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§1 Introduction

Let G be a LCA group with the dual group G. mg denotes the Haar
measure of G. Let M(G) and M;(G) denote the space of all bounded regular
(complex-valued) measures on G and the subspace of M(G) consisting of all
singular measures respectively. L!(G) denotes the usual group algebra, and
Trig (G) denotes the space of all trigonometric polynomials on G. M,(G)
and M;(G) denote the subspaces of M(G) consisting of continuous measures
and discrete measures respectively. For a subset E of G, My(G) denotes
the space consisting of measures in M(G) whose Fourier-Stieltjes transforms
vanish off E. For a subset E of G, E° and E- denote its interior and
closure. 7 and “” denote the Fourier-Stieltjes transform and the inverse
Fourier transform respectively. When there exists a nontivial continuous
homomorphism from G into R (the reals), we shall say that a measure
pEM(G) is of analytic type if fi(y)=0 for y&G with ¢(y)<0. We denote
by M?(G) the set of measures in M(G) which are of analytic type. For
a subset B of M(G), B” means the set {fi; pB}. For p= M(G), we signify
Al by [lall=1]gl.

For a discrete measure v & M,(G), p+v belongs to M (G) for every
pEM(G). For a compact abelian group G, Doss proved that a multiplier
on M,(G) is given by convolution with a discrete measure ([4]). In [7],
Graham and MacLean obtained an analogous result for a LCA group. In
section 2 of this paper, we prove the following :

THEOREM 2.3. Suppose an ordering of G is given by nontrivial con-
tinuous homomorphism ¢ from G into R. Let & be a positive real number
and @ a multiplier on L',(R) (the definition of L-;(R) will be stated in

Definition 2.1). Then ®o¢ is also a multiplier on M*(G) with the follow-
ing properties :

(1) S(MG)n Li(G))c M(G)n LY(G),

() S(MG)N M,(G)) M#(G) N Mi(G),



174 H. Yamaguchi

(1D [@-¢l| <Dl
where S is the operator on M*(G) corresponding to @og.

By using above theorem, we construct a multiplier .S on M?(G) such
that it maps M¢(G)N M,(G) into itself and it is not given by convolution
with a measure in M(G) (Theorem 2.4). In section 3, we prove that every
multiplier on the space of analytic singular measures does not vanish at
infinity (Theorem 3.1). In section 4, we obtain an analogous result of Doss
([3]) by the method used in section 2 (Theorem 4.2). In section 5, we
shall show that the result obtained in section 3 is satisfied for a LCA group
with the algebraically ordered dual (Theorem 5.1). We use the ideas of
Glicksberg ([6]) and the thory of disintegration.

DErFINITION 1.1. Let G be a LCA group and E a subset of G. A
function @ on G which is continuous on E° is called a multiplier on My(G).
if Of belongs to My(G)" for each pe= My(G). Let S be a bounded linear
operator on Mgy(G) such that S(p)"=@4. S is also called a multiplier on
Mz(G). We denote a norm ||®|| by ||®@||=]|S|].

We need the following lemma later on.

(A) (R. Doss, Theorem 1 in [2]).
Let G be a LCA group. A continuous function ¢ on G is the Fourier-
Stieltjes transform of a singular measure on G if and only if there exists
a positive constant A such that

(1) for every trigonometric polynomial p(x)=7), c;(—xi, 1i)s 7i =G, the
relation ||p|l.<1 implies |} c;p(r))| <A

(ii] whatever be ¢>0 and the compact set K in G, there is a polynomial
P@=3 el =219 1n€C, 1. &K such that ||pllo<1 and |3 cilr) > A—c

The following lemmas are well known.

LemMMa (B). Let G be a LCA group and A an open subgroup of G.
Let H be the annihilator of A. For each p=M,(G/H), there exists a
measure v& M(G) such that |v||=||gll, $()=£(y) on 4 and 9()=0 on G\A.

LEmmMmA (C). Let G, H and A be as in Lemma (B). Let © be the
natural homorphism from G onto G/H. Then, for each pe M,(G) with
supp (1) C A, =(p) belongs to M(G/H) and ||p||=|\z()||, where =(y) denotes
the continuous image of p under =.

The following lemma is easily obtained from ([1I]; 1.9.1 Theorem,
p. 32).

LEmMA (D). Let G be a LCA group and @ a continuous function on
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G. Let A be -a positive real number. If @, M(G/TY" and ||@|/||<A
for each a-compact open subgroup I' of G, @ belongs to M(G)" and ||®]| < A.

The following lemma is a useful one.

LemMa (E). Let G be a LCA group and E a subset of G. Let @ be
a multiplier on Myz(G) and S the operator on Mg(G) corresponding to @.
Then we have

S(Mx(G) N LY(G)) € Mu(G)N LX(G).
Proor. For each x&G and pe Mz(G), we have

where 9, is the Dirac measure at x. Hence, if p& Myz(G)N LYG), we have

lim || S48 — S| = lim[|.S(eex,) — (e |

x—0

<lim S]] [l —
=0.
Thus S(¢) belongs to Mz(G)N LY(G) and the proof is complete.

§2 Some multipliers on the space of analytic measures.

2.1. The special case.

R and T denote the reals and the cricle group respectively. In this
section we consider the case that G is the group of type RPK (or THK)
and ¢ is the projection from G onto R (or Z). Let HYR) and HYT) be
the Hardy spaces. Then, by the F. and M. Riesz theorem, HR)=
{reM(R); fi(x) =0 for x<0} and HYT)={pcM(T); f(n)=0 for n<0}.
Let K be a LCA group. We define M*(RPK) and M*(TEHK) as follows :

M*RPK) = {pe M(RDK) ; filz, o) =0 for z<0},
M(T®K) = {ne M(T@K) ; fi(n, 0)=0 for n<0}.

ProPOSITION 2.1. Let K be a metrizable LCA group and ¢ the pro-
jection from RPK (or ZPK) onto R (or Z). Then the following are
satisfied :

(I.1) Let @ be a multiplier on H(R). Then ®o¢ is also a multiplier
on MA(RPK) with the following properties:

(L 1.a) S(M=(R®K) N L{RDK)) c MHRDK)  LRDK),
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L1b)  S(MR®K)NM((RDK))C MRDK)N M,(RDK),
Lic)  SI<lol,

where S is the bounded linear operator on M*(RPK) induced by @og.
(I.2) Let @ be a multiplier on H(T). Then ®o¢ is also a multiplier
on M(TPK) which satisfies the same properties in (L. 1).
(I} Let G be ROK or TOK. Then there exists a multiplier S on
M*(G) with the following properties :

(IL a) S(M+(G)n L{G))C M(G) N LX(G),
ILb)  S(MG)n M,(G))c M*(G)n M,(G),
(IL ¢) S is not given by convolution with a bounded regular

measure on G.

Proor. (I.1): First we consider the case that K is a metrizable o-
compact LCA group. Let z be the projection from RPK onto K. Let p
be a measure in M*(RPK) and put p==(|g|). Then, by the theory of
disintegration, there exists a family {4,},cx consisting of measures in M(RPK)
with the following properties (see [6], p. 419~420):

(1) h—>2,(f) is a Borel measurable function of A for each
bounded Borel function f on RPK,

(2) supp (4) C R X {h},

(3) 14l <1,

(1) o= wi@

for each bounded Borel measurable function on RPK.

