An application of Evens' norm mapping

By Yoshito Ogawa
(Received February 1, 1982 ; Revised February 12, 1982)

1. Introduction

Let B_{0} be the principal block of $k G$, where k is the prime field of characteristic $p>0$ and G is a finite group such that $G_{p} \neq 1 . G_{p}$ means a Sylow p-subgroup of G. All modules are finite dimensional vector spaces over k.

If a simple $k G$-module M does not belong to B_{0}, then $\oplus_{i=1}^{\infty} H^{i}(G, M)=0$. Therefore, if $\oplus_{i=1}^{\infty} H^{i}(G, M) \neq 0$ is proved for any simple $k G$-module M lying in B_{0}, then B_{0} is written as $\{M \mid M$ represents an isomorphic class of simple $k G$-modules such that $\oplus_{i=1}^{\infty} H^{i}(G, M) \neq 0$.\}. (cf. Barnes, Schmid and Stammbach [1, §3, Remark]). This characterization of B_{0} is known, only when G is a p-nilpotent group (classical), a p-solvable group with an abelian Sylow p-subgroup [3, Theorem 2] or a metabelian group [3, Theorem 3].

The aim of this note is to prove the following Theorem 1 which generalizes [3, Theorem 2], by using Evens' norm mapping [2]. Specifically we show that B_{0} is written as above, when G is a Frobenius group whose Frobenius kernel has the order divisible by p.

Theorem 1. Let G be a finite group with a normal p-subgroup D. Suppose M be a projective $k[G / D]$-module. We regard M as a $k G$-module. If $M^{*}=\operatorname{Hom}_{k}(M, k)$ is isomorphic to a $k G$-submodule of $S^{i}\left(\Omega_{1}(A)^{*}\right)$ for some normal abelian subgroup A of G such that $A \leqq D$, then $H^{2 q i}(G, M)$ $\neq 0$. Here $\Omega_{1}(A)=\left\langle x \in A \mid x^{p}=1\right\rangle, q=|D: A|$ and $S=\oplus_{i=0}^{\infty} S^{i}$ is the symmetric algebra functor over k.
[3, Theorem 2] is deduced from the case of $D=A$. Next we specialize to a Frobenius group and have the following.

Theorem 2. Let G be a Frobenius group with the Frobenius kernel N such that $N_{p} \neq 1$. Then $\oplus_{i=1}^{\mid[\mid]} H^{2 q i}(G, M) \neq 0$ for every simple $k G$-module M lying in B_{0}, where $q=\left|N_{p}: Z\left(N_{p}\right)\right|, Z\left(N_{p}\right)$ is the center of N_{p} and H is a Frobenius complement of G. Namely B_{0} is described as the set $\{M \mid M$ represents an isomorphic class of simple $k G$-modules such that $\oplus_{i=1}^{\infty} H^{i}(G, M)$ $\neq 0$.

All proofs are given in § 2. In § 3 we actually compute the cohomology of G with coefficients in the simple $k G$-modules lying in B_{0}, when $p=2$ and $G=S_{4}$ or A_{4} (the symmetric group or the alternating group of degree four).

In the first draft of this note, Theorem 1 treated only a finite group of p-length 1 . The author expresses his hearty thanks to Dr. Sasaki who recommended him the improvement of Theorem 1] standing on Sasaki [4, §2, Step 2].

2. Proofs

Before proving Theorem 1, we recall Evens' norm mapping in the cohomology rings of finite groups [2]. The Norm is a multiplicative analogue of the usual transfer.

For a finite group G, put $a(G)=\oplus_{i=0}^{\infty} H^{2 i}(G, k)$, where k is viewed as a trivial G-module. Then a is a contravariant functor

