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A discrete analogue of the inequality of Lyapunov

By Sui-Sun CHENG
(Received June 21, 1982; Revised September 10, 1982)

1. This paper is concerned with the difference equation

(1) \Delta^{2}x(k-1)+p(k)x(k)=0

where p(k) is a real valued function defifined on a set of consecutive integers
to be specified later. Our work is motivated by a classical result of Lyapunov
[2] which states that if x(t) is a nontrivial solution of the differential system

(2) x^{\acute{\prime}}(t)+p(t)x(t)=0 a\leq t\leq b

(3) x(a)=0, x(b)=0

where p(t) is a continuous and non-ngeative function defined on [a, b] , then

(4) (b-a) \int_{a}^{b}p(s)ds>4

and the inequality is sharp. In view of the obvious similarity between the
equations (1) and (2), we expect to fifind discrete analogoues of (4) which
are necessary for the existence of a non-trivial solution of (1) satisfying
certain boundary conditions.

In the next section, we shall assume that p(k) is a non-negative function
defined on the set \{1, 2, \cdots, N\} and derive a condition which is necessary
for (1) to have a non-trivial solution x(k) satisfying x(0)=0 and x(N+1)=0.
Under the same assumption on p(k) , we then derive in the third section
a more general condition which is necessary for the same equation to have
a nontrivial solution x(k) satisfying x(0)+\sigma x(1)=0 and x(N+1)+\lambda x(N)=0

where \sigma and \lambda are non-negative real numbers. We could have omitted the
next section entirely but include it here for constrasting the principles and
computations involved. In the final section, we use a comparison theorem
to deal with the case when p(k) can take on nonpositive values.

2. In the sequel, the smallest integer which is larger than or equal
to the real number t will be denoted by t^{+} . Let A_{n}=(a(i,j)) be the n by
n tridiagonal matrix defined by

a(i, j)=
.2
-1
0

i=j
|i-j|=1

otherwise.
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Let G_{n}=(g(i,j)) be the n by n matrix defined by

g(i,j)=\{
(n-i+1)j 1\leq j\leq i

(n-j+1)i i\leq j\leq nl

The elements of G_{n} are clearly positive. Furthermore, we may easily verified
that

(5) \max_{1\leq i,j\leq n}\{g(i,j)\}=g_{(}^{\prime’}(n/2)^{+} , (n/2)^{+})=\backslash (n-(n/2)^{+}+1)(n/2)^{+} ,

and that (n+1)^{-1}G_{n} is the inverse of A_{n} .

If p(k) is a non-negative function defined on \{1, 2, \cdots, N\} and if x(k) ,
0\leq k\leq N+1 , is a nontrivial solution of (1) satisfying x(0)=0 and x(N+1)
=0, then the vector

\sim x=co1(x(1), x(2) , \cdots , x(N))

satisfies the matrix equation

(6) A_{N}x-\sim diag (p(1), p(2) , \cdots , p(N))\sim x=0 .

Multiplying the above equation by (N+1)^{-1}G_{N}, we obtain

\sim x=(N+1)^{-1}G_{N} diag (p(1), \cdots , p(N))\sim x .

Let i be the integer such that

|x(i)|= \max_{1\leq j\leq N}|x(j)|,\cdot

then

|x(i)| \leq(N+1)^{-1}\sum_{j=1}^{N}g(i,j)p(j)|x(j)|

\leq|x(i)|(N+1)^{-1}\max G_{N}\sum_{j=1}^{N}p(j)

or

(7) p(1)+p(2)+\cdots+p(N)\geq\mu(N)

where

(8) \mu(N)=(N+1)/(N-(N/2)^{+}+1)(N/2)^{+}

=\{
(2m+1)/m(m+1) if N=2m
2/(m+l) if N=2m+1

The inequality (7) is best possible in the sense that for any N, we can find
non-negative p(k) and nontrivial x(k) such that p(1)+\cdots+p(N)=\mu(N) and
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x(k) is a solution of (1) for 0\leq k\leq N+1 . To see this, we first suppose N=
2m+1 . Let

x(k)=\{\begin{array}{l}k2m-k+2\end{array} 0\leq k\leq m+1m+1\leq k\leq 2m+2

and let

p(k)=-\Delta^{2}x(k-1)/x(k)

for 1\leq k\leq 2m+1 . Then x(k) satisfies (1) for 1\leq k\leq N, x(0)=0, x(N+1)=0
and

