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An application of Evens’ norm mapping

By Yoshito OGAWA
(Received February 1, 1982; Revised February 12, 1982)

1. Introduction

Let B_{0} be the principal block of kG, where k is the prime field of
characteristic p>0 and G is a finite group such that G_{p}\neq 1 . G_{p} means
a Sylow p-subgroup of G. All modules are finite dimensional vector spaces
over k.

If a simple kG-module M does not belong to B_{0} , then \oplus_{i=1}^{\infty}H^{i}(G, M)=0 .
Therefore, if \oplus_{i=1}^{\infty}H^{i}(G, M)\neq 0 is proved for any simple kG-module M
lying in B_{0} , then B_{0} is written as {M|M represents an isomorphic class of
simple kG-modules such that \oplus_{i=1}^{\infty}H^{i}(G, M)\neq 0.\} (cf. Barnes, Schmid and
Stammbach [1, \S 3, Remark] ) . This characterization of B_{0} is known, only
when G is a p-nilpotent group (classical), a p-solvable group with an abelian
Sylow p-subgroup [3, Theorem 2] or a metabelian group [3, Theorem 3].

The aim of this note is to prove the following Theorem 1 which
generalizes [3, Theorem 2], by using Evens’ norm mapping [2]. Specifically
we show that B_{0} is written as above, when G is a Frobenius group whose
Frobenius kernel has the order divisible by p.

THEOREM 1. Let G be a finite group with a normal p-subgroup D.
Suppose M be a projective k[G/D] -module. We regard M as a kG-module.
If M^{*}=Hom_{k}(M, k) is isomorphic to a kG-submodule of S^{i}(\Omega_{1}(A)^{*}) for
some normal abelian subgroup A of G such that A\leqq D, then H^{2qi}(G, M)

\neq 0 . Here \Omega_{1}(A)=\langle x\in A|x^{p}=1\rangle , q=|D:A| and S=\oplus_{i=0}^{\infty}S^{i} is the symmetric
algebra functor over k.

[3, Theorem 2] is deduced from the case of D=A. Next we specialize
to a Frobenius group and have the following.

THEOREM 2. Let G be a Frobenius group with the Frobenius kernel
N such that N_{p}\neq 1 . Then \oplus_{i=1}^{1HI}H^{2qi}(G, M)\neq 0 for every simple kG-module
M lying in B_{0}, where q=|N_{p} : Z(N_{p})| , Z(N_{p}) is the center of N_{p} and H
is a Frobenius complement of G. Namely B_{0} is described as the set \{M|M
represents an isomorphic class of simple kG-modules such that \oplus_{i=1}^{\infty}H^{i}(G, M)

\neq 0\} .
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All proofs are given in \S 2. In \S 3 we actually compute the cohomology
of G with coefficients in the simple kG-modules lying in B_{0} , when p=2 and
G=S_{4} or A_{4} (the symmetric group or the alternating group of degree four).

In the first draft of this note, Theorem 1 treated only a finite group
of pp’length 1. The author expresses his hearty thanks to Dr. Sasaki who
recommended him the improvement of Theorem 1 standing on Sasaki [4,
\S \underline{9} , Step 2].

2. Proofs

Before proving Theorem 1, we recall Evens’ norm mapping in the
cohomology rings of finite groups [2]. The Norm is a multiplicative analogue
of the usual transfer.

For a finite group G, put a(G)=\oplus_{i=0}^{\infty}H^{2i}(G, k) , where k is viewed as
a trivial G-module. Then a is a contravariant functor

Finite groups Commutative graded k-algebras.
Let G\geqq L\geqq H, G\geqq K, g\in G, \alpha, \beta\in a(H) , \gamma\in a(G) and n=|G:H| . The
inclusion map Harrow G defines {\rm Res}_{Garrow H} : a(G)arrow a(H):\gamma\mapsto\gamma_{H} , and a conjugation
map gHg^{-1}arrow H:h\mapsto g^{-1}hg induces a(H)arrow a(gHg^{-1}):\alpha\mapsto\alpha^{g} . If g\in H, then
\alpha\emptyset=\alpha . Evens constructed Norm_{Harrow G} : a(H)arrow a(G) : \alpha\mapsto^{G}\alpha, which satisfies
the following properties :

| \int where’ H^{g}=.g’.Hg^{-1}(^{G}\alpha)_{K}=\prod_{g\in K\backslash GH}^{K}(\alpha_{H^{g}\cap K}^{g}.)(thedoub1ecosetformula)L^{g}HIf\alpha\in H^{2i}(H,k),the_{l}n^{G}\alpha\in H^{2ni}(G,k)If\alpha\in H^{0}(H,k)=k,then^{G}\alpha=\alpha^{n}\in H^{0}(G,k)=kG(\alpha\cdot\beta)=^{G}\alpha^{G}\beta\alpha=\alpha^{G}(^{L}\alpha)=^{G}\alpha(\alpha^{9})=(^{L}\alpha)^{g}.1

,

Here K\backslash G/H is a transversal of the (X, H) double coset in G.

