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Notes on complete noncompact Riemannian
manifolds with convex exhaustion functions

By Koichi SHIGA
(Received February 16, 1981)

\S 0. Introduction

Let M be a connected, complete and noncompact Riemannian manifold
without boundary, and let K_{\sigma} be the sectional curvature of M determined
by a plane section \sigma . Every geodesic on M is parametrized by arc length;
Let C_{p} (resp. Q_{p}) be the tangent cut locus (resp. the tangent first conjugate
locus) with respect to a point p\in M, and let C(p)=\exp {}_{pp}C , where \exp_{p} :
M_{p}arrow M is the exponential map. The injectivity radius function of the
exponential map is a continuous function i:Marrow R\cup\{\infty\} determined by
i(p)= \inf\{d(p, q);q\in C(p)\} , where d is the distance function of M induced
from the Riemannian metric of M. And the injectivity radius i(M) of M
is defined as the infimum of i(p) , p\in M.

Toponogov ([11]) and Maeda ([8], [9]) have shown the following theorem
which relates the injectivity radius with the curvature of M ;

THEOREM A ([8], [9], [11]) If the sectional curvature K_{\sigma} of M satisfies
0<K_{\sigma}\leqq\lambda for all \sigma , then we have i(p)\geqq\pi/\sqrt{\lambda} for all p of M.

Recently, Sharafutdinov ([10]) has extended the above result as follows;

THEOREM B([10]) If M is homeomorphic to a Euclidean space and
if 0\leqq K_{\sigma}\leqq\lambda for all \sigma, then we have i(p)\geqq\pi/\sqrt{\lambda} for all p of M.

The proof of this estimate given in [S] and [9] is based on the fact
that there is a continuous filtration of compact totally convex sets \{C_{t}\}_{t\geqq 0} if
K_{\sigma}>0 holds for all \sigma (see [2]).

Now if K_{\sigma}\geqq 0 holds for all \sigma, then every Busemann function f_{\gamma} with
respect to a ray \gamma:[0, \infty)arrow M is convex ([1]). Moreover if K_{\sigma}\geqq 0 for all
\sigma, then F= \sup\{f_{\gamma} : \gamma(0)=p\} is a convex exhaustion function and \{F^{-1}((-\infty ,
t])\}_{t\geqq 0} gives a filtration by compact totally convex sets, where sup is taken
over all rays emanating from a fixed point p of M. And it has been
proved by Greene and Wu ([3]) that if K_{\sigma}>0 then the above F can be
replaced by a strongly convex exhaustion function g. Namely, g satisfies ;
for every compact set A in M there is a \delta>0 such that the second difference
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quotient along every geodesic at any point on A is bounded below by \delta .
First, we shall give generalizations of Theorem A and B from a convex

functional view point.

THEOREM 1. Let M admits a convex exhaustion function \varphi;Marrow R

and K_{\sigma}\leqq\lambda for any \sigma . Then either i(M)’\pi/=\sim\sqrt{\lambda} or i(M) is attained at a

point belonging to the minimum set of \varphi .

COROLLARY. If M admits a strictly convex exhaustion function and
K_{\sigma}\leqq\lambda for any \sigma, then we have i(M)\geqq\pi/\sqrt{\lambda}

‘

Concerning the problem on the position of cut locus and conjugate
locus mentioned by Weinstein ([12]), Gromoll and Meyer have proved in [6]

that if the sectional curvature of M satisfies K_{\sigma}>0 for any \sigma, then there
exists a point p of M such that C_{p}\cap Q_{p}\neq\emptyset . If a strongly convex exhaustion
function on M is replaced by a (weaker) strictly convex exhaustion function
(for definition see below), then we have a generalization of the above result
as follows ;

THEOREM 2. Assume that M admits a strictly convex exhaustion
function. If there is a point q of M at which C_{q}\neq\emptyset , then there exists
a point p of M such that C_{p}\cap Q_{p}\neq\emptyset .

As is seen later, in the above Theorems 1, 2 and Corollary, the assump-
tions are optimal in the following sense; If in Theorem 1 the exhaustion
condition is removed, and if in Corollary one of the three conditions, strict
convexity, exhaustion and K_{\sigma}\leqq\lambda is removed, then there is a counter example
which violates the conclusion. If in Theorem 2, one of the three conditions,

strict convexity, exhaustion and C_{q}\neq\emptyset is removed, then there is a counter
example which violates the conclusion.

Definitions and some auxiliary results are given in the section 1, the
proof of Theorem 1 and remarks are given in the section 2 and the proof
of Theorem 2 and some other related results are given in the section 3.

The author would like to express his thanks to Professor K. Shiohama
for his valuable suggestions.

