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The purpose of this paper is to generalize [5, Theorem (2. 6)] as the
following.

THEOREM. Let R be a hereditary noetherian prime ring and M, N
finitely generated projective modules such that N\subset M and rank M=rankN.
Let N=N_{0}\subset N_{1}\subset\cdots\subset N_{n}=M be a composition series of M/N, S_{i}=N_{i}/N_{i-1}

(i=1, \cdots, n) , \mathscr{S}=\{S_{i} ; i=1, \cdots, n\} , and \mathscr{P}=\{P;P is an idempotent maximal
ideal such that S_{i}P=0 for some S_{i}\in \mathscr{S} }. Then M\sim N iff the following
hold;

1) for an idempotent maximal ideal P\not\in \mathscr{S} and a simple right R-
module S with SP=0, Ext_{R}^{1}(S_{i}, S)=0 for every faithful simple module
S_{i}\in \mathscr{S} ,

2) for an idempotent maximal ideal P\in \mathscr{P} which belongs to a cycle
\{P_{1^{ }},\cdots, P_{k}\} , \mathscr{S} includes each simple right R-module T_{j} with T_{j}P_{j}=0(j=

1, \cdots , k) by the same number,
3) for an idempotent maximal ideal P\in \mathscr{P} which belongs to a strictly

open cycle \{P_{1}, \cdots, P_{k}\} , \mathscr{S} includes each simple right R-module T_{j} with
T_{j}P_{j}=0(j=1, \cdots, k) and a faithful simple right R-module T with Ext_{R}^{1}

(T, T_{k})\neq 0 by the same number.

Throughout the paper, let R be a hereditary noetherian prime ring and
M, N finitely generated projective right R modules M and N are said to
be of the same genus [3], denoted by M\sim N, if rank M=rankN and M/MP
\cong N/NP for all maximal ideals P of R. In the previous paper [5], we
studied the condition for M\sim N when R has enough invertible ideals. We
shall extend a portion of [5] to the general case.

Let Q be the maximal quotient ring of R. For a fractional R ideal I,

we put O_{r}(I)=\{x\in Q;Ix\subset I\} and O_{l}(I)=\{x\in Q;xI\subset I\} . A finite set of
distinct idempotent maximal ideals \{P_{1}, \cdots, P_{k}\} of R is called a cycle if O_{r}(P_{i})
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=O_{l}(P_{i+1}) (i=1, \cdots, k -- 1) and O_{r}(P_{k})=O_{l}(P_{1})[1] , while it is called a strictly
open cycle if O_{r}(P_{i})=O_{l}(P_{i+1})(i=1, \cdots, k-1) , O_{r}(P_{k})\neq O_{l}(P) and O_{r}(P)\neq

O_{l}(P_{1}) for any idempotent maximal ideal P of R[6] . Let J(A) denote the
intersection of all maximal submodules of a module A.

LEMMA 1. Let P be an idempotent maximal ideal, S a simple right
R module with SP=0, and N\subset M, M/N=T simple. Then the following
hold,

1) If T\cong S, i . e. , TP=0, then M/MP\cong N/NP\oplus S.
2) If T_{-7}\mathscr{S}_{-}-S, i . e. , TP\neq 0 , then;

i) in case of either a) TP_{1}=0 for an idempotent maximal ideal
P_{1} with O_{r}(P)=O_{l}(P_{1}) or b) T is faithful with Ext_{R}^{1}(T, S)\neq 0 , we have
N/NP\cong M/MP\oplus S.

ii) otherwise, N/NP\cong M/MP.
PROOF. 1) Since MP=NP, the exact sequence Oarrow N/NParrow M/MParrow T-

0 splits, and then M/MP\cong N/NP\oplus S. 2) Since MP+N=M, then exact
sequence 0arrow(MP_{1}\gamma N)/NParrow N/NParrow M/MParrow 0 splits, and then N/NP\cong M/

MP\oplus(MP\cap N)/NP. We shall determine the length of the finitely generated
semisimple module (MP\cap N)/NP . Consider the exact sequence

(^{*}) Oarrow(MP\cap N)/NParrow MP/NParrow MP/(MP\cap N)–0

When the sequence (^{*}) splits, we have MP/NP\cong(MP\cap N)/NP\oplus T, (MP/NP)P
=MP/NP, and so (MP\cap N)/NP=0 . In this case N/NP\cong M/MP holds.
Otherwise, the sequence (^{*}) doesn’t split, in particular, (MP\cap N)/NP\neq 0 .
Put A=MP/NP and B=(MP\cap N)/NP. We have AP=A and BP=0, and
then B is isomorphic to the finite direct sum of S. We can assume B\subset A .
We shall show B=J(A) . Let C be a maximal submodule of A with C\neq B .
Then there exists a simple direct summand S’ of B such that S’\cong S and
C\oplus S’=A . Thus A=AP=CP, a contradiction. Therefore, B=J(A) . Hence
B=S by [4, Lemma 5. 5] and we have N/NP\cong M/MP\oplus S.

Next we shall show that (^{*}) doen’t split iff Ext_{R}^{1}(T, S)\neq 0 . Assume
that Ext_{R}^{1}(T, S)\neq 0 and (^{*}) splits. Then we have that [O_{r}(P)/R]_{R} is a
direct sum of copies of T by [3, Theorem 7] and MP/NP\cong T\otimes {}_{R}P\cong T.
Let X= {K;K is a maximal right ideal of R such that R/K\neq T}. Then
O_{r}(P)=R_{X} by the proof of [2, Theorem 5], where R_{X} is a localization of
R constructed in [2]. Thus we have T\otimes_{R}R_{X}=0 . Since PR_{X}=P\cdot O_{r}(P)=P,
it holds that 0=T\otimes_{R}R_{X}\cong T\otimes {}_{R}P\otimes_{R}R_{X}\equiv T\otimes {}_{R}P\cong T, a contradiction. Hence
Ext_{R}^{1}(T, S)\neq 0 implies that (^{*}) doesn’t split. The converse is clear, so that
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the assertion is proved. By [3, Corollary 9, Theorem 11] we have that
Ext_{R}^{1}(T, S)\neq 0 iff the condition a) or b) holds. This completes the proof.

Lemma 2. i) Let P_{1} , P_{2} be idempotent maximal ideals and S_{i} , T_{i}

(i=1,2) simple right, resp. left R-modules with S_{i}P_{i}=0 , resp. P_{i}T_{i}=0 .
Then we have that O_{r}(P_{1})=O_{l}(P_{2})\Leftrightarrow Ext_{R}^{1}(S_{2}, S_{1})\neq 0\Leftrightarrow Ext_{R}^{1}(T_{1}, T_{2})\neq 0 . ii)

Let P_{1} , P_{2}, \cdots be idempotent maximal ideals, and assume that O_{r}(P_{i+1})=

O_{l}(P_{i}) for all i . Then there exists a positive integer n such that P_{i}=P_{j}

whenever i\equiv j (mod n).

PROOF. i) follows from [3, Theorem 8] and its left-handed version.
ii) follows from i) and the left-handed version of [3, Theorem 20].

COROLLARY. An idempotent maximal ideal of R belongs to either
a cycle or a strictly open cycle,

Now, Theorem follows from Corollary, lemma 1, and [5, Lemma 1. 3].

REMARKS. 1. A hereditary noetherian prime ring which has arbitrary
finitely many strictly open cycles is found in [6].

2. In [5, (2. 7) and (2. 8)] we studied the generalization of a theorem
of Roiter, however, the author has recently found that R. B. Warfield, Jr.
obtained this in a more general case [7, Corollary 7. 3].
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