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\S 1 Introduction

Let G be a LCA group with the dual group \hat{G} . m_{G} denotes the Haar
measure of G. Let M(G) and M_{s}(G) denote the space of all bounded regular
(complex-valued) measures on G and the subspace of M(G) consisting of all
singular measures respectively. L^{1}(G) denotes the usual group algebra, and
Trig(G) denotes the space of all trigonometric polynomials on G. M_{c}(G)

and M_{d}(G) denote the subspaces of M(G) consisting of continuous measures
and discrete measures respectively. For a subset E of \hat{G} , M_{E}(G) denotes
the space consisting of measures in M(G) whose Fourier-Stieltjes transforms
vanish
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closure.
Fourier transform respectively. When there exists a nontivial continuous
homomorphism from \hat{G} into R (the reals), we shall say that a measure
\mu\in M(G) is of analytic type if \hat{\mu}(\gamma)=0 for \gamma\in\hat{G} with \psi(\gamma)<0 . We denote
by M^{a}(G) the set of measures in M(G) which are of analytic type. For
a subset B of M(G) , B^{\wedge} means the set \{\hat{\mu};\mu\in B\} . For \mu\in M(G) , we signify
||\hat{\mu}|| by ||\hat{\mu}||=||\mu|| .

For a discrete measure \nu\in M_{d}(G) , \mu*\nu belongs to M_{s}(G) for every
\mu\in M_{s}(G) . For a compact abelian group G, Doss proved that a multiplier
on M_{s}(G) is given by convolution with a discrete measure ([4]). In [7],
Graham and MacLean obtained an analogous result for a LCA group. In
section 2 of this paper, we prove the following:

THEOREM 2. 3. Suppose an ordering of \hat{G} is given by nontrivial con-
tinuous homomorphism \psi from \hat{G} into R. Let \delta be a positive real number
and \Phi a multiplier on L_{-\delta}^{1}(R) (the defifinition of L_{-\delta}^{1}(R) will be stated in
Defifinition 2. 1). Then \Phi\circ\psi is also a multiplier on M^{a}(G) with the follow-
ing properties :

(I) S(M^{a}(G)\cap L^{1}(G))\subset M^{a}(G)\cap L^{1}(G) ,

(II) S(’M^{a}(G)\cap M_{s}(G))\subset M^{a}(G)\cap M_{s}(G) .
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(III) ||\Phi\circ\psi||\leq||\Phi|| ,

where S is the operator on M^{a}(G) corresponding to \Phi\circ\psi .

By using above theorem, we construct a multiplier S on M^{a}(G) such
that it maps M^{a}(G)\cap M_{s}(G) into itself and it is not given by convolution
with a measure in M(G) (Theorem 2. 4). In section 3, we prove that every
multiplier on the space of analytic singular measures does not vanish at
infinity (Theorem 3. 1). In section 4, we obtain an analogous result of Doss
([3]) by the method used in section 2 (Theorem 4. 2). In section 5, we
shall show that the result obtained in section 3 is satisfied for a LCA group
with the algebraically ordered dual (Theorem 5. 1). We use the ideas of
Glicksberg ([6]) and the thory of disintegration.

DEFINITION 1. 1. Let G be a LCA group and E a subset of G. A
function \Phi on \hat{G} which is continuous on E^{0} is called a multiplier on M_{E}(G)

if \Phi\hat{\mu} belongs to M_{E}(G)^{\wedge} for each \mu\in M_{E}(G) . Let S be a bounded linear
operator on M_{E}(G) such that S(\mu)^{\wedge}=\Phi\hat{\mu} . S is also called a multiplier on
M_{E}(G) . We denote a norm ||\Phi|| by ||\Phi||=||S|| .

We need the following lemma later on.
Lemma (A) (R. Doss, Theorem 1 in [2]).

Let G be a LCA group. A continuous function \phi on \hat{G} is the Fourier-
Stieltjes transform of a singular measure on G if and only if there exists
a positive constant A such that

(i) for every trigonometric polynomial p(x)= \sum c_{i}(-x_{i}, \gamma_{i}) , \gamma_{i}\in G, the
relation ||p||_{\infty}\leq 1 implies | \sum c_{i}\phi(\gamma_{i})|\leq A ;

(ii) whatever be \epsilon>0 and the compact set K in \hat{G}, there is a polynomial
p(x)= \sum c_{i}(-x, \gamma_{i}) , \gamma_{i}\in\hat{G}, \gamma_{i}\not\in K such that ||p||_{\infty}\leq 1 and | \sum c_{i}\phi(\gamma_{i})|>A-\epsilon .

The following lemmas are well known.
Lemma (B). Let G be a LCA group and \Lambda an open subgroup of G.

Let H be the annihilator of \Lambda . For each \mu\in M_{s}(G/H) , there exists a
measure \nu\in M_{s}(G) such that ||\nu||=||\mu||,\hat{\nu}(\gamma)=\hat{\mu}(\gamma) on \Lambda and \hat{\nu}(\gamma)=0 on G\backslash \Lambda .

Lemma (C). Let G, H and \Lambda be as in Lemma (B). Let \pi be the
natural homorphism from G onto G/H. Then, for each \mu\in M_{s}(G) with
supp (\hat{\mu})\subset\Lambda, \pi(\mu) belongs to M_{s}(G/H) and ||\mu||=||\pi(\mu)|| , where \pi(\mu) denotes
the continuous image of \mu under \pi .

The following lemma is easily obtained from ([11] ; 1. 9. 1 Theorem,
p. 32).

Lemma (D). Let G be a LCA group and \Phi a continuous function on
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\hat{G} . Let A be a positive real number. If \Phi|_{\Gamma}\in M(G/\Gamma^{\perp})^{\wedge} and ||\Phi|_{\Gamma}||\leq A

for each \sigma-compact open subgroup \Gamma of \hat{G}, \Phi belongs to M(G)^{\wedge} and ||\Phi||\leq A .

The following lemma is a useful one.

Lemma (E). Let G be a LCA group and E a subset of \hat{G} . Let \Phi be
a multiplier on M_{E}(G) and S the operator on M_{E}(G) corresponding to \Phi .
Then we have\{

S(M_{E}(G)\cap L^{1}(G))\subset M_{E}(G)\cap L^{1}(G)

PROOF. For each x\in G and \mu\in M_{E}(G) , we have

S(\mu)*\delta_{x}=S(\mu*\delta_{x}) ,

where \delta_{x} is the Dirac measure at x. Hence, if \mu\in M_{E}(G)\cap L^{1}(G) , we have

\lim_{xarrow 0}||S(\mu)*\delta_{x}-S(\mu)||=\lim_{xarrow 0}||S(\mu*\delta_{x})-S(\mu)||

\leq\lim_{xarrow 0}||S||||\mu*\delta_{x}-\mu||

=0

Thus S(\mu) belongs to M_{E}(G)\cap L^{1}(G) and the proof is complete.

\S 2 Some multipliers on the space of analytic measures.

2. 1. The special case.
R and T denote the reals and the cricle group respectively. In this

section we consider the case that G is the group of type R\oplus K (or T\oplus K)

and \psi is the projection from G onto R (or Z). Let H^{1}(R) and H^{1}(T) be
the Hardy spaces. Then, by the F. and M. Riesz theorem, H^{1}(R)=

{\mu\in M(R);\hat{\mu}(x)=0 for x<0} and H^{1}(T)= {\mu\in M(T);\hat{\mu}(n)=0 for n<0}.
Let K be a LCA group. We define M^{a}(R\oplus K) and M^{a}(T\oplus K) as follows:

M^{a}(R\oplus K)=\{\mu\in M(R\oplus K) ; \hat{\mu}(x, \sigma)=0 for x<0\} .

M^{a}(T\oplus K)=\{\mu\in M(T\oplus K) ; \hat{\mu}(n, \sigma)=0 for n<0\}

PROPOSITION 2. 1. Let K be a metrizable LCA group and \psi the prO-

jection from R\oplus\hat{K} (or Z\oplus\hat{K} ) onto R (or Z). Then the following are
satisfified :

(I. 1) Let \Phi be a multiplier on H^{1}(R) . Then \Phi\circ\psi is also a multiplier
on M^{a}(R\oplus K) with the following properties :

(I. 1. a) S(M^{a}(R\oplus K)\cap L^{1}(R\oplus K))\subset M^{a}(R\oplus K)\cap L^{1}(R\oplus K)j
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(I. 1. b) S(M^{a}(R\oplus K)\cap M_{s}(R\oplus K))\subset M^{a}(R\oplus K)\cap M_{s}(R\oplus K) ,

(I. 1. c) ||S||\leq||\Phi|| ,

where S is the bounded linear operator on M^{a}(R\oplus K) induced by \Phi\circ\psi .
(I. 2) Let \Phi be a multiplier on H^{1}(T) . Then \Phi\circ\psi is also a multiplier

on M^{a}(T\oplus K) which satisfifies the same properties in (I. 1).
(II) Let G be R\oplus K or T\oplus K . Then there exists a multiplier S on

M^{a}(G) with the following properties :

(II . a) S(M^{a}(G)\cap L^{1}(G))\subset M^{a}(G)\cap L^{1}(G)2

(II . b) S(M^{a}(G)\cap M_{s}(G))\subset M^{a}(G)\cap M_{s}(G)’,

(II . c) S is not given by convolution with a bounded regular
measure on G.

PROOF. (I. 1) : First we consider the case that K is a metrizable \sigma-

compact LCA group. Let \pi be the projection from R\oplus K onto K. Let \mu

be a measure in M^{a}(R\oplus K) and put \eta=\pi(|\mu|) . Then, by the theory of
disintegration, there exists a family \{\lambda_{h}\}_{h\in K} consisting of measures in M(R\oplus K)

with the following properties (see [6], p. 419\sim 420) :

(1) h\mapsto\lambda_{h}(f) is a Borel measurable function of h for each
bounded Borel function f on R\oplus K,

(2) supp (\lambda_{h})\subset R\cross\{h\}-
,

(3) ||\lambda_{h}||\leq 1 ,

(4) \mu(g)=\int_{K}\lambda_{h}(g)d\eta(h)

for each bounded Borel measurable function on R\oplus K.
From (2), we have d\lambda_{h}(x, y)=d\nu_{h}(x)\cross d\delta_{h}(y) , where \nu_{h}\in M(R) and \delta_{h} is the
Dirac measure at h. Then we have

(5) \nu_{h}\in H^{1}(R)a . a . h(\eta) . (See the proof of Lemma 3 in [13].).

That is, there exists a Borel measurable set B in K satisfying the following:
(5)’ \eta(B)=||\eta|| and \nu_{h}\in H^{1}(R) for h\in B .

Let S_{\Phi} be a multiplier on H^{1}(R) define by S_{\Phi}(f)^{\wedge}=\Phi\hat{f}. We define a family
\{\xi_{h}\}_{h}\in_{K} consisting of measures in M(R\oplus K) as follows:

d \xi_{h}(x, y)=\int dS_{\Phi}(\nu_{h})(x)\cross d\delta_{h}(y) for h\in B

| 0 for h\not\in B
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Then the following is satisfied.
(6) h\mapsto\xi_{h}(f)

is a Borel measurable function of h for each f\in C_{0}(R\oplus K) .
Indeed, for each f\in C_{c}(R\hat{\oplus K}) , we have

\xi_{h}(\hat{f})=\int_{R\oplus K}\hat{f}(x, y)d\xi_{h}(x, y)

= \int_{R\oplus K}\int_{R\hat{\oplus}K}e^{-ixs}(-y, \sigma)f(s, \sigma)dm_{R\hat{\oplus}K}(s, \sigma)d\xi_{h}(x, y)

= \int_{\hat{R\oplus}K}\int_{R+0K}e^{-ixs}(-y, \sigma)f(s, \sigma)d\xi_{h}(x, y)dm_{R\hat{\oplus R}’}(s, \sigma)

=\{
\int_{R\hat{\oplus}K}\Phi(s)\hat{\nu}_{h}(s)(-h, \sigma)f(s, \sigma)dm_{R\hat{\oplus}K}(s, \sigma) for h\in B

0 for h\not\in B

=\{
\int_{R\hat{\oplus}K}\Phi(s)\lambda_{h}(e^{-is}.(-\cdot, \sigma))f(s, \sigma)dm_{\hat{R\oplus}K}(s, \sigma) for h\in B

0 for h\not\in B .
Since \Phi(s)\lambda_{h}(e^{-is}.(-\cdot, \sigma)f(s, \sigma) is a continuous function of (s, \sigma) for each
h\in B and a measurable function of h for each (s, \sigma)\in\hat{R\oplus}K, \xi_{h}(\hat{f}) is a
Borel measurable function of h . Since C_{c}(R\hat{\oplus K})^{\wedge} is dense in C_{0}(R\oplus K) ,
(6) is proved.