Finite groups \rightarrow Commutative graded k-algebras.
Let $G \geqq L \geqq H, G \geqq K, g \in G, \alpha, \beta \in a(H), \gamma \in a(G)$ and $n=|G: H|$. The inclusion map $H \rightarrow G$ defines $\operatorname{Res}_{G \rightarrow H}: a(G) \rightarrow a(H): \gamma \mapsto \gamma_{H}$, and a conjugation map $g H^{-1} \rightarrow H: h \mapsto g^{-1} h g$ induces $a(H) \rightarrow a\left(g H^{-1}\right): \alpha \mapsto \alpha^{g}$. If $g \in H$, then $\alpha^{g}=\alpha$. Evens constructed $\operatorname{Norm}_{H \rightarrow G}: a(H) \rightarrow a(G): \alpha \mapsto{ }^{G} \alpha$, which satisfies the following properties:

$$
\left\{\begin{array}{l}
\text { If } \alpha \in H^{0}(H, k)=k, \text { then }{ }^{G} \alpha=\alpha^{n} \in H^{0}(G, k)=k . \\
\text { If } \alpha \in H^{2 i}(H, k) \text {, then }{ }^{G} \alpha \in H^{2 n i}(G, k) . \\
{ }^{G}(\alpha \cdot \beta)={ }^{G} \alpha \cdot{ }^{G} \beta . \\
{ }^{H} \alpha=\alpha,{ }^{G}\left({ }^{L} \alpha\right)={ }^{G} \alpha . \\
{ }^{L^{g}}\left(\alpha^{g}\right)=\left({ }^{L} \alpha\right)^{g} . \\
\left({ }^{G} \alpha\right)_{K}=\prod_{g \in K \backslash G / H}{ }^{K}\left(\alpha^{g} H^{g} \cap K\right.
\end{array}\right) \text { (the double coset formula), } \begin{aligned}
& \text { where } H^{g}=g H g^{-1} .
\end{aligned}
$$

Here $K \backslash G / H$ is a transversal of the (K, H) double coset in G.
Proof of Theorem 1. First we prove two Claims, and then combine them.

Claim 1 (Sasaki [4, § 2, Step 2]).

$$
H^{i}(G, M) \cong H^{i}(D, M)^{G / D} \quad(i \geqq 0)
$$

Proof. Consider the spectral sequence

$$
H^{s}\left(G / D, H^{t}(D, M)\right) \Rightarrow_{s} H^{s+t}(G, M)
$$

associated with the group extension

$$
1 \longrightarrow D \longrightarrow G \longrightarrow G / D \longrightarrow 1 \text { (exact) . }
$$

Since M is a projective $k[G / D]$-module, $H^{t}(D, M)$ is also a projective $k[G / D]$ module $(t \geqq 0)$. Thus $H^{s}\left(G / D, H^{t}(D, M)\right)=0$ for each $s>0$, and we have $H^{i}(G, M) \cong H^{i}(D, M)^{G / D}$ for all $i \geqq 0$.

Claim 2. $H^{2 q i}(D, k)$ has a $k[G / D]$-submodule M_{1} isomorphic to M^{*}.
Proof. A is an abelian p-group, and so we will regard a symmetric algebra $\oplus_{j=0}^{\infty} S^{j}\left(\Omega_{1}(A)^{*}\right)$ as a graded k-subalgebra of $\oplus_{j=0}^{\infty} H^{2 j}(A, k)$ (see for example [3, Proposition 1]). Observe that this inclusion is compatible with G-action. By the assumption there is a submodule of $S^{i}\left(\Omega_{1}(A)^{*}\right)$ isomorphic to M^{*}. We denote this by M_{2}, which is also a submodule of $H^{2 i}(A, k)$.

Let $M_{3}=\left\langle\operatorname{Norm}_{A \rightarrow D}\left(M_{2}\right)\right\rangle$ be the $k G$-submodule of $H^{2 q i}(D, k)$ generated by $\operatorname{Norm}_{A \rightarrow D}\left(M_{2}\right)$. The double coset formula shows that

$$
\operatorname{Res}_{D \rightarrow A}\left(M_{3}\right)=\left\langle\operatorname{Res}_{D \rightarrow A}\left(\operatorname{Norm}_{A \rightarrow D}\left(M_{2}\right)\right)\right\rangle=\left\langle\prod_{a \in D / A} \alpha^{a} \mid \alpha \in M_{2}\right\rangle .
$$

Since D acts on M_{2} trivially, $\operatorname{Res}_{D \rightarrow A}\left(M_{3}\right)=\left\langle\alpha^{q} \mid \in M_{2}\right\rangle$. In addition the inclusion $M_{2} \leqq \oplus_{i=0}^{\infty} S^{i}\left(\Omega_{1}(A)^{*}\right)$ implies that $\left\langle\alpha^{q} \mid \alpha \in M_{2}\right\rangle \cong M_{2}$ as $k G$-modules. By $M_{2} \cong$ M^{*}, M^{*} is a homomorphic image of a $k[G / D]$-module M_{3}.

