On a lifting problem of Fourier-Stieltjes transforms of measures

By Jyunji Inoue
(Received April 17, 1982 ; Revised October 13, 1982)

Let G and \hat{G} be a LCA group and its dual group, respectively. $\quad M(G)$ denotes the measure algebra on G, the Banach algebra of bounded regular complex Borel measures on G with convolution multiplication and total variation norm $\|\cdot\| . \quad M_{a}(G)$ and $M_{s}(G)$ express the space of absolutely continuous measures and the space of singular measures on G with respect to the Haar measure of G, respectively. For $\mu \in M(G), \hat{\mu}$ denotes the Fourier-Stieltjes transform of μ, and we put $B(\hat{G})=\{\hat{\mu} \mid \mu \in M(G)\}, A(\hat{G})=$ $\left\{\hat{\mu} \mid \mu \in M_{a}(G)\right\}, \quad B_{s}(\hat{G})=\left\{\hat{\mu} \mid \mu \in M_{s}(G)\right\} . \quad B(\hat{G}) \quad$ is a Banach algebra with respect to the pointwise multiplication and the norm $\|\hat{\mu}\|=\|\mu\|$.

Let Λ be a closed subgroup of \hat{G}. The following theorem is wellknown ([6]).

Theorem1. $\left.B(\hat{G})\right|_{\Lambda}=B(\Lambda),\left.A(\hat{G})\right|_{\Lambda}=A(\Lambda)$.
-It follows from theorem 1 that each member of $B(\Lambda)$ (resp. $A(\Lambda)$) can be lifted to a member of $B(\hat{G})$ (resp. $A(\hat{G})$), but it is not clear whether there exist any liftings which are linear maps from $B(\Lambda)$ to $B(\hat{G})$ (resp. from $A(\Lambda)$ to $A(\hat{G})$).

On the other hand, in the recent papers [4] and [5], we can find partial answers to this lifting problem.

Theorem 2 (cf. [4] and [5]). Let 1 be a discrete subgroup of \hat{G}, let H be the annihilator of Λ in G, and let W be a neighborhood of $0 \in \hat{G}$. Choose a neighborhood U of $0 \in \mathcal{G}$ and a probability measure $\rho \in M_{a}(G)$ such that $\operatorname{supp} \hat{\rho} \subset U \subset W$ and $(U-U) \cap \Lambda=\{0\}$, and put

$$
\hat{J} \hat{\mu}(\gamma)=\sum_{\alpha \in A} \hat{\mu}(\alpha) \hat{\rho}(\gamma-\alpha) \quad(\hat{\mu} \in B(\Lambda), \gamma \in \hat{G})
$$

Then we have $\hat{J} \hat{\mu} \in B(\hat{G})$ with the following additional properties.
i) $\left.\hat{\jmath} \hat{\mu}\right|_{\Lambda}=\hat{\mu}$,
ii). $\quad\|\hat{J} \hat{\mu}\|=\|\hat{\mu}\|$,
(*) iii) $\hat{J} \hat{\mu}$ is positive definite if $\hat{\mu}$ is positive definite,
iv) $\hat{J} \hat{\mu} \in A(\hat{G})$ if $\hat{\mu} \in A(\Lambda)$,
v) $\hat{J} \hat{\mu} \in B_{s}(\hat{G})$ if $\hat{\mu} \in B_{s}(\Lambda)$,
vi) $\operatorname{supp}(\hat{J} \hat{\mu}) \subset \operatorname{supp}(\hat{\mu})+W$.

Remark 1. In theorem 2, we can consider $\hat{\jmath} \hat{\mu}$ the Fourier-Stieltjes transform of a uniquely determined measure $J \mu \in M(G)$, and then J becomes a linear map of $M(G / H)$ into $M(G)$ with the following properties.
i) $\left.(J \mu)\right|_{\Lambda}=\hat{\mu}$,
ii) $\quad\|J \mu\|=\|\mu\|$,
(**) iii) $J \mu \geqq 0$ if $\mu \geqq 0$,
iv) $J \mu \in M_{a}(G)$ if $\mu \in M_{a}(G / H)$,
v) $J \mu \in M_{s}(G)$ if $\mu \in M_{s}(G / H)$,
vi) $\operatorname{supp}(J \mu) \subset \operatorname{supp}(\hat{\mu})+W$.

