,0}(P))_{(m)} the space of all cross sections X of
T^{1,0}(P) such that R_{a^{s}}X=a^{m}X, a\in C^{*} . We construct a linear mapping Xarrow X

of \Gamma(T^{1,0}(P))_{(m)} to \Gamma(T^{1,0}(\overline{M})\otimes F^{m}) as follows : For each \alpha we define a
vector field X^{a} on \pi^{-1}(U_{\alpha}) by X^{\alpha}=(z^{\alpha})^{m}X. Then we see as above that there
is a un\overline{l}que vector field X^{\alpha} on U_{\alpha} such that X^{\alpha}=\pi_{*}(X^{\alpha}) and that the local
cross sections X^{\alpha}\otimes(e^{\alpha})^{m} of T^{1,0}(\overline{M})\otimes F^{m} give rise to a global cross section
X of T^{1,0}(\overline{M})\otimes F^{m} completing our construction. It is easy to see that if X
is holomorphic, so is \tilde{X}.

For any X\in\Gamma(T^{1,0}(P))_{(m)} we put \rho_{X}=\omega(X) , which is an element of
C^{\infty}(P)_{(m)} . Then we notice that the assignment Xarrow(X,\tilde{\rho}_{X}) gives an isomor-
phism of \Gamma(T^{1,0}(P))_{(m)} onto \Gamma(T^{1,0}(\overline{M})\otimes F^{m})\cross\Gamma(F^{m}) .

As we have just seen, the mapping Xarrow X induces a 1\overline{1}near mapping of
\mathfrak{g}(P)_{(m)} to \Gamma_{hol}(T^{1,0}(\overline{M})\otimes F^{m}) , which we denote by \kappa_{m} . As before let \Phi be
the Chern form of F. Let us assume that \Phi_{x} is non-degenerate at any
point x of \tilde{M}. Then we have a linear isomorphism \lrcorner\Phi of T^{1,0}(\overline{M})\otimes F^{m}

onto (T^{0,1}(\tilde{M})^{*}\otimes F^{m}) , which is naturally induced from the isomorphism Xarrow

X\lrcorner\Phi of T^{1,0}(\overline{M}) onto (T^{0,1}(\overline{M}))^{*} . Let \overline{\partial} : \Gamma(F^{m})arrow\Gamma(T^{0,1}(\overline{M}))^{*}\otimes F^{m}) be the
Cauchy-Riemann operator, and let \xi_{P}^{(1,0)} be the (1, 0) -part of the real vector
field \xi_{P-} Then the next theorem determines the image and the kernel of
the linear mapping \kappa_{m} .

THEOREM 4. 5. Assume that \Phi_{x}\iota^{-}s non-degenerate at any point x of \overline{M}.
(1) Im \kappa_{m} consists of all Y\in\Gamma(T^{1,0}(\overline{M})\otimes F^{m}) such that Y\lrcorner\Phi is \overline{\partial}-exact.
(2) Ker \kappa_{m} consists of all holomorphic vector fifields of the form \rho\xi_{P}^{(1,0)} ,

where \rho is a holomorphic function in C^{\infty}(P)_{(m)} . Hence Ker \kappa_{m} is isomorphic
to \Gamma_{hol}(F^{m}) .

PROOF. Let X\in \mathfrak{g}(P)_{(m)} . If we put \psi_{X}=X\lrcorner\Omega , we see that \psi_{X} is a
1-form of type (0, 1) on P, and satisfies: \psi_{X}(\xi_{P})=0 and R_{a}^{*}\psi_{X}=a^{-m}\psi_{X}, a\in C^{*} .
For each \alpha we define a 1-form \psi_{X}^{\alpha} on \pi^{-1}(U_{\alpha}) by \psi_{X}^{\alpha}=(z^{\alpha})^{m}\psi_{X}. Then it
follows that there is a unique 1-form \tilde{\psi}_{X}^{\alpha} of type (0, 1) on U_{\alpha} such that

\pi^{*}\tilde{\psi}_{X}^{\alpha}=\psi_{X}^{\alpha}. Since \pi^{*}\Phi=\frac{\sqrt{-1}}{2\pi}\Omega , we easily obtain

X \lrcorner\Phi=\frac{\sqrt{-1}}{2\pi}\tilde{\psi}_{X}^{\alpha}\otimes(e^{a})^{m} on U_{a}t

Since X is holomorphic, we have [X,\overline{Y}]\in\Gamma(T^{0,1}(P)) for any \overline{Y}\in\Gamma(T^{0,1}(P)) ,
and hence
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\psi_{X}(\overline{Y})=\Omega(X,\overline{Y})=X\omega(\overline{Y})-\overline{Y}\omega(X)-\omega([X,\overline{Y}])

=-\overline{Y}\rho_{X} ,

mean\overline{l}ng that \psi_{X}=-\overline{\partial}\rho_{X}. Therefore we have \tilde{\psi}_{X}^{\alpha}=-\overline{\partial}\tilde{\rho}_{X}^{\alpha}, and hence

\tilde{X}\lrcorner\Phi=-\frac{\sqrt{-1}}{2\pi}\overline{\partial}\tilde{\rho}_{X} .

Conversely let Y be a holomorphic cross section of T^{1,0}(\overline{M})\otimes F^{m} such
that Y\lrcorner\Phi is \overline{\partial} -exact. Take a cross section \tilde{\rho} of F^{m} such that

Y \lrcorner\Phi=-\frac{\sqrt{-1}}{2\pi}\overline{\partial}\tilde{\rho} .

As we have remarked before, we can find a unique X\in(T^{1,0}(P))_{(m)} such that
\tilde{X}=Y and \tilde{\rho}_{X}=\tilde{\rho} . We show that X is holomorphic, which will complete the
proof of (1).

Fix \alpha and consider a coordinate system w^{1} , \cdots , w^{n-1} on U_{\alpha} . Then the
vector field X^{\alpha} may be expressed as follows:

X^{\alpha}= \sum_{i}\tilde{\xi}_{i}\frac{\partial}{\partial w^{i}}

Furthermore the n functions w^{i} , z^{\alpha} form a coordinate system on \pi^{-1}(U_{\alpha}) ,
and the vector field X^{a} may be expressed as follows:

X^{\alpha}= \sum_{i}\xi_{i}\frac{\partial}{\partial w^{i}}+\eta\frac{\partial}{\partial z^{a}}

For our purpose it suffices to prove that X^{\alpha} is holomorphic, i. e. , the func-
tions \xi_{i} and \eta are all holomorphic. Since \pi_{*}X^{\alpha}=\tilde{X}^{\alpha} , we have \xi^{i}=\pi^{*}\tilde{\xi}^{i} .
Since X^{\alpha} is holomorphic, we see that \xi^{i} are holomorphic.

If we put \eta^{\alpha}=\eta/z^{\alpha} , we have R_{a}^{*}\eta=\eta\alpha\alpha , a\in C^{*} . Hence there is a unique

function \tilde{\eta}^{\alpha} on U_{\alpha} such that \eta^{a}=\pi^{*}\tilde{\eta}^{a} . Since \omega=\pi^{*}\omega^{a}+\frac{1}{z^{\alpha}}dz^{\alpha} , we have

\omega(X^{\alpha})=\pi^{*}(\omega^{\alpha}(\tilde{X}^{\alpha}))+\pi^{*}\tilde{\eta}^{\alpha}

On the other hand we have
\omega(X^{\alpha})=(z^{\alpha})^{m}\omega(X)=(z^{\alpha})^{m}\rho_{X}=\rho_{X}^{\alpha}=\pi^{*}\tilde{\rho}_{X}^{\alpha} .

Hence it follows that \tilde{\eta}^{\alpha}=\tilde{\rho}_{X}^{\alpha}-\omega^{\alpha}(X^{\alpha}) . Since \tilde{X}^{a} is ho1omorph_{1}^{-}c , we have

\overline{Y}\omega^{\alpha}(\tilde{X}^{\alpha})=-d\omega^{\alpha}(\tilde{X}^{\alpha},\overline{Y})+X^{\alpha}\omega^{a}(\overline{Y})-\omega^{\alpha}([X^{\alpha},\overline{Y}])

=-d\omega^{\alpha}(\tilde{X}^{\alpha},\overline{Y})=2_{\pi}\sqrt{-1}\Phi(\tilde{X}^{\alpha},\overline{Y})=\overline{Y}\tilde{\rho}_{X}^{\alpha} .
where \overline{Y}\in\Gamma(T^{0,1}(\overline{M})) . This means that \tilde{\eta}^{\alpha} and hence \eta are holomorphic.
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We have thus shown that X is holomorphic, and hence have completed
the proof of (1).

