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Structure of Banach quasi-sublattices

By Shizuo MIYAJIMA
(Received August 2, 1982)

\S 1. Introduction

We begin with the following motivating example. Let D denote the
open unit disc in the complex plane and let \overline{D} be its closure. C(\overline{D}) means
the Banach lattice of all continuous functions on \overline{D} with usual pointwise
order and supremum norm. Let H be the subspace of C(\overline{D}) consisting of
all functions which are harmonic in D. Although H is not a sublattice of
C(\overline{D}) , it enjoys the following properties:

(i) H becomes a Banach lattice with respect to the order and the
norm induced by those of C(\overline{D}) , respectively.

(ii) Let I:= { f\in C(\overline{D});f=0 on \overline{D}\backslash D} and let \pi denote the canonical
surjection from C(\overline{D}) onto C(\overline{D})/I. Then \pi_{\mathfrak{l}H} is an isometric lattice isomor-
phism onto C(\overline{D})/I.

(iii) H is the range of a contractive positive projection P\in \mathscr{L}(C(\overline{D}))

which is lattice homomorphic as an operator from C(\overline{D}) onto the Banach
lattice H. ( \mathscr{L}(C(\overline{D})) denote the set of all bounded linear operators on C(\overline{D}) .)

In fact, it suffices to define Pf to be the harmonic extension of f_{1_{\overline{D}}\backslash D} to \overline{D}

for f\in C(\overline{D}) .
The purpose of this paper is to investigate the structure of subspaces

of a Banach lattice having the same property as the above (i) for H, which
we call Banach quasi-sublattices.

In \S 2, we give the definition of quasi-sublattices and Banach quasi-
sublattices. (The former is introduced to treat the algebraic aspect of the
latter separately.) Then we prove the fundamental facts about these spaces,
fixing some notations along the way.

In \S 3, we show that the analogues of (ii) and (iii) for H is valid for
Banach quasi-sublattices of AM-spaces.

\S 2. Quasi-sublattices and Banach quasi-sublattices

DEFINITION 1. A subspace F of a vector lattice E is called a quasi-
sublattice of E if it becomes a vector lattice with respect to the order induced
by that of E.
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Let F be a quasi-sublattice of a vector lattice E. Then the positive
part, negative part and the absolute value of x\in F in F are denoted by
x^{++} , x^{--} and |x|_{F} , respectively. The standard notations x^{+} , x^{-} and |x| are
used to denote the positive part, negative part and the absolute value of
x\in E in E. The supremum and infimum of x, y\in F in F are denoted by
x\vee\vee y and x\Lambda\Lambda y, respectively, while x\vee y and x\wedge y stand for the supremum
and infimum of x, y\in E in E, respectively. It follows immediately from the
definition that x\vee\vee y\geq x\vee y and X_{\Lambda}^{\Lambda}y\leq x\wedge y hold for any x, y\in F.

Lemma 1. Let F be a quasi-sublattice of a vector lattice E. Suppose
two finite families \{a_{ij}\}_{i\in I,j\in J}, \{b_{kl}\}_{k\in K,l\in L} of elements of F satisfy

\check{i\in I}\bigwedge_{j\epsilon J}a_{ij}=\bigwedge_{k\in K\iota\in L}b_{kl}\tau

Then

\check{i\epsilon I}\vee\Lambda\bigwedge_{\epsilon J}a_{if\bigwedge_{k\in K\check{l\in L}}}j=\Lambda\vee b_{kl}

holds, where \vee,\cdot\Lambda [resp. \vee\vee , \Lambda\Lambda ] denote the supremum and the infimum
in E [resp. in F], respectively.

PROOF. First we show that a_{ij}\in F and i \epsilon I\bigwedge_{j\in J}a_{ij}\geq 0 imply
i \in I\vee\wedge\bigwedge_{j\in J}a_{tj}\geq 0 .

In fact, since the distributive law in E yields

\bigwedge_{j\epsilon J}a_{\sigma(j)j}=\bigwedge_{j\sigma\in\Sigma i\epsilon I\in J}a_{ij}\geq 0
,

where \Sigma=I^{J} , we obtain \check{\sigma\in}\Sigma a_{\sigma(j)j}\geq 0 for any.j\in J. Hence \sigma\in\Sigma\vee a_{\sigma(j)j}\geq 0 and
Hence \bigwedge_{j\epsilon J\sigma\in\Sigma}\vee a_{\sigma(j)j}\geq 0

, which in turn implies
e\epsilon Ij\epsilon J\vee\Lambda\wedge a_{ij}\geq 0 .