Obviously, the existence of \hat{J} with $\left(^{*}\right)$ and the existence of J with (**) are equivalent each other.

The purpose of this paper is to prove the following theorem 3 which gives an answer to the lifting problem stated above.

Theorem 3. If Λ is a closed subgroup of \hat{G}, and if W is a neighborhood of $0 \in \hat{G}$, there exists a linear map \hat{J} of $B(\Lambda)$ into $B(\hat{G})$ which satisfies (*) of theorem 2.

To prove theorem 3, we provide two lemmas. \boldsymbol{R}^{n} and \boldsymbol{T}^{n} denote the n-fold products of the real groups and the circle groups, respectively.

Lemma 1. For each neighborhood U of $0 \in \hat{G}$, there exists a compact subgroup K of \hat{G} contained in $U \cap \Lambda$ such that \hat{G} / K and Λ / K split into direct sums of the forms

$$
\hat{G} / K=L \times F, \Lambda / K=L \times D,
$$

where L is an open subgroup of Λ / K and F is a closed subgroup of \hat{G} / K.
Proof. By the structure theorem of LCA groups, Λ contains an open subgroup of the form $\boldsymbol{R}^{m} \times K^{\prime}$ with a compact subgroup K^{\prime} of Λ. By (24.7) of [3], there exists a compact subgroup K contained in $K^{\prime} \cap U$ such that $K^{\prime} / K=\boldsymbol{T}^{n} \times F^{\prime}$ with a finite subgroup F^{\prime} of K^{\prime} / K. Hence Λ / K contains an open subgroup L isomorphic to $\boldsymbol{R}^{m} \times \boldsymbol{T}^{n}$, and by theorem 6.16 of [1], there exists a discrete subfroup D of Λ / K such that $\Lambda / K=L \times D$. Likewise, since L is a closed subgroup of \hat{G} / K, there exists a closed subgroup F of \hat{G} / K
such that $\hat{G} / K=L \times F$.
Lemma 2. Let K be a compact subgroup of Λ and let H and G_{0} be the annihilator of Λ and K in G, respectively. For each $\mu \in M(G / H)$, we denote by $\mu_{\left(G_{0} / H\right)+x}$ the restriction of μ to a coset $\left(G_{0} / H\right)+x \in(G / H) /$ $\left(G_{0} / H\right)$. Then the Fourier-Stieltjes transform of $\left(\left.\mu\right|_{\left(G_{0} / H\right)+x}\right) * \delta_{-x}$ is given by

$$
\begin{equation*}
\left(\left(\left.\mu\right|_{\left(G_{0} / H\right)+x}\right) * \delta_{-x}\right) \hat{(\gamma)}=\left(((x, \cdot) \hat{\mu}) * m_{K}\right)(\gamma) \quad(\gamma \in \Lambda), \tag{1}
\end{equation*}
$$

where δ_{-x} denotes the dirac measure at $-x \in G / H$, and $m_{K}(\in M(1))$ denotes the normalized Haar measure of K.

Proof. First, suppose that $\operatorname{supp}(\hat{\mu})$ is compact. If \vee denotes the inverse Fourier transform, we have by the inversion theorem

$$
\left(((x, \cdot) \hat{\mu}) * m_{K}\right)^{2}=\left(\mu * \delta_{-x}\right) \cdot \chi_{G_{0} / H}=\left(\left.\mu\right|_{\left(G_{0} /(H)+x\right.}\right) * \delta_{-x}\left(\in M_{a}(G / H)\right) .
$$

where $\chi_{G_{0} / H}$ is the characteristic function of G_{0} / H. Hence (1) holds.
Next, we consider the general case. For each $\gamma_{0} \in \Lambda$, there exists $\nu \in M_{a}$ (G / H) such that $\operatorname{supp}(\hat{\nu})$ is comact, $\left.\hat{\nu}\right|_{K+r_{0}}=1$ and $\operatorname{supp}(\nu) \subset G_{0} / H$, then we have

