Notes on complete noncompact Riemannian manifolds with convex exhaustion functions

By Koichi SHIGA (Received February 16, 1981)

§ 0. Introduction

Let M be a connected, complete and noncompact Riemannian manifold without boundary, and let K_{σ} be the sectional curvature of M determined by a plane section σ . Every geodesic on M is parametrized by arc length. Let C_p (resp. Q_p) be the tangent cut locus (resp. the tangent first conjugate locus) with respect to a point $p \in M$, and let $C(p) = \exp_p C_p$, where $\exp_p : M_p \to M$ is the exponential map. The injectivity radius function of the exponential map is a continuous function $i: M \to R \cup \{\infty\}$ determined by $i(p) = \inf \{d(p,q); q \in C(p)\}$, where d is the distance function of M induced from the Riemannian metric of M. And the injectivity radius i(M) of M is defined as the infimum of $i(p), p \in M$.

Toponogov ([11]) and Maeda ([8], [9]) have shown the following theorem which relates the injectivity radius with the curvature of M;

THEOREM A ([8], [9], [11]) If the sectional curvature K_{σ} of M satisfies $0 < K_{\sigma} \le \lambda$ for all σ , then we have $i(p) \ge \pi/\sqrt{\lambda}$ for all p of M.

Recently, Sharafutdinov ([10]) has extended the above result as follows;

Theorem B ([10]) If M is homeomorphic to a Euclidean space and if $0 \le K_{\sigma} \le \lambda$ for all σ , then we have $i(p) \ge \pi/\sqrt{\lambda}$ for all p of M.

The proof of this estimate given in [8] and [9] is based on the fact that there is a continuous filtration of compact totally convex sets $\{C_t\}_{t\geq 0}$ if $K_{\sigma}>0$ holds for all σ (see [2]).

Now if $K_{\sigma} \ge 0$ holds for all σ , then every Busemann function f_{τ} with respect to a ray $\gamma: [0, \infty) \to M$ is convex ([1]). Moreover if $K_{\sigma} \ge 0$ for all σ , then $F = \sup \{f_{\tau}: \gamma(0) = p\}$ is a convex exhaustion function and $\{F^{-1}((-\infty, t])\}_{t \ge 0}$ gives a filtration by compact totally convex sets, where sup is taken over all rays emanating from a fixed point p of M. And it has been proved by Greene and Wu ([3]) that if $K_{\sigma} > 0$ then the above F can be replaced by a strongly convex exhaustion function g. Namely, g satisfies; for every compact set A in M there is a $\delta > 0$ such that the second difference

56 K. Shiga

quotient along every geodesic at any point on A is bounded below by δ .

First, we shall give generalizations of Theorem A and B from a convex functional view point.

THEOREM 1. Let M admits a convex exhaustion function φ ; $M \rightarrow \mathbb{R}$ and $K_{\sigma} \leq \lambda$ for any σ . Then either $i(M) \geq \pi/\sqrt{\lambda}$ or i(M) is attained at a point belonging to the minimum set of φ .

COROLLARY. If M admits a strictly convex exhaustion function and $K_a \leq \lambda$ for any σ , then we have $i(M) \geq \pi/\sqrt{\lambda}$.

Concerning the problem on the position of cut locus and conjugate locus mentioned by Weinstein ([12]), Gromoll and Meyer have proved in [6] that if the sectional curvature of M satisfies $K_{\sigma}>0$ for any σ , then there exists a point p of M such that $C_p \cap Q_p \neq \emptyset$. If a strongly convex exhaustion function on M is replaced by a (weaker) strictly convex exhaustion function (for definition see below), then we have a generalization of the above result as follows;

Theorem 2. Assume that M admits a strictly convex exhaustion function. If there is a point q of M at which $C_q \neq \emptyset$, then there exists a point p of M such that $C_p \cap Q_p \neq \emptyset$.

As is seen later, in the above Theorems 1, 2 and Corollary, the assumptions are optimal in the following sense; If in Theorem 1 the exhaustion condition is removed, and if in Corollary one of the three conditions, strict convexity, exhaustion and $K_{\sigma} \leq \lambda$ is removed, then there is a counter example which violates the conclusion. If in Theorem 2, one of the three conditions, strict convexity, exhaustion and $C_q \neq \emptyset$ is removed, then there is a counter example which violates the conclusion.