.0
p(k)=2/(m+1)

\backslash 0

1\leq k\leq m

k=m+1
m+2\leq k\leq 2m+1

as required. If N=2m, let

x(k)=\{\begin{array}{l}k(m+1)(2m-k+1)/m\end{array}

0\leq k\leq m+1

m+1\leq k\leq 2m+1

and p(k)=-\Delta^{2}x(k-1)/x(k) for 1\leq k\leq 2m . It can similarly be verified that
x(k) and p(k) are the desired functions.

After a change of the independent variable k in (1), the above con-
clusions can be summarized in the following

PROPOSITION 1. If p(k) is a non-negative function defifined on the set
of consecutive integers \{a, a+1, \cdots, b\} and if
(9) \Delta^{2}x(k-1)+p(k)x(k)=0 , a\leq k\leq b

has a nontrivial solution x(k) which satisfifies x(a-1)=0 and x(b+1)=0,
then

p(a)+\cdots+p(b)\geq\mu(b-a+1)

and the inequality is sharp.

Note that \mu(N) is a strictly decreasing function of N. It follows from
Proposition 1 that if

p(a)+p(a+1)+\cdots+p(b)<\mu(b-a+1)

then (9) cannot have a nontrivial solution x(k) which satisfies x(c-1)=0
and x(d+1)=0, where a-1\leq c-1\leq d+1\leq b+1 . For otherwise

\sum_{j=a}^{b}p(j)\geq\sum_{j=c}^{d}p(j)\geq\mu(d-c+1)\geq\mu(b-a+1)>\sum_{j=a}^{b}p(j)
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which is a contradiction.

3. The principle used in the previous section can be applied to the
more general system

(10) \Delta^{2}x(k-1)+p(k)x(k)=0 , k=1,2, \cdots , N
(11) x(0)+\sigma x(1)=0 , \sigma\in R, \sigma\geq 0

(12) x(N+1)+\lambda x(N)=0 , \lambda\in R, \lambda\geq 0

where p(k) is a non-negative function defined on \{1,2, \cdots, N\} . If x(k) ,
0\leq k\leq N+1 , is a nontrivial solution of (10-12), then \sim x=co1(x(1), x(2), \cdots ,
x(N)) satisfies

B_{N}x-\sim diag (p(1) , \cdots , p(N))\sim x=0 ,

where B_{N}=(b(i,j)) is the matrix defined by

\prime 2+\sigma

b(i,j)=2+\lambda

\backslash a(i,j)

i=j=1
i=j=N
otherwise.

It can be verified that the inverse of B_{N} is the matrix

\{N+1+N\sigma+N\lambda+(N-1)\sigma\lambda\}^{-1}H_{N}

where H_{N}=(h(i,j)) is defined by

h(1,j)=(N-j+1)+(N-j)\lambda 1\leq j\leq N

h(N,j)=j+(j-1)\sigma 1\leq j\leq N

h(i, 1)=(N-i+1)+(N-i)\lambda 1\leq i\leq N

h(i,j)=i+(i-1)\sigma 1\leq i\leq N

h(i,j)=h(i, 1)h(i,j) 1\leq j\leq i\leq N

h(i,j)=h(i, N)h(1,j) 1\leq i\leq j\leq Nt

Note that the matrix H_{N} has positive components and that its “interior”
components are products of “boundary” components. With these observa-
tions, we may arrive at the fact that

(13) max H_{N}=\{

h(m+1, m+1) N=2m+1

max \{h(m, m) , h(m+1, m+1)\} N=2m

=\{

(m+1+m\lambda)(m+1+m\sigma) N=2m+1

max \{(m+1+m\lambda)(m+(m-1)\sigma) , (m+1+m\sigma)(m+(m-1)\lambda)\}N=2m .
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We may now proceed as in Section 1 to obtain the inequality

(14) p(1)+p(2)+\cdots+p(N)\geq\mu(N, \sigma, \lambda)

where

(15) \mu(N, \sigma, \lambda)=\{N+1+N\sigma+N\lambda+(N-1)\sigma\lambda\}/\max H_{N} .