From (2), we have di,(z,y)=dv,(x) X d6,(y), where v,& M(R) and ¢, is the
Dirac measure at A. Then we have

(5) v HY(R) a.a. h(p). (See the proof of in [13]).
That is, there exists a Borel measurable set B in K satisfying the following :
(5Y 7(B)=||5]| and v, HYR) for heB.
Let S, be a multiplier on H'(R) defined by S,(f) =0f. We define a family
{€:}nE & consisting of measures in M(RPK) as follows :
dén(z, y) = /[dSa: (vn) () X 64 (Y) for heB
l o for heB.
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Then the following is satisfied.

(6) h=>&(f)
is a Borel measurable function of % for each f=C,(RPK).

Indeed, for each fECc(R/@\K), we have
alh=| _ Sy dalsy)
= oe) s (00 115, 0) dmgpnds, ) di( )

= S R S e55(—y, ) (s, 0) den(, y) dmly(s, o)

ROK JRDPK
= 'jAms) 8u(5) (— h, 0) (5, 0) dm(s, o) for heB
ROK
0 for h&B

=]\ ~ @) 1h<€‘“'(—- . 0)>f(s, 0) dmzgy(s,6) for hEB

0 for he&B.

Since @(s) A,(e7* (—+,0)f(s,0) is a continuous function of (s,) for each
N .

heB and a measurable function of A for each (s,0)ERPK, &(f) is a

Borel measurable function of A. Since C'C(R/G—)\K)A is dense in Cy(RPK),
(6) is proved.
Now we define a measure S(g) in M(RPK) as follows :

(1) S ={ afdh  for FECRDK).
Then we have
(8) S ma=|

= v (2" (—h, o) d(h

&u(em (= +, @) dy(h)

- S'quz) 5 (2) (— b, o) dy(h)

A

(2) A(z, 0)
og)(2, 0) fi(2, 0) .
Hence @o¢ is a multiplier on M,(RPK). For feC,(RPK), by (3), we

have
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[t ()| = () it
<[ 1o 30} ()]t

< Sknaﬁu [/ ooy (B)

= DI 11 leo l1el] -

Thus we have [|.S]||<||®||. Hence (I.1.c) is proved. (I.1.a) is obtained
from (E). Next we prove (L 1. b).

Let ¢ be a measure in M®(RPK)N M(RDK). First we prove that
p=m(|y|) belongs to M(K). Put p=1,+7, where 5,& LK) and & M;(K).
For each Borel measurable subset F of RPK with mpyx(F) =0, there
exists a Borel set F, in K with mg(F;)=0 such that mzp(F,)=0 for y&F,
where F,={xER; (z,y)F}. Put F,=F,C(K\B), where B is the subset
of K appeared in (5'). Then #,(F,)=0. Since v, H(R) if h&B, we have

[ o)ty = ) 1)) (o0¢00) (1) gl

K\F,

=0.

Hence the measure §, 4.dn.(h) belongs to LY(RPK). Evidently, the measure
{ o Ands(h) belongs to M,(RPK). On the other hand, since p&= M,(RPK),
we have u={, adn(h). By (3, we have |lzal|+i7/|=I|zl|<linl. Hence we
have p=n,& M,(K). Therefore, by the construction of S(x), we can verify
that S(y) belongs to M,(RPK)N M,(RPK) if pe M*(RDK) N M,(RDK).
Thus (I. 1) is proved when K is a metrizable g-compact LCA group. Next
we consider the case that K is a metrizable LCA group. However, in this
case, for p M*(RPK), there exists a metrizable g-compact open subgroup
K, of K such that supp () is included in RPK,. Hence we can prove
(I.1) as in the same way as in the case that K is a metrizable ¢-compact
LCA group. This proves (I 1).

(I.2): We can prove (L. 2) by the same method used in (L 1).

(II): Since we can prove in the case that G=T@K as same as
in G=R®K, we prove only the case that G=REPK. Let {a,} be a sequence
of positive integers with anyi/a,>3 (m=1,2,3, ). Put F={a,; m=1,2, 3,
.-}, Let 4(x) be a function in LYR)" such that 4(x) =max(1-3 |z, 0)
and ¢,(n)=Xr(n), where Xz is a characteristic function of F. Now we define
a function @, on R as follows :

Qo(x) = 25 o(n) d(x—mn) .

nez
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Then, as well known, @, is a multiplier on H!(R) which is not given by
convolution with a bounded regular measure on R (see [12]), i.e., @o|p+&
M(R)"| g+, where R* is the semigroup of positive real numbers. Hence we
can verify that @,0¢)|p0 does not belong to M(RPK)"|po, where P={(x, 0)E
R®k; 2>0}. Thus, by (I.1), @,0¢ is such a multiplier. This completes
the proof.

DEerFiNiTION 2.1. Let K be a LCA group. For a real number e, we
define M*(RPK) and L.(R) as follows :

MRPK) = {pe M(RDK); (s, 0)=0 for s<e},
LR = {fEL(R); flz) =0 for z<e}.

ReEMARK 2.1. Let K be a metrizable LCA group. Then, by the same
method used in Proposition 2.1, we can prove the following :

(I) Let @ be a multiplier on L!(R). Then @o¢ is also a multiplier on
M?*(RPK) which satisfies the following :

La)  S(M{(R®K)NL(RDK))C M ROK)N LRBK),

Lb)  S(MAR®K)N M(RDK))C MH(RDK)N M(RDK),
Le)  USI<liol,

where S is a bounded linear operator on M*(RPK) induced by @o¢.
(II) There exists a multiplier .S on M*RPK) with the following
properties :

(IL a) S(Mg(R@K) N L(RPK))c M*(RPK) N L(RDK),
(Lb)  S(M:ROK)NM(ROK))c M:(RDK)N M(RDK),

(I ¢) S is not given by convolution with a bounded regular

measure on RPK.

REMARK 2.2. Let K be a metrizable LCA group, and let G be RPK
or T@OK. In Proposition 2.1, by the construction of .S, we note that there
exists a multiplier S on M%(G) with the following properties :

(i) 8 (MG)n L{G))c M(G)N LY(G),
(i) §(M(G)NM(G))c Me(G) N Mi(G),
(ii) S’ is given by convolution with some measure p= M(G) such

that | po& My(G)"|po, where P={(z, )G ; 2>0}.
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Indeed, let ¢/ be a nonzero function in LYR) (L*T)). We define a measure
reM(G) by p=¢ Xd,. Then, by (I.1) and (L. 2) in Proposition 2.1 we can
verify that g is such a measure.

2.2 The case that there exists a continuous homomorphism
from G into R.

Let G be a LCA group and ¢ a nontrivial continuous homomorphism
from G into R. We may assume that there exists an element X,&G such
that ¢(X) =1 without loss of generality®. Put A={nX,; n=Z}. Let ¢ be
the dual homomorphism of ¢, i.e., (¢(t), 7)) =e#®¢ for t&R and y&G. Then
é is a continuous homomorphism from R into G.

LemMma 2.1. A is a discrete subgroup of G.

Proor. Since ¢ is continuous, it is sufficient to prove the closedness of
A. Let y be an element in G. Suppose n,X—>y (n,&Z). Then n,=d¢(n,%)
—¢(y). Since n,EZ, there exists an integer n, such that n,X,=n, ¥, for
a>a, Hence we have y=n, %,&4. This completes the proof.