Returning to i\in Ij\in Jk\epsilon.Kl\in La_{ij}=\wedge b_{kl} and fixing an i\in I, we get \bigwedge_{k\in Kl\in L}b_{kl}\geq

\bigwedge_{j\epsilon J}a_{ij}
. Noting that \bigwedge_{j\epsilon J}a_{ij}\geq\bigwedge_{j\epsilon J}\wedge a_{ij}

, we obtain \bigwedge_{k\check{\epsilon K}\iota\epsilon_{-}L}(b_{k}\iota-\wedge\Lambda a_{ij})j\in J\geq 0 . Since b_{kl}-

j\epsilon J\wedge\Lambda a_{ij}\in F
, the first part of the proof yields

\vee\bigwedge_{k\in Kl\epsilon L}\Lambda(b_{k}\iota-\bigwedge_{j\epsilon J}\wedge a_{ij})\geq 0 , and hence
k \in Kl\epsilon Li\in Ij\in J\bigvee_{\Lambda}b_{k}\iota\geq\vee\wedge\wedge a_{ij}

. Thus we obtain the desired equality since the converse
inequlity is proved similarly.

THEOREM 1. Let F be a quasi-sublattice of a vector lattice E, and let
F_{0} be the sublattice of E generated by F. Then there exists a positive
{linear) projection P from F_{0} onto F, which is lattice homomorphic with
respect to the lattice structures of F_{0} and F, i. e. , P satisfies P(x\wedge y)=Px\wedge\wedge Py

and P(X\vee y)=Px_{\vee}^{Py} for any x, y\in F_{0} .
PROOF. Since F_{0}= {\bigwedge_{i\in Ij\in J}a_{ij}

; I, J finite, a_{ij}\in F} ([2] p. 74), the mapping
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P: \bigwedge_{i\epsilon Ij\in J}a_{ij}1arrow\vee\Lambda i\epsilon Ij\epsilon J\wedge a_{ij} ( I, J finite, a_{ij}\in F)

is well defined on F_{0} . Since Px\in F for x\in F_{0} and Px=x for x\in F, the
range of P is F and P^{2}=P. The additivity of P is proved by using the
distributive laws in E and F :

Let I, J, K and L be finite sets and a_{ij}, b_{kl}\in F for any i\in I, j\in J,
k\in K and l\in L . Then

P( \bigwedge_{i\epsilon Ij\in J}a_{ij}+\bigwedge_{k\in Kl\in L}b_{kl})=P(_{i\epsilon Ij\in J}\bigwedge_{k\epsilon Kl\epsilon L}(a_{ij}+b_{kl}))

=P(_{i\in I\sigma\in\Sigma} \bigwedge_{j\in Jl\in L}(a_{ij}+b_{\sigma(j)l}))

=\vee
i \epsilon I\sigma\epsilon\Sigma\vee\bigwedge_{j}\Lambda,\Lambda\bigwedge_{l\in J\in L}(a_{ij}+b_{\sigma(j)l})

= \vee\bigwedge_{ji\epsilon I\epsilon J}\Lambda\vee\bigwedge_{k\in Kl\in L}\Lambda(a_{ij}+b_{kl})

=P( \bigwedge_{i\in Ij\in J}a_{ij})+P(\bigwedge_{k\epsilon K\iota\epsilon r_{d}}b_{kl}) ,

where \Sigma=K^{J} . Other assertions are also proved by invoking the distributive
law.

The following is a converse to Theorem 1.

PROPOSITION 1. Let E be a vector lattice and let P be a positive
linear projection in E. Then the range PE of P is a quasi-sublattice of
E and P( \bigwedge_{ji\epsilon I\epsilon J}a_{ij})=\vee\bigwedge_{ji\epsilon I\epsilon J}\wedge a_{ij} holds for any finite family \{a_{ij}\}_{i\in I,j\in J} of ele-
ments of PE.