PROOF of Theorem 1. First we prove two Claims, and then combine
them.

Claim 1 (Sasaki [4, \S 2, Step 2]).

H^{i}(G, M)\cong H^{i}(D, M)^{G/D} (i\geqq 0)

Proof. Consider the spectral sequence

H^{s} (G/D, H^{t}(D, M))\Rightarrow H^{s+t}(G, M)s
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associated with the group extension

1arrow Darrow G– G/D–1 (exact)

Since M is a projective k[G/D] -module, H^{t}(D, M) is also a projective k[G/D]-
module (t\geqq 0) . Thus H^{s}(G/D, H^{t}(D, M))=0 for each s>0 , and we have
H^{i}(G, M)\cong H^{t}(D, M)^{G/D} for all i\geqq 0 .

Claim 2. H^{2qi}(D, k) has a k[G/D] -submodule M_{1} isomorphic to M*.

Proof. A is an abelian p-group, and so we will regard a symmetric
algebra \oplus_{j=0}^{\infty}S^{j}(\Omega_{1}(A)^{*}) as a graded k-subalgebra of \oplus_{j=0}^{\infty}H^{2f}(A, k) (see for
example [3, Proposition 1] ) . Observe that this inclusion is compatible with
G-action. By the assumption there is a submodule of S^{i}(\Omega_{1}(A)^{*}) isomorphic
to M^{*} . We denote this by M_{2} , which is also a submodule of H^{2i}(A, k) .

Let M_{3}=\langle Norm_{Aarrow D}(M_{2})\rangle be the kG-submodule of H^{2qi}(D, k) generated
by Norm_{Aarrow D}(M_{2}) . The double coset formula shows that

{\rm Res}_{Darrow A}(M_{3})= \langle{\rm Res}_{Darrow A}(Norm_{Aarrow D}(M_{2}))\rangle=\langle\prod a\in D/A\alpha^{cJ}|\alpha\in M_{2}\rangle .

Since D acts on M_{2} trivially, {\rm Res}_{Darrow A}(M_{3})=\langle\alpha^{q}|\in M_{2}\rangle . In addition the inclusion
M_{2}\leqq\oplus_{i=0}^{\infty}S^{i}(\Omega_{1}(A)^{*}) implies that \langle\alpha^{q}|\alpha\in M_{2}\rangle\cong M_{2} as kG-modules By M_{2}\cong

M^{*} , M^{*} is a homomorphic image of a k[G/D] -module M_{3} .
Now that M^{*} is a projective k[G/D] -module, M^{*} is isomorphic to a

submodule of M_{s} . This is the required k[G/D] -submodule M_{1} of H^{2qi}(D, k) .
Finally we combine Claims 1 and 2. There is an isomorphism of

k[G/D] -modules
H^{j}(D, k)\otimes_{k}M\cong H^{f}(D, M)

for all j\geqq 0 . Thus we have

H^{2qi}(G, M)\cong H^{2qi}(D, M)^{G/D}

\cong\{H^{2qi}(D, k)\otimes_{k}M\}^{G/D}

\geqq(M_{1}\otimes_{k}M)^{G/D}

\cong Hom_{k[G/D]}(M, M)\neq 0l

Hence the proof of Theorem 1 is complete.

PROOF of Theorem 2. We apply Theorem 1 to the case of the Frobenius
group, putting D=N_{p} and A=Z(N_{p}) . Since N is the greatest normal p-
nilpotent subgroup of G, N acts trivially on every simple kG-module M
lying in B_{0} . Thus M can be regarded as a projective kH-module, for
G/N\cong H and H is a p’ group Next \Omega_{1}(A)^{*} is an H-faithful kH-module,
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and so the regular kH-module kH is isomorphic to a direct summand of
\oplus_{i=1}^{|HI}S^{i}(\Omega_{1}(A)^{*}’) by [3, Theorem 1]. Specially M’* is isomorphic to a sub-
module of \oplus_{i=1}^{|H1}S^{i}(\Omega_{1}(A)^{*}) . Now the application of Theorem 1 completes
the proof of Theorem 2.

REMARK. If p=2, the Norm can be defined by putting a(G)=\oplus_{i=0}^{\infty}H^{i}

(G, k) . Thus H^{2qi}(G, M) can be replaced by H^{qi}(G, M) in Theorems 1 and
2, if A or N_{p} is an elementary abelian 2-group (see [3, \S 3, Remark]).