It remains to prove (2). Let X\in \mathfrak{g}(P)_{(m)} . Then we see that X\in Ker\kappa_{m}

if and only l-f \pi_{*}X^{\alpha}=\tilde{X}^{\alpha}=0 . Clearly this last condition means that X is
of the form \rho\xi_{P}^{(1,0)} , where \rho is a holomorphic function on P and \rho\in C^{\infty}(P)_{(m)} .
These prove (2). q . e . d .

4. 2. Non-degenerate PC manifolds associated with pairs of positive line
bundles. For each i=1 or 2, let \overline{M}_{i} be a compact complex manifold of
dimension r_{i} , and let F_{i} be a holomorphic line bundle over \overline{M}_{i} with a
hermitian metric h_{i} . We assume that the first Chern form \Phi_{i} of the her-
mitian holomorphic line bundle F_{i} is positive (cf. [16]).

Let \tilde{g}_{i} be the K\"ahlerian metric on \overline{M}_{i} associated with \Phi_{i} , and let (\overline{M},\tilde{g})

be the product of the two K\"ahlerian manifolds (\overline{M}_{1},\tilde{g}_{1}) and (\overline{M}_{2},\tilde{g}_{2}) . For each
point y=(y^{1}, y^{2})\in\overline{M}=\overline{M}_{1}\cross\overline{M}_{2} , we define a 1-dimensional vector space F_{y} by

F_{y}=(F_{1})_{y^{1}}\otimes(F_{2})_{y^{2}}^{*} ,

(F_{2})_{y^{2}}^{*} being the dual space of (F_{2})_{y^{2}} , and put F= \bigcup_{2},F_{y} . Then F is a hol0-
morphic line bundle over \overline{M}. Let (h_{2})^{*} be the hermitian metric of the dual
bundle (F_{2})^{*} of F_{2} which is naturally induced from h_{2} . Then we define
a hermitian metric h of F by

h_{y}=(h_{1})_{y^{1}}\otimes(h_{2})_{y^{2}}^{*} ,

or
h(u\otimes v, u\otimes v)=h_{1}(u, u)h_{2}^{*}(v, v) .

where u\in(F_{1})_{y^{1}} and v\in(F_{2})_{y^{2}}^{*} .
In this paragraph we consider the PC manifold M which is associated

with the hermitian holomorphic line bundle F over \overline{M}, thus obtained. Recall
that M satisfies condition (C.1).

PROPOSITION 4. 6. The PC manifold M is non-degenerate of index
r_{1} , and satisfifies condition (C_{-}2) .

PROOF. Let x be any point of M. For i=1 or 2, we define a subspace
S_{x}^{i} of S_{x} as follows: We first remark that the differential \pi_{*}’ of the projec-
tion \pi’ : Marrow\overline{M} maps S_{x} isomorphically onto T^{1,0}(\overline{M})_{y} , where y=\pi’(x) , and
that T^{1,0}(\overline{M})_{y} is naturally decomposed as follows:

T^{1,0}(\overline{M})_{y}=T^{1,0}(\overline{M}_{1})_{y^{1}}+T^{1,0}(\overline{M}_{2})_{y^{2}} ,

where y=(y^{1}, y^{2}) . Now S_{x}^{i} is defined to be the subspace of S_{x} which cor-
responds to the subspace T^{1,0}(\overline{M}_{i})_{y^{i}} of T^{1,0}(\overline{M})_{y} through the isomorphism
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\pi_{*}’|S_{x} . It is clear that S^{i}=\cup S_{x}^{i} is a subbundle of S and that S=S^{1}+S^{2}
x

(direct sum). Let us apply Proposition 4. 2 to the three line bundles F^{1} , F^{2}

and F. Then it is not difficult to see that the Levi form L_{x} of M at x
is negative defifin\overline{l}te (resp. positive definite) on S_{x}^{1} (resp. on S_{x}^{2}) and that S_{x}^{1}

and S_{x}^{2} are mutually orthogonal with respect to L_{x} , implying that M is
non-degenerate of index r_{1} . Furthermore it is not difficult to see that both
S^{1} and S^{2} are parallel with respect to the canonical affine connection \nabla of
(M, \xi) . Thus we have seen that M satisfies condition (C. 2). q . e . d .

Hereafter we assume that both \overline{M}_{1} and \tilde{M}_{2} are Einstein manifolds-,
fl_{i}*=(r_{i}+1)c_{i}\tilde{g}_{i} (i=1,2) ,

where fl_{i}* are the Ricci tensors of the K\"ahlerian manifolds \overline{M}_{i} , and c_{i} are
real constants. A direct calculation shows that the Ricci tensor of the
canonical affine connection \nabla satisfies the equalities

R^{*}(X,\overline{Y})=(r_{i}+1)c_{i}g(X,\overline{Y}) , X, Y\in S_{x}^{i}(i=1,2),\cdot

implying that M satisfies condition (C. 3). Therefore we know from Theorem
3. 5 that the Lie algebra \mathfrak{g}(M) is decomposed as follows:

\mathfrak{g}(M)=\sum_{i=0}^{4}\mathfrak{g}^{i}

THEOREM4.7- (1) If c_{1}>0 (resp. If c_{2}>0), then \mathfrak{g}^{1} (resp. \mathfrak{g}^{2}) is
isomorphic to \Gamma_{hol}(T^{1,0}(\overline{M}_{1})) (resp. to \Gamma_{hol}(T^{1,0}(\tilde{M}_{2})) ). If c_{1}\leqq 0 (resp. If c_{2}\leqq 0),
then \mathfrak{g}^{1}=0 (resp. \mathfrak{g}^{2}=0).

(2) If \mathfrak{g}^{3}\neq 0 (resp. If \mathfrak{g}^{4}\neq 0), then \overline{M}_{1} (resp. \overline{M}_{2}) is biholomorphic to
the r_{1} -dimensional complex projective space P^{r_{1}}(C) (resp. to the r_{2}-dimensional
complex projective space P^{r_{2}}(C)) , and correspondingly F_{1} (resp. F_{2}) is \iota^{-}so-

morphic to the hyperplane bundle H_{1} over P^{r_{1}}(C) (resp- to the hyperplane
bundle H_{2} over P^{r_{2}}(C)) .

PROOF. Assume that c_{1}>0 . Let u\in \mathfrak{g}^{1} . Since \mathfrak{g}^{1}\subset \mathfrak{g}_{(0)} , we have a
unique element X of \mathfrak{g}(P)_{(0)} such that X|M=u . We claim that (\kappa_{0}(X))_{y}\in

T^{1.0}(ffi)_{y^{1}} for any y=(y^{1}, y^{2})\in\overline{M}. Indeed the cross section U^{S} of S cor-
responding to u satisfies U_{x}^{S}\in S_{x}^{1} , which implies that \kappa_{0}(X)_{y}\in T^{1,0}(\overline{M})_{y} . Let
us remark that \Gamma_{hol}(T^{1.0}(\overline{M})) is naturally decomposed as follows :

\Gamma_{hol}(T^{1,0}(\overline{M}))=\Gamma_{hot}(T^{1,0}(\overline{M}_{1}))+\Gamma_{hol}(T^{1,0}(\overline{M}_{2}))

(direct sum). Hence we have \kappa_{0}(X)\in\Gamma_{hot}(T^{1,0}(\overline{M}_{1})) .
Let us prove that the assignment uarrow\kappa_{0}(X) gives an isomorphism of \mathfrak{g}^{1}

onto \Gamma_{hol}(T^{1,0}(\overline{M}_{1})) . Suppose that \kappa_{0}(X)=0 . Let f_{u} be the element of F^{1}
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which corresponds to u . It can be easily seen that U^{S}=0 and hence \coprod_{1}f_{u}=0-

Since f_{u}\in F^{1} , we have \coprod_{1}f_{u}=(r_{1}+1)c_{1}f_{u} , and hence f_{u}=0 . This implies
that u=0. We have thus shown that the linear mapping uarrow\kappa_{0}(X) of \mathfrak{g}^{1}

to \Gamma_{hol}(T^{1,0}(\overline{M})) is injective. Take any Y\in\Gamma_{hol}(T^{1,0}(\overline{M}_{1})) . We remark that
H^{0,1}(\overline{M}) is naturally decomposed as follows:

H^{0,1}(\tilde{M})=H^{0,1}(\tilde{M}_{1})+H^{0,1}(\overline{M}_{2}) (direct sum)

It is easy to see that the cohomology class [ Y\lrcorner\Phi] determined by the closed
1-form Y\lrcorner\Phi is contained in H^{0,1}(\overline{M}_{1}) . Since c_{1}>0 , we see that the canonical
line bundle k(\overline{M}_{1}) of \overline{M}_{1} 1-S a negative line bundle. By Kodaira’s vanishing
theorem, we have H^{0,1}(\tilde{M}_{1})=0 and hence Y\lrcorner\Phi is \overline{\partial}-exact. It follows from
Theorem 4. 5 that Y\in{\rm Im}\kappa_{0} , which \overline{1}mplies that \kappa_{0}(\mathfrak{g}^{1})=\Gamma_{hol}(T^{1,0}(\overline{M}_{1})) . In
the same manner, we can prove that if c_{2}>0 , then \mathfrak{g}^{2} is isomorphic to
\Gamma_{hol}(T^{1,0}(\overline{M}_{2}))- Furthermore it follows from Theorem 3. 5 that if c_{1}\leqq 0

(resp. if c_{2}\leqq 0 ), then \mathfrak{g}^{1}=0 (resp. \mathfrak{g}^{2}=0). We have thus proved (1).

