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The Lorentz-Poincar\’e metric on the upper
half-space and its extension
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Let G_{n} be the matrix group consisting of all n\cross n matrices of the form

(1) g=\{\begin{array}{lllll}a b_{1} a b_{2} \ddots \vdots a b_{n-1}0 \cdots 0 1\end{array}\} , where a>0 , b_{1} , \cdots , b_{n-1}\in R .

It is a Lie group of type \mathfrak{S} in the sense of [5] (also [4]), and, as such, it
admits a left-invariant Lorentz metric with any prescribed constant k as its
constant sectional curvature (Theorem 1, [5]). If we consider a diffeomor-
phism of G_{b} onto the upper half-space U_{n} given by

g\in G_{n}arrow(b_{1^{ }},\cdots, b_{n-1}, a)\in U_{n} ,

then the left translations on G_{n}

\{\begin{array}{lllll}x_{n} x_{1} x_{n} x_{2} \ddots \vdots x_{n} x_{n-1}0 \cdots \cdots 0 1\end{array}\}arrow\{\begin{array}{lllll}a b_{1} a b_{2} \ddots \vdots a b_{n-1}0 \cdots 0 1\end{array}\}\{\begin{array}{lllll}x_{n} x_{1} x_{n} x_{2} \ddots \vdots x_{n} x_{n-1}0 \cdots \cdots 0 1\end{array}\}

correspond to the action of G_{n} on U_{n} by

(2) (x_{1^{ }},\cdots, x_{n-1}, x_{n})arrow (a x_{1}+b_{1} , \cdots , a x_{n-1}+b_{n-1} , a x_{n})

The Lorentz metric on U_{n}

(3) ds^{2}=(dx_{1}^{2}+\cdots+dx_{n-1}^{2}-dx_{n}^{2})/x_{n}^{2} ,

is invariant by the action (2) of G_{n} and corresponds to a left-invariant
Lorentz matric on the group G_{n} of constant sectional curvature 1. The
Lorentz metric (3) is, apparently, an analogue of the well-known Riemannian
metric, due to Poincar\’e, on the space U_{n} which has constant sectional
curvature -1.
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In this note we discuss the geometry of the metric (3), to be called
the Lorentz-Poincar\’e metric on U_{n} . We find that this metric is not ge0-

desically complete. Can we, then, extend it to a geodesically complete
Lorentzian manifold ? We answer this question affirmatively by isometrically
imbedding U_{n} into the de Sitter space S_{1}^{n} ; the imbedding is actually equi-

variant relative to an isomorphism of the largest connected isometry group
of U_{n} into the proper Lorentz group SO^{+}(1, n) .

I wishi to thank John Beem and Steven Harris for discussing my per-
liminary draft on the metric (3) and its geodesic behaviors. J. Beem called
my attentioh to his work with Busemann [2] and Busemann [1], which
mention the metric (3) as an example in their axiomatic approach to Loren-
tzian differential geometry. S. Harris suggested a way of imbedding U_{2} into
S_{1}^{2} by using families of null geodesies that cover U_{2} .
1. Geodesies of the Lorentz-Poincar\’e metric.

On the upper haH space U_{n}=\{(X_{1}^{ },\cdots, X_{n});x_{n}>0\} , let X_{i} be the coordinate
vector fields: X_{i}=\partial/\partial x_{i} , 1\leq i\leq n . The Levi-Civita connection for the metric
(3) is described by

\nabla_{x_{i}}X_{j}=0 for i\neq j, 1\leq i, j\leq n-1 ;

\nabla_{X_{i}}X_{i}=-X_{n}/x_{n} for 1\leq i\leq n ;

\nabla_{X_{i}}X_{n}=\nabla_{x_{n}}X_{i}=-X_{i}/x_{n} for 1\leq i\leq nn-1

From these we may calculate the curvature tensor R as follows. If i, j, k

are distinct among 1, \cdots , n-1 , then

R(X_{i}, X_{j})X_{k}=R ( X_{i}, Xk) X_{n}=R(Xt, X_{n})X_{f}=0

R(X_{i}, X_{n})X_{i}=R(X_{t}, X_{n})X_{n}=-X_{i}/x_{n}^{2} .
Thus

R(X, Y)Z=\langle Y, Z\rangle X-\langle X, Z\rangle Y

for any tangent vectors X, Y and Z (where, of course, \langle , \rangle denotes the
inner product by the metric). This means that our metric has constant
sectional curvature 1.