Let K=/' (annihilator of 4). We define a continuous homomorphism
a from RPK into G as follows :

(2.1) alt, u) = ¢(t)+u for (t,u)eRPK.

Then a is an onto map (see Lemma 6.1 in [1]). Let D=ker(a). Then we
have

(2. 2) D ={(2zn, —$(2zn)) ERPK; nZf. (cf. [I], p. 192).

Lemma 2.2. Dr={¢(), 710 ; rEG).

ProoF. Let 7 be an element in G. We first prove that (¢(y), 7|x) €D
For each (2zn, —¢(2zn)) =D, we have

((g!!(r), ﬂK), (27m, —¢(27m)>> = ¢ %n (r]K, -—¢(27m)>

— v 2n (T’ — ¢(27‘L'7l)>

—_ ei¢(r)21m e—-’MJ(r) 2zn
=1.
Conversely, let (¢, 6) be an element in D+, Then, for each nEZ, we have

1= <(t, a), (2an, —¢(27rn)>>
= it <0, ——¢(27cn)> .

*} The reason will be stated in Remark 2.5.
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Let o4 be an element in G such that gyx]x=0¢. Then we have
1 = ¢zt <a*, —¢(2zn)

— (2t p—ig e 2

—_ e’i(t—¢'(¢r*))2xn .
Since 7 is any integer, we have

t =d¢(og)+m, where m is some integer.
Put y=mX,+0,. Then we have
Oy)=t and ylx=oxlx=0.

Hence we have (¢(7), 7]x)=(t, 6). This completes the proof.

LEMmMA 2.3. The following are satisfied.

(1) a{(=n,a] xK)=G,

(II)  a is a homomorphism in the interior of (—x, ] X K,
() a is an onto, open continuous homomorphism.

Proor. (I) and can be proved by the same method used in ([1];
Lemma 6.1). (III) is easily obtained from (I) and [II}. This completes the
proof.

By and ([8]; (5.27) Theorem, p. 41), we have
(2. 3) RPK/D=G, and so Di=G.
DerINITION 2. 2. We define M*(G) as follows :

M(G) ={p€M(G); fily)=0 for r&G with ¢(;)<0}.

L4
iy

PROPOSITION 2.2. The following are satisfied.

(i) a(Mu(R@IQ) c My (G),

(ii) a<L1(R(—DK)> c L\(G),

i) a(M(RDK))CM(G). |

Proor. (i): Let y be a measure in M*(RPK). Then
al@) ()= (~7alew) duue, 0

= 2($(1) 1) -

Hence (i) is proved.
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and are obtained from Lemma 2.3 This completes the proof.
Next we define a continuous homomorphism «; from RPG into ROK
by ai(t, 7)=(+¢0), 71x)-

LemMA 2.4. The following are satisfied.

(i) ker () ={(n, —nX) ERBG; nez,
@ af[-54)x0)-rak.
Proor. (i):

ker (a) ={(t, ERDE; (t+6(1), 11x) = 0]
(6. NERDEG; relnt; neZ), 1= —9()
{(n, —nt) eRPG; =V

I

i): Let (¢, 0) be an element in RPK. Then there exists an element G

such that y[x=¢. Let n be an integer such that n—%£—¢(r)+t<n+%.

Put t;=—¢(y)+¢t—n. Then we have tle[—%, %) and a;(t;, ¥ +nX)= (¢, o).
This completes the proof.
Moreover the following lemma is satisfied.

LemMa 2.5. (a) a1<<—%, %)XG) is an open subset of RPK,

(b) e is a homeomorphism on (—%, —;—)XG,

(¢) @ is an open continuous homomorphism.

1 1
Proor. (a): By a; maps (—?, 7]><G one to one, onto
RPK. Hence, by Lemma 2.2, we have

T
= ROR\(~ 5 +4( 71s);s reC}
= R@K\{(—%, 0>+Dl}.

Since <—%,O>—|—Dl is a closed subset of RPK, (a) is proved.
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(b): Suppose ay(t,, 7.) converge to a(t, 7o), Where

(o7 torde(—5, 3)XC.

Let {(t., )} be a subnet of {(z,,7.)}. It is sufficient to prove that (z, 7, is

. . ) 1 :
an accumulation point of {(¢,,7.)}. Since [taléi, there exists a subnet

{t;} of {¢t.} and a real number #, with |t é% such that tp—ﬁ—>t1. Since

(ts+ Q(1e)s 16l &) = au(ts 74) (2o, 70) = (to + @ (10), 70lx)» We have (¢(rs), 74lx)

—ﬁ—’(to_tl‘*‘sb(h)’h’fc)- Since (¢ (75), 75l x) ED*, (t,—t1+ (o) 70l x) ED+. Hence,

by there exists an element 7,&G such that (¢, —#,+¢(10), 7ol )=
(¢(r), r1lx)- Since K+=4, we have ¢(1) —¢(r)=¢(ro—r)EZ. On the other
hand, since |¢,—t,| <1, we have f,=t;, and so y,=7;. That is, (¢, 7, con-
verges to (¢, 70). This proves (b).

(c): (c) is easily obtained from (a) and (b).
This completes the proof.

. DEFINITION 2.3. For 0<e<—é—, we define a function A(x,s) on RPK
by d(z, 0)zmax<1—%lx], 0) for ¢=0 and 4(x, 6)=0 for o+0.

LemMA 2.6. Let G be a compact abelian group and ¢ a nontrivial
homomorphism from G into R. Let ¢ be a positive real number such that
0<e<-€15. For pe M(G), by regarding p as a measure in M(RPK/D) (cf.
(2. 3)), we define a function @,(t,s) on RPK as follows

2.4 000 =3 a0) (09— (), 71x)

76G

Then the following are satisfied.

(1) 0, MROK)"  for peM(G) and ||0,|| = |pl,
(1T) 0, L ROK)” o pelXG),
(III) 0, M,(RDK)" if peM\(G).

Proor. Let V.={5,00cRPK ; |s|<¢}. Then V, is a compact neigbor-
hood of 0 in RPK such that V,n D+={0}. Moreover 4 is a positive definite

function such that HZ’/H1:1 and supp (4)C V.. Hence, by ([5]; Theorem 1),
for each p= M(G), we have
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(1) 0, M(RDK)" and |10, <l .

Claim 1: [|®,||=||gll-
By (1), it is sufficient to prove that ||@,||>]||yl|. Let {p,} be a sequence in
Trig (G) with ||pa/l<1 such that [|g||=lim |{_ p.(¥) du(y)]. We define p,&

Trig (ROK) by pn(x, ) =pu(a(z, u)). Since D,(¢(7), rlx)=£(y), we have
S RaKﬁn(l', w) dP,(x, u) = SGPn (v) dp(y) .
Hence we have

||¢| = lim

n—oo

Lpn ) dﬂ(@/)l

=Ilim

[ g Pols 20 0, (2, 0)
n-—rco RPK

<lim [Pl ||@

n—oo

all

<||®

oll -

Thus Claim 1 is proved and (I) is proved.