To prove (2), we first remark that \chi_{1}=(r_{1}+1)c_{1}\Phi_{1} , where \chi_{1} (resp. \Phi_{1} )

denotes the Ricci form of the K\dot{\overline{a}}hlerian manifold \overline{M}_{1} (resp. the first Chern
form of the herm\overline{l}tian holomorphic line bundle F_{1}). Assume that \mathfrak{g}^{3}\neq 0 .
From Theorem 3. 5 and Proposition 4. 3 and the fact that \mathfrak{g}^{3}\subset \mathfrak{g}_{(-C_{1})} , it
follows that c_{1} is a positive integer. Hence we have the following inequality

\chi_{1}\geqq(r_{1}+1)\Phi_{1}

According to the result of Kobayashi-Ochiai [8], we see that \overline{M}_{1} is
biholomorphic to the complex projective space P^{r_{1}}(C) and F_{1} is isomorphic
to the hyperplane bundle H_{1} over P^{r_{1}}(C) . In the same manner, we see
that if \mathfrak{g}^{4}\neq 0 , then M_{2} is biholomorphic to P^{r_{2}}(C) and F_{2} is isomorphic to

the hyperplane bundle H_{2} over P^{r_{2}}(C) . q . e . d .
4. 3. Special cases of 4. 2. For i=1 or 2, let \overline{M}_{i} be the r_{i} rrdimensional

complex projective space P^{r_{i}}(C) , and let F_{i} be the k_{i} -th tensor product
(H_{i})^{k_{i}} of the hyperplane bundle over P^{r_{i}}(C) , where k_{i}\geqq 1 . Let z_{0}^{i} , \cdots , z_{r_{i}}^{i} be
homogeneous coordinates of P^{r_{i}}(C) , and for each 0\leqq\alpha\leqq r_{i} , let U_{\alpha}^{i} be the
open subset of P^{r_{i}}(C) defined by z_{\alpha}^{i}\neq 0 . We define a function h_{\alpha}^{i} on U_{\alpha}^{i} by

h_{\alpha}^{i}=( \sum_{\gamma=0}^{r_{i}}|z_{r}^{i}|^{2}/|z_{\alpha}^{i}|^{2})^{k_{i}}

Then we see that the functions h_{\alpha}^{i} , \alpha=0 , \cdots , r_{\overline{l}} , satisfy the relations

h_{\alpha}^{i}=h_{\beta}^{i}(|z_{\beta}^{i}|/|z_{\alpha}^{i}|)^{2k_{i}} on U_{\alpha}^{i}\cup U_{\beta}^{i} ,

and hence define a hermitian metric of the line bundle F_{i} .
In this paragraph we apply the arguments in 4. 2 to the hermitian
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holomorphic line bundles F_{i} over \tilde{M}_{i} , thus obtained. First of all, we remark
that the K\"ahlerian metric \tilde{g}_{i} are of constant holomorphic sectional curvature
2/k_{i} , from which follows that

\tilde{R}_{i}^{*}=\frac{r_{i}+1}{k_{i}}\tilde{g}_{i} .

We will calculate the dimensions of the subspaces \mathfrak{g}^{i} of \mathfrak{g}(M) . By (2) of
Theorem 3. 5 we have dim \mathfrak{g}^{0}=1 . By (1) of Theorem 4. 7 we have dim \mathfrak{g}^{1}=

dim \Gamma_{hol}(T^{1,0}(P^{r_{1}}(C))) . It is well known that \Gamma_{hol}(T^{1,0}(P^{r_{1}}(C)) is isomorphic to
\mathfrak{g}\mathfrak{l}(r_{1}+1, C)/center . Hence we have dim \mathfrak{g}^{1}=\dim\Gamma_{hol}(T^{1,0}(P^{r_{1}}(C)))=r_{1}(r_{1}+2) ,
and similarly dim \mathfrak{g}^{2}=r_{2}(r_{2}+2) . Let us now calculate dim \mathfrak{g}^{3} . We first recall
that \mathfrak{g}^{3}=\mathfrak{g}_{(-}\frac{1}{k_{i}}) \cong \mathfrak{g}(P)_{(\frac{1}{k_{i}})}- ((2) of Theorem 3. 5 and Proposition 4. 4). From
(1) of Proposit\overline{l}on4.3 it follows that if k_{1}\geqq 2 , then \mathfrak{g}^{3}=0 . Thus we con-
sider the case where k_{1}=1 . We assert that the linear mapping \kappa_{-1} gives
an \overline{1}somorphism of \mathfrak{g}(P)_{(-1)} onto \Gamma_{hol}(T^{1,0}(\overline{M})\otimes F^{-1}) . Indeed by the K\"unneth

formula we have

H^{0}(\overline{M}, F^{-1})\cong H^{0}(P^{r_{1}}(C), H_{1}^{-1})\otimes H^{0}(P^{r_{2}}(C) , H_{2}^{k_{2}})j

H^{1}(\overline{M}, F^{-1})\cong H^{0}(P^{r_{1}}(C), H_{1}^{-1})\otimes H^{1}(P^{r_{2}}(C) , H_{2}^{k_{2}})

+H^{1} (P^{r_{1}}(C) , H_{1}^{-1})\otimes H^{0}(P^{r_{2}}(C), H_{2}^{k_{2}})

Since H^{0}(P^{r_{1}}(C), H_{1}^{-1})=H^{1}(P^{r_{1}}(C), H_{1}^{-1})=0 (cf. [1]), it follows that H^{0}(\overline{M}, F^{-1})

=H^{1}(\overline{M}, F^{-1})=0 . Hence our assertion follows immediately from Theorem
4. 5. Therefore using the K\"unneth formula again, we obtain

\mathfrak{g}^{3}\cong\Gamma_{hol}(T^{1,0}(\overline{M})\otimes F^{-1})

\cong H^{0} (P^{r_{1}}(C) , T^{1,0}(P^{r_{1}}(C))\otimes H_{1}^{-1})\otimes H^{0}(P^{r_{2}}(C), H_{2}^{k_{2}})

+H^{0} (P^{r_{1}}(C) , H_{1}^{-1})\otimes H^{0}(P^{r_{2}}(C), T^{1,0}(P^{r_{2}}(C))\otimes H_{2}^{k_{2}})

\cong H^{0} (P^{r_{1}}(C) , T^{1,0}(P^{r_{1}}(C))\otimes H_{1}^{-1})\otimes H^{0}(P^{r_{2}}(C), H_{2}^{k_{2}}) ,

whence dim \mathfrak{g}^{3}=(r_{1}+1)(_{k_{2}}^{r_{2}+k_{2}}) (cf. [1]). In the same manner as above, we

can show that if k_{2}\geqq 2 , then \mathfrak{g}^{4}=0 and if k_{2}=1 , then dim \mathfrak{g}^{4}=(r_{2}+1)(_{k_{1}}^{r_{1}+k_{1}}) .
We have thus proved the following

PROPOSITION 4. 8. (1) dim \mathfrak{g}^{0}=1 , din1\mathfrak{g}^{1}\wedge=r_{1}(r_{1}+2) , and dim \mathfrak{g}^{2}=r_{2}(r_{2}+2) .
(2) If k_{1} , k_{2}\geqq 2 , then \mathfrak{g}^{3}=\mathfrak{g}^{4}=0 .
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(3) If k_{1}=1 and k_{2}\geqq 2 , then \mathfrak{g}^{4}=0 and dim \mathfrak{g}^{3}=(r_{1}+1) (\begin{array}{ll}r_{2}+ k_{2^{\backslash }}k_{2} \end{array}) . If
k_{1}\geqq 2 and k_{2}=1 , then \mathfrak{g}^{3}=0 and dim \mathfrak{g}^{4}=(r_{2}+1)(_{k_{1}}^{r_{1}+k_{1}}) .