$$
\begin{align*}
& \left(\left(\left.(\mu * \nu)\right|_{\left(\epsilon_{0} / H\right)+x}\right) * \dot{\delta}_{-x}\right) \hat{\left(\gamma_{0}\right)}=\left(\left(\left.\mu\right|_{\left(c_{0} / \notin\right)+x}\right) * \dot{\delta}_{-x}\right) \hat{\left(\gamma_{0}\right),} \\
& \left(\left(\left(x, \gamma^{\prime}\right) \hat{\mu}\left(\gamma^{\prime}\right) \hat{\nu}\left(\gamma^{\prime}\right)\right) * m_{K}\right)\left(\gamma_{0}\right)=\left(\left(\left(x, \gamma^{\prime}\right) \hat{\mu}\left(\gamma^{\prime}\right)\right) * m_{K}\right)\left(\gamma_{0}\right) . \tag{2}
\end{align*}
$$

From the first paragraph we have

$$
\begin{equation*}
\left.\left.\left(\left.((\mu * \nu))\right|_{\left(G_{0} / H+x\right)}\right) * \hat{\partial}_{-x}\right) \hat{(} \gamma_{0}\right)=\left(\left(\left(x, \gamma^{\prime}\right) \hat{\mu}\left(\gamma^{\prime}\right) \hat{\nu}\left(\gamma^{\prime}\right)\right) * m_{K}\right)\left(\gamma_{0}\right) . \tag{3}
\end{equation*}
$$

we get (1) from (2) and (3).
Proof of Theorem 3. Let U be a compact neighborhood of $0 \in \hat{G}$ such that $U+U \subset W$. By lemma 1 there exists a compact subgroup K of G contained in $\Lambda \cap U$ such that \hat{G} / K and Λ / K split into direct sums of the form $\hat{G} / K=L \times F$ and $\Lambda / K=L \times D$ with a closed subgroup F of \hat{G} / K and a discrete subgroup D of Λ / K, respectively.
(I). First, we consider the case $K=\{0\}$. Let τ be the group topology of G such that F with the subspace topology inherit from G forms an open subgroup of \hat{G} with respect to τ. Obviously, τ is stronger than the original topology of \mathcal{G}. Since $L \cap F=\{0\} \Lambda$ is a discrete subgroup in the new topology τ. The group \hat{G} with the topology τ forms a LCA group, which will be denoted by \hat{G}_{r}.

Let V be a compact neighborhood of $0 \in \hat{G}_{\tau}$ such that $(V-V) \cap \Lambda=\{0\}$,
$V \subset U \cap F$, and let ρ be a probability measure in $M(\hat{F})(\hat{F}$ is the dual group of F) such that supp $\hat{\rho} \subset V$. Then, we define the functions $\hat{\rho}$ and $\hat{J} \hat{\mu}$ on \hat{G} by

$$
\begin{align*}
& \hat{\hat{\rho}}(\gamma)=\left\{\begin{array}{l}
\hat{\rho}(\gamma) ; \gamma \in F \\
0 ; \gamma \notin F
\end{array}\right. \tag{4}\\
& (\hat{J} \hat{\mu})(\gamma)=\sum_{a \in \Lambda} \hat{\mu}(\alpha) \hat{\hat{\rho}}(\gamma-\alpha) \quad(\gamma \in \hat{G}, \hat{\mu} \in B(\Lambda))
\end{align*}
$$

By theorem 2, $\hat{J} \hat{\mu}$ is an element of $B\left(\hat{G}_{\tau}\right)$ which has the properties $\left.{ }^{*}\right)$. If we can show that $\hat{J} \hat{\mu}$ is continuous in the original topology of \hat{G}, we have $\hat{J} \hat{\mu} \in B(\hat{G})$ with the properties i), ii), iii) and vi) of (*) in theorem 2.

Let $\gamma_{0} \in \hat{G}$, and let $\left(\gamma_{\beta}\right)_{\beta \in B} \subset \hat{G}$ be a net which converges to γ_{0} in the topology of G. In the first, we consider the case that $\gamma_{0} \in(\Lambda+\operatorname{supp}(\hat{\hat{\rho}}))^{0}$ (the set of the interior points of $\Lambda+\operatorname{supp}(\hat{\hat{\rho}})$ in \hat{G}). Then, we may assume $\gamma_{\beta} \in \Lambda+\operatorname{supp}(\hat{\hat{\rho}})(\beta \in B)$. Write $\gamma_{0}=\alpha_{0}+t_{0}, \gamma_{\beta}=\alpha_{\beta}+t_{\beta}(\beta \in B)$, where $\alpha_{0}, \alpha_{\beta} \in \Lambda$ and $t_{0}, t_{\beta} \in \operatorname{supp}(\hat{\hat{\rho}})$. These expressions are unique by the condition $\Lambda \cap(V-$ $V)=\{0\}$. Since Λ contains $L, \Lambda+V_{1}$ contains a neighborhood of γ_{0} for each neighborhood V_{1} of t_{0} in F. This shows that $\lim t_{\beta}=t_{0}, \lim \alpha_{\beta}=\alpha_{0}$, and we ., have

