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Notes on complete noncompact Riemannian

manifolds with convex exhaustion functions

By Koichi Suica
(Received February 16, 1981)

§ 0. Introduction

Let M be a connected, complete and noncompact Riemannian manifold
without boundary, and let K, be the sectional curvature of M determined
by a plane section ¢. Every geodesic on M is parametrized by arc length;
Let C, (resp. Q,) be the tangent cut locus (resp. the tangent first conjugate
locus) with respect to a point pe M, and let C(p)=exp,C, where exp,:
M,—M is the exponential map. The injectivity radius function of the
exponential map is a continuous function 7: M—RU {co} determined by
i(p)=inf {d(p, ¢); q=C(p)}, where d is the distance function of M induced
from the Riemannian metric of M. And the injectivity radius (M) of M
is defined as the infimum of i(p), p M.

Toponogov ([11]) and Maeda ([8], [9]) have shown the following theorem

which relates the injectivity radius with the curvature of M;

THEOREM A ([8], [9], [11]) If the sectional curvature K, of M satisfies
0<K,<2 for all g, then we have i(p)=xz/N 2 for all p of M.

Recently, Sharafutdinov ([10]) has extended the above result as follows ;

Tueorem B ([10]) If M is homeomorphic to a Euclidean space and
if 0=SK,<2 for all o, then we have i(p)=x/d 2 for all p of M.

The proof of this estimate given in [8] and [9] is based on the fact
that there is a continuous filtration of compact totally convex sets {C;}, if
K,>0 holds for all ¢ (see [2]).

Now if K,=0 holds for all g, then every Busemann function f, with
respect to a ray y: [0, c0)>M is convex ([1]. Moreover if K,=0 for all
o, then F=sup {f,: y(0)=p} is a convex exhaustion function and {F~1((— co,
t])} >0 gives a filtration by compact totally convex sets, where sup is taken
over all rays emanating from a fixed point p of M. And it has been
proved by Greene and Wu ([3]) that if K,>0 then the above F can be

replaced by a strongly convex exhaustion function g. Namely, ¢ satisfies;
for every compact set A in M there is a >0 such that the second difference
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quotient along every geodesic at any point on A is bounded below by 4.
First, we shall give generalizations of A and B from a convex

functional view point.

THEOREM 1. Let M admits a convex exhaustion function ¢; M—R
and K,<A for any o. Then either iM)=n/N 2 or i(M) is attained at a
point belonging to the minimum set of ¢.

COROLLARY. If M admits a strictly convex exhaustion function and
K,<2 for any o, then we have i(M)=z/N 4.

Concerning the problem on the position of cut locus and conjugate
locus mentioned by Weinstein ([12]), Gromoll and Meyer have proved in
that if the sectional curvature of M satisfies K, >0 for any g, then there
exists a point p of M such that C,NQ,#0. If a strongly convex exhaustion
function on M is replaced by a (weaker) strictly convex exhaustion function
(for definition see below), then we have a generalization of the above result
as follows ;

THEOREM 2. Assume that M admits a strictly convex exhaustion
function. If there is a point q of M at which C,#0, then there exists
a point p of M such that C,NQ,+0.

As is seen later, in the above Theorems 1, 2 and Corollary, the assump-
tions are optimal in the following sense; If in Theorem 1 the exhaustion
condition is removed, and if in Corollary one of the three conditions, strict
convexity, exhaustion and K,<4 is removed, then there is a counter example
which violates the conclusion. If in Theorem 2, one of the three conditions,
strict convexity, exhaustion and C,## is removed, then there is a counter
example which violates the conclusion.

Definitions and some auxiliary results are given in the section 1, the
proof of Theorem 1 and remarks are given in the section 2 and the proof
of Theorem 2 and some other related results are given in the section 3.

The author would like to express his thanks to Professor K. Shiohama
for his valuable suggestions.

§ 1. Preliminaries

Hereafter let M be an n-dimensional complete noncompact Riemannian
manifold without boundary. First of all, we shall define the concept of
convexity and exhaustion for a real valued function on M. A function
¢: M—R is said to be convex if for every geodesic y: B—M and every ¢,
=R and 1€]0, 1], poy satisfies
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por (1= ts+2t2) (1= Doy () + Apor (1)

It the above inequality is strict for any 4€(0,1), then ¢ is called to be
strictly convex. A convex function is locally Lipschitz continuous and hence
it is differentiable at almost all points in M. And a strongly convex function
is a strictly convex function but the converse is not generally true. A
function ¢: M—R is said to be exhaustion if ¢!((—o0, a]) is compact for
any acR. We denote the sublevel set ¢7!((—o0,a]) by M?(p) or simply
Me,  Furthermore, a subset A in M is by definition totally convex if every
geodesic segment from p to ¢ is contained in A for any points p and g of
A. Any sublevel set M® of a convex function is closed totally convex.
Hence convex exhaustion functions take their minima and thus if ¢ is a
strictly convex exhaustion function, then the minimum set is a single point.