(4) If k_{1}=k_{2}=1 , then dim \mathfrak{g}^{3}=\dim \mathfrak{g}^{4}=(r_{1}+1)(r_{2}+1) .
This proposition combined with Theorem 3. 5 gives the following

COROLLARY 4. 9. ( 1) If k_{1} , k_{2}\geqq 2 , then \mathfrak{g}(M)=Ca(M)=\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2} .
(2) If k_{1}=1 and k_{2}\geqq 2 , then \mathfrak{g}(M)=\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}+\mathfrak{g}^{3} and Ca(M)=

\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2} . If k_{1}\geqq 2 and k_{2}=1 , then \mathfrak{g}(M)=\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}+\mathfrak{g}^{4} and Ca(M)=
\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}-

(3) If k_{1}=k_{2}=1 , then \mathfrak{g}(M)=Ca(M)=\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}+\mathfrak{g}^{3}+\mathfrak{g}^{4} .

REMARK. Put n=r_{1}+r_{2}+1 and consider the n-dimensional complex

projective space P^{n}(C) . Let z_{0} , \cdots , z_{n} be homogeneous coordinates of P^{n}(C) ,

and let Q_{r_{1}} be the hermitian quadric of P^{n}(C) defined by

\sum_{\alpha 0}^{r_{1}}|z_{\alpha}|^{2}-\sum_{\beta=r_{1}+1}^{n}|z_{\beta}|^{2}=0\eta,

which is a non-degenerate PC manifold of index r_{1} . Then it can be shown
that if k_{1}=k_{2}=1 , then M is naturally isomorphic to Q_{r_{1}} as PC manifolds.

4. 4. Non-degenerate PC manifolds associated with complex tori. Let
\overline{M} be an (n-1) -dimensional complex torus. In his paper [11], Matsushima
constructed a class of herm\overline{l}tian holomorphic line bundles F over \overline{M}, whose

Chern forms are non-degenerate and indefinite everywhere. We assert

without proof that the PC manifolds M associated with F are non-degenerate

of positive index, and satisfy conditions (C. 1), (C. 2) and (C. 3), where (C. 3)

is satisfied with constants c_{1}=c_{2}=0 . Therefore we know from Theorem

3. 5 that \mathfrak{g}(M)=Ca(M)=\{C\xi\} .

\S 5. The structures of the Lie algebras \mathfrak{g}(M) and C\mathfrak{a}(M) .
(the strongly pseudo-convex case)

5. 1. A general structure theorem on the Lie algebras \mathfrak{g}(M) and Ca(M) .

Let M be a compact strongly pseud0-convex manifold of dimension 2n-1
satisfying condition (C. 1). First of all we remark that M automatically

satisfies condition (C. 2) : S^{1}=0 and S^{2}=S. Thus we have the operators
\coprod_{2},\overline{W}_{2} , A_{2} and the scalar curvature \sigma_{2} , which will be simply denoted by
\square ,\overline{W}, A and \sigma respectively. Note that the operator A is defined by

A= \coprod^{2}+\coprod N+\sum R_{\alpha\overline{\beta}}^{*}\nabla_{\beta}\nabla_{\overline{\alpha}}+\overline{W}

Let us recall the results of \S 2.
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PROPOSITION 5. 1. Let f\in C^{\infty}(M) . Then the following conditions are
mutually equivalent:

(1) f\in F(M) .
(2) Af=0 .
(3) (Af,f)=0 .

PROPOSITION 5. 2. ( 1^{1} \square , N and A are self-adjoint operators. MoreO-
ver \square and A are positive semi-defifinite.

(2) \coprod N=N\coprod , AN=NA.
(3) \overline{\coprod}-\coprod=-(n-1)N, \overline{N}=-N .
(4) \overline{A}-A=n(n-1)N^{2}+n(n-1)\sigma N-2n\coprod N+W-\overline{W}.
Although the finite dimensionality of the Lie algebra \mathfrak{g}(M) is not valid

any more for a strongly pseud0-convex manifold M (cf. [2]), we know the
following

THEOREM B ([4], [12] and [13]). Let M be a(2n-1) -dimensional
non-degenerate PC manifold, then

\dim_{R}a(M)\leqq n^{2}+2n

Therefore we know from Proposition 1. 5 that F(M)\cap\overline{F}(M) is finite
dimensional. As in \S 3, for each \nu\in R , let us define a subspace F_{(\nu)} of
F(M) and a subspace \tilde{F}_{(\nu)} of F(M)\cap\overline{F}(M) respectively by

F_{(\nu)}=\{f\in F(M)|Nf=\nu f\} ,

\tilde{F}_{(\nu)}=\{f\in F(M)\cap\overline{F}(M)|Nf=\nu f\}

PROPOSITION 5. 3. Let M be a compact strongly pseudO-convex mani-
fold satisfying condition (C. 1).

(1) Each F_{(\nu)} is fifinite dimensional.
(2) F(M) \cap\overline{F}(M)=\sum_{\nu}\tilde{F}_{(_{y})} (direct sum), and dim \tilde{F}_{(_{\nu})}=\dim\tilde{F}_{(-\nu)} .
Assume further that the scalar curvature \sigma is equal to a real constant c.
(3) F_{(0)}=\tilde{F}_{(0)} .
(4) The case where c>0:F_{(_{\nu})}=0 for \nu>c, and F_{(\nu)}=0 for |\nu|>c .
(5) The case where c\leqq 0:F_{(\nu)}=0 for \nu>0 , and \tilde{F}_{(\nu)}=0 for \nu\neq 0 .
PROOF. First of all, we see that any f\in F_{(_{\nu})} satisfies

(A+N^{4})f=\nu^{4}f .

Since the operator A+N^{4} is a self-adjoint strongly elliptic differential operator,
it follows that F_{(\nu)} is finite dimensional, imp1y_{\overline{1}}ng(1) . We see from PropO-
sition 5. 2 that N is a self-adjoint operator and leaves invariant the finite
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d_{\overline{1}}mensiona1 subspace F(M)\cap\overline{F}(M) of C^{\infty}(M) . Hence we have

F(M) \cap\overline{F}(M)=\sum_{\nu}F_{(\nu)} (direct sum) t

It follows from Proposition 5. 2 that the assignment farrow\overline{f} gives an isomor-
phism of \tilde{F}_{(\nu\rangle} onto F_{()}-\nu . Hence we obtain \dim F_{(_{y})}=\dim F_{(-\nu)} , proving (2).

In the following we assume that \sigma is equal to a constant c. As in the
proof of Proposition 3. 1, we have \overline{W}=0 . Take any f\in F_{(0)} . Then it follows
from Proposit\overline{l}on5.1 that Af=Nf=0. By (4) of Proposition 5. 2, we have
\overline{A}f=0 . Thus we obtain f\in F_{(0)} , implying (3).

To prove (4) and (5), it suffices to prove that F_{(_{\nu})}=0 for \nu>{\rm Max}(c, 0) .
Let us assume that \nu>{\rm Max}(c, 0) and take any f\in F_{(\nu)} . Then we have
Af=0 and Nf=\nu f. Moreover we have

\overline{A}f=n(n-1)\nu(\nu+c)f-2n\nu\coprod fc

By Proposition 5. 2, we have

0\leqq(\overline{A}f,f)=n(n-1)\nu(\nu+c)(f,f)-2n\nu(\coprod f,f) .
Hence we have

( \coprod f,f)\leqq\frac{(n-1)(c+\nu)}{2}(f,f)
\{

By Proposition 5_{-}2 , we have

( \overline{\coprod}f,f)\leqq\frac{(n-1)(c-\nu)}{2}(f,f)

It follows from (1) of Proposition 5. 1 that

0 \leqq\frac{(n-1)(c-\nu)}{2}(f,f)

Hence we obtain f=0. This proves our assertion. q. e . d .
As in \S 3 we define a subspace \mathfrak{g}_{(\nu)} of \mathfrak{g}(M) and a subspace \tilde{\mathfrak{g}}_{(y)} of

C\alpha(M) respectively by

g_{(\nu)}=\{u\in \mathfrak{g}(M)|\sqrt{-1}[\xi, u]=\nu u\} ,

\tilde{g}_{(_{\nu})}=\{\mathfrak{u}\in Ca(M)|\sqrt{-1}[\xi, u]=\nu u\}

Then by Proposition 5. 3, we have the following

THEOREM 5. 4. Let M be a compact strongly ly pseudO-convex manifold
satisfying condition (C. 1)

(1) \mathfrak{g}_{(_{\nu})} are fifinite dimensional, and [\mathfrak{g}_{(_{\mu})}, \mathfrak{g}_{(\nu)}]\subset \mathfrak{g}_{1\mu+\nu}) .
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(2) Ca(M)= \sum\tilde{\mathfrak{g}}_{(_{y})} (direct sum), and dim \tilde{\mathfrak{g}}_{(_{\nu})}=\dim\tilde{a_{()}\lrcorner}-\nu