$$
\begin{aligned}
\lim \hat{J} \hat{\mu}\left(\gamma_{\beta}\right) & =\lim \sum_{\alpha \in \Lambda} \hat{\mu}(\alpha) \hat{\hat{\rho}}\left(\gamma_{\beta}-\alpha\right)=\lim \hat{\mu}\left(\alpha_{\beta}\right) \hat{\boldsymbol{\rho}}\left(t_{\beta}\right) \\
& =\hat{\mu}\left(\gamma_{0}\right) \hat{\hat{\rho}}\left(t_{0}\right)=\hat{J} \hat{\mu}\left(\gamma_{0}\right) \quad(\hat{\mu} \in B(\Lambda))
\end{aligned}
$$

Next, if $\gamma_{0} \in \partial_{\hat{G}}(\Lambda+\operatorname{supp}(\hat{\hat{\rho}}))$ (the boundary of $\Lambda+\operatorname{supp}(\hat{\hat{\rho}})$ in \hat{G}), we have $\gamma_{0}=\alpha_{0}+t_{0}$ with $t_{0} \in \partial_{F}(\operatorname{supp}(\hat{\hat{\rho}}))$ and $\alpha_{0} \in \Lambda$, since $\Lambda+\operatorname{supp}(\hat{\hat{\rho}})$ is closed in \hat{G}. Let $B^{\prime}=\left\{\beta \in B \mid \gamma_{\beta} \in \Lambda+\operatorname{supp}(\hat{\hat{\rho}})\right\}$, and put $\gamma_{\beta}=\alpha_{\beta}+t_{\beta}\left(\beta \in B^{\prime}\right)$ with $\alpha_{\beta} \in \Lambda$, $t_{\beta} \in \operatorname{supp}(\hat{\hat{\rho}})$. Then we have

$$
\hat{J} \hat{\mu}\left(\gamma_{\beta}\right)=\left\{\begin{array}{cc}
\hat{\mu}\left(\alpha_{\beta}\right) \hat{\rho}\left(t_{\beta}\right) ; & \beta \in B^{\prime} \\
0 ; & B \backslash B^{\prime}
\end{array}\right.
$$

If B^{\prime} is a cofinal set of B, we have $\lim _{\beta \in B^{\prime}} \alpha_{\beta}=\alpha_{0}, \lim _{\beta \in B^{\prime}} t_{\beta}=t_{0}$ in \hat{G} as above, and

$$
\begin{aligned}
\lim _{\beta \in B^{\prime}} \hat{J} \hat{\mu}\left(\gamma_{\beta}\right) & =\lim _{\beta \in B^{\prime}} \hat{\mu}\left(\alpha_{\beta}\right) \hat{\rho}\left(t_{\beta}\right) \\
& =\hat{\mu}\left(\alpha_{0}\right) \hat{\rho}\left(t_{0}\right)=\hat{J} \hat{\mu}\left(\gamma_{0}\right)=0 .
\end{aligned}
$$

Since $\hat{J} \hat{\mu}\left(\gamma_{\beta}\right)=0 \quad\left(\beta \in B \backslash B^{\prime}\right)$, we have $\lim _{\beta \in B} \hat{J} \hat{\mu}\left(\gamma_{\beta}\right)=0=\hat{J} \hat{\mu}\left(\gamma_{0}\right)$ whether B^{\prime} is a cofinal set of B or not.

