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On alifting problem of Fourier-Stieltjes
transforms of measures

By Jyunji Inoue
(Received April 17, 1982 ;Revised October 13, 1982)

Let $G$ and $G$ b$e$ aLCA group and its dual group, respectively. $M(G)$
denotes the measure algebra on $G$, the Banach algebra of bounded regular
complex Borel measures on $G$ with convolution multiplication and total
variation norm $||$ . $||$ . $M_{a}(G)$ and $M_{s}(G)$ express the space of absolutely
continuous measures and the space of singular measures on $G$ with respect
to the Haar measure of $G$, respectively. For $\mu\in M(G),\hat{\mu}$ denotes the
Fourier-Stieltjes transform of ” and we put $Z?((7)=\{\hat{\mu}|\mu\in M(G)\},$ $A(G)=$

$\{\hat{\mu}|\mu\in\# (G)\}$ , $B_{s}(G)$ $=\{\hat{\mu}|\mu\in M_{s}(G)\}$ . $B(G)$ is a $Ba$nach algebra with
respect to the pointwise multiplication and the norm $||\hat{\mu}||=||g||$ .

Let $\Lambda$ be aclosed subgroup of $G$ . The following theorem is well-
known ([6]).

THEOREM1. $B(G)|_{\Lambda}=B(\Lambda)$ , 4 $(G)|_{A}=4(\Lambda)$

“It follows from theorem 1that each member of $B(\Lambda)$ (resp. $A(\Lambda)$ ) can
be lifted to amember of $B$ (G) (resp. A(G)), but it is not clear whether
there exist any liftings which are linear maps from $B(\Lambda)$ to $B$ (G) (resp.
from $A(\Lambda)$ to $M(G))$ .

On the other hand, in the recent papers [4] and [5], we can find partial
answers to this lifting problem.

THEOREM 2(cf. [4] and [5]). Let $\Lambda$ be a discrete subgroup of $G$, let
$H$ be the annihilator of $\Lambda$ in $G$, and let $W$ be a neighborhood of $0\in G$ .
Choose a neighborhood $U$ of $0\in G$ and a probability measure $\rho\in M_{a}(G_{r})$

such that $supp\hat{\rho}\subset U\subset W$ and $(U-U)" 1$ $\Lambda=\{0\}$ , and put

$\hat{J}\hat{\mu}(\gamma)=\sum_{a\epsilon A}\hat{\mu}(\alpha)\hat{\rho}(\gamma-\alpha)$ $(\hat{\mu}\in B(\Lambda), \gamma\in G)$ .

Then we have $\hat{J}i$ $\in B$(G) with the following additional properties.
i) $J_{\hat{t}}|_{A}=\hat{\mu}$ ,

$ii)_{t}$ $||$ $7\mu\wedge||=||\hat{\mu}||$ ,
$(^{*})$ $iii)$ $\hat{J}\hat{\mu}$ is positive definite if $\hat{\mu}$ is positive definite
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$iv)$
$\hat{J}$($\wedge\in A(G)$ if $\hat{\mu}\in A(\Lambda)$ ,

v) $\hat{J}\hat{\mu}\in B_{s}(\hat{G})$ if $\hat{\mu}\in B_{s}(\Lambda)$ ,

$vi)$ $supp(\hat{J}\hat{\mu})\subset supp(\hat{\mu})+W$

REMARK 1. In theorem 2, we can consider $\hat{J}\hat{\mu}$ the Fourier-Stieltjes
transform of auniquely determined measure $J\mu\in M(G)$ , and then $J$ becomes
alinear map of $M(G/H)$ into $M(G)$ with the following properties.

i) $(J\mu\hat{)|}_{A}=\hat{\mu}$ ,
$ii)$ $||Ju||=||$ $u||$ ,

$(^{**})$ $iii)$ $J\mu\geqq 0$ if $\mu\geqq 0$ ,
$iv)$ $J\mu\in M_{a}(G)$ if $\mu\in M_{a}(G/H)$ ,

v) $Jp\in M_{s}(G)$ if $\mu\in M_{s}(G/H)$ ,

$vi)$ $supp(J\mu)\subset supp(\hat{\mu})+W\wedge$

Obviously, the existence of $J\wedge$ with $(^{*})$ and the existence of $J$ with $(^{**})$

are equivalent each other.

The purpose of this paper is to prove the following theorem 3which
gives an answer to the lifting problem stated above.