Now we define a measure S(\mu) in M(R\oplus K) as follows:

(7) S( \mu)(f)=\int_{K}\xi_{h}(f)d\eta(h) for f\in C_{o}(R\oplus K)

Then we have

(8) S( \mu)^{\wedge}(z, \sigma)=\int_{K}\xi_{h}(e^{-iz}.(-\cdot, \sigma))d\eta(h)

= \int_{K}S_{\Phi}(\nu_{h})(z)^{\wedge}(-h, \sigma)d\eta(h)

=1_{K}^{\Phi(z)\hat{\nu}_{h}(z)(-h, \sigma)d\eta(h)}

.

=\Phi(z)\hat{\mu}(z, \sigma)

=\Phi\circ\psi(z, \sigma)\hat{\mu}(z, \sigma)

Hence \Phi\circ\psi is a multiplier on M_{a}(R\oplus K) . For f\in C_{0}(R\oplus K) , by (3), we
have
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|S( \mu)(f)|=|\int_{K}\xi_{h}(f)d\eta(h)|

\leq\int_{K}|\{S_{\Phi}(\nu_{h})\cross\delta_{h}\}(f)|d\eta(h)

\leq\int_{K}||\Phi||||f||_{\infty}d\eta(h)

=||\Phi||||f||_{\infty}||\mu||

Thus we have ||S||\leq||\Phi|| . Hence (I. 1. c) is proved. (I. 1. a) is obtained
from Lemma (E). Next we prove (I. 1. b).

Let \mu be a measure in M^{a}(R\oplus K)\cap M_{s}(R\oplus K) . First we prove that
\eta=\pi(|\mu|) belongs to M_{s}(K) . Put \eta=\eta_{a}+\eta_{s} , where \eta_{a}\in L^{1}(K) and \eta_{s}\in M_{s}(K) .
For each Borel measurable subset F of R\oplus K with m_{R+0K}(F)=0 , there
exists a Borel set F_{2} in K with m_{K}(F_{2})=0 such that m_{R}(F_{y})=0 for y\not\in F_{2} ,

where F_{y}=\{x\in R;(x, y)\in F\} . Put F_{o}=F_{2}\subset(K\backslash B) , where B is the subset
of K appeared in (5’) . Then \eta_{a}(F_{o})=0 . Since \nu_{h}\in H^{1}(R) if h\in B, we have

\int_{K}\lambda_{h}(\chi_{F})d\eta_{a}(h)=\int_{F_{O}}(\nu_{h}\cross\delta_{h})(\chi_{F})d\eta_{a}(h)+\int_{K\backslash F_{O}}\backslash (\nu_{h}\cross\delta_{h})(\chi_{F})d\eta_{a}(h)

=0

Hence the measure\downarrow_{K}.\lambda_{h}d\eta_{a}(h) belongs to L^{1}(R\oplus K) . Evidently, the measure
.\backslash _{K}\cdot\lambda_{h}d\eta_{s}(h) belongs to M_{s}(R\oplus K) . On the other hand, since \mu\in M_{s}(R\oplus K) ,

we have \mu=\downarrow_{K}.\lambda_{h}d\eta_{s}(h) . By (3), we have ||\eta_{a}||+||\eta_{s}||=||\mu||\leq||\eta_{s}|| . Hence we
have \eta=\eta_{s}\in M_{s}(K) . Therefore, by the construction of S(\mu) , we can verify
that S(\mu) belongs to M_{a}(R\oplus K)\cap M_{s}(R\oplus K) if \mu\in M^{a}(R\oplus K)\cap M_{s}(R\oplus K) .
Thus (I. 1) is proved when K is a metrizable \sigma-compact LCA group. Next
we consider the case that K is a metrizable LCA group. However, in this
case, for \mu\in M^{a}(R\oplus K) , there exists a metrizable \sigma-compact open subgroup
K_{1} of K such that supp (\mu) is included in R\oplus K_{1} . Hence we can prove
(I. 1) as in the same way as in the case that K is a metrizable \sigma-compact
LCA group. This proves (I. 1).

(I. 2): We can prove (I. 2) by the same method used in (I. 1).
(II): Since we can prove (II) in the case that G=T\oplus K as same as

in G=R\oplus K, we prove only the case that G=R\oplus K. Let \{a_{n}\} be a sequence
of positive integers with a_{m+1}/a_{m}>3(m=1,2,3, \cdots) . Put F=\{a_{m} ; m=1,2,3,
\ldots\} . Let \Delta(x) be a function in L^{1}(R)^{\wedge} such that \Delta(x)=\max(1-3|x|, 0)

and \phi_{0}(n)=\chi_{F}(n) , where \chi_{F} is a characteristic function of F. Now we define
a function \Phi_{o} on R as follows:

\Phi_{o}(x)=\sum_{n\in Z}\phi_{0}(n)\Delta(x-n)
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Then, as well known, \Phi_{o} is a multiplier on H^{1}(R) which is not given by
convolution with a bounded regular measure on R (see [12]), i . e. , \Phi_{o}|_{R}+\not\in

M(R)^{\wedge}|_{R}+ , where R^{+} is the semigroup of positive real numbers. Hence we
can verify that \Phi_{o}\circ\psi|_{P^{O}} does not belong to M(R\oplus K)^{\wedge}|_{P^{O}} , where P=\{(x, \sigma)\in

R\oplus k;x\geq 0\} . Thus, by (I. 1), \Phi_{o}\circ\psi is such a multiplier. This completes
the proof.

DEFINITION 2. 1. Let K be a LCA group. For a real number \epsilon, we
defifine M_{\epsilon}^{a}(R\oplus K) and L_{\epsilon}^{1}(R) as follows:

M_{\epsilon}^{a}(R\oplus K)=\{\mu\in M(R\oplus K) ; \hat{\mu}(s, \sigma)=0 for s<\epsilon\} ,

L_{\epsilon}^{1}(R)=\{f\in L^{1}(R) ; \hat{f}(x)=0 for x<\epsilon\}

REMARK 2. 1. Let K be a metrizable LCA group. Then, by the same
method used in Proposition 2. 1, we can prove the following :

(I) Let \Phi be a multiplier on L_{\epsilon}^{1}(R) . Then \Phi\circ\psi is also a multiplier on
M_{\epsilon}^{a}(R\oplus K) which satisfies the following:

(I. a) S(M_{\epsilon}^{a}(R\oplus K)\cap L^{1}(R\oplus K))\subset M_{\epsilon}^{a}(R\oplus K)\cap L^{1}(R\oplus K)
-

(I. b) S(M_{\epsilon}^{a}(R\oplus K)\cap M_{s}(R\oplus K))\subset M^{a}.(R\oplus K)\cap M_{s}(R\oplus K)r

(I. c) ||S||\leq||\Phi|| ,

where S is a bounded linear operator on M_{\epsilon}^{a}(R\oplus K) induced by \Phi\circ\psi .
(II) There exists a multiplier S on M_{\epsilon}^{a}(R\oplus K) with the following

properties:

(II . a) S(M_{\epsilon}^{a}(R\oplus K)\cap L^{1}(R\oplus K))\subset M_{\text{\’{e}}}^{a}(R\oplus K)\cap L^{1}(R\oplus K)j

(II . b) S(M_{\epsilon}^{a}(R\oplus K)\cap M_{s}(R\oplus K))\subset M_{\epsilon}^{a}(R\oplus K)\cap M_{s}(R\oplus K) ,

(II . c) S is not given by convolution with a bounded regular
measure on R\oplus K .

REMARK 2. 2. Let K be a metrizable LCA group, and let G be R\oplus K

or T\oplus K. In Proposition 2. 1, by the construction of S, we note that there
exists a multiplier S’ on M^{a}(G) with the following properties :

(i) S’(M^{a}(G)\cap L^{1}(G))\subset M^{a}(G)\cap L^{1}(G) ,

(ii) S’(M^{a}(G)\cap M_{s}(G))\subset M^{a}(G)\cap M_{s}(G) ,

(iii) S’ is given by convolution with some measure \mu\in M(G) such
that \hat{\mu}|_{P^{O}}\not\in M_{d}(G)^{\wedge}|_{P^{O}} , where P=\{(x, \sigma)\in\hat{G} ; x\geq 0\} .
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Indeed, let \mu’ be a nonzero function in L^{1}(R)(L^{1}(T)) . We define a measure
\mu\in M(G) by \mu=\beta\cross\delta_{0} . Then, by (I. 1) and (I. 2) in Proposition 2.1 we can
verify that \mu is such a measure.

2. 2 The case that there exists a continuous homomorphism
from \hat{G} into R.

Let G be a LCA group and \psi a nontrivial continuous homomorphism
from G into R. We may assume that there exists an element \chi_{0}\in\hat{G} such
that \psi(\chi_{0})=1 without loss of genera1ity^{*)} . Put \Lambda=\{n\chi_{0} ; n\in Z\} . Let \phi be
the dual homomorphism of \psi , i . e. , (\phi(t), \gamma)=e^{i\psi(\gamma)t} for t\in R and \gamma\in\hat{G} . Then
\phi is a continuous homomorphism from R into G.

Lemma 2. 1. \Lambda is a discrete subgroup of \hat{G} .
PROOF. Since \psi is continuous, it is sufficient to prove the closedness of

\Lambda . Let \gamma be an element in G. Suppose n_{\alpha}\chi_{0}\mapsto\gamma(n_{\alpha}\in Z) . Then n_{\alpha}=\psi(n_{\alpha}\chi_{0})

arrow\psi(\gamma) . Since n_{\alpha}\in Z, there exists an integer n_{\alpha_{0}} such that n_{a}\chi_{0}=n_{\alpha_{0}}\chi_{0} for
\alpha\geq\alpha_{0} . Hence we have \gamma=n\chi_{0}\in\Lambda\alpha_{0} . This completes the proof.

Let K=\Lambda^{\perp} (annihilator of \Lambda). We define a continuous homomorphism
\alpha from R\oplus K into G as follows:

(2. 1) \alpha(t, u)=\phi(t)+u for (t, u)\in R\oplus K1

Then \alpha is an onto map (see Lemma 6. 1 in [1]). Let D=ker(\alpha) . Then we
have

(2. 2) D=\{(2\pi n, -\phi(2\pi n))\in R\oplus K;n\in Z\} (cf. [1], p. 192).

Lemma 2. 2. D^{\perp}=\{(\psi(\gamma), \gamma|_{K}) ; \gamma\in G\} .

PROOF. Let \gamma be an element in \hat{G} . We first prove that (\psi(\gamma), \gamma|_{K})\in D^{\perp} .
For each (27rn, -\phi(2\pi n))\in D, we have

(( \psi(\gamma) , \gamma|_{K}), (2nn, -\phi(2\pi n)))=e^{i\psi(\gamma)2\pi n}(\gamma|_{K}, -\phi(2\pi n))

=e^{i\psi(\gamma)2\pi n}(\gamma, -\phi(2\pi n))

=e^{i\psi(\gamma)2\pi n}e^{-i\psi(\gamma)2\pi n}

=1
Conversely, let (t, \sigma) be an element in D^{\perp} . Then, for each n\in Z, we have

1=((t, \sigma), (2\pi n, -\phi(2\pi n)))

=e^{i2\pi nl}(\sigma, -\phi(2\pi n))

*) The reason will be stated in Remark 2.5.
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Let \sigma_{*} be an element in \hat{G} such that \sigma_{*}|_{K}=\sigma . Then we have

1=e^{i2\pi nt}(\sigma_{*}, -\phi(2\pi n)

=e^{i2\pi n\iota}e^{-i\psi(\sigma_{*}})2\pi n

=e^{i(t-\psi())2\pi n}\sigma_{*} .
Since n is any integer, we have

t=\psi(\sigma_{*})+m , where m is some integer.