The Christofel symbols are given by

\Gamma_{ii}^{n}=\Gamma_{ni}^{i}=\Gamma_{in}^{i}=\Gamma_{nn}^{n}=-1/x_{n} , 1\leq i\leq n-1 ;
(4’)

other \Gamma_{2j}^{k}=0

The equations for a geodesic x^{i}(t) , with t as affine parameter, are
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d^{2}x_{i}/dt^{2}=2(dx_{i}/dt)(dx_{n}/dt)/x_{n}

(5)
d^{2}x_{n}/dt^{2}= \{\sum_{i=1}^{n-1}(dx_{i}/dt)^{2}+(dx_{n}/dt)^{2}\}/x_{n}

Let (dx_{i}/dt)(0)=c_{i} , 1\leq i\leq n , so that the initial tangent vector of the
geodesic is given by (c_{1^{ }},\cdots, c_{n-1}, c_{n}) . By an appropriate rotation of the first
n-1 variables (which is an isometry of the metric) we may assume that
c_{2}=\cdots=c_{n-1}=0 . From the equations (5) it follows that x_{2}(t) , \cdots , x_{n-1}(t) are
constant functions in this case. This argument reduces the study of the
geodesic behaviors of U_{n} to the case n=2.

For n=2, we write x, y instead of x_{1} , x_{2} . The equations (5) are now
d^{2}x/dt^{2}=2(dx/dt)(dy/dt)/y

(5’)
d^{2}y/dt^{2}=\{(dx/dt)^{2}+(dy/dt)^{2}\}/y .

We shall find the solutions of (5’) . Denoting d/dt by prime ’, we have
(x\acute{/}y^{2})’=0 . Thus x\acute{/}y^{2}=c (constant). We have also

(y’/y)’=x^{\acute{2}}/y^{2}=cx’

and thus

(6) y’/y=cx+c_{1} (c_{1} : constant)

Case I : c=0. We get x’=0 so that x=b (constant). From (6) we have
y’=c_{1}y so that y=ae^{c_{l}l} , where a is a constant >0 . The geodesic is thus
a vertical line parametrized by

(7) x=b, y=ae^{c_{1}t}

This is a time-like geodesic defined for all values of its affine parameter t
(complete in both directions). See Fig. 1.

Case II : c\neq 0 . From x’/y^{2}=c and (6), we get y’/x’=(cx+c_{1})/w so that
cyyf=cxx’+c_{1}x . Thus

(^{1}/2)cy^{2}=(^{1}/2)cx^{2}+c_{1}x+c_{2} (c_{2} : constant).

Then
y^{2}=x^{2}+2c_{1}x/c+(c_{1}/c)^{2}+(2c_{2}/c-c_{1}^{2}/c^{2})

Depending on whether the last term is 0, >0 or <0 , we have

(8) y^{2}=(x-b)^{2} (b : constant)

or

(9) y^{2}=(x-b)^{2}+a^{2} (a>0 : constant)
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or

(10) y^{2}+a^{2}=(x-b)^{2} .
(8) gives rise to the lines y=x-b and y=-x+b. The first h.ne is

a null geodesic

(8a) x(t)=x_{0}-y_{0}+y_{0^{2}}/(y_{0}-t) , y(t)=y_{0^{2}}/(y_{0}-t) ,

where t is an affine parameter (i. e . these functions are solutions of the
equations (5’)) . Observe that this geodesic with initial tangent vector (1, 1)

at the initial point (x_{0}, y_{0}) for t=0) is defined for all t<y_{0} . It is complete
for tarrow- oo but incomplete in the other direction. See Fig. 2 a. The second
line is a null geodesic

(8b) x(t)=x_{0}+y_{0}-y_{0^{2}}/(y_{0}+t) , y(t)=y_{0^{2}}/(y_{0}+t)’
’

where t is an affine parameter. This geodesic is complete in the downward
direction (tarrow\infty) and incomplete in the other direction. See Fig. 2 b.

