On a lifting problem of Fourier-Stieltjes transforms of measures

By Jyunji INOUE

(Received April 17, 1982; Revised October 13, 1982)

Let G and \hat{G} be a LCA group and its dual group, respectively. M(G)denotes the measure algebra on G, the Banach algebra of bounded regular complex Borel measures on G with convolution multiplication and total variation norm $||\cdot||$. $M_a(G)$ and $M_s(G)$ express the space of absolutely continuous measures and the space of singular measures on G with respect to the Haar measure of G, respectively. For $\mu \in M(G)$, $\hat{\mu}$ denotes the Fourier-Stieltjes transform of μ , and we put $B(\hat{G}) = \{\hat{\mu} | \mu \in M(G)\}, A(\hat{G}) =$ $\{\hat{\mu} | \mu \in M_a(G)\}, B_s(\hat{G}) = \{\hat{\mu} | \mu \in M_s(G)\}. B(\hat{G})$ is a Banach algebra with respect to the pointwise multiplication and the norm $||\hat{\mu}|| = ||\mu||$.

Let Λ be a closed subgroup of \hat{G} . The following theorem is well-known ([6]).

Theorem 1. $B(\hat{G})|_A = B(\Lambda), \ A(\hat{G})|_A = A(\Lambda).$

It follows from theorem 1 that each member of $B(\Lambda)$ (resp. $A(\Lambda)$) can be lifted to a member of $B(\hat{G})$ (resp. $A(\hat{G})$), but it is not clear whether there exist any liftings which are linear maps from $B(\Lambda)$ to $B(\hat{G})$ (resp. from $A(\Lambda)$ to $A(\hat{G})$).

On the other hand, in the recent papers [4] and [5], we can find partial answers to this lifting problem.

THEOREM 2 (cf. [4] and [5]). Let Λ be a discrete subgroup of \hat{G} , let H be the annihilator of Λ in G, and let W be a neighborhood of $0 \in \hat{G}$. Choose a neighborhood U of $0 \in \hat{G}$ and a probability measure $\rho \in M_a(G)$ such that supp $\hat{\rho} \subset U \subset W$ and $(U-U) \cap \Lambda = \{0\}$, and put

$$\hat{J}\hat{\mu}(\gamma) = \sum_{\alpha \in A} \hat{\mu}(\alpha) \,\hat{\rho}(\gamma - \alpha) \qquad (\hat{\mu} \in B(\Lambda), \, \gamma \in \hat{G}) \,.$$

Then we have $\hat{J}\hat{\mu} \in B(\hat{G})$ with the following additional properties.

i) $\hat{J}\hat{\mu}|_{A} = \hat{\mu},$

ii)
$$||\hat{J}\hat{\mu}|| = ||\hat{\mu}||,$$

(*) iii) $\hat{J}\hat{\mu}$ is positive definite if $\hat{\mu}$ is positive definite,

iv) $\hat{J}\hat{\mu} \in A(\hat{G})$ if $\hat{\mu} \in A(\Lambda)$, v) $\hat{J}\hat{\mu} \in B_s(\hat{G})$ if $\hat{\mu} \in B_s(\Lambda)$, vi) $\operatorname{supp}(\hat{J}\hat{\mu}) \subset \operatorname{supp}(\hat{\mu}) + W$.

REMARK 1. In theorem 2, we can consider $\hat{J}\hat{\mu}$ the Fourier-Stieltjes transform of a uniquely determined measure $J\mu \in M(G)$, and then J becomes a linear map of M(G/H) into M(G) with the following properties.

- i) $(J\mu)_{\lambda} = \hat{\mu}$,
- ii) $||J\mu|| = ||\mu||$,

(**) iii) $J\mu \ge 0$ if $\mu \ge 0$,

- iv) $J\mu \in M_a(G)$ if $\mu \in M_a(G/H)$,
- v) $J\mu \in M_s(G)$ if $\mu \in M_s(G/H)$,
- vi) $\operatorname{supp}(J\mu) \subset \operatorname{supp}(\hat{\mu}) + W$.