Put \gamma=m\chi_{0}+\sigma_{*} . Then we have

\psi(\gamma)=t and \gamma|_{K}=\sigma_{*}|_{K}=\sigma .

Hence we have (\psi(\gamma), \gamma|_{K})=(t, \sigma) . This completes the proof.

Lemma 2. 3. The following are satisfified.
(I) a((-\pi, \pi]\cross K)=G,
(II) \alpha is a homomorphism in the interior of (-\pi, \pi]\cross K,
(III) \alpha is an onto, open continuous homomorphism. t\cdot,\backslash

PROOF. (I) and (II) can be proved by the same method used in ( \xi 1] ;
Lemma 6. 1). (Ill) is easily obtained from (I) and (II). This completes the
proof.

By Lemma 2. 3 and ([8] ; (5. 27) Theorem, p. 41), we have

(2. 3) R\oplus K/D\cong G , and so D^{\perp}\cong G

DEFINITION 2. 2. We defifine M^{a}(G) as follows:
M^{a}(G)=\{\mu\in M(G) ; \hat{\mu}(\gamma)=0 for \gamma\in\hat{G} with \psi(\gamma)<0\}

PROPOSITION 2. 2. The following are satisfified.
(i) \alpha(M^{a}(R\oplus K))\subset M^{a}(G) ,

(ii) \alpha(L^{1}(R\oplus K))\subset L^{1}(G) .

(iii) \alpha(M_{s}(R\oplus K))\subset M_{s}(G)

PROOF. (i) : Let \mu be a measure in M^{a}(R\oplus K) . Then

\alpha(\mu)^{\wedge}(\gamma)=\int_{R\overline{\pm}K}(-\gamma, \alpha(t, u))d\mu(t, u)

=\hat{\mu}(\psi(\gamma), \gamma|_{K})

Hence (i) is proved.
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(ii) and (iii) are obtained from Lemma 2. 3. This completes the proof.
Next we define a continuous homomorphism \alpha_{1} from R\oplus G into R\oplus K

by \alpha_{1}(t, \gamma)=(t+\psi(\gamma), \gamma|_{K}) .

Lemma 2. 4. The following are satisfified.
(i) ker(\alpha_{1})=\{(n, - n\chi_{0})\in R\oplus G;n\in Z\} ,

(ii) \alpha_{1}([_{-}\frac{1}{2}, \frac{1}{2})\cross G)=R\oplus\hat{K} .

PROOF. (i) :

ker (\alpha_{1})=\{(t, \gamma)\in R\oplus G;(t+\psi(\gamma), \gamma|_{K})=0\}

=\{(t, \gamma)\in R\oplus G;\gamma\in\{n\chi_{0} ; n\in Z\} , t=-\psi(\gamma)\}

=\{(n, - n\chi_{0})\in R\oplus G;n\in Z\} [

(ii): Let (t, \sigma) be an element in R\oplus\hat{K}. Then there exists an element \gamma\in G

such that \gamma|_{K}=\sigma. Let n be an integer such that n- \frac{1}{2}\leq-\psi(\gamma)+t<n+\frac{1}{2} .

Put t_{1}=-\psi(\gamma)+t-n . Then we have t_{1} \in[_{-}\frac{1}{2}, \frac{1}{2}) and \alpha_{1}(t_{1}, \gamma+n\chi_{0})=(t, \sigma) .

This completes the proof.
Moreover the following lemma is satisfied.

LEMMA 2. 5. (a) \alpha_{1}((-^{\frac{1}{2}} , \frac{1}{2})\cross G) is an open subset of R\oplus K,

(b) \alpha_{1} is a homeomorphism on (_{-} \frac{1}{2}, \frac{1}{2})\cross G,

(c) \alpha_{1} is an open continuous homomorphism.

PROOF. (a): By Lemma 2. 4, \alpha_{1} maps (- \frac{1}{2}, \frac{1}{2}]\cross G one to one, onto

R\oplus K . Hence, by Lemma 2. 2, we have

\alpha_{1}((-\frac{1}{2} , \frac{1}{2})\cross G)=R\oplus\hat{K}\backslash \alpha_{1}(\{-\frac{1}{2}\}\cross C)

=R \oplus\hat{K}\backslash \{(-\frac{1}{2}+\psi(\gamma) , \gamma|_{K}) ;\gamma\in G\}

=R \oplus K\backslash \{(-\frac{1}{2},0)+D^{\perp}\}

Since (- \frac{1}{2},0)+D^{\perp} is a closed subset of R\oplus\hat{K} , (a) is proved.
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(b) : Suppose \alpha_{1}(t_{\alpha}, \gamma_{\alpha}) converge to \alpha_{1}(t_{o}, \gamma_{0}) , where

(t_{a}, \gamma_{\alpha}) , (t_{o}, \gamma_{0})\in(-\frac{1}{2}, \frac{1}{2})\cross\hat{G}

Let \{(t_{\alpha’}, \gamma_{\alpha}’)\} be a subnet of \{(t_{\alpha}, \gamma_{\alpha})\} . It is sufficient to prove that (t_{o}, \gamma_{0}) is

an accumulation point of \{(t_{\alpha’}, \gamma_{\alpha}’)\} . Since |t_{\alpha}| \leq\frac{1}{2} , there exists a subnet

\{t_{\beta}\} of \{t_{\alpha’}\} and a real number t_{1} with |t_{1}| \leq\frac{1}{2} such that t_{\beta}t_{1}\underline{\beta} . Since

(t_{\beta}+\psi(\gamma_{\beta}), \gamma_{\beta}|_{K})=\alpha_{1}(t_{\beta}, \gamma_{\beta})\alpha_{1}(t_{o}, \gamma_{0})=\underline{\beta}(t_{o}+\psi(\gamma_{0}), \gamma_{0}|_{K}) , we have (\psi(\gamma_{\beta}), \gamma_{\beta}|_{K})

\underline{\beta}(t_{o}-t_{1}+\psi(\gamma_{0}), \gamma_{0}|_{K}) . Since (\psi(\gamma_{\beta}), \gamma_{\beta}|_{K})\in D^{\perp}, (t_{o}-t_{1}+\psi(\gamma_{0}), \gamma_{0}|_{K})\in D^{\perp} . Hence,
by Lemma 2. 2, there exists an element \gamma_{1}\in\hat{G} such that (t_{0}-t_{1}+\psi(\gamma_{0}), \gamma_{0}|_{K})=

(\psi(\gamma_{1}), \gamma_{1}|_{K}) . Since K^{\perp}=\Lambda , we have \psi(\gamma_{0})-\psi(\gamma_{1})=\psi(\gamma_{0}-\gamma_{1})\in Z. On the other
hand, since |t_{o}-t_{1}|<1 , we have t_{o}=t_{1} , and so \gamma_{0}=\gamma_{1} . That is, (t_{\beta}, \gamma_{\beta}) con-
verges to (t_{o}, \gamma_{0}) . This proves (b).

(c) : (c) is easily obtained from (a) and (b).
This completes the proof.

DEFINITION 2. 3. For 0< \epsilon<\frac{1}{6} , we defifine a function \Delta(x, \sigma) on R\oplus\hat{K}

by \Delta(x, \sigma)=\max(1-\frac{1}{\epsilon}|x|, 0) for \sigma=0 and \Delta(x, \sigma)=0 for \sigma\neq 0 .

Lemma 2. 6. Let G be a compact abelian group and \psi a nontrivial
homomorphism from \hat{G} into R. Let \epsilon be a positive real number such that
0< \epsilon<\frac{1}{6} . For \mu\in M(G) , by regarding \mu as a measure in M(R\oplus K/D) (cf.

(2. 3)) , we defifine a function \Phi_{\mu}(t, \sigma) on R\oplus\hat{K} as follows:

(2. 4) \Phi_{\mu}(t, \sigma)=\sum_{r\epsilon\hat{G}}\hat{\mu}(\gamma)\Delta^{2}((t, \sigma)-(\psi(\gamma),
\gamma|_{K}))

Then the following are satisfified.
(I) \Phi_{\mu}\in M(R\oplus K)^{\wedge} for \mu\in M(G) and ||\Phi_{\mu}||=||\mu|| ,

(II) \Phi_{\mu}\in L^{1}(R\oplus K)^{\wedge} if \mu\in L^{1}(G) ,

(III) \Phi_{\mu}\in M_{s}(R\oplus K)^{\wedge} if \mu\in M_{s}(G)1

PROOF. Let V_{\epsilon}=\{(s, 0)\in R\oplus\hat{K} ; |s|\leq\epsilon\} . Then V_{\text{\’{e}}} is a compact neigbor-
hood of 0 in R\oplus K such that V_{\epsilon}\cap D^{\perp}=\{0\} . Moreover \Delta is a positive definite
function such that ||\check{\Delta|}|_{1}=1 and supp (\Delta)\subset V_{\epsilon} . Hence, by ([5] ; Theorem 1),
for each \mu\in M(G) , we have
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(1) \Phi_{\mu}\in M(R\oplus K)^{\wedge} and ||\Phi_{\mu}||\leq||\mu||

Claim 1 : ||\Phi_{\mu}||=||\mu|| .
By (1), it is sufficient to prove that ||\Phi_{\mu}||\geq||\mu|| . Let \{p_{n}\} be a sequence in
Trig (G) with ||p_{n}||_{\infty}\leq 1 such that || \mu||=\lim|\downarrow_{G}.p_{n}(y)d\mu(y)| . We define \tilde{p}_{n}\in

narrow\infty

Trig (R\oplus K) by \tilde{p}_{n}(x, u)=p_{n}(\alpha(x, u)) . Since \Phi_{\mu}(\psi(\gamma), \gamma|_{K})=\hat{\mu}(\gamma) , we have

\int_{R3+K}\tilde{p}_{n}(x, u)d\check{\Phi}_{\mu}(x, u)=\int_{G}p_{n}(y)d\mu(y)(

Hence we have

|| \mu||=\lim_{narrow\infty}|\int_{G}p_{n}(y)d\mu(y)|

= \lim_{narrow\infty}|\int_{R\oplus K}\tilde{p}_{n}(x, u)d\check{\Phi}_{\mu}(x, u)|

\leq\varlimsup_{narrow\infty}||\tilde{p}_{n}||_{\infty}||\Phi_{\mu}||

\leq||\Phi_{\mu}||

Thus Claim 1 is proved and (I) is proved.
Claim 2: \check{\Phi}_{\mu} belongs to M_{s}(R\oplus K) if \mu\in M_{s}(G) .

Put A=||\mu|| . Then, by Claim 1, we have ||\check{\Phi}_{\mu}||=A . Let \epsilon’>0 and K’ a
compact subset of R\oplus K . Since D^{\perp}\subset K’ is compact in D^{\perp} and \mu\in M_{s}(G) ,
by Lemma (A), there exists p(y)= \sum c_{i}(-y, \gamma_{i}) \in Trig (G) with (\psi(\gamma_{i}), \gamma_{i}|_{K})\in

D^{\perp}\backslash (D^{\perp}\cap K’) such that

(2) ||p||_{\infty}\leq 1 and | \sum c_{i}\hat{\mu}(\gamma_{i})|>A-\epsilon
’

Let \tilde{p} be a trigonometric polinomial on R\oplus K such that \tilde{p}(t, u)=\sum c_{i}e^{-i\psi(\gamma_{i})t}

(– u, \gamma_{i}|_{K}) . Then ||\tilde{p}||_{\infty}\leq 1 . Since \Phi_{\mu}(\psi(\gamma), \gamma|_{K})=\hat{\mu}(\gamma) , we have

| \sum c_{i}\Phi_{\mu} ( \psi(\gamma_{i}) , \gamma_{i}|_{K}) |=| \sum c_{i}\hat{\mu}(\gamma_{i})|

>A-\epsilon’

Hence, by Lemma (A), we have \check{\Phi}_{\mu}\in M_{s}(R\oplus K) . Thus Claim 2 is proved.
Claim 3: \check{\Phi}_{\mu} belongs to L^{1}(R\oplus K) if \mu\in L^{1}(G) .