Hereafter let ¢ : M—R be a convex function and let m be the infimum
of p(p), pE M, unless otherwise mentioned. The following notions are used
by Sharafutdinov ([10]) to prove [Theoreml C and D. For ve M,, we denote
by ¢ (p,v) the value of the right derivative of ¢(f)=¢ (exp,tv) at £=0.
Then ¢ (p, «): M,—R is Lipschitz continuous, convex and positive homo-
geneous, 1.e., ¢ (p,tv)=t¢ (p, v) for t=0. Hence it turns out that ¢'(p, )
restricted to the set S,M of unit tangent vectors to M at p attains its
negative minimum at a unique vector in S,M if ¢(p)>m. So we can define
the vector X(p)=¢ (p, v)v, where v is the unit tangent vector such that
(P, (P’ v) =min {90, (P9 w) ; wESPM}'

Next let ¢: [a, b]—>M be a continuous curve and v be a tangent vector
at c(t), t&(a, b]. Then v is said to be the left tangent vector to the curve
c at t if for every smooth function f: M—R, the left derivative of foc at
t is equal to vf. And we write as v=c_(f). Under these notations, we
define the following ;

DEFINITION. Let the point p of M and the number 7 be such that
¢ (p)=t,>T=m. The continuous curve c¢,:[7T,¢]—>M is called to be an
integral curve for the field X emanating from p if it satisfies the following
three conditions ;

(1) cplt)=p

(2) ¢, is locally Lipschitz continuous on (7, ¢y,

(3) For any t&(T, to], ¢lc,(t)) >m and

& (6) = X[, 0))/| X (1) 2.

If moreover T'=m, then c, is called a maximal integral curve for the field
X emanating from p.
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The following facts were proved by Sharafutdinov in and see

for details.

TueorEM C ([10]). Let ¢ be a convex exhaustion function on M and
let Mt be an arbitrarily given sublevel set of ¢. Then for every point p
of M® such that ¢(p)>m, there exists a unique maximal integral curve
for the field X emanating from p.

TueorReM D ([10]). Let ¢ be a convex exhaustion function. For every
t with m<t<a, define a map¢,: Me—M' by ¢ (p)=p if ¢(p)<t and
G(p)=c,(t) if o(p)=t,>t, where c,: [m,t]>M* is a maximal integral
curve for X emanating from p. Then we have L(y)=L(¢ior) for any
rectifiable curve 7 : [0, 1]— M?, where L(y) denotes the length of the curve 7.

§ 2. Proof of Theorem 1 and Remarks

ProOF oF THEOREM 1. Assume that ¢(M)<=z/v 2 and let {p,} be a
sequence of points in M such that i(p,)—i(M) as n—oo. Fix an a,ER
so that ¢(p,)<a,. Since ¢ is exhaustion, M is compact and the injectivity
radius function restricted to M®n takes minimum at some point g, of Mén.
Let ¢, in C(g,) be a point such that d(g,, ¢i)=d (s, C(¢s)). Then from the
theorem of Morse-Schoenberg and Lemma 2 [5; p226], there exists a
geodesic loop 7:=7" :[0, 27 (¢.)]>M such that y(0)=y(2i(¢,)=g,. Since
Men is totally convex, 7([0, 27 (qg,)]) is contained in Men. If 7(0)#7(2i (gn)
then d(q,, C(¢.)<d(qh, q,). Hence i(q})<i(gs). This contradicts the choice
of g,. So 7y is a closed geodesic.

Let ¢or([0, 2 (¢.)]=bs. If b,=m holds for all n, then ¢(M) is attained
at a point on M™ Assume that b,>m, and reparametrize y by 7:[0, 1]—
M. For any t&([m,b,], define a curve % :=#m":[0,11-M by putting
7, =¢,0r, where ¢, : MP»—M" is the map defined in Theorem D. Then by
D, # is a closed curve with L(7)<L(y)<2z/Y 2. Let t,: =t™
be the infimum of the number t&[m, b,] such that L(¢cy)=L(y) and such
that ¢,or is a closed geodesic. If ¢,>m, then take a sequence z;&(m, ty),
k=1,2, .., tending to #. If L(#,)=L(#), 7, is not a closed geodesic by
the definition of #,. Therefore we can get a closed curve 7, : =7 : [0, 1]—
Mt such that L(y,)<L(f,) and such that sup {d(r:, (s), 7,(5):0=s=1}<
1/k, k=1,2, ---, by exchanging a subarc of #,  for a minimal geodesic seg-
ment. Then the sequence {y,} converges uniformly to 7,. Namely there
exists a family of closed curves 7., converging towards 7,, each of which
is shorter than #, with L(7,)< 2z/y 2. Now we are led to the contradiction
by the same argument as Klingenberg’s ([7]). Hence t,=m, that is, we
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may suppose that y=y™ 3¢, belongs to the minimum set M™ of ¢ for any
n. Then by the compactness of M™, i(M) is attained at a’ point of M™.