Obviously, the existence of \hat{J} with (*) and the existence of J with (**) are equivalent each other.

The purpose of this paper is to prove the following theorem 3 which gives an answer to the lifting problem stated above.

THEOREM 3. If Λ is a closed subgroup of \hat{G} , and if W is a neighborhood of $0 \in \hat{G}$, there exists a linear map \hat{J} of $B(\Lambda)$ into $B(\hat{G})$ which satisfies (*) of theorem 2.

To prove theorem 3, we provide two lemmas. \mathbf{R}^n and \mathbf{T}^n denote the *n*-fold products of the real groups and the circle groups, respectively.

LEMMA 1. For each neighborhood U of $0 \in \hat{G}$, there exists a compact subgroup K of \hat{G} contained in $U \cap \Lambda$ such that \hat{G}/K and Λ/K split into direct sums of the forms

$$\hat{G}/K = L \times F$$
, $\Lambda/K = L \times D$,

where L is an open subgroup of Λ/K and F is a closed subgroup of \hat{G}/K .

PROOF. By the structure theorem of LCA groups, Λ contains an open subgroup of the form $\mathbb{R}^m \times K'$ with a compact subgroup K' of Λ . By (24.7) of [3], there exists a compact subgroup K contained in $K' \cap U$ such that $K'/K = \mathbb{T}^n \times F'$ with a finite subgroup F' of K'/K. Hence Λ/K contains an open subgroup L isomorphic to $\mathbb{R}^m \times \mathbb{T}^n$, and by theorem 6.16 of [1], there exists a discrete subfroup D of Λ/K such that $\Lambda/K = L \times D$. Likewise, since L is a closed subgroup of \hat{G}/K , there exists a closed subgroup F of \hat{G}/K such that $\hat{G}/K = L \times F$.

LEMMA 2. Let K be a compact subgroup of Λ and let H and G_0 be the annihilator of Λ and K in G, respectively. For each $\mu \in M(G/H)$, we denote by $\mu|_{(G_0/H)+x}$ the restriction of μ to a coset $(G_0/H)+x \in (G/H)/(G_0/H)$. Then the Fourier-Stieltjes transform of $(\mu|_{(G_0/H)+x})*\delta_{-x}$ is given by

$$\left(\left(\mu|_{(G_0/H)+x}\right)*\delta_{-x}\right)(\gamma) = \left(\left((x, \cdot)\hat{\mu}\right)*m_K\right)(\gamma) \qquad (\gamma \in \Lambda), \qquad (1)$$

where δ_{-x} denotes the dirac measure at $-x \in G/H$, and $m_{\kappa} \in M(\Lambda)$ denotes the normalized Haar measure of K.

PROOF. First, suppose that $\operatorname{supp}(\hat{\mu})$ is compact. If $\check{}$ denotes the inverse Fourier transform, we have by the inversion theorem

$$\left(\left((x, \cdot) \hat{\mu}\right) * m_{K}\right) = (\mu * \delta_{-x}) \cdot \chi_{G_{0}/H} = \left(\mu|_{(G_{0}/H) + x}\right) * \delta_{-x} \left(\in M_{a}(G/H) \right).$$

where $\chi_{G_0/H}$ is the characteristic function of G_0/H . Hence (1) holds.