Let \mu be a measure in L^{1}(G) . Then there exists a sequence \{\mu_{n}\} in L^{1}(G)

such that \hat{\mu}_{n} has a compact support and lim ||\mu-\mu_{n}||=0 . Then, since
narrow\infty

\Phi_{\mu_{n}}(s, \sigma)=\sum_{\gamma\in\hat{G}}\hat{\mu}_{n}(\gamma)\Delta^{2}((s, \sigma)-(\psi(\gamma), \gamma|_{K})) has a compact support, \check{\Phi}_{\mu_{n}} belongs
to L^{1}(R\oplus K) . Hence, by Claim 1, we have \check{\Phi}_{\mu}\in L^{1}(R\oplus K) . This completes
the proof.

THEOREM 2. 1. Let G be a LCA group and \psi a nontrivial continuous
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homomorphism from \hat{G} into R. We may assume that there exists \chi_{0}\in G

such that \psi(\chi_{0})=1^{*)} . Let \epsilon be a positive real number such that 0< \epsilon<\frac{1}{6} .
Let K and D be as after Lemma 2. 1. For \mu\in M(G) , by regarding \mu as
a measure in M(R\oplus K/D) , we defifine a function \Phi_{\mu}(t, \sigma) on R\oplus\hat{K} as follows:

(2. 5) \Phi_{\mu}(t, \sigma)=\sum_{r\in\hat{G}}\hat{\mu}(\gamma)\Delta^{2}((t, \sigma)-(\psi(\gamma), \gamma|_{K}))

Then the following are satisfified:
(I) \Phi_{\mu}\in M(R\oplus K)^{\wedge} for \mu\in M(G) and ||\Phi_{\mu}||=||\mu|| ,

(II) \Phi_{\mu}\in L^{1}(R\oplus K)^{\wedge} i.f \mu\in L^{1}(G) .
(III) \Phi_{\mu}\in M_{s}(R\oplus K)^{\wedge} if \mu\in M_{s}(G)t

PROOF. We may consider only the case that G is noncompact. Let
\overline{G} be the Bohr compactification of G and \overline{K} the closure of K in \overline{G} . Then
\overline{K} is the annihilator of \Lambda in \overline{G}, where \Lambda is the discrete subgroup of G
generated by \chi_{0} . Let \psi_{*} be the homomorphism from G_{d} into R such that
\psi_{*}(\gamma)=\psi(\gamma) and \phi_{*} the dual homomorphism of \psi_{*} , where G_{d} is the group
\hat{G} with the discrete topology. Let \mu be a measure in M(G) . We regard
\mu as a measure in M(\overline{G}) . We define a function *\Phi_{\mu}(t, \sigma) on R\oplus\hat{\overline{K}} by

(1) *^{\Phi_{\mu}(t,\sigma)=\sum_{\epsilon\hat{c}_{d}}\hat{\mu}(\gamma)\Delta^{2}((t,\sigma)-(\psi_{*}(\gamma),\gamma|_{\overline{K}}))}\delta v

Since \hat{\overline{K}}=\hat{K}_{el} , we have \Phi_{\mu}(t, \sigma)=\Phi_{\mu}*(t, \sigma) for (t, \sigma)\in R\oplus\hat{K}. Hence, by Lemma
2. 6, we have

(2) \Phi_{\mu}\in M(R\oplus\overline{K})^{\wedge} and ||\Phi_{\mu}||=||\mu||

(regarding \mu as a measure in M(\overline{G}) ).

Claim: \Phi_{\mu} is a continuous function on R\oplus\hat{K} .
Put I=\{(t, \gamma)\in R\oplus\hat{G} ; |t|\leq 2\epsilon\} and [mathring]_{I}=\{(t, \gamma)\in R\oplus\hat{G} ; |t|\leq 2\epsilon\} . Let \alpha_{1} be a
continuous homomorphism from R\oplus\hat{G} into R\oplus\hat{K} such that \alpha_{1}(t, \gamma)=(t+

\psi(\gamma) , \gamma|_{K}) . Then, by Lemma 2. 5, \alpha_{1}([mathring]_{I}) is an open subset of R\oplus K . We
define a function \Phi_{\mu}’ on R\oplus\hat{G} as follows:

(3) \Phi_{\mu}’(t, \gamma)=\Delta_{\epsilon}^{2}(t)\hat{\mu}(\gamma) , where \Delta_{e}(t)=\max(1-\frac{1}{\epsilon}|t|, 0)

Step 1. For (t, \gamma)\in[-\frac{1}{2}, \frac{1}{2})\cross\hat{G} , we have \Phi_{\mu}’(t, \gamma)=\Phi_{\mu}(\alpha_{1}(t, \gamma)) Indeed,

\Phi_{\mu}(\alpha_{1}(t, \gamma))=\Phi_{\mu}(t+\psi(\gamma), \gamma|_{K})

*) If there is not \chi_{0}\in\hat{G} such that \psi(\chi_{0})=1 , we define \Lambda , K and D as in Remark 2.5.
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= \sum_{\lambda\in\hat{G}}\hat{\mu}(\lambda)\Delta^{2}( (\psi(\gamma)+t , \gamma|_{K})’-(\psi(\lambda), \lambda|_{K}))

= \sum_{n\in z}\hat{\mu}(\gamma+n\chi_{0})\Delta^{2}(t-n, 0)

=\hat{\mu}(\gamma)\Delta^{2}(t, 0) (n-t\in(-\epsilon, \epsilon)\Leftrightarrow n=0)

=\hat{\mu}(\gamma)\Delta_{\epsilon}^{2}(t) ,

Step 2. \Phi_{\mu} vanishes on \alpha_{1} ( [- \frac{1}{2}, - \frac{3}{2}\epsilon]\cross\hat{G})\cup\alpha_{1}([\frac{3}{2}\epsilon, \frac{1}{2})\cross G) . This is

obtained from Step 1.
By Step 2, in order to prove that \Phi_{\mu} is continuous, it is sufficient to

prove that \Phi_{\mu} is continuous on \alpha_{1}([mathring]_{I}) . Suppose \alpha_{1}(t_{\alpha}, \gamma_{\alpha})-\alpha_{1}(t_{o}, \gamma_{0}) , where
(t_{\alpha}, \gamma_{\alpha}) , (t_{o}, \gamma_{0})\in[mathring]_{I}. Then, by Lemma 2. 5, we have (t_{\alpha}, \gamma_{\alpha})arrow(t_{o}, \gamma_{0}) . Hence we
have

\lim_{a}\Phi_{\mu}(\alpha_{1}(t_{\alpha}, \gamma_{\alpha}))=\lim_{\alpha}\Phi_{\mu}’(t_{\alpha}, \gamma_{\alpha}) (by Step 1)

=\Phi_{\mu}’(t_{o}, \gamma_{0})

=\Phi_{\mu}(\alpha_{1}(t_{o}, \gamma_{0}))

Thus Claim is proved. Therefore, since \Phi_{\mu}\in M(R\oplus\overline{K})^{\wedge} and \Phi_{\mu} is continuous
on R\oplus\hat{K}, \Phi_{\mu} belongs to M(R\oplus K)^{\wedge} Thus (I) is proved. (II) and (III) are
obtained by the same method used in Lemma 2. 6. This completes the proof.

REMARK 2. 3. Let G be a LCA group and \psi a nontrivial continuous
homomorphism from \hat{G} into R. Let K be as before. Then the following
are equivalent.

(I) M^{a}(G)\cap M_{s}(G)\neq\{0\} ;

(II) K is not discrete.

PROOF. (I)O(II) : Suppose K is discrete. Let \mu be a nonzero measure
in M^{a}(G)\cap M_{s}(G) . Then, by Theorem 2. 1, \Phi_{\mu} belongs to M(R\oplus K)^{\wedge}-

Moreover, by the construction of \Phi_{\mu} , we have

(1) \Phi_{\mu}(t, \sigma)=0 for t<-\epsilon

Since K is discrete, there exist \{\nu_{n}\}\subset M(R) and \{x_{n}\}\subset K such that

(2) \check{\Phi}_{\mu}=\sum_{n=1}^{\infty}\nu_{n}\cross\delta_{x_{n}} and || \check{\Phi}_{\mu}||=\sum_{n=1}^{\infty}||\nu_{n}||

By (1), we have

(3) \hat{\nu}_{n}(t)=0 for t<-\epsilon (n=1,2,3, \cdots) .
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Hence, by the F. and M. Riesz theorem, \check{\Phi}_{\mu} belongs to L^{1}(R\oplus K) . Thus
we have \mu=\alpha(\check{\Phi}_{\mu})\in L^{1}(G) by Proposition 2. 2. This contradicts the choice
of \mu . Hence ‘(I)\ddagger\gg(III)

’ is proved.
(II)\subset\gg(I) : Suppose K is not discrete. Let f be a function in H^{1}(R)

such that \hat{f}(\psi(\gamma_{0}))\neq 0 for some \gamma_{0}\not\in G with \psi(\gamma_{0})>0 . Then f\cross\delta_{0} is a measure
in M^{a}(R\oplus K)\cap M_{s}(R\oplus K) . Hence, by Proposition 2. 2, \phi(f)=\alpha(f\cross\delta_{0})

belongs to M^{a}(G)\cap M_{s}(G) . Since \hat{f}(\psi(\gamma_{0}))\neq 0 , \phi(f) is a nonzero measure in
M^{a}(G)\cap M_{s}(G) . This completes the proof.

THEOREM 2. 2. Let G be a metrizable LCA group and \psi a nontrivial
continuous homomorphism from G into R. Suppose M^{a}(G)\cap M_{s}(G)\neq\{0\} .
Let \delta be a positive real number and \Phi a multiplier on L_{-\delta}^{1}(R) . Then
\Phi\circ\psi is also a multiplier on M^{a}(G) with the following properties:

(i) S(’M^{a}(G)\cap L^{1}(G))\subset M^{a}(G)\cap L^{1}(G) ,

(ii) S(M^{a}(G)\cap M_{s}(G))\subset M^{a}(G)\cap M^{s}(G) ,

(iii) ||S||\leq||\Phi|| ,

where S is a bounded linear operator on M^{a}(G) induced by \Phi\circ\psi .

PROOF. We choose \epsilon so that 0< \epsilon<\min ( \delta , \frac{1}{6}). Then, by the construc-
tion of \Phi_{\mu} , the following is satisfied:

(1) \check{\Phi}_{\mu}\in M_{-\epsilon}^{a}(R\oplus K) for \mu\in M^{a}(G)

We define a bounded linear operator S_{1} from M^{a}(G) into M_{-\epsilon}^{a}(R\oplus K) by
S_{1}(\mu)=\check{\Phi}_{\mu} . Let \psi_{0} be the projection from R\oplus\hat{K} onto R. Then, by Remark
2. 1, \Phi\circ\psi_{0} is a multiplier on M_{-\epsilon}^{a}(R\oplus K) . Let S_{2} be the bounded linear
operator on M_{-e}^{a}(R\oplus K) induced by \Phi\circ\psi_{0} . Moreover we define an operator
S on M^{a}(G) as follows:

(2) S=\alpha\circ S_{2^{O}}S_{1}

Then, by Remark 2. 1, Proposition 2. 2 and Theorem 2. 1, we can verify
that (i) \sim(iii) are satisfied. Finally we prove that S is a multiplier on M^{a}(G)

corresponding to \Phi\circ\psi . For \mu\in M^{a}(G) and \gamma\in G, we have

S(\mu)^{\wedge}(\gamma)=S_{2^{\circ}}S_{1}(\mu)^{\wedge}(\psi(\gamma), \gamma|_{K})

=\Phi\circ\psi_{0} ( \psi(\gamma) , \gamma|_{K}) S_{1}(\mu)^{\wedge}(\psi(\gamma), \gamma|_{K})

=\Phi(\psi(\gamma))\Phi_{\mu}(\psi(\gamma), \gamma|_{K})

=\Phi(\psi(\gamma))\hat{\mu}(\gamma)
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Hence S is a multiplier on M^{a}(G) corresponding to \Phi\circ\psi . This completes
the proof.