3. Examples.

Setting p=2, we compute the cohomology of G=A_{4} or S_{4} with coef-
ficients in the simple kG-modules. We will identify modules with their
isomorphism class, and we write M\cong M’ , M\oplus M_{j}’M\oplus\cdots\oplus M ( i times) and
M\otimes_{k}M’ as M=M’, M+M’,\cdot iM and M\cdot M’ respectively. Our results are
stated in Table 1 below. We denote the first h.ne in Table 1 by row 1,
and so forth. Then row 1 shows that j runs through 3i, 3i+1 and 3i+2
for each i\geqq 0 .

Table 1.

j | 3i | 3i+1 | 3i+2

\dim_{k}H^{j}(S_{4},W)\dim_{k}H^{j}(A_{4},U)\dim_{k}H^{j}(A_{4},k)[S^{j}(T\eta]S^{j}(U)
|^{1}j

(i+1)[k]+i[I,’](i+1)k+iUi+12ii |\begin{array}{l}ik+(i+1)Ui2(i+1)i[k]+(i+1)[W^{\vee}]i+1\end{array}|
(i+1)[k]’+(i+1)[Vt^{\gamma}](i+1)L+(i+1)U2(i+1)i+1i\perp 1-

(1) G=A_{4} .
G is the semi-direct product of D=\langle(13)(24), (14)(23)\rangle by C=\langle(123)\rangle .

kG has only one block and there are two simple kG modules k and U. U
is isomorphic to D with G-action given by inner automorphisms and U^{*}=U.
k and U are also simple kC-modules. Then kC=k+U. Multiplying this
equation by U, we have

(kC)\cdot U=U+(U\cdot U)

=2(kC)

=2k+2U
Thus U\cdot U=2k+U.

Row 2 describes the decomposition of S^{j}(U) to a direct sum of simple
kC-modules. The proof is given by considering S^{j}\langle U) \otimes_{k}F, where F is the
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field of four elements.
Rows 3 and 4 give \dim_{k}H^{j}(G, k) and \dim_{k}H^{j}(G, U) , which follow from

row 2. For \dim_{k}H^{j}(G, k) is the multiplicity of k in S^{j}(U) , and \dim_{k}H^{j}(G ,U)

is twice the multiplicity of U in S^{i}(U) . Observe that D^{*}=U, H^{j}(D, k)\cong S^{j}(U)

and U\cdot U=2k+U and then use Claim 1.
(2) G=S_{4} .
G is the semi-direct product of D=\langle(13)(24), (14)(23)\rangle by H=\langle(123) ,

(2) \rangle . kG has a unique block and the simple kG-modules are given by
letting D act on the simple kH-modules k and W. W is a projective kH-
module defined by the reduction of an integral representation of H. We
denote those kG-modules by k and W again. W is isomorphic to a kG-
module D. Immediately H^{1}(G, k)=Hom(G, k)=Hom(G/A_{4}, k)=k . We shall
compute \dim_{k}H^{j}(G, W) .

Table 2 provides the multiplicity of indecomposable kH-modules in their
tensor product representations. Let V be a permutation representation
k[H/K] , where K=\langle(123)\rangle . Then V is the projective cover of k and inde-
composable kH-modules are given by k, V and W.

Table 2.

| k V w

\dagger VVk
|(

2VV
V+W^{r}2WlV

Table 2 is proved as follows. Since W does not belong to B_{0}(kH) ,

we have V^{*}=V and W^{*}=W. The trivial K-action on V implies that the
K-action on V\cdot V is also trivial. Thus V\cdot V is a projective kH-module lying
in B_{0}(kH) , and so V\cdot V=2V. V\cdot W=Hom_{k} ( V^{*}, W)=Hom_{k}(V, W) deduces
that (V\cdot W)^{H}=Hom_{kH}(V, W)=0 . Hence V\cdot W=2W. Finally (W\cdot W)^{H}=

Hom_{kH}(W, W)=k , as W is an absolutely simple kH-module. Therefore
W\cdot W=V+W, as desired.

Row 5 refers the expression of S^{j}(W) in the Grothendieck group of
kH-modules. In other words row 5 shows how many times k and W appear
in S^{j}(W) as composition factors. To establish row 5, it suffices to use the
Brauer character.

Row 6 follows from the fact that \dim_{k}H^{j}(G, W) is equal to the multi-
plicity of W in S^{j}(W) , which is proved by Claim 1 and Table 2. Note
that H^{j}(D, k)=S^{j}(D^{*})=S^{j}(W) .
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