An application of Evens' norm mapping

By Yoshito OGAWA

(Received February 1, 1982; Revised February 12, 1982)

1. Introduction

1 t i

Let B_0 be the principal block of kG, where k is the prime field of characteristic p>0 and G is a finite group such that $G_p \neq 1$. G_p means a Sylow p-subgroup of G. All modules are finite dimensional vector spaces over k.

If a simple kG-module M does not belong to B_0 , then $\bigoplus_{i=1}^{\infty} H^i(G, M) = 0$. Therefore, if $\bigoplus_{i=1}^{\infty} H^i(G, M) \neq 0$ is proved for any simple kG-module M lying in B_0 , then B_0 is written as $\{M|M \text{ represents an isomorphic class of simple <math>kG$ -modules such that $\bigoplus_{i=1}^{\infty} H^i(G, M) \neq 0$.} (cf. Barnes, Schmid and Stammbach [1, § 3, Remark]). This characterization of B_0 is known, only when G is a p-nilpotent group (classical), a p-solvable group with an abelian Sylow p-subgroup [3, Theorem 2] or a metabelian group [3, Theorem 3].

The aim of this note is to prove the following Theorem 1 which generalizes [3, Theorem 2], by using Evens' norm mapping [2]. Specifically we show that B_0 is written as above, when G is a Frobenius group whose Frobenius kernel has the order divisible by p.

THEOREM 1. Let G be a finite group with a normal p-subgroup D. Suppose M be a projective k[G/D]-module. We regard M as a kG-module. If $M^* = \operatorname{Hom}_k(M, k)$ is isomorphic to a kG-submodule of $S^i(\Omega_1(A)^*)$ for some normal abelian subgroup A of G such that $A \leq D$, then $H^{2qi}(G, M)$ $\neq 0$. Here $\Omega_1(A) = \langle x \in A | x^p = 1 \rangle$, q = |D: A| and $S = \bigoplus_{i=0}^{\infty} S^i$ is the symmetric algebra functor over k.

[3, Theorem 2] is deduced from the case of D=A. Next we specialize to a Frobenius group and have the following.

THEOREM 2. Let G be a Frobenius group with the Frobenius kernel N such that $N_p \neq 1$. Then $\bigoplus_{i=1}^{|H|} H^{2qi}(G, M) \neq 0$ for every simple kG-module M lying in B_0 , where $q = |N_p: Z(N_p)|$, $Z(N_p)$ is the center of N_p and H is a Frobenius complement of G. Namely B_0 is described as the set $\{M|M \text{ represents an isomorphic class of simple kG-modules such that <math>\bigoplus_{i=1}^{\infty} H^i(G, M) \neq 0\}$.

All proofs are given in § 2. In § 3 we actually compute the cohomology of G with coefficients in the simple kG-modules lying in B_0 , when p=2 and $G=S_4$ or A_4 (the symmetric group or the alternating group of degree four).

In the first draft of this note, Theorem 1 treated only a finite group of p-length 1. The author expresses his hearty thanks to Dr. Sasaki who recommended him the improvement of Theorem 1 standing on Sasaki [4, § 2, Step 2].

2. Proofs

Before proving Theorem 1, we recall Evens' norm mapping in the cohomology rings of finite groups [2]. The Norm is a multiplicative analogue of the usual transfer.

For a finite group G, put $a(G) = \bigoplus_{i=0}^{\infty} H^{2i}(G, k)$, where k is viewed as a trivial G-module. Then a is a contravariant functor

Finite groups \rightarrow Commutative graded k-algebras.

Let $G \ge L \ge H$, $G \ge K$, $g \in G$, α , $\beta \in a(H)$, $\gamma \in a(G)$ and n = |G:H|. The inclusion map $H \to G$ defines $\operatorname{Res}_{G \to H}$: $a(G) \to a(H): \gamma \mapsto \gamma_H$, and a conjugation map $gHg^{-1} \to H: h \mapsto g^{-1}hg$ induces $a(H) \to a(gHg^{-1}): \alpha \mapsto \alpha^g$. If $g \in H$, then $\alpha^g = \alpha$. Evens constructed Norm_{$H \to G$}: $a(H) \to a(G): \alpha \mapsto^{-\alpha} \alpha$, which satisfies the following properties:

If
$$\alpha \in H^0(H, k) = k$$
, then ${}^G \alpha = \alpha^n \in H^0(G, k) = k$.
If $\alpha \in H^{2i}(H, k)$, then ${}^G \alpha \in H^{2ni}(G, k)$.
 ${}^G(\alpha \cdot \beta) = {}^G \alpha \cdot {}^G \beta$.
 ${}^H \alpha = \alpha, \ {}^G({}^L \alpha) = {}^G \alpha$.
 ${}^{L^g}(\alpha^g) = ({}^L \alpha)^g$.
 $({}^G \alpha)_K = \prod_{g \in K \setminus G/H} {}^K(\alpha^g_{H^g \cap K})$ (the double coset formula),
where $H^g = q H q^{-1}$.