Assume further that the scalar curvature s is equd to a real constant c.
(3) \mathfrak{g}_{(0)}=\check{\alpha_{(0)-}\lrcorner}

(4) The case where c>0:\mathfrak{g}_{(\nu)}=0 for \nu>c, and \tilde{J_{(_{\nu})}(}=0 for |\nu|>c .
(5) The case where c\leqq 0:\mathfrak{g}_{(\nu)}=0 for \nu>0 , and \tilde{\mathfrak{g}}_{(_{\nu})}=0 for \nu\neq 0 .
5. 2. Condition (C. 3) and structure theorems on the L_{\overline{1}}e algebras \mathfrak{g}(M)

and Ca(M) . As in 3. 2, we assume the following condition:
(C. 3) The Ricci tensor R^{*} satisfies

R^{*}(X,\overline{Y})=ncg(X,\overline{Y}) for any X, Y\in S_{x} ,

where c\overline{1}S a real constant.
For each \nu\in R, we define subspaces F_{(\nu}^{1}

) and F_{(\nu}^{2} ) of C^{\infty}(M) respectively by

F_{(\nu)}^{1}=\{f\in C^{\infty}(M)|\coprod f=0 , Nf=\nu f\}’-

F_{(\nu)}^{2}=\{f\in C^{\infty}(M)|\coprod f=(nc-\nu)f, Nf=\nu f\}

Then we obtain the following

PROPOSITION 5. 5. Let M be a compact strongly pseudO-convex mani-
fold sa tisfying conditions (C. 1) and (C. 3).

(1) F_{(\nu)}=F_{(\nu)}^{1}+F_{(\nu)}^{2} (direct sum) for \nu\neq nc, and F_{(nc)}=F_{(nc)}^{1}=F_{(nc)-}^{2}

(2) F_{(\nu)}^{1} consists of all holomorphic functions satisfying Nf=\nu f. In
particular, F_{(0)}^{1} consists of all constant functions.

(3) The case where c>0:F_{(\nu)}^{1}=0 for \nu>0 or 0>\nu>-c, and F_{(\nu)}^{2}=0

for \nu>c or c>\nu>0 .
(4) The case where c\leqq 0:F_{(\nu)}^{1}=0 for \nu>0 , and F_{(_{\nu})}^{2}=0 for \nu>nc .
(5) The case where c>0 : F(M)\cap\overline{F}(M)=F_{(0)}^{1}+F_{(0)}^{2}+F_{(-c)}^{1}+F_{(c)}^{2} (direct

sum), and dim F_{(-c)}^{1}=\dim F_{(c)}^{2} . The case where c\leqq 0-. F(M)\cap\overline{F}(M)=F_{(0)}^{1}

PROOF. First of all, we remark that condition (C. 3) impies that
A=\coprod^{2}+N\coprod-nc\coprod .

Hence we have F_{(\nu)}^{1}\subset F_{(\nu)} and F_{(\nu)}^{2}\subset F_{(\nu)} .
Conversely let us prove that F_{(_{y})}\subset F_{(\nu)}^{1}+F_{(\nu)}^{2} . It follows from Proposition

5. 2 that \square is a self-adjoint operator leaving invariant the finite d_{\overline{1}}mensiona1

subspace F_{(\nu)} of C^{\infty}(M) . Hence we have

F_{(\nu)}= \sum_{\lambda}F_{(\lambda,\nu)} (direct sum)

where we put F_{(\lambda,\nu)}=\{f\in F_{(\nu)}|\coprod f=\lambda f\} . Take any f\in F_{(\lambda,\nu})’ then we have
Af=\lambda(\lambda+\nu-nc)f=0 .
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Hence we see that if F_{(\lambda,\nu)}\neq 0 , then \lambda=0 or \lambda=nc-\nu . We have thus proved
our assertion. From this, (1) follows immediately.

Let f\in F_{(\nu)}^{1} . From the fact that \coprod f=0 , it follows that \overline{Y}f--0 for any
Y\in S_{x}, x\in M. Therefore f is a ho1omorph_{1}^{-}c function. In particular, if

f\in F_{(0)}^{1} , then we have \coprod f=Nf=0 and hence \overline{\coprod}f=0- These imply that
\nabla f=0 , and hence f is constant. We have thus proved (2).

Since \overline{\square } and \overline{A} are positive semi-definite operators (Proposition 5. 2),
we see that if F_{(\nu)}^{1}\neq 0 , then -(n-1)\nu\geqq 0 and n(n-1)\nu(\nu+c)\geqq 0 . Similarly
we see that if F_{(\nu)}^{2}\neq 0 , then nc-\nu\geqq 0 , n(c-\nu)\geqq 0 and n(n+1)\nu(\nu-c)\geqq 0 .
Now (3) and (4) follow from these facts.

By Proposition 5. 3, we have

F(M) \cap\overline{F}(M)=\sum_{\nu}\tilde{F}_{(\nu)} (direct sum)

The operator \square leaves invariant the subspace \tilde{F}_{(_{y})} . Therefore by (1) we
have

\tilde{F}_{(\nu)}=F_{(\nu)}^{1}+\tilde{F}_{(\nu)}^{2} (direct sum) for \nu\neq nc ,

\tilde{F}_{(nc)}=\tilde{F}_{(nc)}^{1}=\tilde{F}_{(nc)}^{2} .

where we set \tilde{F}_{(\nu)}^{1}=\tilde{F}_{(\nu)}\cap F_{(\nu)}^{1} and \tilde{F}_{(\nu)}^{2}=\tilde{F}_{(\nu)}\cap F_{(\nu)}^{2} . It is easily verified that
F_{(0)}^{1}=\tilde{F}_{(0)}^{1} , F_{(0)}^{2}=\tilde{F}_{(0)}^{2} , F_{(-c)}^{1}=\tilde{F}_{(-c)}^{1} and F_{(c)}^{2}=\tilde{F}_{(^{C)}}^{2} . Moreover the assignment

farrow\overline{f} gives an isomorphism of F_{(-c)}^{1} onto F_{(c)}^{2} . On the other hand we see
from Proposition 5. 2 that if \nu\neq 0 , -c, then F_{(\nu)}^{1}\cap\overline{F}(M)=0 , and if \nu\neq 0 , c,
then F_{(\nu)}^{2}\cap\overline{F}(M)=0 . Hence we have \tilde{F}_{(\nu)}^{1}=0 for \nu-\neq 0 , - c, and \tilde{F}_{(\nu)}^{2}=0 for
\nu\neq 0 , c . We have thus proved (5). q . e . d .

Let \mathfrak{g}_{(\nu)}^{i} be the subspace of \mathfrak{g}_{\langle_{y})} which corresponds to the subspace F_{(\nu)}^{i}

of F_{(\nu)} through the isomorphism uarrow f_{u} of \mathfrak{g}_{(\nu)} onto F_{(_{\nu})} .

THEOREM 5. 6. Let M be a compact strongly pseudO-convex manifold
satisfying conditions (C. 1) and (C. 3).

(1) \mathfrak{g}_{(_{\nu})}=\mathfrak{g}_{(\nu)}^{1}+\mathfrak{g}_{(\nu)}^{2} {vector space direct sum) for \nu\neq nc , and \mathfrak{g}_{(nc)}=\mathfrak{g}_{(nc)}^{1}=

\mathfrak{g}_{(nc)}^{2} .
(2) \mathfrak{g}_{(\nu)}^{1}= { f\xi|f is a holomorphic function satisfying Nf=\nu f }. In

particular, \mathfrak{g}_{(0)}=\{C\xi\} .
(3) [\mathfrak{g}_{(\mu)}^{1}, \mathfrak{g}_{(\nu)}^{1}]\subset \mathfrak{g}_{(\mu+\nu)}^{1} , [\mathfrak{g}_{(\nu)}^{1}, \mathfrak{g}_{(\nu)}^{1}]=0 , [\mathfrak{g}_{(\mu)}^{2}, \mathfrak{g}_{(\nu)}^{2}]\subset \mathfrak{g}_{(\mu+\nu)}^{2} , [\mathfrak{g}_{(0)}^{2}, \mathfrak{g}_{(\nu)}^{1}]\subset \mathfrak{g}_{(\nu)}^{1} and

[\mathfrak{g}_{(0)}^{1}, \mathfrak{g}_{(v)}^{2}]\subset \mathfrak{g}_{(\nu)}^{2} .
(4) The case where c>0:\mathfrak{g}_{(\nu)}^{1}=0 for \nu>0 or 0>\nu>-c, and \mathfrak{g}_{(\nu)}^{\Delta}=0

)

for \nu>c or c>\nu>0 .
(5) The case where c\leqq 0:\mathfrak{g}_{(\nu)}^{1}=0 for \nu>0 , and \mathfrak{g}_{(\nu)}^{2}=0 for \nu>nc .