The equation (9) is a branch of a hyperbola (y>0) . We may first
parametrize it by

(9’) x(u)=b+a sinh u, y(u)=a cosh u

The tangent vector (dx/du, dy/du) has length 1/\cosh u , and the arc-length
parameter t (measured from the point (x(u_{0}), y(u_{0})) is given by

t(u)= \int_{u_{0}}^{u}du/\cosh u=\sin^{-1} (tanh u) -\sin^{-1} (tanh u_{0})

This space-like geodesic with affine parameter t is incomplete in both direc-
tions, because t(u)arrow\pm\pi/2-\sin^{-1} (tanh u_{0}) as uarrow\pm\infty . See Fig. 3.

The equation (10) gives two half-branches of hyperbolas (y>0) . We
may first parametrize them by

(10’) x(u)=b\pm a\cosh u , y(u)=a sinh u, u>01

The tangent vector (dx/du, dy/du) is time-like with length 1/\sinh u . The
proper-time parameter t measured from u=u_{0}>0 for this time-like geodesic
is given by

t(u)= \int_{u_{0}}^{u}du/\sinh u=\log (tanh u/2) - log (tanh u_{0}/2)

The geodesic is complete as it approaches the x-axis, since t(u)arrow-\infty as
uarrow 0 . It is incomplete in the other direction since t(u)arrow- log (tanh u_{0}/2)
as uarrow\infty . See Fig. 4 a, b.
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2. Full isometry group.

We may now determine the full isometry group I(U_{n}) of the space U_{n}

with metric (3). Since the group G_{n} acts transitively on U_{n} , so does I(U_{n}) .
Let p_{0}=(0, \cdots, 0,1) , and we find the isotropy group at p_{0} . Suppose f is an
isometry fixing p_{0} . Then the differential f_{*} at p_{0} maps the tangent vector
(X_{n})_{p_{0}} into \pm(X_{n})_{p_{0}} , because the time-like geodesic (0, \cdots, 0, e^{l}) , which is com-
plete in both directions, must be mapped by f into itself. Therefore f_{*}

induces a rotation in the span of (X_{i})_{p_{0}},1\leq i\leq n-1 . This rotation is induced
by an isometry of U_{n} of the form

f_{A} : (x_{1^{ }},\cdots, x_{n-1}, x_{n})arrow(y_{1^{ }},\cdots, y_{n-1}, x_{n}) ,

where

y_{i}= \sum_{j-1}^{n-1}a_{i\oint}x_{f} with A=[a_{if}]\in O(n-1)

Now if f_{*}((X_{n})_{p_{0}})=(X_{n})_{p_{0}} , then f must coincide with the transformation above.
If f_{*}((X_{n})_{p_{0}})=-(X_{n})_{p_{0}} , then consider the null geodesic ray p_{t} with initial
tangent vector (1, o, \cdots, 0, 1) which is defined for all t<0 . The image of p_{t}

by the isometry f_{A}^{-1}f is the null geodesic ray through p with initial tangent
vector (1, 0, \cdots, \cdots, 0, -1) and is not defined for all t<0 . This is a contra-
diction. We have just shown that f_{*} must map (X_{n})_{p_{0}} into itself and thus
coincides with f_{A} .

The full isometry group I(U_{n}) therefore consists of all matrices of the
form

(11) \{

b_{1}

aA :
b_{n-1}

0 \cdots 0 1

with A\in O(n-1)a>0 , b_{1} , \cdots , b_{n-1}\in R

acting on U_{n} in the natural fashion. The identity component I^{0}(U_{n}) consists
of all such matrices with A\in SO(n-1) .