Here $K \setminus G/H$ is a transversal of the (K, H) double coset in G.

PROOF of Theorem 1. First we prove two Claims, and then combine them.

Claim 1 (Sasaki [4, § 2, Step 2]).

$$H^i(G, M) \cong H^i(D, M)^{G/D}$$
 $(i \ge 0)$.

Proof. Consider the spectral sequence

$$H^{s}(G/D, H^{t}(D, M)) \Longrightarrow H^{s+t}(G, M)$$

associated with the group extension

$$1 \longrightarrow D \longrightarrow G \longrightarrow G/D \longrightarrow 1 \text{ (exact)}.$$

Since *M* is a projective k[G/D]-module, $H^t(D, M)$ is also a projective k[G/D]-module $(t \ge 0)$. Thus $H^s(G/D, H^t(D, M)) = 0$ for each s > 0, and we have $H^i(G, M) \cong H^i(D, M)^{G/D}$ for all $i \ge 0$.

Claim 2. $H^{2qi}(D, k)$ has a k[G/D]-submodule M_1 isomorphic to M^* .

Proof. A is an abelian p-group, and so we will regard a symmetric algebra $\bigoplus_{j=0}^{\infty} S^{j}(\Omega_{1}(A)^{*})$ as a graded k-subalgebra of $\bigoplus_{j=0}^{\infty} H^{2j}(A, k)$ (see for example [3, Proposition 1]). Observe that this inclusion is compatible with G-action. By the assumption there is a submodule of $S^{i}(\Omega_{1}(A)^{*})$ isomorphic to M^{*} . We denote this by M_{2} , which is also a submodule of $H^{2i}(A, k)$.

Let $M_3 = \langle \operatorname{Norm}_{A \to D}(M_2) \rangle$ be the kG-submodule of $H^{2qi}(D, k)$ generated by $\operatorname{Norm}_{A \to D}(M_2)$. The double coset formula shows that

$$\operatorname{Res}_{D \to A}(M_3) = \left\langle \operatorname{Res}_{D \to A} \left(\operatorname{Norm}_{A \to D}(M_2) \right) \right\rangle = \left\langle \prod_{d \in D/A} \alpha^d | \alpha \in M_2 \right\rangle.$$

Since D acts on M_2 trivially, $\operatorname{Res}_{D \to A}(M_3) = \langle \alpha^q | \in M_2 \rangle$. In addition the inclusion $M_2 \leq \bigoplus_{i=0}^{\infty} S^i(\Omega_1(A)^*)$ implies that $\langle \alpha^q | \alpha \in M_2 \rangle \cong M_2$ as kG-modules. By $M_2 \cong M^*$, M^* is a homomorphic image of a k[G/D]-module M_3 .

Now that M^* is a projective k[G/D]-module, M^* is isomorphic to a submodule of M_3 . This is the required k[G/D]-submodule M_1 of $H^{2qi}(D, k)$.

Finally we combine Claims 1 and 2. There is an isomorphism of k[G/D]-modules

$$H^{j}(D, k) \bigotimes_{k} M \cong H^{j}(D, M)$$

for all $j \ge 0$. Thus we have

$$H^{2qi}(G, M) \cong H^{2qi}(D, M)^{G/D}$$
$$\cong \left\{ H^{2qi}(D, k) \bigotimes_{k} M \right\}^{G/D}$$
$$\cong (M_{1} \bigotimes_{k} M)^{G/D}$$
$$\cong \operatorname{Hom}_{k[G/D]}(M, M) \neq 0$$

Hence the proof of Theorem 1 is complete.

PROOF of Theorem 2. We apply Theorem 1 to the case of the Frobenius group, putting $D=N_p$ and $A=Z(N_p)$. Since N is the greatest normal p-nilpotent subgroup of G, N acts trivially on every simple kG-module M lying in B_0 . Thus M can be regarded as a projective kH-module, for $G/N \cong H$ and H is a p'-group. Next $\Omega_1(A)^*$ is an H-faithful kH-module,

Y. Ogawa

and so the regular kH-module kH is isomorphic to a direct summand of $\bigoplus_{i=1}^{|H|} S^i(\Omega_1(A)^*)$ by [3, Theorem 1]. Specially M^* is isomorphic to a submodule of $\bigoplus_{i=1}^{|H|} S^i(\Omega_1(A)^*)$. Now the application of Theorem 1 completes the proof of Theorem 2.

REMARK. If p=2, the Norm can be defined by putting $a(G) = \bigoplus_{i=0}^{\infty} H^i$ (G, k). Thus $H^{2qi}(G, M)$ can be replaced by $H^{qi}(G, M)$ in Theorems 1 and 2, if A or N_p is an elementary abelian 2-group (see [3, § 3, Remark]).