Claim 2: @, belongs to M,(RDK) if pcM,(G).
Put A=||g/. Then, by Claim 1, we have ||@,/|=A. Let ¢ >0 and K a
compact subset of RPK. Since D*CK'’ is compact in D+ and pe M,(G),
by (A), there exists py)= 3 ci(~y, 7)€ Trig (G) with ({70, 7ilx)E
DA\(DN K') such that

(2) 1ple<1 and |3 ciir)

Let p be a trigonometric polinomial on RPK such that p(t, u)= )] c;e !
(—%, 7idx). Then ||pll.<1. Since @,(¢(r), rlx)=£(y), we have

|Z Ci¢y<€b(7’1)’ TilK)I ZIZ Ci/:‘(h)l
>A—¢.

Hence, by (A), we have &, M,(RPK). Thus Claim 2 is proved.
Claim 3: (‘D/;, belongs to LYRPK) if p=LY(G).

Let ¢ be a measure in L}G). Then there exists a sequence {g,} in LY(G)

such that f, has a compact support and lim |[g#g—pu,||=0. Then, since

D, (s,0)=2,cafin(r) 42((s, 9) —(¢(r), rlx)) has a compact support, (5,% belongs
to L(RPK). Hence, by Claim 1, we have @#ELl(R@K). This completes
the proof.

>A—¢.

THEOREM 2.1. Let G be a LCA group and ¢ a nontrivial continuous
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homomorphism from G into R. We may assume that there exists 1LeG

such that ¢(Xg)=1%. Let ¢ be a positive real number such that 0<e<%.

Let K and D be as after Lemma 2.1. For pcM(G), by regarding p as
a measure in M(RDK/D), we define a function @,(t, s) on ROK as follows :

(2.5 0,0 = T,eafily) £2((t, ) — (o) 71x)) -
Then the following are satisfied :

(1) ?,eMRDK)"  for peM(G) and ||®,]| =||u!,
(1I) 0, cL(RPK)  if pcLiG),
I11) 0, e M(REKY" if peM(G).

Proor. We may consider only the case that G is noncompact. Let
G be the Bohr compactification of G and K the closure of K in G. Then
K is the annihilator of 4 in G, where 4 is the discrete subgroup of G
generated by %. Let ¢y be the homomorphism from G, into R such that
¢x(r)=¢(y) and ¢y the dual homomorphism of ¢y, where G, is the group
G with the discrete topology. Let f be a measure in M(G). We regard

¢ as a measure in M(G). We define a function 4@,(¢, 0) on R@I% by
(1) 0.t =3 AG) £((¢t, ) —(9x(1)s 71x)) -

selq

Since I%:Kd, we have 0,(¢, 9)=40,(t, ) for (¢, ) EREPK. Hence, by
2.6, we have

(2) ?,e M(R®K)" and |0,/ =]yl
(regarding g as a measure in M(G)).

Claim: @, is a continuous function on RPK.
Put I={t,7)ERPG; |t| <2} and I={t )=RPEG; [t|<2). Let a; be a
continuous homomorphism from RPG into RPK such that a (¢, 7)=(t+

¢(r)s7/x). Then, by Lemma 2.5, a(I) is an open subset of RPRK. We
define a function @, on RPG as follows :

(3) WP =£04G),  where 4=max(1—1t],0).
27 ;)XG we have @, (¢, 7)=9,(ay(z,7)) . Indeed,
0, (a(t, 1)) = Bu(t4+60), 71x)

*) If there is not XOEé such that ¢(X))=1, we define 4, K and D as in Remark 2.5.

Step 1. For (¢, )E[
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= fi(y) £(z, 0) (n—t&(—¢, >n=0)

= fy) £2¢) .
Step 2. @ ish LS xe S L)xG). This i
tep 2. . vanishes on a; T oy T g€ X Ua 26, 5 X G . 1S 18

obtained from Step 1.

By Step 2, in order to prove that @, is continuous, it is sufficient to
prove that @, is continuous on aq(Ic). Suppose (¢, 7.) = a1(te, 7o), Where
(tas 7a)s (Lo 70)610. Then, by Lemma 2.5, we have (¢, 7.)—(t» 70)- Hence we
have

lim @, (a4 (t., 7.)) = lim @} (¢, 7. (by Step 1)

- @L (to, TO)
= @y <a1 (tw 7’0>> .

Thus Claim is proved. Therefore, since ®, € M(RPK)" and @, is continuous
on RPK, @, belongs to M(RPK)". Thus (I) is proved. and are
obtained by the same method used in [Lemma 2. 6. This completes the proof.

REMARK 2.3. Let G be a LCA group and ¢ a nontrivial continuous
homomorphism from G into R. Let K be as before. Then the following
are equivalent.

(1) M (G)N M, (G)#{0} ;
11) K is not discrete.

Proor. ()= (II): Suppose K is discrete. Let g be a nonzero measure
in M*(G)N M,(G). Then, by Theorem 2.1, @, belongs to M(RPK)" .
Moreover, by the construction of @, we have

(1) ?,(t 0 =0 for < —e.

Since K is discrete, there exist {v,} C M(R) and {x,} CK such that

v (o]

(2)  G=3wxd, and |IB,]|= 2 |lvll.

By (1), we have
{3).. .. %(®=0 for. t<—e¢ (n=1,2,3,-).
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Hence, by the F. and M. Riesz theorem, 5ﬂ belongs to LY(RPK). Thus
we have y:a(éﬂ)eLl(G) by Proposition 2.2. This contradicts the choice
of p. Hence (Dc>(III) is proved.

(ID=>(I): Suppose K is not discrete. Let f be a function in HYR)
such that f(¢(y,))#0 for some 702G with ¢(70)>0. Then fX 4, is a measure
in M“RPK)NM;(RPK). Hence, by Proposition 2.2, ¢(f)=al(fXxd,)

belongs to M*(G)N M,(G). Since f(¢(ry))#0, ¢(F) is a nonzero measure in
Me(G)N M(G). This completes the proof.

THEOREM 2.2. Let G be a metrizable LCA group and ¢ a nontrivial
continuous homomorphism from G into R. Suppose M*(G)N M,(G)+{0}.
Let 6 be a positive real number and ® a multiplier on L',(R). Then
Do¢ 15 also a multiplier on M2(G) with the following properties :

(i) S(M(G)nLI(G)c M«G)n LMG),
(i) S(MG)n M,(G))c M*G)n M¥(G),
Gi)  SI<iol,

where S is a bounded linear operator on M*(G) induced by ®o¢.

Proor. We choose ¢ so that 0<<e<min (6, %—) Then, by the construc-

tion of @,, the following is satisfied :
(1) é,eM*,(RPK) for peM(G).

We define a bounded linear operator S; from M?(G) into M2 (RPK) by
Sl(y)Z@#. Let ¢, be the projection from RPK onto R. Then, by Remark
2.1, Po¢y is a multiplier on M2 (RPK). Let S, be the bounded linear

operator on M? (R@K) induced by @o¢y. Moreover we define an operator
S on M%(G) as follows :

(2) S:a")SgOSl.

Then, by Remark 2.1, Proposition 2.2 and Theorem 2.1, we can verify
that (i) ~(iii) are satisfied. Finally we prove that .S is a multiplier on M?(G)
corresponding to @o¢. For pcM#(G) and yG, we have

S (1) = Seo i) (97, 71x)
= 0og(9(7), 71x) St ($7) 71)
=0(¢()) D,(¢(), 71x)
=0(p(r)) A()
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Hence S is a multiplier on M*(G) corresponding to @o¢. This completes
the proof.