Definitions and some auxiliary results are given in the section 1, the proof of Theorem 1 and remarks are given in the section 2 and the proof of Theorem 2 and some other related results are given in the section 3.

The author would like to express his thanks to Professor K. Shiohama for his valuable suggestions.

§ 1. Preliminaries

Hereafter let M be an n-dimensional complete noncompact Riemannian manifold without boundary. First of all, we shall define the concept of convexity and exhaustion for a real valued function on M. A function $\varphi: M \rightarrow R$ is said to be convex if for every geodesic $\gamma: R \rightarrow M$ and every t_1 , $t_2 \in R$ and $\lambda \in [0, 1]$, $\varphi \circ \gamma$ satisfies

$$\varphi \circ \gamma ((1-\lambda)t_1 + \lambda t_2) \leq (1-\lambda)\varphi \circ \gamma(t_1) + \lambda \varphi \circ \gamma(t_2) .$$

It the above inequality is strict for any $\lambda \in (0, 1)$, then φ is called to be strictly convex. A convex function is locally Lipschitz continuous and hence it is differentiable at almost all points in M. And a strongly convex function is a strictly convex function but the converse is not generally true. function $\varphi: M \to R$ is said to be exhaustion if $\varphi^{-1}((-\infty, a])$ is compact for any $a \in \mathbb{R}$. We denote the sublevel set $\varphi^{-1}((-\infty, a])$ by $M^a(\varphi)$ or simply M^a . Furthermore, a subset A in M is by definition totally convex if every geodesic segment from p to q is contained in A for any points p and q of Any sublevel set M^a of a convex function is closed totally convex. Hence convex exhaustion functions take their minima and thus if φ is a strictly convex exhaustion function, then the minimum set is a single point.

Hereafter let $\varphi: M \rightarrow \mathbb{R}$ be a convex function and let m be the infimum of $\varphi(p)$, $p \in M$, unless otherwise mentioned. The following notions are used by Sharafutdinov ([10]) to prove Theorem C and D. For $v \in M_p$, we denote by $\varphi'(p, v)$ the value of the right derivative of $\varphi(t) = \varphi(\exp_p tv)$ at t = 0. Then $\varphi'(p, \cdot): M_p \to \mathbb{R}$ is Lipschitz continuous, convex and positive homogeneous, i. e., $\varphi'(p, tv) = t\varphi'(p, v)$ for $t \ge 0$. Hence it turns out that $\varphi'(p, \bullet)$ restricted to the set S_pM of unit tangent vectors to M at p attains its negative minimum at a unique vector in S_pM if $\varphi(p)>m$. So we can define the vector $X(p) = \varphi'(p, v)v$, where v is the unit tangent vector such that $\varphi'(p, v) = \min \{ \varphi'(p, w) ; w \in S_p M \}.$

Next let $c:[a,b] \rightarrow M$ be a continuous curve and v be a tangent vector at c(t), $t \in (a, b]$. Then v is said to be the left tangent vector to the curve c at t if for every smooth function $f: M \rightarrow R$, the left derivative of $f \circ c$ at t is equal to vf. And we write as $v = \dot{c}_{-}(t)$. Under these notations, we define the following;

DEFINITION. Let the point p of M and the number T be such that $\varphi(p) = t_0 > T \ge m$. The continuous curve $c_p : [T, t_0] \to M$ is called to be an integral curve for the field X emanating from p if it satisfies the following three conditions;

- (1) $c_p(t_0)=p$,
- (2) c_p is locally Lipschitz continuous on $(T, t_0]$,
- (3) For any $t \in (T, t_0]$, $\varphi(c_p(t)) > m$ and

$$\dot{c}_{p-}(t) = \mathbf{X}(c_p(t))/|\mathbf{X}(c_p(t))|^2.$$

If moreover T=m, then c_p is called a maximal integral curve for the field X emanating from p.