\S 1. Preliminaries

Hereafter let M be an n-dimensional complete noncompact Riemannian
manifold without boundary. First of all, we shall define the concept of
convexity and exhaustion for a real valued function on M. A function
\varphi:Marrow R is said to be convex if for every geodesic \gamma:Rarrow M and every t_{1} ,

t_{2}\in R and \lambda\in[0,1] , \varphi\circ\gamma satisfies
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\varphi\circ\gamma((1-\lambda)t_{1}+\lambda t_{2})\leqq(1-\lambda)\varphi\circ\gamma(t_{1})+\lambda\varphi\circ\gamma(t_{2})

It the above inequality is strict for any \lambda\in(0,1) , then \varphi is called to be
strictly convex. A convex function is locally Lipschitz continuous and hence
it is differentiable at almost all points in M. And a strongly convex function
is a strictly convex function but the converse is not generally true. A
function \varphi:Marrow R is said to be exhaustion if \varphi^{-1}((-\infty, a]) is compact for
any a\in R . We denote the sublevel set \varphi^{-1}((-\infty, a]) by M^{a}(\varphi) or simply
M^{a} . Furthermore, a subset A in M is by definition totally convex if every
geodesic segment from p to q is contained in A for any points p and q of
A. Any sublevel set M^{a} of a convex function is closed totally convex.
Hence convex exhaustion functions take their minima and thus if \varphi is a
strictly convex exhaustion function, then the minimum set is a single point.

Hereafter let \varphi:Marrow R be a convex function and let m be the infimum
of \varphi(p) , p\in M, unless otherwise mentioned. The following notions are used
by Sharafutdinov ([10]) to prove Theorem C and D. For v\in M_{p} , we denote
by \varphi’(p, v) the value of the right derivative of \varphi(t)=\varphi(\exp_{p}tv) at t=0 .
Then \varphi’(p, \cdot):M_{p}arrow R is Lipschitz continuous, convex and positive hom0-
geneous, i. e. , \varphi’(p, tv)=t\varphi’(p, v) for t\geqq 0 . Hence it turns out that \varphi’(p, \cdot)

restricted to the set S_{p}M of unit tangent vectors to M at p attains its
negative minimum at a unique vector in S_{p}M if \varphi(p)>m . So we can define
the vector X(p)=\varphi’(p, v)v , where v is the unit tangent vector such that
\varphi’(p, v)=\min\{\varphi’(p, w) ; w\in S_{p}M\} .

Next let c:[a, b]arrow M be a continuous curve and v be a tangent vector
at c(t) , t\in(a. b]. Then v is said to be the left tangent vector to the curve
c at t if for every smooth function f:Marrow R, the left derivative of f\circ c at
t is equal to vf. And we write as v=\dot{c}_{-}(t) . Under these notations, we
define the following;

DEFINITION. Let the point p of M and the number T be such that
\varphi(p)=t_{0}>T\geqq m . The continuous curve c_{p} : [T, t_{0}] -arrow M is called to be an
integral curve for the field X emanating from p if it satisfies the following
three conditions;

(1) c_{p}(t_{0})=p ,
(2) c_{p} is locally Lipschitz continuous on (T, t_{0}] ,
(3) For any t\in(T, t_{0}] , \varphi(c_{p}(t))>m and

\dot{c}_{p-}(t)=X(c_{p}(t))/|X(c_{p}(t))|^{2} .

If moreover T=m, then c_{p} is called a maximal integral curve for the field
X emanating from p.
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The following facts were proved by Sharafutdinov in [10] and see [10]
for details.

THEOREM C([10]) . Let \varphi be a convex exhaustion function on M and
let M^{a} be an arbitrarily given sublevel set of \varphi . Then for every point p

of M^{a} such that \varphi(p)>m , there exists a unique maximal integral curve
for the field X emanating from p.

THEOREM D([10]) . Let \varphi be a convex exhaustion function. For every
t with m\leqq t\leqq a , define a map \psi_{t} : M^{a}arrow M^{t} by \psi_{t}(p)=p if \varphi(p)\leqq t and
\psi_{t}(p)=c_{p}(t) if \varphi(p)=t_{0}>t , where c_{p} : [m, t_{0}]arrow M^{a} is a maximal integral
curve for X emanating from p. Then we have L(\gamma)\geqq L(\psi_{t}\circ\gamma) for any
rectifiable curve \gamma:[0, 1]arrow M^{a}, where L(\gamma) denotes the length of the curve \gamma .