PROOF. PE is indeed a quasi-sublattice of E and x\vee\vee y=P(x\vee y) , X_{\Lambda}^{\Lambda y=}

P(x\Lambda y) hold for any x, y\in PE ([6] p. 214). Since

P( \bigwedge_{\check{i\epsilon}Ij\in J}a_{ij})\geq P(\bigwedge_{j\in J}a_{ij})\geq P(_{\Lambda}\bigwedge_{j\in J}a_{ij})=_{\Lambda}\bigwedge_{j\in J}a_{ij}

hold for any fixed i\in I,
P( \bigwedge_{i\in Ij\epsilon J}a_{ij})\geq\bigvee_{\Lambda}\bigwedge_{\check{i\epsilon}Ij\epsilon J}a_{ij} . On the other hand,

\check{i\epsilon I}\bigwedge_{j\epsilon J}a_{ij}

= \bigwedge_{\sigma\epsilon\Sigma\check{i\in I}}a_{i\sigma(i)}(\Sigma=J^{I}) implies

P( \bigwedge_{j\check{i\epsilon I}\epsilon J}a_{ij})\leq P(a_{i\sigma(i)})\leq P(\vee a_{i\sigma(i)})=\vee a_{i\sigma(i)}\check{i\in I}\check{i\epsilon I}\check{i\in I}

for any fixed \sigma\in\Sigma . Hence P( \bigwedge_{\check{i\in I}j\epsilon J}a_{ij})\leq\sigma\epsilon\Sigma i\epsilon Ii\in Ij\epsilon J\Lambda\wedge\vee a_{i\sigma(i)}=\vee\Lambda\wedge a_{ij}
, and hence

P( \bigwedge_{\check{i\epsilon}Ij\in J}a_{ij})=\vee\bigwedge_{ji\epsilon I\in J}\Lambda a_{ij} .
Now we proceed to the study of Banach quasi-sublattices.

DEFINITION. A closed subspace F of a Banach lattice E is called a
Banach quasi-sublattice of E if F becomes a Banach lattice with respect to
the order and the norm induced by those of E, respectively.
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Note that a closed subspace F of a Banach lattice E is a Banach quasi-
sublattice of E if and only it is a quasi-sublattice of E and |||x|_{F}||=||x||

holds for any x\in F. By the definition, a closed sublattice of a Banach
lattice E is a Banach quasisublattice of E. An important non-trivial example
of a Banach quasi-sublattice is the range of a contractive positive projection.
In fact let P be a contractive positive projection in a Banach lattice E and
let F be the range of P. Then F is a quasi-sublattice of E and |x|_{F}=P|x|

for x\in F ([6] p. 214). Hence |||x|_{F}||=||P|x|||\leq||x|| . This implies |||x|_{F}||=

||x|| since it always holds that |x|_{F}\geq|x| for x\in F. The space H described
in the introduction is a concrete example of such Banach quasi-sublattices.

On the other hand, certain Banach lattices admit no Banach quasi-
sublattices other than closed sublattices.

PROPOSITION 2. Suppose a Banach lattice E has a strictly monotone
norm, i. e. , x, y\in EO\leq x\leq y and ||x||=||y|| imply x=y. Then any Banach
quasi-sublattice of E is a sublattice of E.

PROOF. Let F be a Banach quasi-sublattice of E and x\in F. Then
0\leq|x|\leq|x|_{F} and ||x||=|||x|||\leq|||x|_{F}||=||x|| . By the assumption this implies
|x|=|x|_{F}. The identity

x_{\vee}^{}y= \frac{1}{2}(x+y+|x-y|_{F})

for x, y\in F shows that F is a sublattice of E.
Concerning the analogues for general Banach quasi-sublattices of the

properties (ii) and (iii) in \S 1, we have the following result. The (b)\Rightarrow(a) part
of the proof is due to Professor TI Ando.

THEOREM 2. Let F be a Banach quasi-sublattice of a Banach lattice
E and let F be the closed sublattice of E generated by F. Then the follow-
ing are equivalent.

(a) There exists a closed ideal I of E for which the restriction \pi|_{F}

of the canonical map \pi:Earrow E/I is isometric and lattice homomorphic with
respect to the lattice structures of F and E/I.

(b) There exists a positive contractive projection P\in \mathscr{L}(F) with range F.
PROOF. (a)\Rightarrow(b) : Suppose a closed ideal I of E meet the condition in

(a) and let \pi:Earrow E/I be the natural map. Let \{a_{ij}\}_{i\in I,j\in J} be a finite family
of elements of F. Then

|| \bigwedge_{\check{i\epsilon}Ij\epsilon J}a_{ij}||\geq||\pi(\bigwedge_{\check{i\epsilon}Ij\epsilon J}a_{if})||=||\bigwedge_{i\epsilon I\check{j\epsilon}J}\pi(a_{if})||

=|| \pi(\bigvee_{\Lambda}\bigwedge_{\check{i\in}Ij\in J}a_{ij})||=||\vee\Lambda\wedge a_{tj||}\check{i\in}Ij\in J
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holds since \pi|_{F} is isometric and lattice homomorphic. This shows that the
mapping P in Theorem 1 can be uniquely extended to a contractive positive
projection from \tilde{F} to F, hence (b) holds.