PROOF. We will show the proof of (3)- The other assertions follow
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d_{\overline{1}}rect1y from Proposition 5. 5. Let u\in \mathfrak{g}_{(_{\mu})} and v\in \mathfrak{g}_{(_{y})} . Let us denote by
U and V the cross sections of T, which correspond to u and v. First of
all, we have

[U, V]=\{\sqrt{-1}(\mu-\nu)f_{u}f_{v}+U^{S}f_{v}-V^{S}f_{u}\}\xi

+[U^{S}, V^{S}]+\sqrt{-1}\mu f_{v}U^{S}-\sqrt{-1}\nu f_{u}V^{s}

Hence it follows that

(5. 1) f_{[u,v]}=\sqrt{-1}(\mu-\nu)f_{u}f_{v}+U^{S}f_{v}-V^{S}f_{u} .
By a simple calculation we obtain

\coprod(f_{u}f_{v})=\coprod f_{u}f_{v}+f_{v}\coprod f_{u}+\sqrt{-1}(V^{S}f_{u}+U^{S}f_{v})’.
\coprod(U^{S}f_{v})=U^{S}(\coprod f_{v})-\nu(U^{S}f_{v})+\sqrt{-1}\nu(\coprod f_{u})f_{v}

- \sqrt{-1}\sum_{\alpha,\beta}\nabla_{\alpha}\nabla_{\beta}f_{u}\nabla_{\beta}\nabla_{\overline{a}}f_{vj}

\coprod(V^{S}f_{u})=V^{S}(\coprod f_{u})-\mu(V^{S}f_{u})+\sqrt{-1}\mu(\coprod f_{v})f_{u}

- \sqrt{-1}\sum_{a,\beta}\nabla_{\alpha}\nabla_{\epsilon}f_{u}\nabla_{\beta}\nabla_{a}f_{v} ,

and hence

(5. 2) \coprod f_{[u,v]}=\sqrt{-1}\mu(\coprod f_{u})f_{v}-\sqrt{-1}\nu f_{u}(\coprod f_{v})+\nu(V^{S}f_{u})

-\mu(U^{S}f_{v})+U^{S}(\coprod f_{v})-V^{S}(\coprod f_{u})

Let u\in \mathfrak{g}_{(\mu)}^{1} and v\in \mathfrak{g}_{(\nu)}^{1} . S_{\overline{1}}ncef_{u} and f_{v} are holomorph\dot{l}C , we have U^{S}=

V^{s}=0 . By (5. 2), we have \coprod f_{[u,v]}=0 . Therefore we have f_{[u,v]}\in F_{(\mu+\nu)}^{1} ,
which implies [\mathfrak{g}_{(\mu)}^{1}, \mathfrak{g}_{(\nu)}^{1}]\subset \mathfrak{g}_{(\mu+\nu)}^{1} . In particular if \mu=\nu , then we easily see from
(5-1) that f_{[u,v]}=0 . Hence we have [\mathfrak{g}_{(\nu)}^{1}, \mathfrak{g}_{(\nu)}^{1}]=0 .

Let u\in \mathfrak{g}_{(\mu)}^{2} and v\in \mathfrak{g}_{(\nu)}^{2} . Then it follows that \coprod f_{u}=(nc-\mu)f_{u} and
\coprod f_{v}=(nc-\nu)f_{v} . By (5. 2), we have

\coprod f_{[u,v]}=(n-\mu-\nu)f_{[u,v]}

Therefore we see that f_{[u,v]}\in F_{(\mu+\nu)}^{2} , and hence [\mathfrak{g}_{(\mu)}^{2}, \mathfrak{g}_{(\nu)}^{2}]\subset \mathfrak{g}_{(\mu+\nu)}^{2} .
Let u\in \mathfrak{g}_{(0)}^{2} and v\in \mathfrak{g}_{(\nu)}^{1} . We have \coprod f_{v}=0 and V^{s}=0 . Therefore it

follows from (5. 2) that \coprod f_{[u,v]}=0 . Consequently we have [\mathfrak{g}_{(0)}^{2}, \mathfrak{g}_{(\nu)}^{1}]\subset \mathfrak{g}_{(\nu)-}^{1}

Finally from (2) together with the definition of \mathfrak{g}_{(\nu)}^{2} , it is clear that [\mathfrak{g}_{(0)}^{1}, \mathfrak{g}_{(\nu)}^{2}]

\subset \mathfrak{g}_{(\nu)}^{2} q. e . d_{-}

As a consequence of (5) of Proposition 5. 5, we have

THEOREM 5. 7. Let M be a compact strongly pseudO-convex manifold
satisfying conditions (C. 1) and (C. 3).
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(1 ) The case where c>0 : Ca(M)=\mathfrak{g}_{(0)}^{1}+\mathfrak{g}_{(0)}^{2}+\mathfrak{g}_{(-c)}^{1}+\mathfrak{g}_{(c)}^{2} , (vector space
direct sum), and dim \mathfrak{g}_{(-c)}^{1}=\dim \mathfrak{g}_{(c)}^{2} .

(2) The case where c\leqq 0 : Cc\iota(M)=\mathfrak{g}_{(0)}^{1} .

\S 6. Applications and examples (the strongly pseudo-convex case)

6. 1. Finite dimensional subalgebras of the Lie algebra \mathfrak{g}(M) . In this
paragraph, by using Theorem 5. 6 and Theorem 5. 7, we will prove the
following

THEOREM 6. 1. Let M be a compact strongly pseudO-convex manifold
satisfying conditions (C. 1) and (C. 3) with a positive constant c. If \mathfrak{g}_{(-C)}^{1}\neq 0 ,
then Ca(M) is a maximal fifinite dimensional subalgebra of \mathfrak{g}(M) .

PROOF. Let b be a finite dimensional subalgebra of \mathfrak{g}(M) which contains
Ca{M) . Since \xi\in Ca(M)\subset b , we have [\xi, b]\subset b . For each \nu\in R , we define
a subspace b_{(\nu)} of b by

b_{(_{\nu})}=\{u\in b|\sqrt{-1}[\xi, u]=\nu u\}=b\cap \mathfrak{g}_{(_{y})}

Then we have b = \sum_{\nu}b_{(\nu)} (vector space direct sum) and [b_{(_{\mu})}, b_{(_{\nu})}]\subset b_{(_{\mu}+\nu)} .

By Theorem 5. 7 we have \mathfrak{g}_{(-c)}^{1}\subset b_{(-C)} , and hence [b_{(_{\nu})}, \mathfrak{g}_{(-c)}^{1}]\subset b_{(\nu-C)} . For
any u\in b_{(_{y})} , we define a linear mapping A_{u} of \mathfrak{g}_{(-c)}^{1} to b_{(\nu-C)} by

A_{u}(v)=[u, v] . v\in \mathfrak{g}_{(-c)}^{1}

We recall that if u\in b_{(_{\nu})} and v\in \mathfrak{g}_{(-c)}^{1} , then

(6. 1) [U, V]=\{\sqrt{-1}(\nu+c)f_{u}f_{v}+U^{S}f_{v}\}\xi+\sqrt{-1}f_{v}U^{S} .

where we have used the fact that V^{S}=0 (see the proof of Theorem 5. 6).

Lemma 6. 2. Assume that b_{(_{\nu})}\neq 0 for some \nu, and let u be a non-zero
element of b_{(_{\nu})} . Assume further that 1) \nu\neq 0 , - c or 2) \nu=-c and u\not\in \mathfrak{g}_{(-c)}^{1} .
Then the linear mapping A_{u} of \mathfrak{g}_{(-c)}^{1} to b_{(\nu-C)} is injective.

PROOF. We first remark that \{x\in M|f_{u}(x)\neq 0\} is an open dense subset
of M, because the function f_{u} satisfies the strongly elliptic differential equa-
tion (\coprod^{2}+N^{4})f_{u}=\nu^{4}f_{u} . Similarly we remark that if v\in \mathfrak{g}_{(-c)}^{1} and v\neq 0 , then
\{x\in M|f_{v}(x)\neq 0\} is an open dense subset of M. Clearly it suffices to con-
sider the following two cases.