THEOREM 3. If $\Lambda$ is a closed subgroup of $G$, and if $W$ is a neighbor-
hood of $0\in G$, there exists a linear map $\hat{J}$ of $B(\Lambda)$ into $B$ (G) which satisfies
$(^{*})$ of theorem 2.

To prove theorem 3, we provide two lemmas. $R^{n}$ and $T^{n}$ denote the
$n$ -fold products of the real groups and the circle groups, respectively.

LEMMA 1. For each neighborhood $U$ of $O\in G$, there exists a compact
subgroup $K$ of $G$ contained in $U\cap\Lambda$ such that $G/K$ and $A/K$ split into
direct sums of the forms

$G/K=L\cross F,$ $\Lambda/K=L\cross D$ ,

there $L$ is an open subgroup of $\Lambda/K$ and $F$ is a closed subgroup of $G/K$.

PROOF. By the structure theorem of LCA groups, $\Lambda$ contains an open
subgroup of the form $R^{m}\cross K’$ with acompact subgroup $K’$ of $\Lambda$ . By (24. 7)

of [3], there exists acompact subgroup $K$ contained in $K’\cap U$ such that
$K’/K=T^{n}\cross F’$ with afinite subgroup $F’$ of $K’/K$. Hence $\Lambda/K$ contains an
open subgroup $L$ isomorphic to $R^{m}\cross T^{n}$ , and by theorem 6. 16 of [1], there
exists adiscrete subfroup $D$ of $A/K$ such that $\Lambda/K=L\cross D.$ Likewise, since
$L$ is aclosed subgroup of $G/K$, there exists aclosed subgroup $F$ of $G/K$
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such that $\hat{G}/K=L\cross F.$

LEMMA 2. Let $K$ be a compact subgroup of $\Lambda$ and let $H$ and $G_{0}$ be
the annihilator of $\Lambda$ and $K$ in $G$, respectively. For each $\mu\in M(G/H)$ ,
we denote by $\mu|_{(G_{0}/H)+x}$ the restriction of $\mu$ to a coset $(G_{0},/H)+x\in(G/H)/$

$(G_{0}/H)$ . Then the Fourier-Stieltjes transform of $(\mu|_{(G_{0}/HJ+x})^{*}\delta_{-x}$ is given by

$((\mu|_{(G_{0}/H)+x)*_{\delta_{-x)^{\wedge}}}}(\gamma)=(((x, \cdot)\hat{\mu})*m_{K})(\gamma)$
$(\gamma\in\Lambda)$ , (1)

where $\delta_{-x}$ denotes the dirac measure at $-x\in G/H$, and $m_{K}(\in M(\Lambda))$ denotes
the normalized Haar measure of $K$.

PROOF. First, suppose that $supp(\hat{\mu})$ is compact. If $\vee$ denotes the
inverse Fourier transform, we have by the inversion theorem

$(((x, \cdot)\hat{\mu})*m_{K})^{\vee}=(\mu*\delta_{-x})\cdot l_{G_{0}/H}=(\mu|_{(G_{0}/H)+x},)*\delta_{-x}(\in f_{a(G/H)}o$

where $X_{G./H}$ is the characteristic function of $G_{0}/H$. Hence (1) holds.
Next, we consider the general case. For each $\gamma_{0}\in\Lambda$ , there exists $\nu\in M_{a}$

$(G/H)$ such that $supp(\hat{\nu})$ is comact, $\hat{\nu}|_{K+\gamma}.=$ $1$ and $supp(\nu)$ $\subset G_{0}/H$, then we have

$(((\mu*\nu)|_{(G_{0}/HJ+x)*\delta_{-x)^{\wedge}}}(\gamma_{0})=((\mu|_{(G_{0}/B)+x})*\delta_{-x)^{\wedge}}(\gamma_{0})$ ,
(2)

(
$\backslash$

((-x, $\gamma’$ ) $\mu\wedge(\gamma’)\nu\wedge(\gamma’))*m_{K}$) $(\gamma_{0})=(((x, \gamma’)\hat{\mu}(\gamma’))*m_{K}$) $(\gamma_{0})t$

From the first paragraph we have

$(((\mu*\nu)|_{(G_{0}/H_{J+x)*\delta_{-x)^{\wedge}}}}(\gamma_{0})=(((x, \gamma’)\hat{\mu}(\gamma’)\nu\wedge(\gamma’))*m_{K})(\gamma_{0})$ (3)

we get (1) from (2) and (3).