\S 2. Proof of Theorem 1 and Remarks

PROOF OF THEOREM 1. Assume that i(M)<\pi/\sqrt{\lambda} and let \{p_{n}\} be a
sequence of points in M such that i(p_{n})-i(M) as narrow\infty . Fix an a_{n}\in R

so that \varphi(p_{n})\leqq a_{n} . Since \varphi is exhaustion, M^{a_{n}} is compact and the injectivity
radius function restricted to M^{a_{n}} takes minimum at some point q_{n} of M^{a_{n}} .
Let q_{n}’ in C(q_{n}) be a point such that d(q_{n}, q_{n}’)=d(q_{n}, C(q_{n})) . Then from the
theorem of Morse-Schoenberg and Lemma 2 [5; p226] , there exists a
geodesic loop \gamma:=\gamma^{(n)} : [0, 2i(q_{n})]- M such that \gamma(0)=\gamma(2i(q_{n}))=q_{n} . Since
M^{a_{n}} is totally convex, \gamma([0,2i(q_{n})]) is contained in M^{a_{n}} . If \dot{\gamma}(0)\neq\dot{\gamma}(2i(q_{n}))

then d(q_{n}’, C(q_{n}’))<d(q_{n}’, q_{n}) . Hence i(q_{n}’)<i(q_{n}) . This contradicts the choice
of q_{n} . So \gamma is a closed geodesic.

Let \varphi\circ\gamma([0,2i(q_{n})]=b_{n} . If b_{n}=m holds for all n , then i(M) is attained
at a point on M^{m} . Assume that b_{n}>m , and reparametrize \gamma by \gamma : [0, 1]arrow

M. For any t\in[m, b_{n}] , define a curve \tilde{\gamma}_{t}
:=\tilde{\gamma}_{t}^{(n)} : [0, 1]arrow M by putting

\tilde{\gamma}_{t}=\psi_{t}\circ\gamma , where \psi_{t} : M^{b_{n}}arrow M^{l} is the map defined in Theorem D. Then by
Theorem D,\tilde{\gamma}_{t} is a closed curve with L(\tilde{\gamma}_{t})\leqq L(\gamma)<2\pi/\sqrt{\lambda} [ Let t_{0} :=t^{(n)}

be the infimum of the number t\in[m, b_{n}] such that L(\psi_{t}\circ\gamma)=L(\gamma) and such
that \psi_{t}\circ\gamma is a closed geodesic. If t_{0}>m , then take a sequence t_{\dot{\kappa}}\in(m, t_{0}) ,
k=1,2 , \cdots , tending to t_{0} . If L(\tilde{\gamma}_{t_{k}})=L(\tilde{\gamma}_{t_{0}}),\tilde{\gamma}_{t_{k}} is not a closed geodesic by
the definition of t_{0} . Therefore we can get a closed curve \gamma_{t_{k}}

:=\gamma_{t_{k}}^{(n)} : [0, 1]arrow

M^{t_{k}} such that L(\gamma_{t_{k}})<L(\tilde{\gamma}_{t_{k}}) and such that sup \{d(\gamma_{t_{k}}(s),\tilde{\gamma}_{t_{k}}(s)) : 0\leqq s\leqq 1\}<

1/k, k=1,2 , \cdots , by exchanging a subarc of \tilde{\gamma}_{t_{k}} for a minimal geodesic seg-
ment. Then the sequence \{\gamma_{t_{k}}\} converges uniformly to \tilde{\gamma}_{t_{0}} . Namely there
exists a family of closed curves \gamma_{t_{k}} , converging towards \tilde{\gamma}_{t_{0}} , each of which
is shorter than \tilde{\gamma}_{t_{0}} with L(\tilde{\gamma}_{t_{0}})<2\pi/\sqrt{\lambda} . Now we are led to the contradiction
by the same argument as Klingenberg’s ([7]). Hence t_{0}=m , that is, we
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may suppose that \gamma=\gamma^{(n)}\ni q_{n} belongs to the minimum set M^{m} of \varphi for any
n . Then by the compactness of M^{m} , i(M) is attained at a point of M^{m} .

REMARK 1. In order to derive the conclusion of Theorem 1 and Cor-
ollary, we can not omit the exhaustion condition on the assumption of \varphi .
We can construct a smooth non-exhaustion strongly convex function on a
surface of revolution in R^{3} such that Gaussian curvature has a positive
maximum \lambda and i(p_{n}) tends to zero for a certain sequence of points \{p_{n}\}

in the surface. Let h : Rarrow R be a smooth non-decreasing function such
that h(t)=0 if t\leqq a , 0<h(t)<1 if a<t<b and h(t)=1 if t\geqq b , where a
and b are constants such that f:Rarrow R, f(t)=e^{t}+h(t) , satisfies f’(t_{0})<0

for some t_{0}\in(a, b) . For this function f, let M be the surface of revolution
in R^{3} with parametrization