3. Isometric imbedding of U_{n} into S_{1}^{n}

We shall now give an isometric imbedding of U_{n} into the de Sitter
space S_{1}^{n} . This space is the hypersurface

\{u=(u_{0}, u_{1^{ }},\cdots, u_{n});\langle u, u\rangle\equiv-u_{0}^{2}+u_{1}^{2}+\cdots+u_{n}^{2}=1\}

in the Lorentz space L^{n\dagger 1} with its induced Lorentz metric of constant sec-
tional curvature 1 [3], [6].
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We define f:U_{n}arrow S_{1}^{n} by

f(x_{1^{ }},\cdots, x_{n-1}, x_{n})=(u_{0}, u_{1^{ }},\cdots, u_{n}) ,

where

(12)

’
u_{0}=(1+x_{1}^{2}+\cdots+x_{n-1}^{2}-x_{n}^{2})/2x_{n}

u_{i}=-x_{i}/x_{n} , 1\leq i\leq n-1 ,

. u_{n}=(1-x_{1}^{2}-\cdots-x_{n-1}^{2}+x_{n}^{2})/2x_{n}t

It is straightforward to verify that f is an isometric imbedding of U_{n} into
S_{1}^{n} . The image f(U_{n}) is the open submanifold

V_{n}=\{u\in S_{1}^{n} ; u_{0}+u_{n}>0\}

We now define an isomorphism h of the group G_{n} into the proper
Lorentz group SO^{+}(1, n) , which is the largest connected group of isometries
of S_{1}^{n} . Note that SO^{+}(1, n) consists of all Lorentz-0rthogonal matrices with
determinant 1 whose first column vectors are future-pointing time-like unit
vectors a=(a_{0}, a_{1}, \cdots, a_{n}) , \langle a, a\rangle=-1 , a_{0}>0 . In order to define h, let us
observe the following about the Lie algebras of G_{n} and SO^{+}(1, n) . In the
Lie algebra \mathfrak{g} of G_{n} , let

(13) X_{i}=\{\begin{array}{lll} 0 0 i \vdots 0\cdot .\cdot 0 0\end{array}\} , 1\leq i\leq n-1 , X_{n}=\{\begin{array}{llll}-1 0 \ddots \vdots -1 00 \cdots 0 0\end{array}\}

Then X_{1} , \cdots , X_{n-1} , X_{n} form a basis of \mathfrak{g} such that

[X_{i}, X_{j}]=0 for 1\leq i, j\leq n-1

[X_{i}, X_{n}]=X_{i} for 1\leq i\leq n-1

Similarly, in the Lie algebra 0 (1, n) of SO^{+}(1, n) let

Y_{i}=\{\begin{array}{lllll}0 \cdots -1 \cdots 0-i 0 -i\vdots \vdots 0 1 0\end{array}\} , 1\leq i\leq n-1

Y_{n}=[0i.o...0.. \dot{0}1.\cdot]

Then Y_{1} , \cdots , Y_{n-1} , Y_{n} satisfy the same commutation conditions
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[Y_{i}, Y_{j}]=0 for 1\leq i, j\leq n-1

[Y_{i}, Y_{n}]=Y_{i} for 1\leq i\leq n-1

and generate a Lie subalgebra of o(1, n) which is isomorphic to \mathfrak{g} .
The isomorphism h_{*} of \mathfrak{g} into 0 (1, n) mapping X_{i} into Y_{i} for 1\leq i\leq n

gives rise to a homomorphism h of the Lie group G_{n} into SO^{+}(1, n) which
maps

exp (sX_{n})=\{\begin{array}{lll}e^{-s} \ddots e^{-s}\end{array}\} into exp (sY_{n})=[_{\sinh s\cdots\cosh s}^{1}co..\cdot shs.\cdot.\cdot.\cdot sin..\cdot hs\rfloor 1

and

exp (tX_{i})=\{

1 0.... .\cdot.... t

...1 \dot{0}.\cdot

0 \ldots 0 1

into exp (tY_{i})=\{\begin{array}{lllll}1+t^{2}/2 \cdots -t \cdots t^{2}/2\vdots 1 \vdots-t \ddots -t\vdots 1 \vdots-t^{2}/2 \cdots t \cdots 1-t^{2}/2\end{array}\}

for each i, 1\leq i\leq n-1 .
We shall show that the imbedding f:U_{n}arrow S_{1}^{n} is equivariant relative to

h:G_{n}arrow SO^{+}(1, n) , that is,

f(gp)=h(g)f(p) for all g\in G_{n} and p\in U_{n}
‘

It suffices to prove this for p=p_{0}=(0, \cdots, 1) , for which f(p_{0})=(0, \cdots, 0,1)\in S_{1}^{n}