The following facts were proved by Sharafutdinov in [10] and see [10] for details.

THEOREM C ([10]). Let φ be a convex exhaustion function on M and let M^a be an arbitrarily given sublevel set of φ . Then for every point p of M^a such that $\varphi(p) > m$, there exists a unique maximal integral curve for the field X emanating from p.

THEOREM D ([10]). Let φ be a convex exhaustion function. For every t with $m \le t \le a$, define a map $\psi_t : M^a \to M^t$ by $\psi_t(p) = p$ if $\varphi(p) \le t$ and $\psi_t(p) = c_p(t)$ if $\varphi(p) = t_0 > t$, where $c_p : [m, t_0] \to M^a$ is a maximal integral curve for X emanating from p. Then we have $L(\gamma) \ge L(\psi_t \circ \gamma)$ for any rectifiable curve $\gamma : [0, 1] \to M^a$, where $L(\gamma)$ denotes the length of the curve γ .

\S 2. Proof of Theorem 1 and Remarks

PROOF OF THEOREM 1. Assume that $i(M) < \pi/\sqrt{\lambda}$ and let $\{p_n\}$ be a sequence of points in M such that $i(p_n) \to i(M)$ as $n \to \infty$. Fix an $a_n \in \mathbb{R}$ so that $\varphi(p_n) \leq a_n$. Since φ is exhaustion, M^{a_n} is compact and the injectivity radius function restricted to M^{a_n} takes minimum at some point q_n of M^{a_n} . Let q'_n in $C(q_n)$ be a point such that $d(q_n, q'_n) = d(q_n, C(q_n))$. Then from the theorem of Morse-Schoenberg and Lemma 2 [5; p 226], there exists a geodesic loop $\gamma := \gamma^{(n)} : [0, 2i(q_n)] \to M$ such that $\gamma(0) = \gamma(2i(q_n)) = q_n$. Since M^{a_n} is totally convex, $\gamma([0, 2i(q_n)])$ is contained in M^{a_n} . If $\dot{\gamma}(0) \neq \dot{\gamma}(2i(q_n))$ then $d(q'_n, C(q'_n)) < d(q'_n, q_n)$. Hence $i(q'_n) < i(q_n)$. This contradicts the choice of q_n . So γ is a closed geodesic.

Let $\varphi \circ \gamma([0, 2i\ (q_n)] = b_n$. If $b_n = m$ holds for all n, then i(M) is attained at a point on M^m . Assume that $b_n > m$, and reparametrize γ by $\gamma:[0,1] \to M$. For any $t \in [m, b_n]$, define a curve $\tilde{\gamma}_t := \tilde{\gamma}_t^{(n)}:[0,1] \to M$ by putting $\tilde{\gamma}_t = \psi_t \circ \gamma$, where $\psi_t : M^{b_n} \to M^t$ is the map defined in Theorem D. Then by Theorem D, $\tilde{\gamma}_t$ is a closed curve with $L(\tilde{\gamma}_t) \leq L(\gamma) < 2\pi/\sqrt{\lambda}$. Let $t_0 := t^{(n)}$ be the infimum of the number $t \in [m, b_n]$ such that $L(\psi_t \circ \gamma) = L(\gamma)$ and such that $\psi_t \circ \gamma$ is a closed geodesic. If $t_0 > m$, then take a sequence $t_k \in (m, t_0)$, $k=1,2,\cdots$, tending to t_0 . If $L(\tilde{\gamma}_{t_k}) = L(\tilde{\gamma}_{t_0})$, $\tilde{\gamma}_{t_k}$ is not a closed geodesic by the definition of t_0 . Therefore we can get a closed curve $\gamma_{t_k} := \gamma_{t_k}^{(n)}: [0,1] \to M^{t_k}$ such that $L(\gamma_{t_k}) < L(\tilde{\gamma}_{t_k})$ and such that $\sup\{d(\gamma_{t_k}(s), \tilde{\gamma}_{t_k}(s)): 0 \le s \le 1\} < 1/k$, $k=1,2,\cdots$, by exchanging a subarc of $\tilde{\gamma}_{t_k}$ for a minimal geodesic segment. Then the sequence $\{\gamma_{t_k}\}$ converges uniformly to $\tilde{\gamma}_{t_0}$. Namely there exists a family of closed curves γ_{t_k} , converging towards $\tilde{\gamma}_{t_0}$, each of which is shorter than $\tilde{\gamma}_{t_0}$ with $L(\tilde{\gamma}_{t_0}) < 2\pi/\sqrt{\lambda}$. Now we are led to the contradiction by the same argument as Klingenberg's ([7]). Hence $t_0 = m$, that is, we