THEOREM 2. 3. Let G be a LCA group and \psi a nontrivial continuous
homomorphism from\hat{G} into R. Suppose M^{a}(G)\cap M_{s}(G)\neq\{0\} . Let \delta be
a positive real number and \Phi a multiplier on L_{-\delta}^{1}(R) . Then \Phi\circ\psi is also
a multiplier on M^{a}(G) which satisfifies (i) \sim(iii) in Theorem 2. 2.

PROOF. Put \Phi_{*}(\gamma)=\Phi(\psi(\gamma)) . First we prove that \Phi_{*} is a multiplier on
M^{a}(G) . Let \mu be a measure in M^{a}(G) . Let \Gamma be a \sigma-compact open sub-
group of \hat{G} . Then, by Theorem 2. 2, we have \Phi_{*}|_{\Gamma}\cdot\hat{\mu}|_{\Gamma}\in M^{a}(G/\Gamma^{\perp})^{\wedge} and
||\Phi_{*}|_{\Gamma}\cdot\hat{\mu}|_{\Gamma}||\leq||\Phi||||\hat{\mu}|_{\Gamma}||\leq||\Phi||||\mu|| . Hence, by Lemma (D), we have \Phi_{*}\hat{\mu}\in

M^{a}(G)^{\wedge} and ||\Phi_{*}\hat{\mu}||\leq||\Phi||||\mu|| . This shows that \Phi_{*} is a multiplier on M^{a}(G)

and ||S||\leq||\Phi|| , where S is a bounded linear operator on M^{a}(G) correspond-
ing to \Phi_{*} . By Lemma (E), S maps M^{a}(G)\cap L^{1}(G) into itself.

Finally we prove that S maps M^{a}(G)\cap M_{s}(G) into itself. Let \nu be a
measure in M^{a}(G)\cap M_{s}(G) . Suppose S(\nu)\not\in M_{s}(G) . Put S(\nu)=\zeta+f, where
\zeta\in M_{s}(G) and f\in L^{1}(G) . Then f\neq 0 . Since \hat{f}\in C_{o}(\hat{G}) , there exists a \sigma-

compact open subgroup F of G such that \hat{f}(\gamma)=0 for \gamma\not\in F. Since \nu,
\zeta\in M_{s}(G) , there exist \sigma-compact subsets E_{\nu} and E_{\zeta} of G such that |\nu|(E_{\nu}^{c})

=0, |\zeta|(E_{\zeta}^{c})=0 and m_{G}(E_{\nu}\cup E_{\zeta})=0 . Hence, by Lemma 4 in [10], there
exists a \sigma-compact open subgroup \Gamma of \hat{G} such that (a) \Gamma\supset F and (b)
m_{G}(E_{\nu}\cup E_{\zeta}+\Gamma^{\perp})=0 . Let \pi_{1} be the natural homomorphism from G onto
G/\Gamma^{\perp} . Then, by (b), we have \pi_{1}(\nu) , \pi_{1}(\zeta)\in M_{s}(G/\Gamma^{\perp}) . Since G/\Gamma^{\perp} is a
metrizable LCA group, by Theorem 2. 2, \Phi_{*}|_{\Gamma} is a multiplier on M^{a}(G/\Gamma^{\perp})

which satisfies the following:

(c) S_{1}(M^{a}(G/\Gamma^{\perp})\cap M_{s}((G/\Gamma^{\perp}))\subset M^{a}(G/\Gamma^{\perp})\cap M_{s}(G/\Gamma^{\perp}) ,

where S_{1} is a bounded linear operator on M^{a}(G/\Gamma^{\perp}) corresponding to \Phi_{*}|_{\Gamma} .
Then, since \pi_{1}(S(\nu))=S_{1}(\pi_{1}(\nu)) , we have S_{1}(\pi_{1}(\nu))=\pi_{1}(f)+\pi_{1}(\zeta) . By (c),
S_{1}(\pi_{1}(\nu)) belongs to M_{s}(G/\Gamma^{\perp}) . Since \pi_{1}(\zeta)\in M_{s}(G/\Gamma^{\perp}) and \pi_{1}(f) is a non-
zero function in L^{1}(G/\Gamma^{\perp}) , we have a contradiction. Thus S maps M^{a}(G)\cap

M_{s}(G) into itself. This completes the proof.
By Theorem 2. 3, we obtain the following theorem.
THEOREM 2. 4. Let G be a LCA group and \psi a nontrivial continuous

homomorphism from \hat{G} into R. Suppose M^{a}(G)\cap M_{s}(G)\neq\{0\} . Then there
exists a multiplier S on M^{a}(G) which satisfifies the following:

(i) S(M^{a}(G)\cap L^{1}(G))\subset M^{a}(G)\cap L^{1}(G)j

(ii) S(M^{a}(G)\cap M_{s}(G))\subset M^{a}(G)\cap M_{s}(G) ,
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(iii) S is not given by convolution with a bounded regular
measure on G.

PROOF. Let \{a_{n}\} be a sequence consisting of positive integers such that
a_{m+1}/a_{m}>3(m=1,2,3, \cdots) . Put F=\{a_{m} ; m=1,2,3, \cdots\} . Let \Delta(x) be a
function in L^{1}(R)^{\wedge} such that \Delta(x)=\max(1-3|x|, 0) and \phi_{0}(n)=\chi_{F}(n) . Now
we define a function \Phi on R as follows:

\Phi(x)=\sum_{n\epsilon z}\phi_{0}(n)\Delta(x-n)

Let \delta be a positive real number. Then \Phi is a multiplier on L_{-\delta}^{1}(R) (see
[12]) . Hence, by Theorem 2. 3, \Phi\circ\psi is a multiplier on M^{a}(G) which satisfies
(i) and (ii). Let S be a bounded linear operator on M^{a}(G) corresponding to
\Phi\circ\psi . We note that \phi_{0}|_{Z}+\not\in M(T)^{\wedge}|_{Z}+ , where Z^{+} is the semigroup cons\dot{l}sting

of nonnegative integers. Hence we can verify that S is not given by con-
volution with a bounded regular measure on G. This completes the proof.

REMARK 2. 4. Under the assumption of Theorem 2. 4, we note that
there exists a multiplier S’ on M^{a}(G) which satisfies the following:

(i) S’(M^{a}(G)\cap L^{1}(G))\subset M^{a}(G)\cap L^{1}(G) ,

(ii) S’(M^{a}(G)\cap M_{s}(G))\subset M^{a}(G)\cap M_{s}(G) .
(iii) S’ is given by convolution with a measure \xi\in M(G) such that

\hat{\acute{\hat{\epsilon_{r}}}}|_{P^{O}}\not\in M_{d}(G)^{\wedge}|_{P^{O}} , where P=\{\gamma\in\hat{G} ; \psi(\gamma)\geq 0\} .

Indeed, let f be a nonzero function in L^{1}(R) such that \hat{f}(\psi(\gamma_{0}))\neq 0 for some
\gamma_{0}\in\hat{G} with \psi(\gamma_{0})>0 . Put \xi=\phi(f) , where \phi is the dual homomorphism of
\psi . Then \xi satisfies the above conditions.

REMARK 2. 5. Let \psi be a nontrivial continuous homomorphism from
\hat{G} into R. Suppose there is not \gamma\in\hat{G} such that \psi(\gamma)=1 . Since \psi is non-
trivial, there exists \chi_{0}\in\hat{G} such that \psi(\chi_{0})\geq 1 . We fix it and put d_{o}=\psi(\chi_{0}) .
Let \Lambda be the discrete subgroup of \hat{G} generated by \chi_{0} and we put K=\Lambda^{\perp} .
We define \alpha:R\oplus K\mapsto G and \alpha_{1} : R\oplus\hat{G}\mapsto R\oplus\hat{K} as before. Then

(2. 2)’ (D=) ker (\alpha)=\{(2\pi n/d_{o}, -\phi(2\pi n/d_{o})) ; n\in Z\}

and Lemma 2. 2 is satisfied. Lemma 2. 3 is held if we replace (-\pi, \pi]\cross K

by (-\pi/d_{o}, \pi/d_{o}]\cross K. Hence (2. 3) and Proposition 2. 2 are also satisfied.

Moreover Lemmas 2. 4 and 2. 5 are held if we exchange [- \frac{1}{2} , \frac{1}{2})\cross G by

[- \frac{1}{2}d_{O}, \frac{1}{2}d_{o})\cross\hat{G} . Therefore Lemma 2. 6 can be proved as same as before,
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hence Theorem 2. 1 is satisfied. Other theorems in this section are also
satisfied.

\S 3 Some property of multipliers on the space of analytic singular
measures.
In [4], for a compact abelian group G, Doss proved that a multiplier

on M_{s}(G) is given by convolution with a discrete measure on G. Graham
and MacLean obtained an analogous result for a LCA group in [7]. There-
fore, in particular, a multiplier on M_{s}(G) does not belong to C_{o}(\hat{G}) . In this
section, we shall prove that every multiplier on the space of analytic singular
measures does not vanish at infinity. M_{o}(G) denotes the Banach algebra
of all bounded regular measures on G whose Fourier-Stieltjes transforms
vanish at infinity.

DEFINITION 3. 1. Let G be a LCA group. Suppose there exists a
nontrivial continuous homomorphism \psi from G into R. We defifine M^{a}(G)_{s}

by M^{a}(G)\cap M_{s}(G) . A function \Phi on G which is continuous on {\gamma\in G ;
\psi(\gamma)\geq 0\}^{0} is called a multiplier on M^{a}(G)_{s} if \Phi\hat{\mu}\in M^{a}(G)_{s}^{\wedge} for each \mu\in

M^{a}(G)_{s} . Let S be the bounded linear operator on M^{a}(G)_{s} such that S(\mu)^{\wedge}=

\Phi\hat{\mu} . S is also called a multiplier on M^{a}(G)_{s} .
The following lemma is well known.
Lemma 3. 1. Let G be a LCA group and \mu a measure in M_{o}(G) .

Let \nu be a measure in M(G) such that it is absolutely continuous with
respect to |\mu| . Then \nu belongs to M_{o}(G) .

Let G be a LCA group and \psi a nontrivial continuous homomorphism
from G into R. We may assume that there exists an element \chi_{0}\in\hat{G} such
that \psi(\chi_{0})=1 . Let \phi be the dual homomorphism of \psi . Let \Lambda be a discrete
subgroup of \hat{G} generated by \chi_{0} and K the annihilator of /1. Let \alpha and D
be as in 2. 2.

For \nu\in M(G) , \Phi_{\nu} is a function on R\oplus\hat{K} such that

\Phi_{\nu}(t, \sigma)=\sum_{\gamma\in\hat{G}}\hat{\nu}(\gamma)\Delta^{2}((t, \sigma)-(\psi(\gamma),
\gamma|_{K}))

Then, as seen in 2. 2, \Phi_{\nu} belongs to M(R\oplus K)^{\wedge} Moreover we remember
that \Phi_{\nu} belongs to L^{1}(R\oplus K)^{\wedge} if \nu\in L^{1}(G) and \Phi_{\nu} belongs to M_{s}(R\oplus K)^{\wedge} if
\nu\in M_{s}(G) respectively. The following lemma is obtained from the fact that
\alpha(\check{\Phi}_{\nu})=\nu .

Lemma 3. 2. (cf. Proposition 2. 2).
(a) \alpha maps L^{1}(R\oplus K) onto L^{1}(G) ;
(b) \alpha maps M_{s}(R\oplus K) onto M_{s}(G) .
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The following lemmas are easily obtained.