Next, we consider the general case. For each $\gamma_0 \in \Lambda$, there exists $\nu \in M_a$ (G/H) such that supp $(\hat{\nu})$ is comact, $\hat{\nu}|_{K+r_0} = 1$ and supp $(\nu) \subset G_0/H$, then we have

$$\begin{pmatrix} \left((\mu * \nu) |_{(G_0/H) + x} \right) * \delta_{-x} \right) (\gamma_0) = \left(\left(\mu |_{(G_0/H) + x} \right) * \delta_{-x} \right) (\gamma_0), \\ \left(\left((x, \gamma') \ \hat{\mu}(\gamma') \ \hat{\nu}(\gamma') \right) * m_K \right) (\gamma_0) = \left(\left((x, \gamma') \ \hat{\mu}(\gamma') \right) * m_K \right) (\gamma_0).$$
(2)

From the first paragraph we have

$$\left(\left((\mu*\nu)|_{(G_0/H)+x}\right)*\delta_{-x}\right)(\gamma_0) = \left(\left((x,\gamma')\ \hat{\mu}(\gamma')\ \hat{\nu}(\gamma')\right)*m_K\right)(\gamma_0). \tag{3}$$

we get (1) from (2) and (3).

PROOF OF THEOREM 3. Let U be a compact neighborhood of $0 \in \hat{G}$ such that $U+U \subset W$. By lemma 1 there exists a compact subgroup K of \hat{G} contained in $\Lambda \cap U$ such that \hat{G}/K and Λ/K split into direct sums of the form $\hat{G}/K = L \times F$ and $\Lambda/K = L \times D$ with a closed subgroup F of \hat{G}/K and a discrete subgroup D of Λ/K , respectively.

(1). First, we consider the case $K = \{0\}$. Let τ be the group topology of \hat{G} such that F with the subspace topology inherit from \hat{G} forms an open subgroup of \hat{G} with respect to τ . Obviously, τ is stronger than the original topology of \hat{G} . Since $L \cap F = \{0\}$ Λ is a discrete subgroup in the new topology τ . The group \hat{G} with the topology τ forms a LCA group, which will be denoted by \hat{G}_r .

Let V be a compact neighborhood of $0 \in \hat{G}_r$ such that $(V-V) \cap \Lambda = \{0\}$,

J. Inoue

 $V \subset U \cap F$, and let ρ be a probability measure in $M(\hat{F})$ (\hat{F} is the dual group of F) such that $\operatorname{supp} \hat{\rho} \subset V$. Then, we define the functions $\hat{\rho}$ and $\hat{J}\hat{\mu}$ on \hat{G} by

$$\widehat{\rho}(\gamma) = \begin{cases} \widehat{\rho}(\gamma) ; \ \gamma \in F \\ 0 ; \ \gamma \in F \end{cases}$$

$$(\widehat{J}\widehat{\mu})(\gamma) = \sum_{\alpha \in A} \widehat{\mu}(\alpha) \ \widehat{\rho}(\gamma - \alpha) \qquad (\gamma \in \widehat{G}, \ \widehat{\mu} \in B(\Lambda)).$$
(4)

By theorem 2, $\hat{J}\hat{\mu}$ is an element of $B(\hat{G}_{\tau})$ which has the properties (*). If we can show that $\hat{J}\hat{\mu}$ is continuous in the original topology of \hat{G} , we have $\hat{J}\hat{\mu} \in B(\hat{G})$ with the properties i), ii), iii) and vi) of (*) in theorem 2.

Let $\gamma_0 \in \hat{G}$, and let $(\gamma_{\beta})_{\beta \in B} \subset \hat{G}$ be a net which converges to γ_0 in the topology of \hat{G} . In the first, we consider the case that $\gamma_0 \in (\Lambda + \operatorname{supp}(\hat{\rho}))^0$ (the set of the interior points of $\Lambda + \operatorname{supp}(\hat{\rho})$ in \hat{G}). Then, we may assume $\gamma_{\beta} \in \Lambda + \operatorname{supp}(\hat{\rho})$ ($\beta \in B$). Write $\gamma_0 = \alpha_0 + t_0$, $\gamma_{\beta} = \alpha_{\beta} + t_{\beta}$ ($\beta \in B$), where α_0 , $\alpha_{\beta} \in \Lambda$ and t_0 , $t_{\beta} \in \operatorname{supp}(\hat{\rho})$. These expressions are unique by the condition $\Lambda \cap (V - V) = \{0\}$. Since Λ contains L, $\Lambda + V_1$ contains a neighborhood of γ_0 for each neighborhood V_1 of t_0 in F. This shows that $\lim t_{\beta} = t_0$, $\lim \alpha_{\beta} = \alpha_0$, and we have