may suppose that $\gamma = \gamma^{(n)} \ni q_n$ belongs to the minimum set M^m of φ for any Then by the compactness of M^m , i(M) is attained at a point of M^m .

REMARK 1. In order to derive the conclusion of Theorem 1 and Corollary, we can not omit the exhaustion condition on the assumption of φ . We can construct a smooth non-exhaustion strongly convex function on a surface of revolution in \mathbb{R}^3 such that Gaussian curvature has a positive maximum λ and $i(p_n)$ tends to zero for a certain sequence of points $\{p_n\}$ in the surface. Let $h: \mathbf{R} \rightarrow \mathbf{R}$ be a smooth non-decreasing function such that h(t)=0 if $t \le a$, 0 < h(t) < 1 if a < t < b and h(t)=1 if $t \ge b$, where a and b are constants such that $f: \mathbf{R} \rightarrow \mathbf{R}$, $f(t) = e^t + h(t)$, satisfies $f''(t_0) < 0$ for some $t_0 \in (a, b)$. For this function f, let M be the surface of revolution in R^3 with parametrization

$$\chi(u, v) = (f(v) \cos u, f(v) \sin u, v),$$

where $0 < u < 2\pi$ and $-\infty < v < +\infty$. Note that Gaussian curvature G is bounded above by a positive constant since G(p) > 0 at p with $v(p) = t_0$ and G(q) < 0 at every q with $v(q) \in (a, b)$. And note also that $i(p) \rightarrow 0$ as $v(p) \rightarrow 0$ $-\infty$. Hence we have only to show the existence of a non-exhaustion strongly convex function on M. Consider the function $\varphi: M \rightarrow R$ with $\varphi(u, q)$ $v = f^n(v)$, where n is a positive integer. We assert that φ is strongly convex for sufficiently large n. Using differential equation of the geodesic $\gamma: \mathbb{R} \to M$, we get

$$\begin{split} \frac{d^2}{ds^2} \, \varphi \circ \gamma(s) &= n f^n(f')^2 \, (\dot{u})^2 / \Big\{ (f')^2 + 1 \Big\} \\ &+ n f^{n-2} \Big\{ (n-1) \, (f')^4 + (n-1) \, (f')^2 + f f'' \Big\} (\dot{v})^2 / \Big\{ (f')^2 + 1 \Big\} \; . \end{split}$$

Since $\frac{d^2}{ds^2} \varphi \circ \gamma(s)$ is positive at v < a and v > b, we have only to consider the case; $a \le v \le b$. Then there are positive constants C_0 , C_1 and C_2 such that $f > C_0$, $f' > C_1$ and $|f''| < C_2$. So we have

$$(n-1)(f')^4+(n-1)(f')^2+ff''>(n-1)C_1^4+(n-1)C_1^2-C_0C_2$$
.

Consequently φ is smooth strongly convex for sufficiently large n and not an exhaustion function by definition.

REMARK 2. In order to derive the conclusion of Corollary, we can not omit the strict convexity condition, also. Let M be a flat cylinder $S^1 \times R$ with induced metric from R^3 , where S^1 is a unit circle. Then the function $\varphi: S^1 \times R \to R$, $\varphi(x, t) := |t|$, is not-strictly convex but exhaustion. However the conclusion does not hold.

60 K. Shiga

REMARK 3. The manifold which we consider in Corollary is homeomorphic to a Euclidean space by consequence of Theorem F in Greene and Shiohama ([4]) because the minimum set of every structly convex exhaustion function is a single point. And this is a natural requirement to derive the conclusion of Corollary. See Remark in [9] for details.