Lemma 3. 3. For \mu, \nu\in M(R\oplus K) , we have \alpha(\mu*\nu)=\alpha(\mu)*\alpha(\nu) . In
particular, for \mu_{1}\in M(R) and \mu_{2}\in M(K) , we have

\alpha(\mu_{1}\cross\mu_{2})=\alpha(\mu_{1}\cross\delta_{0})*\alpha(\delta_{0}\cross\mu_{2})=\alpha(\mu_{1})*\mu_{2} .
Lemma 3. 4. Let G be a LCA group and \psi a nontrivial continuous

homomorphism from \hat{G} into R. Then the following are satisfified.
(1) ker (\psi) is open if and only if

\{\gamma\in\hat{G} ; \psi(\gamma)>0\}^{-}=\{\gamma\in\hat{G} ; \psi(\gamma)>0\} ;

(2) ker (\psi) is not open if and only if
\{\gamma\in\hat{G} ; \psi(\gamma)>0\}^{-}=\{\gamma\in\hat{G} ; \psi(\gamma)\geq 0\}

THEOREM 3. 1. Let G be a LCA group and \psi a nontrivial continuous
homomorphism from \hat{G} into R. Suppose M^{a}(G)_{s}\neq\{0\} . Then, for each
nonzero multiplier \Phi on M^{a}(G)_{s} , we have \Phi|_{P^{9}}\not\in C_{o}(P^{0}) , where P=\{\gamma\in\hat{G} ;
\psi(\gamma)\geq 0\} .

PROOF. Case 1. We first consider the case that there exists an element
\gamma_{0}\in\hat{G} with \psi(\gamma_{0})>0 such that \Phi(\gamma_{0})\neq 0 . Suppose \Phi|_{P^{0}}\in C_{o}(P^{0}) . Then there
exists a \sigma-compact open subgroup \Gamma of G such that \gamma_{0}\in\Gamma and \Phi(\gamma)=0 for
\gamma\in P^{0}\cap(\hat{G}\backslash \Gamma) . Let \psi|_{\Gamma} be the restriction of \psi to \Gamma and put M^{a}(G/\Gamma^{\perp})_{s}=

{\mu\in M(G/\Gamma^{\perp})_{s} ; \hat{\mu}(\gamma)=0 for each \gamma\in\Gamma with \psi|_{\Gamma}(\gamma)<0}. Then, by Lemmas
(B) and (C), we have M^{a}(G/\Gamma^{\perp})_{s}\neq\{0\} and \Phi|_{\Gamma} is a nonzero multiplier on
M^{a}(G/\Gamma^{\perp})_{s} . Moreover \Phi|_{\Gamma}(\gamma_{0})\neq 0(\psi|_{\Gamma}(\gamma_{0})>0) . Since \Gamma is \sigma-compact, G/\Gamma^{\perp}

is metrizable. Thus we may assume that G is metrizable without loss of
generality. Let f_{0} be a function in H^{1}(R) such that \hat{f}_{o}(\psi(\gamma_{0}))=1 . Then,
since \alpha(f_{0}\cross\delta_{0})=\phi(f_{0}) , \phi(f_{0}) belong to M^{a}(G)_{s} . Hence there exists a measure
\nu\in M^{a}(G)_{s} such that \hat{\nu}(\gamma)=\Phi(\gamma)\hat{f}_{o}(\psi(\gamma)) . Since \hat{\nu}\in C_{o}(\hat{G}) , we have \Phi_{\nu}\in

C_{o}(R\hat{\oplus K}) . Let \pi_{K} be the projection from R\oplus K onto K.
Claim 1. \pi_{K}(|\check{\Phi}_{\nu}|)\in M_{c}(K) .

\nearrow\sim

For each (\theta, \omega)\in R\oplus K, we have \pi_{K}((\theta, \omega)\check{\Phi}_{\nu})^{\wedge}(\gamma_{2})=\Phi_{\nu}(-\theta, \gamma_{2}-\omega) . Hence we
have \pi_{K}((\theta, \omega)\check{\Phi}_{\nu})^{\wedge}\in C_{o}(\hat{K}) , and so \pi_{K}((\theta, \omega)\check{\Phi}_{\nu})\in M_{c}(K) . Since there exists
a sequence \{p_{n}\} in Trig (R\oplus K) such that lim ||p_{n}\check{\Phi}_{\nu}-|\check{\Phi}_{\nu}|||=0 , we have
\pi_{K}(|\check{\Phi}_{\nu}|)\in M_{c}(K) . Thus Claim 1 is proved.

Put \eta=\pi_{K}(|\check{\Phi}_{\nu}|) . Then, by ([7] ; Theorems 1 and 2), there exists a
measure \xi\in M_{s}(K)\cap M^{+}(K) such that \eta*\xi\neq 0 and \eta*\xi\in L^{1}(K) . Let \sigma_{0} be an

element in \hat{K} such that (\sigma_{0}\xi)^{\wedge}(\gamma_{0}|_{K})\neq 0 . We define a measure \mu\in M(R\oplus K)

as follows :
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d\mu(x, y)=f_{0}(x)dx\cross d(\sigma_{0}\xi)(y)r

Then, since \mu\in M_{s}(R\oplus K) , we have \alpha(\mu)\in M^{a}(G)_{s} . Since G is metrizable,
K is so. Hence, by the theory of disintegration, there exists a family
\{\lambda_{h}\}_{h\in K} consisting of measures in M(R\oplus K) satisfying the following:

(1) h\mapsto\lambda_{h}(f) is a Borel measurable function of h for each
bounded Borel measurable function f on R\oplus K,

(2) supp (\lambda_{h})\subset R\cross\{h\} ,

(3) ||\lambda_{h}||\leq 1 ,

(4) \check{\Phi}_{\nu}(g)=\int_{K}\lambda_{h}(g)d\eta(h)

for each bounded Borel function g on R\oplus K.

From (2), we have d\lambda_{h}(x, y)=d\nu_{h}(x)\cross d\delta_{h}(y) , where \nu_{h}\in M(R) and \delta_{h} is the
Dirac measure at h . We note the following (cf. [13], Claims 2 and 3 in the
proof of Theorem 1) :

(5) \mu*\check{\Phi}_{\nu}=\int_{K}\int_{K}((\sigma_{0}(h_{1})f_{0})*\nu_{h_{2}})\cross\delta_{(h_{1}+h_{2})}d(\xi\cross\eta)(h_{1}, h_{2}) .

Since (\sigma_{0}(h_{1})f_{0}*\nu_{h_{2}})\in L^{1}(R) for each (h_{1}, h_{2})\in K\cross K and \xi*\eta\in L^{1}(K) , we can
verify that \mu*\check{\Phi}_{\nu}\in L^{1}(R\oplus K) . Hence, by Lemma 3. 2 and Lemma 3. 3, we
have \alpha(\mu)*\nu\in L^{1}(G) . Since \hat{\mu}(\psi(\gamma_{0}), \gamma_{0}|_{K})\neq 0 , \alpha(\mu)*\nu\neq 0 . On the other hand,
by using Lemma 3. 3, we have

(\alpha(\mu)*\nu)^{\wedge}(\gamma)=\alpha(\mu)^{\wedge}(\gamma)\hat{\nu}(\gamma)

=\alpha(\mu)^{\wedge}(\gamma)\phi(f_{0})^{\wedge}(\gamma)\Phi(\gamma)

=\alpha(\mu*(f_{0}\cross\delta_{0}))^{\wedge}(\gamma)\Phi(\gamma)

=\alpha((f_{0}*f_{0})\cross(\sigma_{0}\xi))^{\wedge}(\gamma)\Phi(\gamma)

Since (f_{0}*f_{0})\cross(\sigma_{0}\xi)\in M_{s}(R\oplus K) , we have \alpha((f_{0}*f_{0})\cross(\sigma_{0}\xi))\in M^{a}(G)_{s} . This con-
tradicts the hypothesis that \Phi is a multiplier on M^{a}(G)_{s} . Hence, in this
case, we have \Phi|_{P^{0}}\not\in C_{o}(P^{0}) .

Case 2. Next we consider the case that \Phi(\gamma)=0 for \gamma\in G with \psi(\gamma)>0 .
In this case we prove the theorem by dividing three cases.

Case 2. 1. ker (\psi) is not open.
In this case, by Lemma 3. 4, \Phi is a zero multiplier on M^{a}(G)_{s} . Hence this
contradicts the hypothesis.

Case 2. 2. ker (\psi) is open and compact.
In this case, \Phi is a zero multiplier. Hence we have a contradiction.
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Case 2. 3. ker (\psi) is open and noncompact.
In this case, by Lemmas (B) and (C), \Phi|_{ker(\ell)}, is a nonzero multiplier on
M_{s}(G/ker(\psi)^{\perp}) . Hence we have \Phi|_{P^{0}}\not\in C_{o}(P^{0}) . This completes the proof.

REMARK 3. 1. From the proof of Theorem 3. 1, the following is
satisfied :

Let G and \psi be as in Theorem 3. 1. We put +M^{a}(G)_{s}=\{\mu\in M_{s}(G) ;
\hat{\mu}(\gamma)=0 for \gamma\in\hat{G} with \psi(\gamma)\leq 0\} . Then, for each nonzero multiplier \Phi on
+M^{a}(G)_{s} , we have \Phi|_{S}\not\in C_{o}(S) , where S=\{\gamma\in\hat{G} ; \psi(\gamma)>0\} .

\S 4 Application.

The F. and M. Riesz theorem was generalized by Helson and Lowden-
slarger as follows :

THEOREM A (cf. [11], 8. 2. 3 Theorem).
Let G be a compact abelian group such that \hat{G} is ordered. Suppose \mu\in

M(G) is of analytic type ( i. e.\hat{\mu}(\gamma)=0 for \gamma<0). Then the following are
satisfified:

(1) \mu_{a} and \mu_{s} are of analytic type,

(2) \hat{\mu}_{s}(0)=0 .

In [3], Doss extended Theorem A for a LCA group with the algebrai-
cally ordered dual. Moreover he obtained the following theorem :

THEOREM B ([3], Main Theorem).
Let G be a LCA group such that \hat{G} is algebraically ordered. Let \mu be
a measure in M(G) . Put \mu=\mu_{a}+\mu_{s} , where \mu_{a}\in L^{1}(G) and \mu_{s}\in M_{s}(G) .
Suppose there exists a function f in L^{r}(G)(1\leq r\leq 2) such that \hat{\mu}(\gamma)=\hat{f}(\gamma)

a. e. for \gamma<0 . Then \hat{\mu}_{s}(\gamma)=0 for \gamma<0 and \hat{\mu}_{s}(0)=0 .
On the other hand, in [1], DeLeeuw and Glicksberg obtained an anal0-

gous result of Theorem A for a compact abelian group such that there
exists a nontrivial homomorphism from G into R. In this section, we shall
prove that an analogous result of Theorem B is satisfied for a LCA group
G such that there exists a nontrivial continuous homomorphism from \hat{G} into
R. In this section, we use notations appeared in 2. 2.

PROPOSITION 4. 1. Let G be a LCA group and \psi a nontrivial con-
tinuous homomorphism from G into R. Let \epsilon be a positive real number

such that 0< \epsilon<\frac{1}{6} . For f\in L^{r}(G)(1\leq r\leq 2) , we defifine a function \Phi_{f} on
R\oplus\hat{K} as follows:
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(*) \Phi_{f}(t, \sigma)=\sum_{\gamma\in\hat{G}}\hat{f}(\gamma)\Delta_{\epsilon}^{2}((t, \sigma)-(\psi(\gamma), \gamma|_{K}),)’
’

where K is the closed subgroup of G defifined in 2. 2 and \Delta_{\text{\’{e}}} is a function
on R\oplus\hat{K} such that \Delta_{\text{\’{e}}}(t, \sigma)=\max(1-\frac{1}{\epsilon}|t|, 0) for \sigma=0 and \Delta_{\epsilon}(t, \sigma)=0 for
\sigma\neq 0 . Then we have \Phi_{f}\in L^{r}(R\oplus K)^{\wedge}

PROOF. Put \mathscr{A}=L^{1}(G)\cap L^{2}(G) . Then \mathscr{A} is dense in L^{1}(G) , L^{r}(G)

and L^{2}(G) respectively. We define an operator U from \mathscr{A} into L^{1}(R\oplus K)

as follows :

(1) U(h)=\check{\Phi}_{h} , where \Phi_{h} is a function on R\oplus\hat{K} appeared in
2. 2, i . e . \Phi_{h}(t, \sigma)=\sum_{\gamma\in\hat{C+}}\hat{h}(\gamma)\Delta_{\epsilon}^{2}((t, \sigma)-(\psi(\gamma), \gamma|_{K})) .