$$egin{aligned} &\lim \hat{J}\hat{\mu}(\gamma_{\scriptscriptstyleeta}) = \lim \sum\limits_{lpha \in A} \hat{\mu}(lpha) \ \widehat{
ho}(\gamma_{\scriptscriptstyleeta} - lpha) = \lim \hat{\mu}(lpha_{\scriptscriptstyleeta}) \ \widehat{
ho}(t_{\scriptscriptstyleeta}) \ &= \hat{\mu}(\gamma_{\scriptscriptstyle 0}) \ \widehat{
ho}(t_{\scriptscriptstyle 0}) = \hat{J}\hat{\mu}(\gamma_{\scriptscriptstyle 0}) \quad \left(\hat{\mu} \!\in\! B(A)
ight). \end{aligned}$$

Next, if $\gamma_0 \in \partial_{\hat{G}} (\Lambda + \operatorname{supp} (\hat{\rho}))$ (the boundary of $\Lambda + \operatorname{supp} (\hat{\rho})$ in \hat{G}), we have $\gamma_0 = \alpha_0 + t_0$ with $t_0 \in \partial_F (\operatorname{supp} (\hat{\rho}))$ and $\alpha_0 \in \Lambda$, since $\Lambda + \operatorname{supp} (\hat{\rho})$ is closed in \hat{G} . Let $B' = \{\beta \in B | \gamma_{\beta} \in \Lambda + \operatorname{supp} (\hat{\rho})\}$, and put $\gamma_{\beta} = \alpha_{\beta} + t_{\beta} (\beta \in B')$ with $\alpha_{\beta} \in \Lambda$, $t_{\beta} \in \operatorname{supp} (\hat{\rho})$. Then we have

$$\hat{J}\hat{\mu}(\gamma_{\scriptscriptstyleeta}) = egin{cases} \hat{\mu}(lpha_{\scriptscriptstyleeta}) \ ar{
ho}(t_{\scriptscriptstyleeta}) \ ; \ eta \in B' \ 0 \ ; \ Bar{B'}.$$

If B' is a cofinal set of B, we have $\lim_{\beta \in B'} \alpha_{\beta} = \alpha_{0}$, $\lim_{\beta \in B'} t_{\beta} = t_{0}$ in \hat{G} as above, and

$$egin{aligned} &\lim_{eta\in B'} \hat{J}\hat{\mu}(\gamma_{eta}) = \lim_{eta\in B'} \hat{\mu}(lpha_{eta}) \; \hat{
ho}(t_{eta}) \ &= \hat{\mu}(lpha_0) \; \hat{
ho}(t_0) = \hat{J}\hat{\mu}(\gamma_0) = 0 \,. \end{aligned}$$

Since $\hat{J}\hat{\mu}(\gamma_{\beta})=0$ ($\beta \in B \setminus B'$), we have $\lim_{\beta \in B} \hat{J}\hat{\mu}(\gamma_{\beta})=0=\hat{J}\hat{\mu}(\gamma_{0})$ whether B' is a cofinal set of B or not.

In the last case, if $\gamma_0 \in \Lambda + \operatorname{supp}(\hat{\rho})$, we have at once $\lim \hat{J}\hat{\mu}(\gamma_{\rho}) = 0 = \hat{J}\hat{\mu}(\gamma_0)$ since $\operatorname{supp} \hat{J}\hat{\mu} \subset \Lambda + \operatorname{supp}(\hat{\rho})$.