PROOF OF THEOREM 3. Let $U$ be acompact neighborhood of $0\in G$ s$uch$
that $U+U\subset W.$ By lemma 1there exists acompact subgroup $K$ of $G$

contained in $\Lambda$

$0$ $U$ such that $G/K$ and $A/K$ split into direct sums of the form
$G/K=L\cross F$ and $\Lambda/K=L\cross D$ with aclosed subgroup $F$ of $G/K$ and a
discrete subgroup $D$ of $\Lambda/K$ , respectively.

(I). First, we consider the case $K=\{0\}$ . Let $\tau$ be the group topology
of $G$ such that $F$ with the subspace topology inherit from $G$ forms an open
subgroup of $G$ with respect to $\tau$ . Obviously, $\tau$ is stronger than the original
topology of $G$ . Since $L\cap F=\{0\}\Lambda$ is adiscrete subgroup in the new topology
$\tau$ . The group $G$ with the topology $\tau$ forms aLCA group, which will be
denoted by $G_{\tau}$ .

Let $V$ be acompact neighborhood of $o\in G_{\tau}$ such that $(V-V)\cap$ $4=\{0\}$ ,



116 J. Inoue

$V\subset U$ n $F$, and let $\rho$ be aprobability measure in $M(P)$ ( $\hat{F}$ is the dual group
of $F$ ) such that $suppi\subset V.$ Then, we define the functions $\hat{\hat{\rho}}$ and $V\hat{\mu}$ on $G$ by

( $\rho\wedge(\gamma)$ ; $\gamma\in F$

$\hat{\hat{\rho}}(\gamma))=|$ $0;’\gamma\not\in F$

(4)
$( \hat{J}\hat{\mu})(\gamma)=\sum_{a\epsilon\Lambda}\hat{\mu}(\alpha)\rho\bigwedge_{\wedge}(\gamma-\alpha)$

$(\gamma\in‘ G,\hat{\mu}\in B(\Lambda))$

By theorem 2, $\hat{J}\hat{1}$ is an element of $B(G_{\tau})$ which has the properties $(^{*})$ . If
we can show that $\hat{J}\hat{\mu}$ is continuous in the original topology of $G$ , w $e$ have
$,\hat{J}\hat{\mu}\in B(G)$ with the properties $i$), $ii$), $iii$) and $vi$) of $(^{*})$ in theorem 2.

Let $r_{0}\in G$ , and let $(\gamma_{\beta})_{\beta\in B}\subset G$ b$e$ anet which converges to $\gamma_{0}$ in the
topology of $G$ . In the first, we consider the case that $\gamma_{0}\in(\Lambda+supp(\hat{\hat{\rho}}))^{0}$

(the set of the interior points of $4+supp$ $(\hat{\hat{\rho}})$ i $n$ $G$). Then, we may assume
$\gamma_{\beta}\in\Lambda+supp(\hat{\hat{\rho}})(\beta\in B)$ . Write $\gamma_{0}=\alpha_{0}+t_{0}$ , $\gamma_{\beta}=\alpha$l$\beta+t_{\rho}(\beta\in B)$ , where $\alpha_{0}$, $\alpha_{\beta}\in\Lambda$

and $t_{0}$, $t_{\beta}\in supp$ $(\hat{\hat{\rho}})$ . These expressions are unique by the condition $\Lambda\cap(V-$

$V)=\{0\}$ . Since $\Lambda$ contains $L$, $\Lambda+V_{1}$ contains aneighborhood of $\gamma_{0}$ for
each neighborhood $V_{1}$ of $t_{0}$ in $F$. This shows that Jim $t_{\beta}=t_{0}$ , Jim $\alpha_{\beta}=\alpha_{0}$ , and
$w.$e..have

Jim $\hat{J}\hat{t}(\gamma_{\beta})=$ Jim $\sum\hat{\mu}(\alpha)\hat{\rho}\wedge(\gamma_{\beta}-\alpha)=$ Jim $\hat{\mu}(\alpha_{\beta})\rho\wedge\wedge(t_{=})$

$=\hat{\mu}(\gamma_{0})\rho(\wedge t_{0})=\acute{J}\hat{\mu}(\gamma_{0})$ $(\hat{\mu}\in B(\Lambda))($