Now that M^{*} is a projective $k[G / D]$-module, M^{*} is isomorphic to a submodule of M_{3}. This is the required $k[G / D]$-submodule M_{1} of $H^{2 q i}(D, k)$.

Finally we combine Claims 1 and 2 . There is an isomorphism of $k[G / D]$-modules

$$
H^{j}(D, k) \otimes_{k} M \cong H^{j}(D, M)
$$

for all $j \geqq 0$. Thus we have

$$
\begin{aligned}
H^{2 q i}(G, M) & \cong H^{2 q i}(D, M)^{G / D} \\
& \cong\left\{H^{2 q i}(D, k) \bigotimes_{k} M\right\}^{G / D} \\
& \geqq\left(M_{1} \otimes_{k} M\right)^{G / D} \\
& \cong \operatorname{Hom}_{k[G / D]}(M, M) \neq 0 .
\end{aligned}
$$

Hence the proof of Theorem 1 is complete.
Proof of Theorem 2. We apply Theorem 1 to the case of the Frobenius group, putting $D=N_{p}$ and $A=Z\left(N_{p}\right)$. Since N is the greatest normal p nilpotent subgroup of G, N acts trivially on every simple $k G$-module M lying in B_{0}. Thus M can be regarded as a projective $k H$-module, for $G / N \cong H$ and H is a p^{\prime}-group. Next $\Omega_{1}(A)^{*}$ is an H-faithful $k H$-module,
and so the regular $k H$-module $k H$ is isomorphic to a direct summand of $\oplus_{i=1}^{|M|} S^{i}\left(\Omega_{1}(A)^{*}\right)$ by [3, Theorem 1]. Specially M^{*} is isomorphic to a submodule of $\oplus_{i=1}^{\mid I I} S^{i}\left(\Omega_{1}(A)^{*}\right)$. Now the application of Theorem 1 completes the proof of Theorem 2.

Remark. If $p=2$, the Norm can be defined by putting $a(G)=\oplus_{i=0}^{\infty} H^{i}$ (G, k). Thus $H^{2 q i}(G, M)$ can be replaced by $H^{q i}(G, M)$ in Theorems 1 and 2 , if A or N_{p} is an elementary abelian 2-group (see [3, §3, Remark]).

3. Examples.

Setting $p=2$, we compute the cohomology of $G=A_{4}$ or S_{4} with coefficients in the simple $k G$-modules. We will identify modules with their isomorphism class, and we write $M \cong M^{\prime}, M \oplus M^{\prime}, M \oplus \cdots \oplus M$ (i times) and $M \otimes_{k} M^{\prime}$ as $M=M^{\prime}, M+M^{\prime}, i M$ and $M \cdot M^{\prime}$ respectively. Our results are stated in Table 1 below. We denote the first line in Table 1 by row 1, and so forth. Then row 1 shows that j runs through $3 i, 3 i+1$ and $3 i+2$ for each $i \geqq 0$.

Table 1.

j	$3 i$	$3 i+1$	$3 i+2$
$S^{j}(U)$	$(i+1) k+i U$	$i k+(i+1) U$	$(i+1) k+(i+1) U$
$\operatorname{dim}_{k} H^{j}\left(A_{4}, k\right)$	$i+1$	i	$i+1$
$\operatorname{dim}_{k} H^{j}\left(A_{4}, U\right)$	$2 i$	$2(i+1)$	$2(i+1)$
$\left[S^{j}(W)\right]$	$(i+1)[k]+i[W]$	$i[k]+(i+1)[W]$	$(i+1)[k]+(i+1)[W]$
$\operatorname{dim}_{k} H^{j}\left(S_{4}, W\right)$	i	$i+1$	$i+1$