In the last case, if $\gamma_{0} \notin \Lambda+\operatorname{supp}(\hat{\hat{\rho}})$, we have at once $\lim \hat{J} \hat{\mu}\left(\gamma_{\beta}\right)=0=$ $\hat{J} \hat{\mu}\left(\gamma_{0}\right)$ since $\operatorname{supp} \hat{J} \hat{\mu} \subset \Lambda+\operatorname{supp}(\hat{\boldsymbol{\rho}})$.

To prove iv), let $\hat{\mu} \in A(\Lambda)$ be arbitrary and choose $\hat{\mu}_{k} \in A(\Lambda)(k=1,2, \cdots)$
with compact support such that $\lim \left\|\hat{\mu}_{k}-\hat{\mu}\right\|=0$. Since supp $\hat{J} \hat{\mu}_{k}$ is contained in the compact set supp $\hat{\mu}_{k}+\operatorname{supp} \hat{\hat{\rho}}$, we have $\hat{J} \dot{\hat{\mu}}_{k} \in A(\hat{G})$. Thus, by lim $\left\|\hat{J} \hat{\mu}_{k}-\hat{J} \hat{\mu}\right\|=\lim \left\|\hat{\mu}_{k}-\hat{\mu}\right\|=0$, we get $\hat{J} \hat{\mu} \in A(\hat{G})$.

To prove v), we use the Doss's criterion on singular measures ([2] $)$. Let $\hat{\mu} \in B_{s}(\Lambda)$, and let C be an arbitrary compact set of \hat{G}, and $\varepsilon>0$. Since $\Lambda \cap C$ is compact, we have by [2] a trigonometric polynomial $\bar{P}(\dot{x})=\sum_{i=1}^{s} c_{i}$ $\left(-\dot{x}, \gamma_{i}\right) \quad\left(\gamma_{i} \stackrel{\ell}{\in} \Lambda \backslash C\right)$ on G / H such that $\left|\sum_{i=1}^{s \prime} c_{i} \mu\left(\gamma_{i}\right)\right|>\|\mu\|-\varepsilon, \sup _{\dot{x} \in G / H}|\dot{P}(\dot{x})| \leqq 1$. Then the trigonometric polynomial $P(x)=\sum_{i=1}^{s} c_{i}\left(-x, \gamma_{i}\right)$ on G satisfies

$$
\left|\sum_{i=1}^{s} c_{i} \hat{J} \hat{\mu}\left(\gamma_{i}\right)\right|=\left|\sum_{i=1}^{s} c_{i} \hat{\mu}\left(\gamma_{i}\right)\right|>\left|\|\hat{\mu}\|-\varepsilon=\|\hat{J} \hat{\mu}\|-\varepsilon, \sup _{x \in G}\right| P(x) \mid \leqq 1
$$

and we have, by [2] again, $\hat{J} \hat{\mu} \in B_{s}(\hat{G})$.
(II). Next, we consider the case $K \neq\{0\}$. Here, we express by π the natural map of \hat{G} onto \hat{G} / K. If G_{0} and H are the annihilator of K and Λ respectively, we have $G_{0} \supset H$ and G_{0} is open in G. Since G_{0} is the dual group of $G / K=L \times F$ and H is the annihilator in G_{0} of the closed subgroup $\Lambda / K=L \times D$ of G / K, we have by (I) a linear map J_{0} of $M\left(G_{0} / H\right)$ into $M\left(G_{0}\right)$ which satisfies $\left({ }^{* *}\right)$ of remark 1 and

$$
\begin{equation*}
\left(J_{0} \mu\right) \hat{(}(\gamma)=\sum_{\alpha \in 1 / K} \hat{\mu}(\alpha) \cdot \hat{\rho}(\gamma-\alpha) \quad\left(\mu \in M\left(G_{0} / H\right), \gamma \in \hat{G} / K\right) \tag{5}
\end{equation*}
$$

where $\hat{\hat{\rho}}$ is a function on \hat{G} / K defined by (4) for some probability measure $\rho \in M(\hat{F})$ with $\operatorname{supp} \hat{\rho} \subset \pi(U) \cap F$.