Then, as seen in 2. 2, we have ||U(h)||_{1}=||h||_{1} . By Lemma 2. 4, Lemma 2. 5,
([8], (5. 27) Theorem) and the definition of \Phi_{h} , we have

(2) U(h)\in L^{2}(R\oplus K) , and

||U(h)||2 =||U(_{h})^{\wedge}||_{2}\leq\sqrt{\epsilon}B||\hat{h}||_{2}=\sqrt{\epsilon}B||h||_{2} ,

where B is a positive constant independent of h . Hence, by the Riesz-
Thorin theorem, there exists a positive number A_{r} such that

(3) ||U(h)||_{r}\leq A_{r}||h||_{r} for h\in \mathscr{A}

This completes the proof.
Lemma 4. 1. Let G be a metrizable LCA group and \psi a nontrivial

continuous homomorphism from \hat{G} into R. Let \mu be a measure in M^{a}(G) .
Then \mu_{a} and \mu_{s} belong to M^{a}(G) , where \mu_{a} and \mu_{s} are absolutely continuous
part of \mu and the singular part of \mu respectively.

PROOF. Let \phi be the dual homomorphism of \psi . Let \chi_{0} , \Lambda and K be
as in 2. 2. Let \gamma_{0} be an element in G such that \psi(\gamma_{0})<0 . We choose a

positive real number \epsilon so that \epsilon<\min (\frac{1}{6} , |\psi(\gamma_{0})|). We note that \Phi_{\mu}(t, \sigma)=0

for t\leq-\epsilon . Since G is metrizable, K is so. Let \pi be the projection from
R\oplus K onto K. Put \eta=\pi(|\check{\Phi}_{\mu}|) . Then, by the theory of disintegration,
there exists a family \{\lambda_{h}\}_{h\subseteq K} consisting of measures in M(R\oplus K) with the
following properties :

(1) h\mapsto\lambda_{h}(f) is a Borel measurable function for each bounded
Borel measurable function f on R\oplus K,

(2) supp (\lambda_{h})\subset R\cross/|h\}\backslash ,

(3) ||\lambda_{h}||\leq 1 ,
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(4) \check{\Phi}_{\mu}(g)=\int_{K}\lambda_{h}(g)d\eta(h)

for each bounded Borel function g on R\oplus K.

By (2), there exists a measure \nu_{h}\in M(R) such that d\lambda_{h}(x, y)=d\nu_{h}(x)\cross d\delta_{h}(y) ,
where \delta_{h} is the Dirac measure at h . Since \Phi_{\mu}(t, \sigma)=0 for t\leq-\epsilon , we obtain
the following (see the proof of Lemma 3 in [13]):

(5) \hat{\nu}_{h}(t)=0 on ( -\infty . -\epsilon] a . a . h(\eta)\tau

Hence, by the F. and M. Riesz theorem, we have

(6) \nu_{h}\in L^{1}(R) a . a . h(\eta)(

Put \eta=\eta_{a}+\eta_{s} , where \eta_{a}\in L^{1}(K) and \eta_{s}\in M_{s}(K) . We define measures \xi_{1} ,
\xi_{2}\in M(R\oplus K) as follows :

(7) \xi_{1}(g)=\int_{K}\lambda_{h}(g)d\eta_{a}(h) .

\xi_{2}(g)=\int_{K}\lambda_{h}(g)d\eta_{s}(h) for g\in C_{0}(R\oplus K)

Then \check{\Phi}_{\mu}=\xi_{1}+\xi_{2} and we can easily verify that \xi_{2}\in M_{s}(R\oplus K) . Next we show
that \xi_{1} belongs to L^{1}(R\oplus K) . Let E be a Borel measurable set in R\oplus K

with m_{R_{\vee}^{\urcorner}K}+(E)=0 . Then there exists a Borel measurable set E_{2} in K with
m_{k}(E_{2})=0 and m_{R}(E_{?/})=0 for y\not\in E_{2} , where E_{y}=\{x\in R;(x, y)\in E\} . By (6),
there exists a Borel measurable set F in K such that \eta(P)=0 and \nu_{h}\in L^{1}(R)

for h\in F. Hence we have

\xi_{1}(E)=\int_{K}\lambda_{h}(\chi_{E})d\eta_{a}(h)

= \int_{F}\{\nu_{h}\cross\delta_{h}\}(\chi_{E})d\eta_{a}(h)

= \int_{F\backslash E_{z}}\nu_{h}(E_{h})d\eta_{a}(h)+\int_{F\cap E_{2}}\nu_{h}(E_{h})d\eta_{a}(h)

=0 ,

where \chi_{E} is the characteristic function of E. Hence \xi_{1} belongs to L^{1}(R\oplus K) .
Evidently \check{\Phi}_{\mu}=\check{\Phi}_{\mu_{a}}+\check{\Phi}_{\mu_{s}} . By Theorem 2. 1, we have \check{\Phi}_{\mu_{a}}\in L^{1}(R\oplus K) and
\check{\Phi}_{\mu_{s}}\in M_{s}(R\oplus K) . Hence we have \check{\Phi}_{\mu_{a}}=\xi_{1} and \check{\Phi}_{Fs}=\xi_{2} . By (5), we can verify
that \hat{\xi}_{2}(t, \sigma)=0 for t\leq-\epsilon . Hence we have \Phi_{\mu_{S}}(t, \sigma)=0 for t\leq-\epsilon . On the
other hand, since \psi(\gamma_{0})<-\epsilon, we have \hat{\mu}_{s}(\gamma_{0})=\Phi_{\mu_{S}}(\psi(\gamma_{0}), \gamma_{0}|_{K})=0 . Hence
\mu_{s}\in M^{a}(G) , and so \mu_{a}\in M^{a}(G) . This completes the proof.

THEOREM 4. 1. Let G be a LCA group and \psi a nontrivial continuous
homomorphism from \hat{G} into R. Let \mu be a measure in M^{a}(G) . Then \mu_{a}

and \mu_{s} belong to M^{a}(G) .
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PROOF. It is sufficient to prove that \mu_{s}\in M^{a}(G) . Suppose there exists
an element \gamma_{0}\in\hat{G} with \psi(\gamma_{0})<0 such that \hat{\mu}_{s}(\gamma_{0})\neq 0 . Since \mu_{s}\in M_{s}(G) , there
exists a \sigma-compact subset S of G such that |\mu_{s}|(S^{c})=0 and m_{G}(S)=0 .
Hence, by ([10], Lemma 4), there exists a \sigma-compact, noncompact open
subgroup \Gamma of \hat{G} which contains \gamma_{0} such that (^{*})m_{G}(S+\Gamma^{\perp})=0 . Let \pi be
the natural homomorphism from G onto G/\Gamma^{\perp} . Put G_{1}=G/\Gamma^{\perp} . Then, by
(^{*}) , we have \pi(\mu_{s})\in M_{s}(G_{1}) . Evidently, \pi(\mu_{a}) belongs to L^{1}(G_{1}) . We put
M^{a}(G_{1})= {\nu\in M(G_{1}) ; \hat{\nu}(\gamma)=0 for \gamma\in\Gamma with \psi|_{\Gamma}(\gamma)<0}. Then \pi(\mu) belongs
to M^{a}(G_{1}) . Since \Gamma is \sigma-compact, G_{1} is metrizable. Hence, by Lemma 4. 1,
we have \pi(\mu_{s})\in M^{a}(G_{1}) . That is, \hat{\mu}_{s}(\gamma_{0})=\pi(\mu_{s})^{\wedge}(\gamma_{0})=0 . This contradicts the
choice of \gamma_{0} . Hence we have \hat{\mu}_{s}(\gamma)=0 for \gamma\in\hat{G} with \psi(\gamma)<0 . This com-
pletes the proof.

Next we prove that Theorem B is satisfied for a LCA group G such
that there exists a nontrivial continuous homomorphism \psi from \hat{G} into R.
Let M^{a}(R\oplus K) and M^{a}(T\oplus K) be the spaces defined in 2. 1. Let \psi be the
projection from R\oplus\hat{K} onto R. Then, from Theorem 4. 1, we obtain the
following lemma.

Lemma 4. 2. Let K be a LCA group. Let \mu be a measure in M^{a}(R\oplus K) .
Then \mu_{a} and \mu_{s} belong to M^{a}(R\oplus K) .

The following lemma can be proved by the same method used in ([3],
Lemma 2).

Lemma 4. 3. Let K be a LCA group and P=\{(x, \theta)\in R\oplus\hat{K} ; x\geq 0\} .
Let \sigma be a positive measure in M(R\oplus K) . Put da(x) =ds(x)+w(x)dx,
where s\in M_{s}(R\oplus K) and w\in L^{1}(R\oplus K) . Let M be a compact subset of
R\hat{\oplus}K and \Omega=\{p(x)\in Trig(R\oplus K) ; _{p(x)=\sum}a_{\gamma}(x, \gamma), \gamma\not\in P\cup M\} . Let \phi be
the unique function in the closure of \Omega in L^{2}(d\sigma) such that

\int_{R+K}\wedge.|1-\phi|^{2}d\sigma=\inf_{p\in\Omega}\int_{R\oplus K}|1-p|^{2}d\sigma .

Then we have

\int_{R\oplus K}|1-\phi|^{2}d\sigma\leq\int_{R\oplus K}w(x)dx .

By Lemma 4. 3, we can prove the following lemma as in the same way
as in ([3], Main Theorem).

Lemma 4. 4. Let K be a LCA group. Let \mu\in M(R\oplus K) and f\in
L^{r}(R\oplus K) (1\leq r\leq 2) . If \hat{\mu}(x, \sigma)=\hat{f}(x, \sigma)a . e . on \{(x, \sigma)\in R\oplus\hat{K} ; x<0\} , we
have \mu_{s}\in M^{a}(R\oplus K) , where \mu_{s} is the singular part of \mu .
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Lemma 4. 5. Let K be a LCA group and P=\{(n, \sigma)\in Z\oplus\hat{K} ; n\geq 0\} .
Let \mu\in M(T\oplus K) and f\in L^{r}(T\oplus K)(1\leq r\leq 2) . If \hat{\mu}(n, \sigma)=\acute{f}(n, \sigma)a . e . on
P^{c} , we have \mu_{s}\in M^{a}(T\oplus K) .

PROOF. Let \Delta(t, \sigma) be a function on R\oplus\hat{K} such that \Delta(t, \sigma)=\max

(1-3|t|, 0) for \sigma=0 and \Delta(t, \sigma)=0 for \sigma\neq 0 . For \nu\in M(T\oplus K) and g\in

L^{r}(T\oplus K) , we define functions \Psi_{\nu}(t, \sigma) and \Psi_{g}(t, \sigma) on R\oplus\hat{K} as follows:

\Psi_{\nu}(t, \sigma)=\sum_{(n,\tau)\in Z\oplus\hat{K}}\hat{\nu}(n, \tau)\Delta^{2}((t, \sigma)-(n, \tau)) .

\Psi_{g}(t, \sigma)=\sum_{(n,\tau)\epsilon Z\oplus 1\hat{\tau}}\hat{g}(n, \tau)\Delta^{2}((t, \sigma)-(n, \tau))

Then we can verify that \Psi_{\nu}\in M(R\oplus K)^{\wedge} and \Psi_{g}
-

L^{r}(R\oplus K)^{\wedge} We define
\xi\in M(R\oplus K) and h\in L^{r}(R\oplus K) as follows :

\hat{\xi}(t, \sigma)=\Psi_{\mu}(t-\frac{1}{3}, \sigma) , \hat{h}(t, \sigma)=\Psi_{f}(t-\frac{1}{3}, \sigma) .