The inequality (14) is sharp. To see this, we first assume that N=2m+1 .
Let x_{1}^{*}(t) be the linear function whose graph passes through the points
(0, -\sigma) and (1, 1) . Let x(k)=x_{1}^{*}(k) for 0\leq k\leq m+1 . The linear function
whose graph passes through the points (N, 1) and (N+1, -\lambda) has a zero
N+1/(1+\lambda) in (N, N+1] . Let x_{2}^{*}(t) be the linear function whose graph
passes through the points (m+1, x(m+1)) and (N+1/(1+\lambda), 0) and let x(k)=
x_{2}^{\star}(k) for m+1\leq k\leq 2m+2 . If we now set p(k)=-\Delta^{2}x(k-1)/x(k) for
1\leq k\leq N, then clearly x(k) satisfies (10-12) and p(k)=0 for 1\leq k\leq m and
m+2\leq k\leq 2m+1 . Moreover, p(m+1) is equal to

\frac{s1opeofx_{1}^{*}(t)}{x(m+1)}-[mathring]_{\frac{s1peofx_{2}^{*}(t)}{x(m+1)}}

= \frac{1+\sigma}{(1+\sigma)(m+1)-\sigma}-\frac{\sigma-(1+\sigma)(m+1)}{(m+1/(1+\lambda))((1+\sigma)(m+1)-\sigma^{\backslash })}

= \frac{2m+2+(2m+1)\lambda+(2m+1)\sigma+2m\sigma\lambda}{(m+1+m\sigma)(m+1+m\lambda)}

=\mu(2m+1, \sigma, \lambda)

Next we suppose N=2m and that \lambda\geq\sigma . Let x_{1}^{*}(t) be the linear function
whose graph passes through the points (0, -\sigma) and (1, 1) and let x_{1}^{*}(k)=x(k)

for 0\leq k\leq m . Let x_{2}^{*}(t) be the linear function whose graph passes through
the points (m, x(m)) and (2m+1/(1+\lambda), 0) . Let x(k)=x_{2}^{*}(k) for m\leq k\leq 2m+1

and let p(k)=-\Delta^{2}x(k-1)/x(k) for 1\leq k\leq 2m . Clearly, x(k) satisfies (10-12)
and p(k)=0 for 1\leq k\leq m-1 and m+1\leq k\leq 2m . Furthermore,

p(m)=_{\frac{1+\sigma}{m(1+\sigma)-\sigma}}- \frac{\sigma-m(1+\sigma)}{(m(1+\sigma)-\sigma)(2m+1/(1+\lambda))}

= \frac{2m+1+2m\sigma+2m\lambda+(2m-1)\sigma\lambda}{(m+1+m\lambda)(m+(m-1)\sigma)}

=\mu(2m, \sigma, \lambda)

The case N=2m and \sigma\geq\lambda can be dealt with similarly. We summarize our
results as follows.

PROPOSITION 2. If p(k) is a non-negative function defifined on the set
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of consecutive integers \{a, a+1, \cdots, b\} and if the system

(16) \Delta^{2}x(k-1)+p(k)x(k)=0 a\leq k\leq b

(17) x(a-1)+\sigma x(a)=0 \sigma\in R, \sigma\geq 0

(18) x(b-1)+\lambda x(b)=0 \lambda\in R, \lambda\geq 0

has a nontrivial solution, then

(18) p(a)+p(a+1)+\cdots+p(b)\geq\mu(b-a+1, \sigma, \lambda)

and the inequality is sharp.

The function \mu(N, \sigma, \lambda) has several important properties which we shall
use later:

(i) \mu(N, 0,0)=\mu(N)

(ii) if d \geq\sigma and \chi\geq\lambda , then \mu(N, \sigma’, \chi)\geq\mu(N, \sigma, \lambda)
,\cdot

(iii) if \sigmaarrow\infty , then \mu(N, \sigma, \lambda) - \mu(N-1,0, \lambda) ,

(iv) if \lambdaarrow\infty , then \mu(N, \sigma, \lambda) - \mu(N-1, \sigma, 0),\cdot

and (v) if \sigma, \lambdaarrow\infty , then \mu(N, \sigma, \lambda) - \mu(N-2,0,0)

The verifications of these properties are straightforward and thus omitted.