Now for g as in (1) with a=e^{-s} , we have
h(g)f(p_{0})=h (exp b_{n-1}X_{n-1}) \cdots h (exp b_{1}X_{1}) h (exp sX_{n}) f(p_{0})

= (\sinh s+Be^{s}/2 , - b_{1}e^{s} , \cdots , - b_{m-1}e^{s}, cosh s-Be^{s}/2),\cdot

where B=b_{1^{2}}+\cdots+b_{n-1}^{2} . On the other hand,

f(gp_{0})=f(b_{1^{ }},\cdots, b_{n-1}, e^{-s})

=((1+B-e^{-2s})/2e^{-s}, - b_{1}e^{s}, \cdots , - b_{m-1}e^{s}, (1-B+e^{-2s})/2e^{-s}))

and hence f(gp_{0})=h(g)f(p_{0}) .
We can now prove that h is an isomorphism. Suppose h(g)=h(g’)

for g, g\in G_{n} . Then h(g)f(p_{0})=h(g’)f(p_{0}) . By adding the first and last
coordinates of this point we find that g and g’ have the same homothetic
factor (that is a in (1)). The other coordinates of the point show that g
and g’ have the same translation part (that is, b_{1} , \cdots , b_{n-1} in (1)). Thus
g=g’ .
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We have shown that the imbedding f is equivariant relative to the
isomorphism h of G_{n} into SO^{+}(1, n) . We can extend h to an isomorphism
of the largest connected group I^{0}(U_{n}) into SO^{+}(1, n) in such a way that

f remains equivariant. It is sufficient to define

h(g)=\{\begin{array}{l}1 0 00 A0 \in SO^{+}(1,n)0 0 1\end{array} for g=\{\begin{array}{ll}A 00 1\end{array}\} \in I^{0}(U_{n})\eta
,

where A\in SO^{+}(n-1) as before.
Thus we state

THEOREM. There is an isometric imbedding of the upper half-space
U_{n} with Lorentz-Poincar\’e metric into the de Sitter space S_{1}^{n} which is equi-
variant relative to an isomorphism of the largest connected isometry group
I^{0}(U_{n}) into the proper Lorentz group SO^{+}(1, n) .

A geodesic x_{l} in U_{n} is incomplete if and only if f(x_{t}) reaches the
boundary f(U_{n})=\{u\in S ; u_{0}+u_{n}=0\} for a finite value of the affine para-
meter t .

Finally, let us remark that the left-invariant Lorentz metric on the group
G_{n} corresponding to the Lorentz-Poincar\’e metric is determined by the Lorentz
inner product in the Lie algebra \mathfrak{g} such that \langle X_{n}, X_{n}\rangle=-1 , \langle X_{i}, X_{n}\rangle=0

and \langle X_{ij}X_{j}\rangle=\delta_{ij} for 1\leq i, j\leq n-1 , where X_{1} , \cdots , X_{n} are given in (13).

References

[1] H. BUSEMANN: Timelike spaces, Dissertationes Math. 53 (1967), 5-50.

[2] H. BUSEMANN and J. K. BEEM: Axioms for indefinite metrics, Rend. Circ.

Mat. Palermo, Ser. II, 15 (1966), 223-246.
[3] E. CALABI and L. MARKUS: Relativistic space forms, Ann. of Math. 75 (1962),

63-76.
[4] J. MILNOR: Curvatures of left invariant metrics on Lie groups, Advances in

Math. 21 (1976), 293-329.
[5] K. NOMIZU: Left-invariant Lorentz metrics on Lie groups, Osaka J. Math 16

(1979), 143-150.
[6] J. WOLF: Spaces of constant curvature, McGraw-Hill, New York, 1967.

Department of Mathematics
Brown University


	1. Geodesies of the Lorentz-Poincar\'e ...
	2. Full isometry group.
	3. Isometric imbedding ...
	THEOREM. There ...

	References