To prove iv), let $\hat{\mu} \in A(\Lambda)$ be arbitrary and choose $\hat{\mu}_k \in A(\Lambda)$ $(k=1, 2, \cdots)$

with compact support such that $\lim ||\hat{\mu}_k - \hat{\mu}|| = 0$. Since $\operatorname{supp} \hat{J}\hat{\mu}_k$ is contained in the compact set $\operatorname{supp} \hat{\mu}_k + \operatorname{supp} \hat{\rho}$, we have $\hat{J}\hat{\mu}_k \in A(\hat{G})$. Thus, by $\lim ||\hat{J}\hat{\mu}_k - \hat{J}\hat{\mu}|| = \lim ||\hat{\mu}_k - \hat{\mu}|| = 0$, we get $\hat{J}\hat{\mu} \in A(\hat{G})$.

To prove v), we use the Doss's criterion on singular measures ([2]). Let $\hat{\mu} \in B_s(\Lambda)$, and let C be an arbitrary compact set of \hat{G} , and $\varepsilon > 0$. Since $\Lambda \cap C$ is compact, we have by [2] a trigonometric polynomial $\bar{P}(\dot{x}) = \sum_{i=1}^{s} c_i$ $(-\dot{x}, \gamma_i)$ $(\gamma_i \in \Lambda \setminus C)$ on G/H such that $|\sum_{i=1}^{s} c_i \mu(\gamma_i)| > ||\mu|| - \varepsilon$, $\sup_{x \in G/H} |P(\dot{x})| \leq 1$. Then the trigonometric polynomial $P(x) = \sum_{i=1}^{s} c_i(-x, \gamma_i)$ on G satisfies

$$\left|\sum_{i=1}^{s} c_{i} \hat{J} \hat{\mu}(\gamma_{i})\right| = \left|\sum_{i=1}^{s} c_{i} \hat{\mu}(\gamma_{i})\right| > ||\hat{\mu}|| - \varepsilon = ||\hat{J} \hat{\mu}|| - \varepsilon, \quad \sup_{x \in \mathcal{G}} \left|P(x)\right| \leq 1;$$

and we have, by [2] again, $\hat{J}\hat{\mu} \in B_s(\hat{G})$.

1.1

(II). Next, we consider the case $K \neq \{0\}$. Here, we express by π the natural map of \hat{G} onto \hat{G}/K . If G_0 and H are the annihilator of K and Λ respectively, we have $G_0 \supset H$ and G_0 is open in G. Since G_0 is the dual group of $\hat{G}/K = L \times F$ and H is the annihilator in G_0 of the closed subgroup $\Lambda/K = L \times D$ of \hat{G}/K , we have by (I) a linear map J_0 of $M(G_0/H)$ into $M(G_0)$ which satisfies (**) of remark 1 and

$$(J_0\mu)(\gamma) = \sum_{\alpha \in A/K} \hat{\mu}(\alpha) \hat{\rho}(\gamma - \alpha) \qquad \left(\mu \in M(G_0/H), \ \gamma \in \hat{G}/K\right) \qquad (5)$$

where $\hat{\rho}$ is a function on \hat{G}/K defined by (4) for some probability measure $\rho \in M(\hat{F})$ with supp $\hat{\rho} \subset \pi(U) \cap F$.

We now define a map J of M(G/H) into M(G). Choose a subset $\{x_{\mathfrak{k}}\}_{\mathfrak{e}\in G/G_0}\subset G$ such that the set $\{\dot{x}_{\mathfrak{e}}=x_{\mathfrak{e}}+H\}_{\mathfrak{e}\in G/G_0}$ becomes a complete set of representatives of $(G/H)/(G_0/H)$ by G_0/H , and put

$$J\mu = \sum_{\xi \in G/G_0} \left[J_0 \left((\mu |_{(G_0/H) + \dot{x}_{\xi})} (*\delta_{-\dot{x}_{\xi}}) \right] * \delta_{x_{\xi}} \qquad \left(\mu \in M(G/H) \right) \quad (6)$$

For each $\mu \in M(G/H)$, the set $\{\xi \in G/G_0 : \mu|_{(G_0/H)+x_{\xi}} \neq 0\}$ is at most countable, and the map J is well defined. It is easy to see that J is linear and satisfies (**) of remark 1 except i) and vi).