(b)\Rightarrow(a) : Suppose P:Farrow F satisfy the condition in (b). Then P is
lattice homomorphic with respect to the lattice structure of F and F, respec-
tively. In fact, if we denote by F_{0} the sublattice of E generated by F, Lemma
1 and Proposition 1 imply that P|_{F_{0}} is lattice homomorphic with respect
to the corresponding lattice structures, hence P is also lattice homomorphic.
Therefore, Ker P is a closed sublattice of F containing x^{++}-x^{+} and |x|_{F}-|x|

for any x\in F.
Let I be the closed ideal of E generated by Ker P. Then the above

observation implies that the natural map \pi:Earrow E/I satisfies \pi(x)^{+}=\pi(x^{+})=

\pi(x^{++}) for any x\in F. Hence \pi|_{F} is lattice homomorphic with respect to
the lattice structure of F and E/I, respectively.

To see that \pi|_{F} is isometric, it suffices to show ||\pi(x)||\geq||x|| for positive
x\in F, since for general x\in F

||\pi(x)||=|||\pi(x)|||=||\pi(|x|)||=||\pi(|x|_{F})||

and |||x|_{F}||=||x|| hold. So let x\in F be positive and u\in I. Then there
exists two sequences \{u_{n}\}_{n\in N} and \{v_{n}\}_{n\in N} satisfying u_{n}\in E, v_{n}\in KerP and
|u_{n}|\leq v_{n} for any n\in N, and lim u_{n}=u . Since x+u_{n}\geq x-v_{n} , (x+u_{n})^{+}\geq

narrow\infty

(x-v_{n})^{+} holds for any n\in N. By the remark in the first paragraph of this
part of proof, the above inequality and the fact (x-v_{n})^{+}\in F imply ||(x+u_{n})^{+}

||\geq||(x-v_{n})^{+}||\geq||P((x-v_{n})^{+})||=||(P(x-v_{n}))^{++}||=||x|| . Thus we obtain ||x+u

||\geq||(x+u)^{+}||=narrow\infty lim ||(x+u_{n})^{+}||\geq||x|| , which implies ||\pi\langle x)||\geq||x|| .
Next we turn to the problem of positive extension of linear functional.

First we prepare the following

Lemma 2. Let F be a Banach quasi-sublattice of a Banach lattice
E. Then ||x^{++}||=||x^{+}|| holds for any x\in F.

PROOF. For any x\in F and non-negative integer n, put x_{n} :=nx^{++}+
x\in F. Since x_{n}=(n+1)x^{++}-x^{--}=nx^{++}+x^{+}-x^{-} , |x_{n}|_{F}=(n+1)x^{++}+x^{--}\geq

(n+1)x^{++}+x^{-}\geq nx^{++}+x^{+}+x^{-} and |x_{n}|\leq nx^{++}+x^{+}+x^{-}- Therefore

|||x_{n}|_{F}||\geq||(n+1)x^{++}+x^{-}||\geq||nx^{++}+x^{+}+x^{-}||\geq|||x_{n}|||=|||x_{n}|_{F}|| ,

hence

||nx^{++}+x^{+}+x^{-}||=||(n+1)x^{++}+x^{-}||
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Using this equality, we can inductively prove the following inequality
for any non-neagative integer n :

||nx^{++}+x^{-}||\leq n||x^{+}||+||x^{-}||

Dividing the above inequality by n and letting narrow\infty , we obtain ||x^{++}||\leq

||x^{+}|| , hence ||x^{++}||=||x^{+}|| .

PROPOSITION 3. Let F be a Banach quasi-sublattice of a Banach lattice
E. Then any positive linear functional \psi on F has a norm preserving
extension to a positive linear functional on E.

PROOF. Let p(x):=||\psi||||x^{+}|| for x\in E. Then p is a sub-additive
positively homogeneous function on E, and \psi(x)\leq p(x) holds for any x\in F,
since \psi is positive and ||x^{++}||=||x^{+}|| by Lemma 2. It readily follows that
any Hahn-Banach extension \tilde{\psi} of \psi dominated by p meets the requirement
of the proposition.