THEOREM 2.3. Let G be a LCA group and ¢ a nontrivial continuous
homomorphism from G into R. Suppose Me(G)N\M,(G)#{0). Let & be
a positive real number and ® a multiplier on L' ;(R). Then ®o¢ is also
a multiplier on M?(G) which satisfies (1)~(iii) in Theorem 2. 2.

ProoF. Put @u(y)=®(¢(y)). First we prove that @, is a multiplier on
M?(G). Let ¢ be a measure in M4G). Let I' be a g-compact open sub-
group of G. Then, by Theorem 2.2, we have @y|«f|,€ M*(G/['Y)" and
@l Al A <I1OI] 1A <]|DI] [|#ll.  Hence, by (D), we have @,4e
Me(G)” and ||@44) <||1@|| ||pgl|- This shows that @, is a multiplier on M*(G)
and |S||<||®@||, where S is a bounded linear operator on M?(G) correspond-
ing to @4. By (E), S maps M*(G)N LYG) into itself.

Finally we prove that .S maps M¢(G)N M;(G) into itself. Let v be a
measure in M®*(G) N M;(G). Suppose S()& M(G). Put Sr)={+f, where
e M,(G) and feLYG). Then f+0. Since feC,(G), there exists a o-
compact open subgroup F of G such that f(r):O for y&F. Since v,
€ M,(G), there exist g-compact subsets E, and E; of G such that |v|(E))
=0, [£|(EH)=0 and m¢(E,UE)=0. Hence, by Lemma 4 in [10], there
exists a ¢-compact open subgroup I' of G such that (a) I'DF and (b)
me(E,UE,+I'YY=0. Let m, be the natural homomorphism from G onto
G/I't. Then, by (b), we have m(v), m(Q)eM(G/I'). Since G/I'* is a
metrizable LCA group, by Theorem 2.2, @4|, is a multiplier on M*(G/T'})
which satisfies the following :

() S(M(GIM) 0 M((GITY) c Me(GIrY) n MG,

where S, is a bounded linear operator on M?®(G/I't) corresponding to @y|;.
Then, since ,(SW))=Si(m(v), we have Si(m()=m(f)+m(). By (o),
Sy(m;(v)) belongs to M,(G/IY). Since m;({)eM,(G/I') and =,(f) is a non-
zero function in LY(G/I), we have a contradiction. Thus .S maps M*(G)N

M;(G) into itself. This completes the proof.
By Theorem 2.3, we obtain the following theorem.

THEOREM 2.4. Let G be a LCA group and ¢ a nontrivial continuous
homomorphism from G into R.  Suppose M*(G) M(G)#{0}. Then there
exists a multiplier S on M?(G) which satisfies the following :

(i)  S(M(G)n L{(G))c M=(G)n L(G)
() S(MG)n M(G))c M“(G)n M(G),
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S is not given by convolution with a bounded regular
measure on G.

Proor. Let {a,} be a sequence consisting of positive integers such that
amii/an>3 (m=1,2,3,--). Put F={a,; m=1,2,3,---}. Let 4(x) be a
function in LY(R)” such that 4(x)=max(1—3|x|,0) and ¢(n)=Xr(n). Now
we define a function @ on R as follows:

?(x) :,§Z¢°(n) d(x—n).
Let 6 be a positive real number. Then @ is a multiplier on L!,(R) (see
[12]). Hence, by Theorem 2.3, @o¢ is a multiplier on M*(G) which satisfies
() and [if]. Let .S be a bounded linear operator on M?(G) corresponding to
@o¢. We note that @y|z+& M(T)"|z+, where Z* is the semigroup consisting
of nonnegative integers. Hence we can verify that .S is not given by con-
volution with a bounded regular measure on G. This completes the proof.

ReEMARK 2.4. Under the assumption of Theorem 2.4, we note that
there exists a multiplier .S on M?(G) which satisfies the following :

(i) S(M(G)NLYG))c MHG)n LH(G),
(i) §(MG)N M(G))c MHG)N Mi(G),
(i11) S’ is given by convolution with a measure £ M(G) such that

& po@ My(G) | po, where P={y&G'; ¢()=0}.

Indeed, let f be a nonzero function in L!(R) such that F(P(ry))#0 for some
r0€G with ¢ () >0. Put é=¢(f), where ¢ is the dual homomorphism of
¢. Then & satisfies the above conditions.

ReEMARK 2.5. Let ¢ be a nontrivial continuous homomorphism from
G into R. Suppose there is not &G such that ¢(y)=1. Since ¢ is non-
trivial, there exists % &G such that ¢(X)>1. We fix it and put d,=¢(%y).
Let A be the discrete subgroup of G generated by %, and we put K=AL
We define a: RPK—G and a;: ROG—>RPK as before. Then

2.2/ (D=)ker (a) ={(22n/d,, —p(2zn/d,)); nez

and is satisfied. is held if we replace (—m, 7] X K
by (—=/d,, n/d,] x K. Hence (2.3) and Propositicn 2.2 are also satisfied.

1 1
Moreover Lemmas and 2.5 are held if we exchange [—7, 7>><G by
1 1

[—7610, 7d,,>><@. Therefore can be proved as same as before,
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hence Theorem 2.1 is satisfied. Other theorems in this section are also
satisfied.

§3 Some property of multipliers on the space of analytic singular
measures.

In [4], for a compact abelian group G, Doss proved that a multiplier
on M(G) is given by convolution with a discrete measure on G. Graham
and MacLean obtained an analogous result for a LCA group in [7]. There-
fore, in particular, a multiplier on M,(G) does not belong to C,(G). In this
section, we shall prove that every multiplier on the space of analytic singular
measures does not vanish at infinity. M,(G) denotes the Banach algebra
of all bounded regular measures on G whose Fourier-Stieltjes transforms
vanish at infinity.

DEFINITION 3.1. Let G be a LCA group. Suppose there exists a
nontrivial continuous homomorphism ¢ from G into R. We define M*(G),
by M:(G)NM,(G). A function ® on G which is continuous on {y=G;
O(r)=0}° s called a multiplier on M*(G); if Opc MA(G)," for each pe
Me(G)s. Let S be the bounded linear operator on M*(G); such that S(p)" =
Q4. S is also called a multiplier on M*(G),.

The following lemma is well known.

LemMMA 3.1. Let G be a LCA group and p a measure in M,(G).
Let v be a measure in M(G) such that it is absolutely continuous with
respect to |p|. Then v belongs to M,(G).

Let G be a LCA group and ¢ a nontrivial continuous homomorphism
from G into R. We may assume that there exists an element %,=G such
that ¢(X)=1. Let ¢ be the dual homomorphism of ¢. Let A be a discrete
subgroup of G generated by X, and K the annihilator of 4. Let a and D
be as in 2. 2.

For veM(G), @, is a function on RPK such that

0,(t,0) = T 5(r) £((t ) (91, 71x))

T€G

Then, as seen in 2.2, @, belongs to M(RPK)". Moreover we remember
that @, belongs to LY{RPK)" if v LY(G) and @, belongs to M,(RPK)" if
ve M;(G) respectively. The following lemma is obtained from the fact that
a(@,)=v.