We now define a map J of $M(G / H)$ into $M(G)$. Choose a subset $\left\{x_{\xi}\right\}_{\xi \in G / G_{0}} \subset G$, such that the set $\left\{\dot{x}_{\xi}=x_{\xi}+H\right\}_{\xi \in G / G_{0}}$. becomes a, complete set of representatives of $(G / H) /\left(G_{0} / H\right)$ by G_{0} / H, and put

$$
\begin{equation*}
J \mu=\sum_{\xi \in G / G_{0}}\left[J_{0}\left(\left(\left.\mu\right|_{\left(G_{0} / H\right)+\dot{x}_{\xi}}\right)\left(* \delta_{-\dot{x}_{\xi}}\right)\right] * \delta_{x_{\xi}} \quad(\mu \in M(G / H))\right. \tag{6}
\end{equation*}
$$

For each $\mu \in M(G / H)$, the set $\left\{\xi \in G / G_{0}: \mu_{\left(G_{0} / H\right)+\dot{x}_{\xi}} \neq 0\right\}$ is at most countable, and the map J is well defined. It is easy to see that J is linear and satisfies $(* *)$ of remark 1 except i) and vi).

Let $\mu \in M(G / H)$ and $\gamma \in \Lambda$ arbitrary. Then we have from (6) and the property (${ }^{* *)}$ i) of J_{0} that

$$
\begin{aligned}
(J \mu) \hat{(\gamma)} & =\sum_{\xi \in \theta / \sigma_{0}}\left[J _ { 0 } \left(\left(\left.\mu\right|_{\left.\left(G_{0} / H\right)+\dot{\xi}_{\xi}\right)} * \delta_{-\dot{x}_{\xi}}\right) \hat{]}(\dot{\gamma})\left(-x_{\xi}, \gamma\right)\right.\right. \\
& =\sum_{\xi \in \vec{\sigma} / \boldsymbol{\theta}_{0}}\left(\left(\left.\mu\right|_{\left(G_{0} / H\right)+\dot{x}_{\xi}}\right) * \dot{\delta}_{\left.-\dot{x}_{\xi}\right)} \hat{r}(\dot{\gamma})\left(-x_{\xi}, \gamma\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\xi \in G / \sigma_{0}}\left(\left(\left.\mu\right|_{\left(G_{0} / H\right)+\dot{x}_{\xi}}\right) * \delta_{\left.-\dot{x}_{\xi}\right)}\right)(\gamma)\left(-x_{\xi}, \gamma\right) \\
& =\sum_{\xi \in G / \sigma_{0}}\left(\left.\mu\right|_{\left.\left(G_{0} / H\right)+\dot{x}_{\xi}\right)}\right)(\gamma)=\hat{\mu}(\gamma),
\end{aligned}
$$

where $\dot{\gamma}=\gamma+K \in \Lambda / K$. Thus i) holds.
To prove vi), we use lemma 2. By (1) and (5) we have

$$
\begin{equation*}
\operatorname{supp}\left(J_{0}\left(\left.\mu\right|_{\left(\epsilon_{0} / H\right)+\dot{x}_{\xi}} * \delta_{-\dot{x}_{\xi}}\right) \hat{)} \subset \pi(\operatorname{supp}(\hat{\mu}))+\pi(U) \quad\left(\xi \in G / G_{0}\right)\right. \tag{7}
\end{equation*}
$$

Then we get from (6) and (7) that

$$
\operatorname{supp}(J \mu) \subset \operatorname{supp}(\hat{\mu})+K+U \subset \operatorname{supp}(\hat{\mu})+W
$$

and this proves vi), and the proof is complete.
Remark 2. In [7], analogous lifting operators are constructed and used under the special setting of the paper.

References

[1] D. L. ARmAcost: The structure of locally compact abelian groups, M. Dekker Inc., 1981.
[2] R. Doss: On the transform of a singular or an absolutely continuous measures, Proc. Amer. Math. Soc., 19 (1968) pp. 361-363.
[3] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis I, Berlin, Springer 1963.
[4] A. MACLEAN: Transforms of measures on quotients and spline functions, Trans. A. M. S. 261 no. 1 (1980) pp. 287-296.
[5] L. Pigno and S. SAEKI: Construction of singular measures with remarkable convolution properties, Studia Math., LXIX (1980) pp. 133-141.
[6] W. RUDIN: Fourier analysis on groups, Interscience New York 1962.
[7] H. Yamaguchi: Some multipliers on the space consisting of measures of analytic type, Hokkaido Math Jour., XI no. 2 (1982) pp. 173-200.

Department of Mathematics
Hokkaido University