\chi(u, v)=(f(v) cos u, f(v) sin u, v) ,

where 0<u<2\pi and -\infty<v<+\infty . Note that Gaussian curvature G is
bounded above by a positive constant since G(p)>0 at p with v(p)=t_{0} and
G(q)<0 at every q with v(q)\not\in(a, b) . And note also that i(p)arrow 0 as v(p)arrow

-\infty . Hence we have only to show the existence of a non-exhaustion
strongly convex function on M. Consider the function \varphi : Marrow R with \varphi(u,
v)=f^{n}(v) , where n is a positive integer. We assert that \varphi is strongly convex
for sufficiently large n . Using differential equation of the geodesic \gamma : Rarrow M,

we get

\frac{d^{2}}{ds^{2}}\varphi\circ\gamma(s)=nf^{n}(f)^{2}(\dot{u})^{2}/\{(f’)^{2}+1\}

+nf^{n-2}\{(n-1)(f’)^{4}+(n-1)(f’)^{2}+ff’\}(\dot{v})^{2}/\{(f’)^{2}+1\}

d^{2}

Since \overline{ds^{2}}\varphi\circ\gamma(s) is positive at v<a and v>b , we have only to consider the

case; a\leqq v\leqq b . Then there are positive constants C_{0} , C_{1} and C_{2} such that
f>C_{0} , f>C_{1} and |f’|<C_{2} . So we have

(n-1)(f’)^{4}+(n-1)(f’)^{2}+ff’>(n-1)C_{1}^{4}+(n-1)C_{1}^{2}-C_{0}C_{2} .

Consequently \varphi is smooth strongly convex for sufficiently large n and not

an exhaustion function by definition.

REMARK 2. In order to derive the conclusion of Corollary, we can
not omit the strict convexity condition, also. Let M be a flat cylinder
S^{1}\cross R with induced metric from R^{3} , where S^{1} is a unit circle. Then the
function \varphi:S^{1}\cross R-R , \varphi(x, t) :=|t| , is not-strictly convex but exhaustion.
However the conclusion does not hold.
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REMARK 3. The manifold which we consider in Corollary is home0-
morphic to a Euclidean space by consequence of Theorem F in Greene
and Shiohama ([4]) because the minimum set of every structly convex ex-
haustion function is a single point. And this is a natural requirement to
derive the conclusion of Corollary. See Remark in [9] for details.

\S 2. Proof of Theorem 2 and Remarks

PROOF OF THEOREM 2. Fix an a\in R so that \varphi(q)<a . Since M^{a} is
compact, the injectivity radius function restricted to M^{a} takes the minimum
at a point p of M^{a} . Then i(p) is finite since i(q) is finite by assumption.
If C_{p}\cap Q_{p}=\emptyset , then there is a geodesic loop \gamma;[0,2i(p)]arrow M such that \gamma(0)

=\gamma(2i(p))=p . And \gamma is shown to be a closed geodesic by the same discus-
sion as that of the proof of Theorem 1. Therefore this contradicts the
strict convexity of \varphi .

REMARK 4. In order to derive the conclusion of Theorem 2, we can
not omit any one of the three conditions, exhaustion, strict convexity and
the existence of a point q such that C_{q}\neq\emptyset . Simple counter examples are
given as follows; Let M be the surface of revolution in R^{3} with parametri-
zation

\chi(u, v)=(e^{v}\cos u, e^{v}\sin u, v) ,

where 0<u<2\pi and -\infty<v<+\infty . Then let \varphi_{1} : Marrow R be the function
defined by \varphi(u, v)=e^{v} . \varphi_{1} is strongly convex but not exhaustion. Secondly,
let \varphi_{2} : S^{1}\cross R-arrow R be the function defined by \varphi_{2}(x, t)=|t| , where S^{1}\cross R is a
flat cylinder with induced metric from R^{3} . And R^{n} furnishes the trivial
counter example for which C_{q}\neq\emptyset can not be omitted.

Moreover, we can get an information about the point at which \varphi takes
its minimum.

PROPOSITION. Let M admits a strictly convex exhaustion function \varphi :
Marrow R and let p be the point at which \varphi attains the minimum. Then
we have either C_{p}=\emptyset or C_{p}\cap Q_{p}\neq\emptyset .

PROOF. Suppose that C_{p}\neq\emptyset . If C_{p}\cap Q_{p}=\emptyset , then there is a geodesic
loop \gamma : [0, 2i(p)]arrow M with \gamma(0)=\gamma(2i(p))=p . Since M^{\min\varphi}=\{p\} is a totally
convex set, \gamma([0,2i(p)]) is contained in \{p\} . Hence i(p)=0. This is a
contradiction.
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