LeEmMA 3.2. (cf. Proposition 2. 2).

(a) a maps LNRPK) onto LY(G);

(b) a maps M;(RPK) onto M,(G).
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The following lemmas are easily obtained.

LEMMA 3.3. For p, vEM(RPK), we have a(pr)=a(*aly). In
particular, for yye M(R) and p,e M(K), we have

a(ph X pta) = a1y X Go)xax(Bo X p13) = () %11z -

LEMMA 3.4. Let G be a LCA group and ¢ a nontrivial continuous
homomorphism from G into R. Then the following are satisfied.

(1) ker (¢) is open if and only if
{reG; gn>0)" ={reG; ¢(r)>0};

(2) ker (¢) is not open if and only if
(re6: o) >0 ={rG; 9()=0}.

THEOREM 3.1. Let G be a LCA group and ¢ a nontrivial continuous
homomorphism from G into R. Suppose M*(G),#{0}. Then, for each
nonzero multiplier @ on M?(G),, we have @|p & C,(P), where P={eG,;
¢(r)=0}.

Proor. Case 1. We first consider the case that there exists an element
r0€G with ¢(y) >0 such that @(z)#0. Suppose @|p&C,(PY). Then there
exists a g-compact open subgroup I" of G such that y,&I" and @(y)=0 for
reP'N(G\I"). Let ¢|; be the restriction of ¢ to I' and put M*(G/I'Y),=
{pe M(G/T'Y),; f(y)=0 for each y&I' with ¢|.(y)<0}. Then, by Lemmas
(B) and (C), we have M®(G/I'Y),#{0} and @|; is a nonzero multiplier on
M#(G/I'Y),.  Moreover @|,(y)#0 (¢|r(10)>0). Since I' is o-compact, G/I'*
is metrizable. Thus we may assume that G is metrizable without loss of
generality. Let £, be a function in H!(R) such that f,(¢(z))=1. Then,
since a( fo X do) =d( 1), ¢(fo) belong to M?(G);,. Hence there exists a measure
ve M*(G), such that $() =0 f,(¢(). Since $&C,(G), we have 0,

CO(R@\K). Let 7x be the projection from RPK onto K.
Claim 1. 7x(|0,))€ M,(K).

For each (4, w)ER/EI—)\K, we have nx((6, 0) @,) (1) =®,(—0, y,— ). Hence we
have 7x((0, ) @, =C,(K), and so nx((, ) §,)= M,(K). Since there exists
a sequence {p,} in Trig(RPK) such that lim |[p,®,—|D,| ||=0, we have
7x(|®,))e M,(K). Thus Claim 1 is proved.

Put n:nK(lévl). Then, by ([7]; Theorems 1 and 2), there exists a
measure &£ M,(K)N M*(K) such that 7#6£0 and pxé LY(K). Let g, be an
element in K such that (6p8) (yo|x) 0. We define a measure p=M(RPK)

as follows :
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dp(x, y) = folx) dx X d(0,6) () .

Then, since p= M,(RPK), we have a(p)© M*(G);. Since G is metrizable,
K is so. Hence, by the theory of disintegration, there exists a family
{n}rex consisting of measures in M(RPK) satisfying the following :

(1) h—2,(f) is a Borel measurable function of A for each
bounded Borel measurable function f on RPK,

(2) supp (&) CRX {h} ,

(4) b= woann

for each bounded Borel function ¢ on RPK.

From (2), we have di,(x, ¥) =dv,(x) X d6,(y), where v,& M(R) and §, is the
Dirac measure at ~. We note the following (cf. [13], Claims 2 and 3 in the
proof of Theorem 1) :

(5) ﬂ*é» = SKSK<<Uo(h1>ﬁ;>*VhZ> X Oh, 41y d(& X 7) (hy, hs) .

Since (go(hy) fo*vn,) € LY(R) for each (hy, h)e KX K and éxpe LK), we can
verify that px@,e L{(RPK). Hence, by Lemma 3.2 and we
have a(g)rxwe LY(G). Since A(d(re), 70lx)#0, a(w*v+0. On the other hand,
by using Lemma 3.3, we have

(a(tp) (1) =l () 5
a(p)™(r) ¢(Sfo)"(r) (r)
a(p fox3)) () O(7)

=a((f#f2) X (008)) (1) @) .

Since ( fo*f,) X (006) € M;(RPK), we have a(( fxfy) X (6,€)) € M*(G),. This con-
tradicts the hypothesis that @ is a multiplier on M®(G),, Hence, in this
case, we have @|p& C,(PV).

Case 2. Next we consider the case that @()=0 for y&G with ¢(y) >0.
In this case we prove the theorem by dividing three cases.

Case 2.1. ker(¢) is not open.
In this case, by Lemma 3.4, @ is a zero multiplier on M*(G),, Hence this
contradicts the hypothesis.

Case 2.2. ker(¢) is open and compact.

In this case, @ is a zero multiplier. Hence we have a contradiction.
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Case 2.3. ker(¢) is open and noncompact.
In this case, by Lemmas (B) and (C), @|ye, is a nonzero multiplier on

M(G/ker (¢)1). Hence we have @& C,(PY). This completes the proof.

ReMARK 3.1. From the proof of Theorem 3.1, the following is
satisfied :

Let G and ¢ be as in Theorem 3.1. We put ,M¢(G), = {re M,(G);
A@)=0 for y€G with ¢(;) <0}. Then, for each nonzero multiplier ® on
+M(G),, we have @|s2C,(S), where S={r&G; ¢(y)>0}.

§4 Application.

The F. and M. Riesz theorem was generalized by Helson and Lowden-
slarger as follows :

THEOREM A (cf. [11], 8.2.3 Theorem).
Let G be a compact abelian group such that G is ordered. Suppose pe
M(G) is of analytic type (i.e. fi(y)=0 for y<0). Then the following are
satisfied :

(1) Uo and ps are of analytic type,
(2) £5(0)=0.

In [3], Doss extended Theorem A for a LCA group with the algebrai-
cally ordered dual. Moreover he obtained the following theorem :

THEOREM B ([3], Main Theorem).
Let G be a LCA group such that G is algebraically ordered. Let pt be
a measure in M(G). Put p=p,+p, where p,LVG) and p,e M,(G).

Suppose there exists a function f in L'(G) (1<r<2) such that {i(y)=f(y)
a.e. for y<0. Then fi(r)=0 for y<0 and [,(0)=0.

On the other hand, in [1], DeLeeuw and Glicksberg obtained an analo-
gous result of Theorem A for a compact abelian group such that there
exists a nontrivial homomorphism from G into R. In this section, we shall
prove that an analogous result of Theorem B is satisfied for a LCA group
G such that there exists a nontrivial continuous homomorphism from G into
R. In this section, we use notations appeared in 2. 2.

ProprosITION 4.1. Let G be a LCA group and ¢ a nontrivial con-
tinuous homomorphism from G into R. Let ¢ be a positive real number

such that O<e<%. For fel*(G) (1<r<2), we define a function ®; on
RPK as follows :
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(*)  Ot0)= Tieaf) £((t )= (60 71x))
where K is the closed subgroup of G defined in 2.2 and 4, is a function
on ROK such that 4.t o)zmax<1—i|tl,0> for 6=0 and 4.(t,0)=0 for
6#0. Then we have @, I}(RPK)".