Let $\mu \in M(G/H)$ and $\gamma \in \Lambda$ arbitrary. Then we have from (6) and the property (**) i) of J_0 that

$$(J\mu)(\gamma) = \sum_{\xi \in G/G_0} \left[J_0((\mu|_{(G_0/H) + \dot{x}_{\xi}}) * \delta_{-\dot{x}_{\xi}}) \right] (\dot{\gamma}) (-x_{\xi}, \gamma)$$
$$= \sum_{\xi \in G/G_0} \left((\mu|_{(G_0/H) + \dot{x}_{\xi}}) * \delta_{-\dot{x}_{\xi}} \right) (\dot{\gamma}) (-x_{\xi}, \gamma)$$

J. Inoue

$$\begin{split} &= \sum_{\boldsymbol{\xi} \in \boldsymbol{G} / \boldsymbol{G}_{0}} \left((\mu|_{\langle \boldsymbol{G}_{0} / \boldsymbol{H} \rangle + \dot{\boldsymbol{x}}_{\boldsymbol{\xi}}}) \ast \boldsymbol{\delta}_{-\dot{\boldsymbol{x}}_{\boldsymbol{\xi}}} \right) (\boldsymbol{\gamma}) (-\boldsymbol{x}_{\boldsymbol{\xi}}, \boldsymbol{\gamma}) \\ &= \sum_{\boldsymbol{\xi} \in \boldsymbol{G} / \boldsymbol{G}_{0}} (\mu|_{\langle \boldsymbol{G}_{0} / \boldsymbol{H} \rangle + \dot{\boldsymbol{x}}_{\boldsymbol{\xi}}}) (\boldsymbol{\gamma}) = \hat{\mu} (\boldsymbol{\gamma}) , \end{split}$$

where $\dot{r} = \gamma + K \in \Lambda/K$. Thus i) holds.

To prove vi), we use lemma 2. By (1) and (5) we have

$$\operatorname{supp}\left(J_{0}(\mu|_{G_{0}/H_{\ell}+\dot{x}_{\xi}})^{*}\delta_{-\dot{x}_{\xi}}\right) \subset \pi\left(\operatorname{supp}\left(\hat{\mu}\right)\right) + \pi\left(U\right) \qquad (\xi \in G/G_{0}). \quad (7)$$

Then we get from (6) and (7) that

 $\operatorname{supp} (J\hat{\mu}) \subset \operatorname{supp} (\hat{\mu}) + K + U \subset \operatorname{supp} (\hat{\mu}) + W,$

and this proves vi), and the proof is complete.

REMARK 2. In [7], analogous lifting operators are constructed and used under the special setting of the paper.

References

- D. L. ARMACOST: The structure of locally compact abelian groups, M. Dekker Inc., 1981.
- [2] R. Doss: On the transform of a singular or an absolutely continuous measures, Proc. Amer. Math. Soc., 19 (1968) pp. 361-363.
- [3] E. HEWITT and K. A. ROSS: Abstract Harmonic Analysis I, Berlin, Springer 1963.
- [4] A. MACLEAN: Transforms of measures on quotients and spline functions, Trans. A. M. S. 261 no. 1 (1980) pp. 287-296.
- [5] L. PIGNO and S. SAEKI: Construction of singular measures with remarkable convolution properties, Studia Math., LXIX (1980) pp. 133-141.
- [6] W. RUDIN: Fourier analysis on groups, Interscience New York 1962.
- [7] H. YAMAGUCHI: Some multipliers on the space consisting of measures of analytic type, Hokkaido Math Jour., XI no. 2 (1982) pp. 173-200.

Department of Mathematics Hokkaido University

118