A] The case where \nu\neq 0 and u\not\in \mathfrak{g}_{(\nu)}^{1} . Let v\in \mathfrak{g}_{(-c)}^{1} be such that A_{u}(v)

=0 . From (6. 1), it follows that \nu f_{v}U^{S}=0 . If v\neq 0 , then we have U^{S}=0 .
This contradicts the fact that u\not\in \mathfrak{g}_{(\nu)}^{1} .
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B] The case where \nu\neq-c and u\in \mathfrak{g}_{(\nu)}^{1} . Let v\in \mathfrak{g}_{(-c)}^{1} be such that
A_{u}(v)=0 . From (6. 1) and the fact that U^{S}=0 , it follows that (\nu+c)f_{u}f_{v}=0 .
Hence we have f_{c}=0 , implying that v=0 . q . e . d .

We are now in position to complete the proof of Theorem 6. 1. Suppose
that b\neq Ca(M) . Let \nu_{0} be the real number defined by

\nu_{0}={\rm Min}\{\nu\in R|b_{(_{\nu})}\neq 0\}

Since b\supset \mathfrak{g}_{(-c)}^{1} , we have \nu_{0}\leqq-c . Consequently it suffices to consider the
following three cases.

1) The case where \nu_{0}<-c . By Lemma 6. 2, we have b_{(\nu_{0}-c)}\neq 0 , which
contradicts the definition of \nu_{0} .

2) The case where \nu_{0}=-c and there \overline{1}S real number \nu_{1} such that b_{(_{\nu_{1}})}

\neq 0 and -c<\nu_{1}<0 . By Lemma 6. 2, we have b_{(\nu_{1}-C)}\neq 0 , which contradicts
the definition of \nu_{0} .

3) The case where \nu_{0}=-c and b_{(_{\nu})}=0 for - c<\nu<0 . We assert that
b_{(-C)}\supseteqq \mathfrak{g}_{(-c)}^{1} . Indeed, by Theorem 5. 7, we have Co(M)=\mathfrak{g}_{(0)}^{1}+\mathfrak{g}_{(0)}^{2}+\mathfrak{g}_{(-c)}^{1}+\mathfrak{g}_{(c)}^{2} .
Furthermore by Theorem 5. 6, we have b_{(_{\rho})}=0(\nu>0, \nu\neq c) , b_{(C)}=\mathfrak{g}_{(c)}^{2} , and
b_{(0)}=\mathfrak{g}_{(0)} . From these facts follows easily our assertion. Now let u be an
element of b_{(-C)} such that u\not\in \mathfrak{g}_{(-c)}^{1} . Then it follows from Lemma 6. 2 that
the mapping A_{u} of \mathfrak{g}_{(-c)}^{1} to b_{(-2c)} is injective. Hence we have b_{(-2c)}\neq 0 ,

which contradicts the definition of \nu_{0} . q . e . d .

REMARK 1. Assume that \mathfrak{g}_{(-c)}^{1}=0 . By Theorem 5. 7, we have Ca(M)
=\mathfrak{g}_{(0)}^{1}+\mathfrak{g}_{(0)}^{2} . From (2) of Theorem 5. 6 we see that, for each \nu\in R, \mathfrak{g}_{(0)}^{1}+

\mathfrak{g}_{(0)}^{2}+\mathfrak{g}_{(-\nu)}^{1} is a finite dimensional subalgebra of \mathfrak{g}(M)- Let us further assume
that the vector field \xi is induced from a U(1) -action: (x, a)\in M\cross U(1)arrow

xa\in M. Then we can show that there are a U(1) -invariant open subset
M^{*} of M and a hermitian holomorphic line bundle F_{0} over an (n-1)-
dimensional complex manifold \overline{M}_{0} such that the Chern form of F_{0} is nega-
tive and such that the PC manifold M^{*} is equivariantly isomorphic to the
PC manifold M_{0} associated with F_{0} (the U(1) -reduction of the principal
C^{*}-bundle P_{0} associated with F_{0}). Furthermore by using this fact and reason-
ing in the same manner as in [15], we can show that the space F_{(-\nu)}^{1} ,

which is equal to the space of all holomorphic functions f on M such that
Nf=-\nu f, is not reduced to the zero space for any sufficiently large integer
\nu . Accordingly we know that, for any sufficiently large integer \nu , \mathfrak{g}_{(-\nu}) \neq 0

and hence \mathfrak{g}_{(0)}^{1}+\mathfrak{g}_{(0)}^{2}+\mathfrak{g}_{(-\nu)}^{1}\overline{1}S a finite dimensional subalgebra of \mathfrak{g}(M) con-
taining Ca(M) as a proper subalgebra.

REMARK 2. Let M be a compact strongly pseud0-convex manifold.
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Under the assumption of Theorem 6. 1, we can show that M is isomorphic
to the unit sphere S^{2n-1} of C^{n} as PC manifolds. In the forthcoming paper,
we will prove this fact more generally.

6. 2. The Lie algebra a(M) and infinitesimal isometries. As in 4. 1,
let \overline{M} be a complex manifold of dimension n-1 and F a holomorphic line
bundle over \overline{M} with a hermitian metric fi . We assume that \overline{M} is compact
and the first Chern form \Phi of the hermitian holomorphic line bundle F is
positive. Let \tilde{g} be the K\"ahlerian metric associated with \Phi . Let us denote
by f(\overline{M}) the Lie algebra of all infinitesimal isometries of the K\"ahlerian

manifold (\overline{M},\tilde{g}) , which may be considered as a subspace of \Gamma_{hol}(T^{1,0}(\overline{M})) .
Let M be the PC manifold associated with the hermitian holomorphic line
bundle F (see \S 4)- In that section, we defined the spaces \mathfrak{g}(P)_{(m)} and the
linear mappings \kappa_{m} of \mathfrak{g}(P)_{(m)} to \Gamma_{hol}(T^{1,0}(\overline{M})\otimes F^{m}) . We define a subspace
a(P)_{(0)} of \mathfrak{g}(P)_{(0)} by

a(P)_{(0)}=\{X\in \mathfrak{g}(P)_{(0)}|X|M\in a(M)\} [

PROPOSITION 6. 3. ( 1) Ker \kappa_{0}\cap a(P)_{(0)}=\{R\xi_{P}^{(1,0)}\} .
(2) \kappa_{0}(a(P)_{(0)})=f(\overline{M})\cap{\rm Im}\kappa_{0} .
PROOF. It is obvious that Ker \kappa_{0}\cap a(P)_{(0)}\supset\{R\xi_{P}^{(1,0)}\} . Conversely let X\in

Ker \kappa_{0}\cap a(P)_{(0)} . By Theorem 4. 5, we see that X=\pi^{*}\tilde{\rho}\xi_{P}^{(1,0)} , where \tilde{\rho} is a
holomorphic function on \overline{M}. Since X|M\in a(M),\tilde{\rho} is a real valued function,
and hence \tilde{\rho} is constant. Therefore we have Ker \kappa_{0}\cap a(P)_{(0)}\subset\{R\xi_{P}^{(1,0)}\} , prov-
ing (1).

Let X\in\sigma(P)_{(0)} and let \eta the real part of X. Then we see that \eta is
tangent to M and the restriction \eta|M to M is an infinitesimal automorphism
of M. Since \eta is invariant by the U(1) -action, it follows from Proposition
4. 1 that \mathscr{L}_{\eta}\omega=0 . This implies that \mathscr{L}_{\eta}\Omega=\mathscr{L}_{\eta}d\omega=d\mathscr{L}_{d},\omega=0 . Therefore we
see that the real part \tilde{\eta} of \tilde{X}=\kappa_{0}(X) satisfies \mathscr{L}_{\overline{\eta}}\Phi=0 , which implies that \tilde{\eta} is
an \overline{1}nfifinitesimal isometry of M. Hence we have \kappa_{0}(a(P)_{(0)})\subset I(\overline{M})\cap{\rm Im}\kappa_{0} .

Conversely let Y\in f(\overline{M})\cap{\rm Im}\kappa_{0} . Then the real part \zeta of Y satisfies

0=2\mathscr{L}_{\zeta}\Phi=2d(\zeta\lrcorner\Phi)=d(Y\lrcorner\Phi)+d\overline{(Y\lrcorner\Phi}) .

By Theorem 4. 6, we have a function \rho on \overline{M} such that Y \lrcorner\Phi=-\frac{\sqrt{-1}}{2\pi}\overline{\partial}\rho .
Then we have

\partial\overline{\partial}(\rho+\overline{\rho})=\overline{d\partial}\rho-d\overline{\overline{\partial}\rho}=2\pi\sqrt-\overline{1}\{-d(Y\lrcorner\Phi)+d\overline{(Y\lrcorner\Phi})\}=0r

implying that \rho+\overline{\rho} is a pluriharmonic function on \overline{M}. Hence we see that
the real part of \rho is constant. Let us denote by q the imaginary part of
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\rho , then we have \overline{\partial}\rho=\overline{\sqrt{-1}}\overline{\partial}q . Let X be the vector field on P such that
X is \pi-related to Y and \omega(X)=\sqrt{-1}\pi^{*}q . As in the proof of Theorem
4. 5, we can show that X is holomorphic. Since \omega(X) is a pure imaginary
valued function, we see that the real part of X is tangent to M, and hence
X|M\in a(M) . q . e . d .