Proor. Put o = LYG)N L*G). Then o is dense in LYG), L"(G)
and L%*G) respectively. We define an operator U from & into LY(RPK)
as follows :

(1) Uh) = &,, where @, is a function on RPK appeared in

2- 2’ 1 €. @h(t’ 0): Zreéh<r) AE((t’ 0>—(¢(7)’ T‘K))
Then, as seen in 2.2, we have ||U(h)||;=]lA|l;. By Lemma 2. 5,
([8], (5.27) Theorem) and the definition of @,, we have

(2) Uh)e LA RPK), and

lum|,=[|[ve ||, <ve Bliblle=+"¢ BliAL,

where B is a positive constant independent of A. Hence, by the Riesz-
Thorin theorem, there exists a positive number A, such that

(3) |U®)||, < Al for hew .

This completes the proof.

LemMA 4.1. Let G be a metrizable LCA group and ¢ a nontrivial
continuous homomorphism from G into R. Let y be a measure in Me(G).
Then p, and ps belong to M*(G), where p, and pts are absolutely continuous
part of p and the singular part of p respectively.

Proor. Let ¢ be the dual homomorphism of ¢. Let %, 4 and K be
as in 2.2. Let 7, be an element in G such that ¢(r)<0. We choose a

. (1
positive real number ¢ so that e<min <~6ﬁ,l¢(70)|>. We note that @,(¢, 0)=0

for t<—e. Since G is metrizable, K is so. Let = be the projection from
RPK onto K. Put 77:77('(5/:”- Then, by the theory of disintegration,
there exists a family {4,},=x consisting of measures in M(RPK) with the
following properties :

(1) = h—>2(f) is a Borel measurable function for each bounded
Borel measurable function f on RPK,
(2) supp (&) CRX {h},

(3) 4l <1,
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(4) o= alo)anh)
for each bounded Borel function ¢ on RPK.

By (2), there exists a measure v,& M(R) such that di,(x, y) =dv,(x) X do,(y),
where 0, is the Dirac measure at hA. Since @,(¢, 9) =0 for t< —¢, we obtain

the following (see the proof of in [13]):

(5) £,() =0 on (—oo0, —¢] a.a. h (y.
Hence, by the F. and M. Riesz theorem, we have
(6) v, & LY(R) a.a. h (p).

Put p=m,+7, where 9,&L}K) and 7, M,(K). We define measures &,
&eEM(RPK) as follows :

(1) &)=, we) dn),

a0)=| w@dnk  for ¢eCREK).

Then éF:$1+$2 and we can easily verify that &§,& M,(RPK). Next we show
that & belongs to LY{RPK). Let E be a Borel measurable set in RPK
with mgsx(E)=0. Then there exists a Borel measurable set E, in K with
my(E) =0 and mg(E,)=0 for y& E, where E,={xER; (z,y)=E}. By (6),
there exists a Borel measurable set F in K such that »(F*)=0 and v,& LY(R)
for heF. Hence we have

&(E) = | an(ts) dra(h)
- jF (o X 2} (1) dna(h)

=, B dni+ [ () dnalh

2

=0,

where Xy is the characteristic function of E. Hence & belongs to L'(RPK).
Evidently (5,,:@,,,@—{—(5,,3. By Theorem 2.1, we have @ﬂaELl(R@K) and
éﬂsEM(R@K). Hence we have épazfl and éﬁs:&,. By (5), we can verify
that & (¢, 0)=0 for t<—e. Hence we have ?,(t,0)=0 for t<—e. On the
other hand, since ¢(r)<—¢, we have fs(ro) =, (1), 70lx) =0. Hence
ts € M*(G), and so p,&M*(G). This completes the proof.

THEOREM 4.1. Let G be a LCA group and ¢ a nontrivial continuous
homomorphism from G into R. Let y be a measure in M*(G). Then y,
and ps belong to Me(G).
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Proor. It is sufficient to prove that p,&M?(G). Suppose there exists
an element 7,&G with ¢(r) <0 such that A, (r)#0. Since p,EM,(G), there
exists a og-compact subset S of G such that |[g](S$) =0 and mg(S)=0.
Hence, by ([10], Lemma 4), there exists a o-compact, noncompact open
subgroup I" of G which contains 7, such that (*) mg(S+I"Y)=0. Let & be
the natural homomorphism from G onto G/I't. Put G,=G/I'*. Then, by
(*), we have =(y)€ M(G,). Evidently, n(y,) belongs to LYG). We put
Me(G) = veM(G); 2(r) =0 for yel’ with ¢|,(r)<0}. Then =n(y) belongs
to M%(G,). Since I' is g-compact, G; is metrizable. Hence, by Lemma 4. 1,
we have z(p) e M?(Gy). That is, f(yro)=n(ps)"(79)=0. This contradicts the
choice of 7,, Hence we have fi,(y)=0 for y&G with ¢()<0. This com-
pletes the proof.

Next we prove that Theorem B is satisfied for a LCA group G such
that there exists a nontrivial continuous homomorphism ¢ from G into R.
Let M*(RPK) and M*(TEHK) be the spaces defined in 2.1. Let ¢ be the
projection from RPK onto R. Then, from Theorem 4.1, we obtain the
following lemma.

LemMA 4.2. Let K be a LCA group. Let p be a measure in MM RPK).
Then p, and ps belong to M*(RPK).

The following lemma can be proved by the same method used in ([3],
Lemma 2).

LEmMMA 4.3. Let K be a LCA group and P={(x,0)cRPK; x>0}.
Let ¢ be a positive measure in M(RPK). Put do(x)=ds(x)+w(x)dx,
where s&€ M(RPK) and we L{(RPK). Let M be a compact subset of

PSS
RPK and Q={p(x)cTrig(ROK); pla)=2 a,(x, 1), y&PUM}. Let ¢ be
the unique function in the closure of 2 in L*(do) such that

j |1—¢|%2do = int g |1—p|2do.
RBpK e J RPK

Then we have
S Il——q&[“’dagj w(x) dx .
R®K R3D»K
By [Lemma 4.3, we can prove the following lemma as in the same way

as in ([3], Main Theorem).

Lemma 4.4, Let K be a LCA group. Let peM(RPK) and fc
L"(RPK) 1<r<2). If flz,0)=f(x,0) a.e. on {(x,0)ERPK; 2<0}, we
have p,e M*(RPK), where ps is the singular part of p.
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LemMa 4.5. Let K be a LCA group and P={(n, G)EZ@K; n>0}.
Let pe M(TOK) and feL(TOK) 1<r<L2). If filn,0)=f(n,0) a.e. on
P, we have p,e M (THK).

Proor. Let 4(t,0) be a function on RPK such that 4(¢,6)=max
(1—-31¢],0) for =0 and 4(t,0)=0 for ¢#0. For ve M(T@PK) and g
L (TPK), we define functions ¥,(t, ¢) and ¥,(¢,6) on RPK as follows :

Vito)= % 9(n1) £t 0)—(n7),

(n,7)€ZOR

Vt,o)= 2, dn7 Az((t, o) —(n, r)> .

(n,2)6ZDR

Then we can verify that ¥, M(RPK)" and ¥, L (RPK)". We define
e M(RPK) and he L' (RPK) as follows :

R 1 . 1
E(t, o)zwy<t——~3~, a), h(t, a):wf<t—§, o).