\S 3. Quasi-sublattices of AM-spaces

PROPOSITION 4. Let F be a quasi-sublattice of an AM-space E. Then
F is also an AM-space.

PROOF. It suffices to show ||x+y||= \max\{||x||, ||y||\} for any x, y\in F

satisfying x\wedge\wedge y=0 ([4] p. 22). Let x, y be such elements. Then |x-y|_{F}=

x+y, hence

||x+y||=|||x-y|_{F}||=||x-y||

But ||x-y|| \leq\max\{||x||, ||y||\} since E is an AM-space. Therefore ||x+y||\leq

max \{||x||, ||y||\} , which implies ||x+y||= \max\{||x||, ||y||\} since the converse
inequality is always valid for x, y\geq 0 .

THEOREM 3. Let F be a Banach quasi-sublattice of an AM-space E.
Then there exists a closed ideal I of E for which the restriction of the
canonical map \pi:Earrow E/I to F is isometric and lattice homomorphic with
respect to the lattice structures of F and E/I.

PROOF. Let X:=(f\in E’ ; f\geq 0 , ||f||\leq 1} and Y:=\{\psi\in F’ ; \psi\geq 0 , ||\psi||\leq

1\} , where E’ and F’ denote the Banach space dual of E and F, respectively,
which are also Banach lattices ([6] p. 85). Then X [resp. Y] is compact
with respect to the relative w^{*} -topology, and the set X_{0} [resp. Y_{0}] of the
non-zero extreme points of X [resp. Y] consists of lattice homomorphic
linear functionals on E [resp. F ] ([4] p. 59). Proposition 3 shows that the
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r:\{\begin{array}{l}Xarrow Yf_{l}arrow f|_{F}\end{array}

mapping is surjective. Since r^{-1}(\psi) is a closed face of X for any \psi\in Y_{0},
r^{-1}(\psi)\cap X_{0} is non-void ([3] p. 133).

Put X_{1} :=r^{-1}(Y_{0})\cap X_{0} and I:= {x\in E;f(|x|)=0 for any f\in X_{1}}. Then
I is clearly a closed ideal of E which meets the requirement of Theorem,
as we shall see below.

First we verify the equality ||\pi(x)||=||x|| for x\in F, where \pi:Earrow E/I

is the natural map. This follows from the following two observations:
(i) For any x\in F, y\in I and f\in X_{1} , ||x+y||\geq|f(x+y)|=|f(x)| hold

since f(y)=0.
(ii) For any x \in F||x||=|||x|_{F}||=\sup\{\psi(|x|_{F});\psi\in Y_{0}\}=\sup\{|\psi(x)| ;

\psi\in Y_{0}\}=\sup\{|f(x)| ; f\in X_{1}\} hold, where the third equality is due to the
fact that \psi\in Y_{0} is lattice homomorphic on F, and the last equality holds
since r(X_{1})=Y_{0} .

To see that \pi|_{F} is lattice homomorphic with respect to the lattice struc-
ture of F and E/I, it suffices to note that for any x, y\in Fa\eta. df\in X_{1} ,

f(x_{\vee y-xy)=r(f)(x_{\vee y)-f(xy)=r(f)(x)r(f)(y)-f(x)\vee f(y)}^{}}^{}

=0
hold and hence x\vee\vee y-x\vee y\in I.

COROLLARY 1. Let F be a closed subspace of an AM-space E. Then
F is a Banach quasi-sublattice of E if and only if there exists a closed
sublattice P of E and a contractive positive projection P\in \mathscr{L}(F) with
F=PF.

PROOF. The “if part” readily follows from the remark after the defini-
tion of Banach quasi-sublattices. On the other hand let F be a Banach
quasi-sublattice of E and let F be the closed sublattice of E generated by
F. Then Theorem 2 and Theorem 3 imply that there exists a contractive
positive projection P\in \mathscr{L}(F) with F=PF.