3. Examples.

Setting p=2, we compute the cohomology of $G=A_4$ or S_4 with coefficients in the simple kG-modules. We will identify modules with their isomorphism class, and we write $M \cong M'$, $M \oplus M'$, $M \oplus \cdots \oplus M$ (i times) and $M \otimes_k M'$ as M=M', M+M', iM and $M \cdot M'$ respectively. Our results are stated in Table 1 below. We denote the first line in Table 1 by row 1, and so forth. Then row 1 shows that j runs through 3i, 3i+1 and 3i+2 for each $i \ge 0$.

Table 1.

j	3i	3i+1	3i+2
$S^{j}(U)$	(i+1)k+iU	ik+(i+1)U	(i+1) k+(i+1) U
$\dim_k H^j(A_4,k)$	<i>i</i> +1	i	<i>i</i> +1
$\dim_k H^j(A_4, U)$	2i	2(i+1)	2(i+1)
$[S^{j}(W)]$	(i+1)[k]+i[W]	i[k]+(i+1)[W]	(i+1)[k]+(i+1)[W]
$\dim_k H^j(S_4, W)$	i	<i>i</i> +1	i+1

 $(1) \quad G = A_4.$

G is the semi-direct product of $D = \langle (13) (24), (14) (23) \rangle$ by $C = \langle (123) \rangle$. kG has only one block and there are two simple kG-modules k and U. *U* is isomorphic to *D* with *G*-action given by inner automorphisms and $U^* = U$. k and *U* are also simple kC-modules. Then kC = k + U. Multiplying this equation by *U*, we have

$$(kC) \cdot U = U + (U \cdot U)$$
$$= 2(kC)$$
$$= 2k + 2U.$$

Thus $U \cdot U = 2k + U$.

Row 2 describes the decomposition of $S^{j}(U)$ to a direct sum of simple kC-modules. The proof is given by considering $S^{j}(U)\otimes_{k}F$, where F is the

field of four elements.

Rows 3 and 4 give $\dim_k H^j(G, k)$ and $\dim_k H^j(G, U)$, which follow from row 2. For $\dim_k H^j(G, k)$ is the multiplicity of k in $S^j(U)$, and $\dim_k H^j(G, U)$ is twice the multiplicity of U in $S^i(U)$. Observe that $D^* = U$, $H^j(D, k) \cong S^j(U)$ and $U \cdot U = 2k + U$ and then use Claim 1.

 $(2) \quad G = S_4.$

G is the semi-direct product of $D = \langle (13) (24), (14) (23) \rangle$ by $H = \langle (123), (12) \rangle$. (12)). kG has a unique block and the simple kG-modules are given by letting D act on the simple kH-modules k and W. W is a projective kH-module defined by the reduction of an integral representation of H. We denote those kG-modules by k and W again. W is isomorphic to a kG-module D. Immediately $H^1(G, k) = \text{Hom}(G, k) = \text{Hom}(G/A_4, k) = k$. We shall compute dim_k $H^j(G, W)$.

Table 2 provides the multiplicity of indecomposable kH-modules in their tensor product representations. Let V be a permutation representation k[H/K], where $K = \langle (123) \rangle$. Then V is the projective cover of k and indecomposable kH-modules are given by k, V and W.

Table 2.				
	k	V	W	
k	k	V	W	
V		2V	2W	
W			V+W	

Table 2 is proved as follows. Since W does not belong to $B_0(kH)$, we have $V^* = V$ and $W^* = W$. The trivial K-action on V implies that the K-action on $V \cdot V$ is also trivial. Thus $V \cdot V$ is a projective kH-module lying in $B_0(kH)$, and so $V \cdot V = 2V$. $V \cdot W = \operatorname{Hom}_k(V^*, W) = \operatorname{Hom}_k(V, W)$ deduces that $(V \cdot W)^H = \operatorname{Hom}_{kH}(V, W) = 0$. Hence $V \cdot W = 2W$. Finally $(W \cdot W)^H =$ $\operatorname{Hom}_{kH}(W, W) = k$, as W is an absolutely simple kH-module. Therefore $W \cdot W = V + W$, as desired.

Row 5 refers the expression of $S^{j}(W)$ in the Grothendieck group of kH-modules. In other words row 5 shows how many times k and W appear in $S^{j}(W)$ as composition factors. To establish row 5, it suffices to use the Brauer character.

Row 6 follows from the fact that $\dim_k H^j(G, W)$ is equal to the multiplicity of W in $S^j(W)$, which is proved by Claim 1 and Table 2. Note that $H^j(D, k) = S^j(D^*) = S^j(W)$.

Y. Ogawa

References

- D. W. BARNES, P. SCHMID and U. STAMMBACH: Cohomological characterizations of saturated formations and homomorphs of finite groups, Comment. Math Helv. 53 (1978), 165-173.
- [2] L. EVENS: A generalization of the transfer map in the cohomology of groups, Trans. Amer. Math. Soc. 108 (1963), 54-65.
- [3] Y. OGAWA: On the cohomology of some finite groups of *p*-length 1, Japan. J. Math. 8 (1982), to appear.
- [4] H. SASAKI: On the nontriviality of cohomology of finite groups, Hokkaido Math. J., to appear.

Department of Mathematics Tokyo Metropolitan University