Then, since fi(n, o) :f(n, o) a.e. on P¢, we have
Et.o)=hit,0) a.e on {,0)eRBR; t<0)

Hence, by [Lemma 4. 4, we have &(t, 6)=0 for <0, where &, is the singular
part of &, Hence we have f(n,6)=0 for n<—1, i. e, s M(TPHK). This
completes the proof.

THEOREM 4.2. Let G be a LCA group and ¢ a nontrivial continuous
homomorphism from G into R. Put P={y&G; O()>0}. Let peM(G)
and fe L"(G) (1<r<2). If A(y) :f(r) a.e. on P¢, we have p,c M*(G), where
s is the singular part of p.

Proor. Let 4, K and a be as in 2.2. We first consider the case that
¢(G) is not dense in R with respect to the usual topology. In this case,
¢(G) is isomorphic to Z and G =ZPker (¢). Hence, by Lemma 4.5, we
obtain g, M?*(G). Next we consider the case that ¢(G) is dense in R
with respect to the usual topology. Let 7, be an element in G such that
¢(r)<O0. It is sufficient to prove that fi(y)=0. Since ¢(G) is dense in
R, there exist 7, 7, G such that Olr) <d(r)<o(r) <0. Put 0= |¢(py)|.
We define 1€ M(G) and f,€ L"(G) by py=(—7)p and fi=(—7r1)f respectively.
Then we have f,(y)=fi(y) a.e. on reG; ¢(y)<8). We choose a positive

A~
number ¢ so that e<min <~é, 5>. Let 4.(¢, o) be the function on RPK defined

N
in Proposition 4.1. We define functions ?,(t,0) and @, (t,0) on RPK as
follows :
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0,(t 0)= 3 f(y) &£((t, ) —(¢() 71x)) »

D (t,0) = SA0) £:((t 0)— (90 7lx))-

Then, by Theorem 2.1 and Proposition 4.1, we have @, € M(RPK)" and
9, L (RPK)". Since (=A@ a.e. on y&CG; ¢(y)<5}, we can verify
that @, (¢, 0)=0;,(t,0) a.e. on {(t,0)ERDK; t<0}. We note that 07(,,1,3:
(é,,,)s, where (), and ((5,,1)s are singular parts of p and 6#1 respectively,
Then, by we have @, (£, 0)=0 for t<0. Hence (), (y)=

D (01, 7l =0 if ¢()<0. Thus we have Ay = fs(ro—rit7)=()s"
(ro—71)=0, because ¢ (ro—7)<0. This completes the proof.

§5 Appendix.

In this section we prove that Theorem 3.1 is satisfied for a LCA group
with the algebraically ordered dual.

DEFINITION 5.1. Let I' be a LCA group. I is called an algebr aically
ordered group if and only if there exists a semigroup P in I' with the
(AO)-condition, namely (i) PU(—P)=I" and (iiy PN(—P)={0}. We do not
assume the closedness of P.

DEFINITION 5.2. Let G be a LCA group and E a subset of G. We
denote Mzx(G)s by Mz(G)NM,(G). If P is a semigroup in G with the
(AO)-condition, we denote especially ME(G)s by Mp(G)s. A function @ on
G which is continuous on E° is called a multiplier on Mg(G), if ®fc
Mg(G)y" for each peMg(G),. Let S be the bounded linear operator on
Mg(G); corresponding to @. S is also called a multiplier on Mg(G);.

LeEMMA 5.1. Let G be a LCA group and E a subset of G. Let @
be a nonzero multiplier on Mg(G)s. Suppose there exist a noncompact open
subgroup F of G and 1, &G such that y,+FCE® and ®|, ,r#0. Then we
have @|, ;rZCo(ro+F).

Proor. We may assume that y,=0 without loss of generality. By
Lemmas (B) and (C), @|r is a nonzero multiplier on M,(G/F'). Hence, by
([7]; Theorems 1 and 2), we have @|r= M,;(G/F*)". Therefore @|z&C,(F)
and the proof is complete.

THEOREM 5.1. Let G be a LCA group such that G is algebraically
ordered. Let P be a semigroup in G with the (AO)-condition such that
it is not dense in G. Suppose M&(G),#{0}. Then, for each nonzero mul-
tiplier ® on ME(G)s, we have @|p& C,(P").
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Proor. Put A=P-N(—P)~ and A={yeP\4; @(y)#0}. By Lemmas
(B) and (C), we may assume that G coincides with the group generated by
A and A. Let = be the natural homomorphism from G onto G/4 and put
P=x(P-). Then P is a closed semigroup in G/4 with the (AO)-condition
(cf. [9], Lemma 3). Hence, by ([11], 8.1.5 Theorem), "@//IER(—DD or
G/A=D, where D is a discrete ordered group. We prove the theorem by
dividing several cases.

Case 1. G/A=D and z(P-) induces an archimedean order on D.
In this case, there exists an order preserving isomorphism ¢* from G/
into R. We put ¢=¢*or. Let ¢ be a measure in ME(G),, Then /
vanishes on /4 because PN A is dense in 4. Hence we have MZ(G),=
+MAG)s (={pe M(G) ; Ay)=0 for TEG with ¢(7)<0}). Hence, by Remark
3.1, we have @|pmeC,(PY).

Caes 2. G/A=D and z(P-) induces a nonarchimedean order on D.

Claim : There exist ;;&€P~\4 and 7, A such that nz(y)<sn(y) for all
neN.
Let x(y,) be an element in z(A) and S={FeP\4; z(y)<sz(r)}.

Case 2. (a). We suppose that there exists ¢ &S5 such that nz () <z (ry)
for all neN.
In this case, Claim is easily obtained.

Case 2. (b). For each y&S, suppose that there exists a positive integer
n, such that n,z(y) >sn(r,).
Let Fy be an open subgroup of G generated by .S, 4 and 7.. Then =(Fy N P")
induces an archimedean order on #(Fy). Thus, by the hypothesis of Case
2, we have Fy,CG. Since G is generated by A and A, there exists 74&
A\Fy. Then we have nz(y)<gsn(rs) for all neN. Thus, in this case,
Claim is proved. Therefore, in each case, Claim is obtained.
Let F be the subgroup of G/A generated by z(y) and put F=z"%(F). Then,
by Claim, F is a noncompact open subgroup of G such that y,+FCP®.
Hence, by Lemma 5.1, we have @|p £ C,(PY).

Case 3. G/A=R.
In this case, we have @|p&C,(P?) by Theorem 3.1 and Remark 3.1.

Case 4. G/A=RPD and D is nontrivial.
Let F=z"Y(R). Then F is a noncompact open subgroup of G.

Case 4.1. Suppose @ (y)=0 on PN Fe.
In this case, ®@|r is a nonzero multiplier on M¢(G/Ft), or ,M*(G/FY)..
Hence, by Theprem 3.1 and Remark 3.1, we have @|p& C,(P).

Case 4.2. Suppose there ecists rOEG' such that z(y)&R, n(y)>s0
and @(yy)#0.
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In this case, jo+F is included in P’ Hence, by Lemma 5.1, we have
@z C,(P%. This completes the proof.

Finally the author wishes to express his thanks to Dr. J. Inoue for
his valuable advices.
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