(1) $G=A_{4}$.
G is the semi-direct product of $D=\langle(13)(24),(14)(23)\rangle$ by $C=\langle\langle 123)\rangle$. $k G$ has only one block and there are two simple $k G$-modules k and $U . \quad U$ is isomorphic to D with G-action given by inner automorphisms and $U^{*}=U$. k and U are also simple $k C$-modules. Then $k C=k+U$. Multiplying this equation by U, we have

$$
\begin{aligned}
& (k C) \cdot U=U+(U \cdot U) \\
= & 2(k C) \\
= & 2 k+2 U .
\end{aligned}
$$

Thus $U \cdot U=2 k+U$.
Row 2 describes the decomposition of $S^{j}(U)$ to a direct sum of simple $k C$-modules. The proof is given by considering $S^{j}(U) \otimes_{k} F$, where F is the
field of four elements.
Rows 3 and 4 give $\operatorname{dim}_{k} H^{j}(G, k)$ and $\operatorname{dim}_{k} H^{j}(G, U)$, which follow from row 2. For $\operatorname{dim}_{k} H^{j}(G, k)$ is the multiplicity of k in $S^{j}(U)$, and $\operatorname{dim}_{k} H^{j}(G, U)$ is twice the multiplicity of U in $S^{i}(U)$. Observe that $D^{*}=U, H^{j}(D, k) \cong S^{j}(U)$ and $U \cdot U=2 k+U$ and then use Claim 1.
(2) $G=S_{4}$.
G is the semi-direct product of $D=\langle(13)(24)$, (14) (23) \rangle by $H=\langle(123)$, $(12)\rangle . k G$ has a unique block and the simple $k G$-modules are given by letting D act on the simple $k H$-modules k and W. W is a projective $k H$ module defined by the reduction of an integral representation of H. We denote those $k G$-modules by k and W again. W is isomorphic to a $k G$ module D. Immediately $H^{1}(G, k)=\operatorname{Hom}(G, k)=\operatorname{Hom}\left(G / A_{4}, k\right)=k$. We shall compute $\operatorname{dim}_{k} H^{j}(G, W)$.

Table 2 provides the multiplicity of indecomposable $k H$-modules in their tensor product representations. Let V be a permutation representation $k[H / K]$, where $K=\langle\langle 123)\rangle$. Then V is the projective cover of k and indecomposable $k H$-modules are given by k, V and W.

Table 2.

	k	V	W
k	k	V	W
V		$2 V$	$2 W$
W			$V+W$

Table 2 is proved as follows. Since W does not belong to $B_{0}(k H)$, we have $V^{*}=V$ and $W^{*}=W$. The trivial K-action on V implies that the K-action on $V \cdot V$ is also trivial. Thus $V \cdot V$ is a projective $k H$-module lying in $B_{0}(k H)$, and so $V \cdot V=2 V . \quad V \cdot W=\operatorname{Hom}_{k}\left(V^{*}, W\right)=\operatorname{Hom}_{k}(V, W)$ deduces that $(V \cdot W)^{H}=\operatorname{Hom}_{k H}(V, W)=0$. Hence $V \cdot W=2 W$. Finally $(W \cdot W)^{H}=$ $\operatorname{Hom}_{k H I}(W, W)=k$, as W is an absolutely simple $k H$-module. Therefore $W \cdot W=V+W$, as desired.

Row 5 refers the expression of $S^{j}(W)$ in the Grothendieck group of $k H$-modules. In other words row 5 shows how many times k and W appear in $S^{j}(W)$ as composition factors. To establish row 5 , it suffices to use the Brauer character.

Row 6 follows from the fact that $\operatorname{dim}_{k} H^{j}(G, W)$ is equal to the multiplicity of W in $S^{j}(W)$, which is proved by Claim 1 and Table 2. Note that $H^{j}(D, k)=S^{j}\left(D^{*}\right)=S^{j}(W)$.

References

[1] D. W. Barnes, P. Schmid and U. Stammbach: Cohomological characterizations of saturated formations and homomorphs of finite groups, Comment. Math Helv. 53 (1978), 165-173.
[2] L. Evens: A generalization of the transfer map in the cohomology of groups, Trans. Amer. Math. Soc. 108 (1963), 54-65.
[3] Y. Ogawa: On the cohomology of some finite groups of p-length 1, Japan. J. Math. 8 (1982), to appear.
[4] H. SASAKI: On the nontriviality of cohomology of finite groups, Hokkaido Math. J., to appear.

Department of Mathematics
Tokyo Metropolitan University