Then, since \hat{\mu}(n, \sigma)=\hat{f}(n, \sigma)a . e . on P^{c} , we have
\hat{\acute{\xi}.}(t, \sigma)=h(t, \sigma) a . e . on \{(t, \sigma)\in R\oplus\hat{K} ; t\leq 0\}

Hence, by Lemma 4. 4, we have \hat{\xi_{s}.}(t, \sigma)=0 for t\leq 0 , where \xi_{s} is the singular
part of \xi . Hence we have \hat{\mu}_{s}(n, \sigma)=0 for n\leq-1 , i . e. , \mu_{s}\in M^{a}(T\oplus K) . This
completes the proof.

THEOREM 4. 2. Let G be a LCA group and \psi a nontrivial continuous
homomorphism from \hat{G} into R. Put P=\{\gamma\in G;\psi(\gamma)\geq 0\} . Let \mu\in M(G)

and f\in L^{r}(G)(1\leq r\leq 2) . If \hat{\mu}(\gamma)=\hat{f}(\gamma)a . e . on P^{c}, we have \mu_{s}\in M^{a}(G) , where
\mu_{s} is the singular part of \mu .

PROOF. Let \Lambda , K and \alpha be as in 2. 2. We first consider the case that
\psi(\hat{G}) is not dense in R with respect to the usual topology. In this case,
\psi(\hat{G}) is isomorphic to Z and \hat{G}=Z\oplus ker(\psi) . Hence, by Lemma 4. 5, we
obtain \mu_{s}\in M^{a}(G) . Next we consider the case that \psi(\hat{G}) is dense in R
with respect to the usual topology. Let \gamma_{0} be an element in \hat{G} such that
\psi(\gamma_{0})<0 . It is sufficient to prove that \hat{\mu}_{s}(\gamma_{0})=0 . Since \psi(\hat{G}) is dense in
R, there exist \gamma_{1} , \gamma_{2}\in\hat{G} such that \psi(\gamma_{0})<\psi(\gamma_{1})<\psi(\gamma_{2})<0 . Put \delta=|\psi(\gamma_{2})| .
We define \mu_{1}\in M(G) and f_{1}\in L^{r}(G) by \mu_{1}=(-\gamma_{1})\mu and f_{1}=(-\gamma_{1})f respectively.
Then we have \hat{\mu}_{1}(\gamma)=\hat{f}_{1}(\gamma)a . e . on \{\gamma\in\hat{G} ; \psi(\gamma)<\delta\} . We choose a positive

number \epsilon so that \epsilon<\min ( \frac{1}{6} , \delta). Let \Delta_{c}.(t, \sigma) be the function on \hat{R\oplus}K defined

in Proposition 4. 1. We define functions \Phi_{\mu_{1}}(t, \sigma) and \Phi_{f_{1}}(t, \sigma) on R\hat{\oplus K} as
follows :
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\Phi_{\mu_{1}}(t, \sigma)=\sum_{\gamma\in\hat{G}}\hat{\mu}_{1}(\gamma)\Delta_{\epsilon}^{2}((t, \sigma)-(\psi(\gamma),
\gamma|_{K}))’\sim

\Phi_{f_{1}}(t, \sigma)=\sum_{\gamma\epsilon\hat{G}}\hat{f}_{1}(\gamma)\Delta_{e}^{2}((t, \sigma)-\mathfrak{l}_{\backslash }^{J}\psi(\gamma),
\gamma|_{K})) .

Then, by Theorem 2. 1 and Proposition 4. 1, we have \Phi_{\mu_{1}}\in M(R\oplus K)^{\wedge} and
\Phi_{f_{1}}\in L^{r}(R\oplus K)^{\wedge} Since \hat{\mu}_{1}(\gamma)=\hat{f}_{1}(\gamma)a . e . on \{\gamma\in\hat{G} ; \psi(\gamma)<\delta\} , we can verify
that \Phi_{\mu_{1}}(t, \sigma)=\Phi_{f_{1}}(t, \sigma)a . e . on \{(t, \sigma)\in R\oplus K;t<0\} . We note that \check{\Phi}_{(}=\mu_{1S}^{)}

(\check{\Phi}_{\mu_{1}})_{s} , where (\mu_{1})_{s} and (\check{\Phi}_{\mu_{1}})_{s} are singular parts of \mu_{1} and \check{\Phi}_{\mu_{1}} respectively.
Then, by Lemma 4. 4, we have \Phi_{(_{\mu_{1S}^{)}}}(t, \sigma)=0 for t<0 . Hence (\mu_{1})_{s}^{\wedge}(\gamma)=

\Phi_{(_{\mu_{1S}^{)}}}(\psi(\gamma), \gamma|_{K})=0 if \psi(\gamma)<0 . Thus we have \hat{\mu}_{s}(\gamma_{0})=\hat{\mu}_{s}(\gamma_{0}-\gamma_{1}+\gamma il=(\mu_{1})_{s}^{\wedge}

(\gamma_{0}-\gamma i)=0 , because \psi(\gamma_{0}-\gamma il<0 . This completes the proof.

\S 5 Appendix.

In this section we prove that Theorem 3. 1 is satisfied for a LCA group
with the algebraically ordered dual.

DEFINITION 5. 1. Let \Gamma be a LCA group. \Gamma is called an algebr aically
ordered group if and only if there exists a semigroup P in \Gamma with the
{AO) -condition, namely (i) P\cup(-P)=\Gamma and (ii) P\cap(-P)=\{0\} . We do not
assume the closedness of P.

DEFINITION 5. 2. Let G be a LCA group and E a subset of G. We
denote M_{E}(G)_{s} by M_{E}(G)\cap M_{s}(G) . If P is a semigroup in G with the
{AO) -condition, we denote especially M_{P}^{a}(G)_{s} by M_{P}(G)_{s} . A function \Phi on
G which is continuous on E^{o} is called a multiplier on M_{E}(G)_{s} if \Phi\hat{\mu}\in

M_{E}(G)_{s}^{\wedge} for each \mu\in M_{E}(G)_{s} . Let S be the bounded linear operator on
M_{E}(G)_{s} corresponding to \Phi . S is also called a multiplier on M_{E}(G)_{s} .

LEMMA 5. 1. Let G be a LCA group and E a subset of G. Let \Phi

be a nonzero multiplier on M_{E}(G)_{s} . Suppose there exist a noncompact open
subgroup F of G and \gamma_{0}\in\hat{G} such that \gamma_{0}+F\subset E^{0} and \Phi|_{\gamma_{0}+F}\neq 0 . Then we
have \Phi|_{r_{0}+F}\not\in C_{o}(\gamma_{0}+F)

PROOF. We may assume that \gamma_{0}=0 without loss of generality. By
Lemmas (B) and (C), \Phi|_{F} is a nonzero multiplier on MS\{G/F1). Hence, by
([7] ; Theorems 1 and 2), we have \Phi|_{F}\in M_{a}(G/F^{\perp})^{\wedge} Therefore \Phi|_{F}\not\in C_{o}(F)

and the proof is complete.

THEOREM 5. 1. Let G be a LCA group such that G is algebraically
ordered. Let P be a semigroup in G with the (AO)-condition such that
it is not dense in G. Suppose M_{P}^{a}(G)_{S}\neq\{0\} . Then, for each nonzero mul-
tiplier \Phi on M_{P}^{a}(G)_{S}, we have \Phi|_{P^{0}}\not\in C_{o}(P^{0}) .
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PROOF. Put \Lambda=P^{-}\cap(-P)^{-} and A=\{\gamma\in P^{-}\backslash \Lambda;\Phi(\gamma)\neq 0\} . By Lemmas
(B) and (C), we may assume that G coincides with the group generated by
\Lambda and A. Let \pi be the natural homomorphism from \hat{G} onto \hat{G}/\Lambda and put
P=\pi(P^{-}) . Then \tilde{P} is a closed semigroup in \hat{G}/\Lambda with the (AO)-condition
(cf. [9], Lemma 3). Hence, by ([11], 8. 1. 5 Theorem), \dot{\hat{G}}/\Lambda\cong R\oplus D or
\hat{G}/\Lambda\cong D, where D is a discrete ordered group. We prove the theorem by
dividing several cases.

Case 1. \hat{G}/\Lambda\cong D and \pi(P^{-}) induces an archimedean order on D.
In this case, there exists an order preserving isomorphism \psi^{*} from G/\Lambda

into R. We put \psi=\psi^{*}\circ\pi . Let \mu be a measure in M_{P}^{a}(G)_{S} . Then \hat{\mu}

vanishes on \Lambda because P^{c}\cap\Lambda is dense in \Lambda . Hence we have M_{P}^{a}(G)_{s}=

+M^{a}(G)_{s} ( =\{\mu\in M_{s}(G);\hat{\mu}(\gamma)=0 for \gamma\in\hat{G} with \psi(\gamma)\leq 0\} ). Hence, by Remark
3. 1, we have \Phi|_{P^{0}}\not\in C_{o}(P^{0}) .

Caes 2. \hat{G}/\Lambda\cong D and \pi(P^{-}) induces a nonarchimedean order on D.
Claim: There exist \gamma_{1}\in P^{-}\backslash \Lambda and \gamma_{0}\in A such that n\pi(\gamma_{1})<_{\tilde{P}}\pi(\gamma_{0}) for all

n\in N.
Let \pi(\gamma_{2}) be an element in \pi(A) and S=\{\gamma\in P^{-}\backslash \Lambda;\pi(\gamma)<_{\tilde{P}}\pi(\gamma_{2})\} .

Case 2. (a). We suppose that there exists \gamma’\in S such that n\pi(\gamma’)<_{P}\approx\pi(\gamma_{2})

for all n\in N.
In this case, Claim is easily obtained.

Case 2. (b). For each \gamma\in S, suppose that there exists a positive integer
n_{\gamma} such that n_{\gamma}\pi(\gamma)>_{P}\approx\pi(\gamma_{2}) .
Let F_{*} be an open subgroup of G generated by S, \Lambda and \gamma_{2} . Then \pi(F_{*}\cap P^{-})

induces an archimedean order on \pi(F_{*}) . Thus, by the hypothesis of Case
2, we have F_{*arrow}\subset\hat{G} . Since \hat{G} is generated by \Lambda and A, there exists \gamma_{*}\in

A\backslash F_{*} . Then we have n\pi(\gamma_{2})<P\approx\pi(\gamma_{*}\grave{)} for all n\in N. Thus, in this case,
Claim is proved. Therefore, in each case, Claim is obtained.
Let \tilde{F} be the subgroup of \hat{G}/\Lambda generated by \pi(\gamma_{1}) and put F=\pi^{-1}(’\tilde{F}) . Then,
by Claim, F is a noncompact open subgroup of G such that \gamma_{0}+F\subset P^{0} .
Hence, by Lemma 5. 1, we have \Phi|_{P^{0}}\not\in C_{o}(P^{0}) .

Case 3. \hat{G}/\Lambda\cong R .
In this case, we have \Phi|_{P^{0}}\not\in C_{o}(P^{0}) by Theorem 3. 1 and Remark 3. 1.

Case 4. \hat{G}/\Lambda\cong R\oplus D and D is nontrivial.
Let F=\pi^{-1}(R) . Then F is a noncompact open subgroup of \hat{G} .

Case 4. 1. Suppose \Phi(\gamma)=0 on P\cap F^{c} .
In this case, \Phi|_{F} is a nonzero multiplier on M^{a}(G/F^{\perp})_{s} or +M^{a}(G/F^{\perp})_{\epsilon} .
Hence, by Theprem 3. 1 \dot{\epsilon}lnd Remark 3. 1, we have \Phi|_{P^{0}}\not\in C_{o}(P^{0}) .

Case 4. 2. Suppose there ecists \gamma_{0}\in\hat{G} such that \pi(\gamma_{0})\not\in R, \pi(\gamma_{0})>_{5}0

and \Phi(\gamma_{0})\neq 0 .
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In this 6ase, \wedge’+/0F is included in P^{0} . Hence, by Lemma 5. 1, we have
\Phi|_{P^{0}}\not\in C_{o}(P^{0}1, . This completes the proof.

Finally the author wishes to e^{\tau\gamma}\grave{t}press his thanks to Dr. J. Inoue Boll.
his valuable advices.
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