§ 2. Proof of Theorem 2 and Remarks

PROOF OF THEOREM 2. Fix an $a \in \mathbb{R}$ so that $\varphi(q) < a$. Since M^a is compact, the injectivity radius function restricted to M^a takes the minimum at a point p of M^a . Then i(p) is finite since i(q) is finite by assumption. If $C_p \cap Q_p = \emptyset$, then there is a geodesic loop γ ; $[0, 2i(p)] \to M$ such that $\gamma(0) = \gamma(2i(p)) = p$. And γ is shown to be a closed geodesic by the same discussion as that of the proof of Theorem 1. Therefore this contradicts the strict convexity of φ .

REMARK 4. In order to derive the conclusion of Theorem 2, we can not omit any one of the three conditions, exhaustion, strict convexity and the existence of a point q such that $C_q \neq \emptyset$. Simple counter examples are given as follows; Let M be the surface of revolution in R^3 with parametrization

$$\chi(u, v) = (e^v \cos u, e^v \sin u, v),$$

where $0 < u < 2\pi$ and $-\infty < v < +\infty$. Then let $\varphi_1 : M \to R$ be the function defined by $\varphi(u, v) = e^v$. φ_1 is strongly convex but not exhaustion. Secondly, let $\varphi_2 : S^1 \times R \to R$ be the function defined by $\varphi_2(x, t) = |t|$, where $S^1 \times R$ is a flat cylinder with induced metric from R^3 . And R^n furnishes the trivial counter example for which $C_q \neq \emptyset$ can not be omitted.

Moreover, we can get an information about the point at which φ takes its minimum.

PROPOSITION. Let M admits a strictly convex exhaustion function φ : $M \rightarrow \mathbf{R}$ and let p be the point at which φ attains the minimum. Then we have either $C_p = \emptyset$ or $C_p \cap Q_p \neq \emptyset$.

PROOF. Suppose that $C_p \neq \emptyset$. If $C_p \cap Q_p = \emptyset$, then there is a geodesic loop $\gamma: [0, 2i(p)] \rightarrow M$ with $\gamma(0) = \gamma(2i(p)) = p$. Since $M^{\min \varphi} = \{p\}$ is a totally convex set, $\gamma([0, 2i(p)])$ is contained in $\{p\}$. Hence i(p) = 0. This is a contradiction.

References

[1] J. CHEEGER and D. GROMOLL: The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential geometry 6 (1971), 119-128.

- [2] J. CHEEGER and D. GROMOLL: On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972), 413-443.
- [3] R. E. GREENE and H. WU: Integrals of subharmonic functions on manifolds of nonnegative curvature, Inventiones Math. 27 (1974), 265-298.
- [4] R. E. GREENE and K. SHIOHAMA: Convex functions on complete noncompact manifolds; Topological structure, Inventiones Math., 63 (1981), 129-157.
- [5] D. GROMOLL, W. KLINGENBERG and W. MEYER: Riemannshe Geometrie im Grossen, Springer-Verlag, 1968.
- [6] D. GROMOLL and W. MEYER: On complete manifolds of positive curvature, Ann. of Math. 90 (1969), 75-90.
- [7] W. KLINGENBERG: Contributions to differential geometry in the large, Ann. of Math. 69 (1959), 654-666.
- [8] M. MAEDA: On the injective radius of noncompact Riemannian manifolds, Proc. Japan Acad. 50 (1974), 148-151.
- [9] M. MAEDA: The injective radius of noncompact Riemannian manifolds, Tohoku Math. J. vol. 27 no. 3 (1975), 405-412.
- [10] V. A. SHARAFUTDINOV: The Pogolelov-Klingenberg Theorem for manifolds homeomorphic to \mathbb{R}^n , Siberian Math. J., vol. 18 no. 2 (1977), 649-657.
- V. A. TOPONOGOV: Theorems on shortest arcs in noncompact Riemannian [11] spaces of positive curvature, Soviet Math. Dokl. 11 (1970), 412-414.
- [12] A. D. WEINSTEIN: The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math. 87 (1968), 29-41.

Institute of Mathematics University of Tsukuba