Next, if $\gamma_{0}\in\partial_{\hat{G}}(\Lambda+supp(\hat{\hat{\rho}}))$ (the boundary of $4+supp$ $(\hat{\hat{\rho}})$ in $G$), we have
$\gamma_{0}=\alpha_{0}+t_{0}$ with $t_{0}\in\partial_{F}(supp(\hat{\hat{\rho}}))$ and $\alpha_{0}\in\Lambda$ , since $\Lambda+supp$ $(\hat{\hat{\rho}})$ is closed i $n$ $G$ .
Let $B’=\{\beta\in B|\gamma_{\beta}\in\Lambda+supp(\hat{\hat{\rho}})\}$ , and put $\gamma_{\beta}=x\beta$ $+t\beta$ $(\beta\in B’)$ with $\alpha_{\beta}\in\Lambda$ ,
$t_{\beta}\in supp$ $(\hat{\hat{\rho}})$ . Then we have

$\hat{J}\hat{\mu}($,,$)= \int_{1}\hat{\mu}(\alpha_{\beta})\hat{\hat{\rho}}(\cdot t_{\beta})$

;
$0,$

$\beta\in B’B\backslash B$

’

If $B’$ is acofinal set of $B$, we have $\lim_{\rho\epsilon B}$, $\alpha,=$ $f_{0}$ ,
$\lim_{\beta\in B}$,

$t_{\beta}=t_{0}$ in $G$ as above, and

$\lim_{\beta\epsilon B’}\hat{J}\hat{\mu}(\gamma_{\beta})=\lim_{\beta\epsilon B^{l}}\hat{\mu}(\alpha_{\beta})\rho\wedge(t_{\beta})$

$=\hat{\mu}(\alpha_{0})$ $\hat{\rho}(t_{0})$ $=7\hat{\mu}(\gamma_{0})$ $=0.$

Since $\hat{J}$t$\wedge(\gamma_{\beta})$ $=0(\beta\in B\backslash B’)$ , we have $\lim_{\beta\in B}\hat{J}\hat{\mu}(\gamma_{\beta})=0$
$=j\hat{7}(\gamma_{0})$ whether $B’$ is a

cofinal set of $B$ or not.

In the last case, if $\gamma_{0}\not\in\Lambda+supp(\hat{\hat{\rho}})$ , we have at once $\lim\hat{J}\hat{(}(\gamma_{\beta})=0=$

$\hat{J}\hat{\mu}(\gamma_{0})$ since $supp\hat{J}\hat{\mu}\subset\Lambda+supp(\hat{\hat{\rho}})$ .
To prove $iv$), let $\hat{\mu}\in$ $A(\Lambda)$ be arbitrary and choose $\hat{\mu}_{k}\in A(\Lambda)(k=1,2, \cdots)$
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with compact support such that $\lim||\hat{\mu}_{k}-\hat{\mu}||=0$ . Since $supp\hat{J}\hat{\mu}_{k}$ is contained
in the compact set $supp\hat{\mu}_{k}+supp8$ , we have $\hat{J}\hat{\mu}_{k}\in A(G)$ . Thus, by $\lim$

$|| \hat{J}A-\hat{J}\hat{/}||=\lim$ $||\hat{\mu}_{k}-\hat{\mu}||=0$ , we get $\acute{\grave{J}}\hat{\mu}\in$ $4(G)$ .
To prove $v$), we use the Doss’s cqiterion on singular.measures ([2]),

Let $\hat{\mu}\in B_{s}$ $(\Lambda)$ , and let $C$ be an arbitrary compact set of $G$, and $\epsilon>0$ . Since
$\Lambda\cap C$ is compact, we have by [2] atrigonometric polynomial $\overline{P}(\dot{x})=\sum_{i=1}^{s}c_{i}$

$(-\dot{x}, \gamma_{i})(\gamma_{i}\in\Lambda\backslash C)$

(

on $G/H$ such that $.| \sum_{i=1}^{s}c_{i}\mu(\gamma_{i})|>||\mu||-\epsilon$ ,
$\sup_{x\epsilon G/H}|P$

$(\dot{x})|\leqq 1.$

Then the trigonometric polynomial $P(x)= \sum_{i=1}^{s}c_{i}(-x, \gamma_{i})$ on $G$ satisfies