In case E is realized as a closed sublattice of the Banach lattice C(K)
(K : a compact Hausdorff space), we have the following

COROLLARY 2. Let K be a compact Hausdorff space and let E be a
closed sublattice of C(K) . Then for any Banach quasi-sublattice F of E,
there exists a closed subset K_{0} of K such that F|_{K_{0}} :=\{x|_{K_{0}} ; x\in F\} is a
sublattice of C(K_{0}) and ||x||=||x|_{K_{0}}|| holds for any x\in F. Moreover if F
contains the constant functions, there exist a compact Hausdorff space K_{1} ,
a continuous surjection p:K_{0}arrow K_{1} and a continuous mapping \mu:Karrow \mathscr{M}_{1}^{+}(MJ
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( \mathscr{M}_{1}^{+}(K_{1}) denotes the space of probability Radon measures on K_{1} endowed
with the relative w^{*}- topology) satisfying the following conditions:

(i) The mapping p^{*}: g\mapsto g\circ p gives an isometric lattice isomorphism

from C(KO) onto F|_{K_{0}} .
(ii) For any x\in F and s\in K,

x(s)= \int p^{*-1}(x|_{K_{0}})d\mu_{s}

holds, where \mu_{s} denotes the value of \mu at s.
PROOF. Let X, Y, X_{0} and Y_{0} be defined as in the proof of Theorem

3, and let r:Xarrow Y be the restriction map, i . e. , r(\varphi):=\varphi|_{F} for \varphi\in X. Then
as noted in the proof of Theorem 3, r(X_{0})\supset Y_{0} . On the other hand consider
the evaluation mapping \epsilon:Karrow X which maps s\in K to the functional E\ni x\mapsto

x(s) . Then \epsilon(K)\supset X_{0} since \epsilon(K)\cup\{0\} is compact and its closed convex hull
is X. Therefore the closed subset K_{0} :=\overline{(r\circ\epsilon)^{-1}(Y_{0}}) of K satisfies r\circ\epsilon(K_{0})\supset Y_{0} .
This implies that F|_{K_{0}} is a sublattice of C(K_{0}) and that ||x||=||x|_{F}|| holds
for any x\in F, which in turn implies that F|_{K_{0}} is closed in C(K_{0}) . This
proves the first part of the Corollary.

Assume now F contains the constant functions. Let the equivalence
relation \sim on K_{0} be defined by s\sim t if and only if x(s)=x(t) holds for any
x\in F. Let K_{1} :=K_{0}/\sim be the quotient space and let p:K_{0}arrow K_{1} be the
canonical surjection. Then K_{1} is a compact Hausdorff space ([5] pp. 125-
126) and the Stone-Weierstrass theorem implies that the mapping p^{*}: q\mapsto

q\circ p gives an isometric lattice isomorphism from C(K_{1}) onto F|_{K_{0}} .
On the other hand, the first part of the proof shows that the mapping

\tau:x\mapsto x|_{F} is an isometric lattice isomorphism from F onto F|_{K} . Hence
\tau^{-1}\circ p* is an isometric lattice isomorphism from C(K_{1}) onto F. It is easy
to see that for any s\in K there exists a unique probability Radon measure
\mu_{s} on X_{1} which satisfies

\int qd\mu_{s}=(\tau^{-1}\circ p^{*})(q)(s)

for any g\in C(Ki) . That the mapping \mu:s\in K-\mu_{s}\in \mathscr{M}_{1}^{+}(K_{1}) is continuous
and that the assertion (ii) in the Corollary holds are clear from the con-
struction of \mu_{s} .

REMARK. In an unpublished note [1], Professor T. Ando studied the
structure of certain subspaces of a Banach lattice. Among his results, the
following is closely related to our results in \S 3:

If a closed linear subspace F of a Banach lattice E satisfies the following
conditions (i), (ii) and (iii), then F is the range of a positive projection.
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(i) F is a quasi-sublattice of E ;
(\overline{1}i) The sublattice generated by F is dense in E ;
(iii) E=F-E_{+} .

References
[1] ANDO, T. : Positive simultatneous linear extension in Banach lattices, (1977),

unpublished.
[2] BLEIER, R. D. : Free vector lattices, Trans. A. M. S., 176 (1973), 73-78.
[3] CHOQUET, G. : Lectures on Analysis, vol. 2, W. A. Benjamin (1969).
[4] LACEY, H. E. : The Isometric Theorey of Classical Banach Spaces, Springer

(1973).
[5] RICKART, C. E. : General Theory of Banach Algebras, Krieger (1974).
[6] SCHAEFER, H. H. : Banach Lattices and Positive Operators, Springer (1974).

Department of Mathematics
Faculty of Science

Science University of Tokyo


	\S 1. Introduction
	\S 2. Quasi-sublattices ...
	THEOREM 1. ...
	THEOREM 2. ...

	\S 3. Quasi-sublattices ...
	THEOREM 3. ...

	References