6. 3. Holomorphic 1\overline{1}ne bundles and Einstein K\"ahlerian manifolds. In
this paragraph we further assume that \overline{M} is an Einstein K\"ahlerian manifold:

\tilde{R}^{*}=nc\tilde{g}

where \tilde{R}^{*} is the Ricci tensor of \overline{M} and c is a real constant. By Proposition
4. 2, we see that M is a compact strongly pseud0-convex manifold. Moreover
it is easy to see that the Levi form associated with -\xi is positive definite
and the pair (M, -\xi)sat\overline{l}sfifies conditions (C. 1) and (C. 3).

Let us apply the results in \S 5 to the pair (M, -\xi) . First we remark
that \mathfrak{g}_{(_{y})}=\{u\in \mathfrak{g}(M)|\sqrt{-1}[\xi, n]=-\nu u\} . It follows from Theorem 5. 6 that
\mathfrak{g}_{(_{\nu})} is decomposed as follows : \mathfrak{g}_{(\nu)}=\mathfrak{g}_{(\nu)}^{1}+\mathfrak{g}_{(\nu)}^{2} (direct sum) for \nu\neq nc . As in
Proposition 4. 3, we know that if \nu is not an integer, then \mathfrak{g}_{(_{\nu})}=0 and that
for each integer m, the assignment Xarrow X|M gives an isomorphism of \mathfrak{g}(P)_{(m)}

onto \mathfrak{g}_{(-m)} . For i=1 or 2, let us denote by \mathfrak{g}^{i}(P)_{(m)} the subspace of \mathfrak{g}(P)_{(m)}

which corresponds to \mathfrak{g}_{(-m)}^{i} .

PROPOSITION 6. 4. ( 1) \mathfrak{g}^{1}(P)_{(m)}=Ker\kappa_{m} and \mathfrak{g}^{1}(P)_{(m)}\iota^{-}s isomorphic to
\Gamma_{hol}(F^{m}) .

(2) \kappa_{m} induces an isomorphism of \mathfrak{g}^{2}(P)_{(m)} onto \Gamma_{nol}(T^{1,0}(\overline{M})\otimes F^{m}) for
m\neq-nc .

Proof. Let X\in \mathfrak{g}^{1}(P)_{\langle m)} . Since X|M\in \mathfrak{g}_{(-m)}^{1} , we can express X|M as
follows – X|M=f\xi , where f is a holomorphic function on M satisfying
R_{a}^{*}f=a^{-m}f, a\in U(1) . Since R_{a^{*}}X=a^{m} X, a\in C^{*} , it follows that X=\rho\xi_{p}^{(1,0)} ,

where \rho is a holomorphic function in C^{\infty}(P)_{(m)} satisfying \rho|M=f. By (2)

of Theorem 4. 5, we have X\in Ker\kappa_{m} . Conversely it is clear from (2) of
Theorem 4. 5 that Ker \kappa_{m}\subset \mathfrak{g}^{1}(P)_{(m)} . We have thus proved that \mathfrak{g}^{1}(P)_{(m)}=

Ker \kappa_{m} . The second assertion follows from Theorem 4. 5, proving (1).

To prove (2), let us consider the line bundle F^{m}\otimes k(\overline{M})^{-1} , where k(\overline{M})

denotes the canonical line bundle of \overline{M}. If m>-nc , then F^{m}\otimes k(\overline{M})^{-1} is
a positive line bundle over \tilde{M}. By Kodaira’s vanishing theorem, we obtain
H^{1}(F^{m})=0 . It follows from Theorem 4. 5 that \kappa_{m}(g(P)_{(m)})=\Gamma_{hol}(T^{1,0}(\overline{M})\otimes F^{m}) .
If m<-nc , then F^{-m}\otimes k(\overline{M}) is a positive line bundle over \overline{M}. We have

H^{0}(T^{1,0}(\overline{M})\otimes F^{m})=H^{n-1}(\Omega^{n-1}(T^{1,0}(\overline{M})^{*}\otimes F^{-m}))

=H^{n-1}(\Omega^{1}(F^{-m}\otimes k(\overline{M})))=0\iota
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By Theorem 5. 6, we see that \mathfrak{g}^{2}(P)_{(m)}=0 , and hence \mathfrak{g}^{2}(P)_{(m)} is isomorphic
to \Gamma_{hol}(T^{1,0}(\overline{M})\otimes F^{m}) . q . e . d .

Let \chi be the Ricci form of \overline{M}_{-} Then we have \chi=nc\Phi . Assume that
there exists a positive integer m such that \mathfrak{g}^{2}(P)_{(-m)}\neq 0 . Applying Theorem
5. 6, we see that \mathfrak{g}^{2}(P)_{(-C)}\neq 0 and c>0 . As in Proposition 4. 3, we see that
c is a positive integer. Hence we obtain the inequality \chi\geqq n\Phi . According
to the result of Kobayashi,Ochiai[8] , we see that \overline{M} is biholomorphic to
the (n-1) -dimensional complex projective space P^{n-1}(C) and F is isomorphic
to the hyperplane bundle over P^{n-1}(C) . This fact combined with (2) of
Proposition 6. 4 implies

THEOREM 6. 5. Let \overline{M} be a compact complex manifold of dimension
n-1 and F a holomorphic line bundle over \overline{M}. Assume that there is a
hermitian metric h of F satisfying the following conditions:

[a] The fifirst Chern from \Phi of the hermitian holomorphic line bundle
F is a positive form.

[b] The K\"ahlerian metric \tilde{g} associated with \Phi is an Einstein metric.
If the vector bundle T^{1,0}(\overline{M})\otimes F^{-1} admits a non-trivial holomorphic

cross section, then 1] \overline{M} is biholomorphic to the (n-1) -dimensional complex
projective space P^{n-1}(C) and F is isomorphic to the hyperplane bundle over
P^{n-1}(C) , or 2] n=2,\overline{M} is biholomorphic to the 1-dimensional complex prO-
jective space P^{1}(C) and F is isomorphic to the tangent bundle of P^{1}(C) .

PROOF. From condition [b] , we have \chi=nc\Phi , c being a real constant.
It follows from Proposition 6. 4 that if nc\neq 1 , then \Gamma_{hol}(T^{1,0}(\overline{M})\otimes F^{-1}) is
isomorphic to the space \mathfrak{g}^{2}(P)_{(-1)-} Hence we have \mathfrak{g}^{2}(P)_{(-1)}\neq 0 . As we have
just seen above, this implies that \overline{M} is biho1omorph_{1}^{-}c to the complex pr0-
jective space P^{n-1}(C) and F is isomorphic to the hyperplane bundle over
P^{n-1}(C) .

Assume that nc=1 . Since the Ricci tensor \chi of \overline{M} is positive, we
have H^{0,1}(\overline{M})=0 . It follows that every line bundle is completely determined
by its Chern class. Since \Phi=\chi , we obtain F^{-1}=K(\overline{M}) , where K(\overline{M}) is the
canonical line bundle of \overline{M}. Therefore we have

\Gamma_{hol}(T^{1,0}(\overline{M})\otimes F^{-1})=H^{0}(\overline{M}, T^{1,0}(\overline{M})\otimes K(\overline{M}))

=H^{n-1}(\overline{M}, \Omega^{n-1}(T^{1,0}(\overline{M})^{*}\otimes K(\overline{M})^{*}))

=H^{1,n-1}(\overline{M})

Since \overline{M} is a K\"ahlerian manifold, we have

dim H^{1,n-1}(\overline{M})=\dim H^{n-1,1}(\overline{M})=\dim H^{1}(\overline{M}, K(\overline{M}))
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Therefore we obtain dim H^{1}(\overline{M}, K(\overline{M}))=\dim\Gamma_{hol}(T^{1,0}(\overline{M})\otimes F^{-1}) .
On the other hand, from Kodaira-Nakano’s van\overline{l}shing theorem, it fol-

lows that if n-1>1 , then

H^{1} ( \overline{M}, K(\overline{M}))=0 .

Hence, if n\geqq 3 , then \Gamma_{hol}(T^{1,0}(\overline{M})\otimes F^{-1})=0 , which is a contradiction. If
n=2, then \overline{M} is biholomorphic to the complex projective space P^{1}(C) ,

because K(\overline{M}) is a negative line bundle. q . e . d .
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