$| \sum_{i=1}^{s}$ $c_{i}. \grave{J}\hat{\mu}(\gamma_{i})|=|\sum_{i=1}^{s}$ $c_{i}\hat{\mu}(\gamma_{i})|\gg||\hat{\mu}||-\epsilon=||\hat{J}\hat{\mu}||-\epsilon$ , .
$\sup_{x\epsilon G}$ }P $(x)|\leqq 1’$,

and we have, by [2] again, $\hat{J}\hat{1}\in\check{B}_{s}(G\sim)$ .
(II). Next, we consider the case $K\neq\{0\}$ . Here, we express by $\pi$ the

natural map of $G$ onto $G/K$ . If $G_{0}$ and $H$ are the annihilator of $K$ and
$\Lambda$ respectively, we have $G_{0}\supset H$ and $G_{0}$ is open in $G$ . Since $G_{0}$ is the dual
group of $G/K=L$ $\cross F$ and $H$ is the annihilator ih $G_{0}$ of the closed subgroup
$\Lambda/K=L\cross D$ of $G/K$, we have by (I) alinear map $J_{0}$ of $M(G_{0}/H.)$,into $M(G_{0})$

which satisfies $(^{**})$ of $rem\subset$ark 1 and

$(J_{0} \mu)(\gamma)=\sum_{\alpha\epsilon r/x}\wedge\hat{\mu}(\alpha)\hat{\hat{\rho}}(\gamma.-\alpha)$ $(’\mu\in M(G_{0}/H),$ $\gamma\in G/K)$
. (5)

where $\hat{\hat{\rho}}$ is afunction o $n$ $G/K$ defined by (4) for sorrie probability measure
$\rho\in M(\hat{F})$ with $supp\hat{\rho}\subset\pi(U)\cap F.$

We now define a map $J$ of $M(\grave{G}/\dot{H})$ into $M(G)$ . Choose asubset
$\{x_{\xi}\}_{\epsilon\in G/G_{0}}\subset G$ such that the set $\{\dot{x}_{\xi}=x_{\xi}+H\}_{\epsilon\in G/G_{0}}$ .becomes $a$ , complete set
of representatives of $(G/H)/(G_{0}/H)$ by $G_{0}/H$, and put

$J \mu=\sum_{\epsilon\epsilon G/G_{0}}[J_{0}((\mu|_{(\acute{G}_{0}/H)+x_{\overline{6}}})(*\delta_{-x_{\xi}})]*\delta_{x_{\xi}}$

.
$(\mu\in M(G/H))$ (6)

For each $\mu\in M(G/H)$ , the set $\{\xi\in G/G_{0} : \mu|_{(G_{0}/HJ+x_{\xi}}\neq 0\}$ is at most countable,
and the map $J$ is well defined. It is easy to see that $J$ is linear and satisfies
$(^{**})$ of remark 1except i) and $vi$).

Let $\mu\in M(G/H)$ and $\gamma\in\Lambda$ arbitrary. Then we have from (6) and the
property $(^{**})i)$ of $J_{0}$ that

$(J \mu)(\gamma)=\sum_{\epsilon\epsilon G/G_{\theta}}[\wedge J_{0}((\mu|_{(G_{0}/H)+x_{\xi}})*\delta_{-x_{\xi}})](\dot{\gamma})(-x_{\text{\’{e}}}, \gamma)\wedge$

$=;/(\backslash \mu|_{(G_{0}/H)+x_{\xi}})*\delta_{-x_{\xi}}\epsilon\epsilon G_{0}$) $(\dot{\gamma})(-x_{\xi}, \gamma)$
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$= \sum_{\epsilon\epsilon e/e_{0}}((\mu|_{(G/HJ+x_{\xi}}0_{\backslash })*\delta_{-x_{\xi}})(\gamma)(-x_{\xi}, \gamma)\wedge$

$= \sum_{\xi\epsilon e/e_{0}}.(\mu|_{(a_{0}/H_{J}+oe_{\xi}})^{\wedge}(\gamma)=\hat{\mu}(\gamma)$ ,

where $\dot{r}=\gamma+K\in A/K$. Thus i) holds.

To prove $vi$), we use lemma 2. By (1) and (5) we have

$supp(J_{0}(\mu|_{(G_{0}/H)+x_{\xi}})^{*}\delta_{-x_{\text{\’{e}}}}))\subset\pi(supp(\hat{\mu}))+\pi(U)\wedge$ $(\xi\in G/G_{0})$ . (7 $\#$

Then we get from (6) and (7) that
$supp(J\mu\hat{)}$$\subset supp(\hat{\mu})+K+U\subset supp(\hat{\mu})+W,\cdot$

and this proves $vi$), and the proof is complete.

REMARK 2. In [7], analogous lifting operators are constructed and used
under the special setting of the paper.
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