ReEMARK 1. In order to derive the conclusion of and Cor-
ollary, we can not omit the exhaustion condition on the assumption of ¢.
We can construct a smooth non-exhaustion strongly convex function on a
surface of revolution in R® such that Gaussian curvature has a positive
maximum A and #(p,) tends to zero for a certain sequence of points {p,}
in the surface. Let A: R—R be a smooth non-decreasing function such
that A(t)=0 if t<a, 0O<h(@)<1l if a<t<b and h(t)=1 if t=b, where a
and b are constants such that f:R—R, f(t)=e'+h(t), satisfies f"'(t)<0
for some #y&(a, b). For this function f, let M be the surface of revolution
in R® with parametrization

%(u, v) = <f(‘v) cos u, f(v)sinu, v) ,

where 0<u<27 and —oco<v<+oco. Note that Gaussian curvature G is
bounded above by a positive constant since G(p)>0 at p with v(p)=t#, and
G(q)<0 at every g with v(g)&(a, b). And note also that i(p)—0 as v(p)—
—oo. Hence we have only to show the existence of a non-exhaustion
strongly convex function on M. Consider the function ¢ : M—R with ¢(«,
v)=f"(v), where n is a positive integer. We assert that ¢ is strongly convex
for sufficiently large n. Using differential equation of the geodesic y : R—M,
we get

e ool =np (PR F 1)

+nfrt = 1) ()= 0) (P A P
. _
Since Pl @or(s) is positive at v<a and v>b, we have only to consider the
case; a<v=<b. Then there are positive constants C, C; and C, such that

f>Cy £ >C, and | f"|<C, So we have
(n—1) (= 1) (P41 >(=1) Gt (n—1) C2 =Gy

Consequently ¢ is smooth strongly convex for sufficiently large 7 and not
an exhaustion function by definition.

ReEMARK 2. In order to derive the conclusion of we can

not omit the strict convexity condition, also. Let M be a flat cylinder
Stx R with induced metric from R? where S! is a unit circle. Then the
function ¢:S'XR—R, ¢(x,t): =|t|, is not-strictly convex but exhaustion.
However the conclusion does not hold.
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REMARK 3. The manifold which we consider in is homeo-
morphic to a Euclidean space by consequence of F in Greene
and Shiohama ([4]) because the minimum set of every structly convex ex-
haustion function is a single point. And this is a natural requirement to

derive the conclusion of [Corollary, See Remark in for details.

§ 2. Proof of Theorem 2 and Remarks

Proor oF THEOREM 2. Fix an a=R so that ¢(g)<a. Since M@ is
compact, the injectivity radius function restricted to Me¢ takes the minimum
at a point p of Me Then i(p) is finite since i(qg) is finite by assumption.
It C,NQ,=0, then there is a geodesic loop 7; [0, 2{(p)]—M such that 7(0)
=7y(2i(p))=p. And 7 is shown to be a closed geodesic by the same discus-
sion as that of the proof of [Theorem 1. Therefore this contradicts the
strict convexity of ¢.

REMARK 4. In order to derive the conclusion of [Theorem 2, we can
not omit any one of the three conditions, exhaustion, strict convexity and
the existence of a point ¢ such that C,#0. Simple counter examples are
given as follows; Let M be the surface of revolution in R® with parametri-
zation

X(u, v) = (e°cos u, €%sin u, v),

where 0<u <27 and —oo<v<+oo. Then let ¢,: M—R be the function
defined by ¢ (u, v)=e". ¢, is strongly convex but not exhaustion. Secondly,
let ¢,: S'X R—R be the function defined by ¢,(x,t)=|t|, where S!XR is a
flat cylinder with induced metric from R%. And R* furnishes the trivial
counter example for which C,#0 can not be omitted.

Moreover, we can get an information about the point at which ¢ takes
its minimum.

ProrosiTiON. Let M admits a strictly convex exhaustion function ¢ :
M—R and let p be the point at which ¢ attains the minimum. Then
we have either C,=0 or C,N Q,#0.

Proor. Suppose that C,#0. If C,NQ,=0, then there is a geodesic
loop 7: [0, 2i{(p)] =M with 7(0)=7y(2i(p))=p. Since M=ir*={p} is a totally
convex set, 7([0,27(p)]) is contained in {p}. Hence i(p)=0. This is a
contradiction.
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