4. Let f(k) be a real function defined on a set of consecutive integers
\{a, a+1, \cdots, b\} . If the points (k,f(k)) for a\leq k\leq b are joined by straight
line segments to form a broken line, then this broken line gives a representa-
tion of a continuous function, henceforth denoted by f^{*}(t) , such that f(k)=

f^{*}(k) for a\leq k\leq b . The zeros of f^{*}(t) are called the nodes of f(k) . Note
that x(k) is a nontrivial solution of (16-18) if and only if x(k) is a non-
trivial solution of (16) with nodes a-1/(1+\sigma) and b+1/(1+\lambda) . Note also
that if \alpha and \beta are consecutive nodes of a nontrivial solution of (16), then
\beta^{+}>\alpha+1 .

PROPOSITION 3. Let \sigma and \lambda be two non-negative real numbers. Let
p(k) be a non-negative function defifined on the set of consecutive integers
\{a, a+1, \cdots, b\} . If

p(a)+p(a+1)+\cdots+p(b)<\mu(b-a+1, \sigma, \lambda)

then (16) cannot have a nontrivial solution which has nodes \xi and \delta satisfy-
ing

a-1/(1+\sigma)\leq\xi<\delta\leq b+1/(1+\lambda)

PROOF. Suppose our assertion is false. If \xi=a-1/(1+\sigma’) or \delta=b+1/

(1+\lambda’) where \sigma’ and \lambda’ are non-negative real numbers satisfying \sigma’\geq\sigma and
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\chi\geq\lambda , then by Proposition 2, we would have

\sum_{j=a}^{b}p(j)\geq\mu(b-a+1, \sigma’, \lambda’)\geq\mu(b-a+1, \sigma, \lambda)>\sum_{j=a}^{b}p(j)(

If \xi=a, \delta=b+1/(1+\chi) , we would have

p(a+1)+\cdots+p(b)\geq\mu(b-a, 0, \lambda’)

=,, \lim_{\sigma\geq\sigma,\lambda\geq\lambda,\sigmaarrow\infty},\mu(b-a+1, d\lambda’)

\geq\mu(b-a+1, \sigma, \lambda)

>p(a)+\cdots+p(b)\cap

If \xi=a and \delta=b, we would have

p(a+1)+\cdots+p(b-1)\geq\mu(b-a-1,0,0)

=, \lim_{\sigma’\geq\sigma,\lambda’>\lambda j\sigma’,\lambda’arrow\infty}\mu(b-a+1, \sigma, \lambda’)

\geq\mu(b-a+1, \sigma, \lambda)

>p(a)+\cdots+p(b)

Similarly, we can show that the other cases are also impossible.

The following comparison theorem shall be needed in proving our
discrete analogue of the inequality of Lyapunov.

THEOREM ([1, Lemma 2]). Suppose x(k) and y(k), a-1\leq k\leq b+1 , are
respectively nontrivial solutions of the equations

\Delta^{2}x(k-1)+f(k)x(k)=0 , a\leq x\leq b

and

\Delta^{2}y(k-1)+g(k)y(k)=0 , a\leq x\leq b .
If x(k) has two consecutive nodes \alpha and \beta in [a-1, b+1] and if g(k)\geq

f(k) for a\leq k\leq b, then y(k) has a node in (\alpha, \beta] .
THEOREM. Let \sigma and \lambda be two non-negative real numbers. Let p(k)

be a real function defifined on the set of consecutive integers \{a, a+1, \cdots, b\} .
If
(20) \sum_{k=a}^{b} max \{p(k) , 0\}<\mu(b-a+1, \sigma, \lambda)

,\cdot

then the equation (16) cannot have a nontrivial solution which has two
distinct nodes in [a-1/(1+\sigma), b+1/(1+\lambda)] . The inequality (20) is sharp.

PROOF. Assume to the contrary that x(k) is a nontrivial solution of
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(16) which has two consecutive nodes \xi and \beta in [a-1/(1+\sigma), b+1/(1+\lambda\rangle] .
Then the Comparison Theorem asserts that the system

\Delta^{2}y(k-1)+\max\{p(k) , 0\}y(k)=0 , a\leq k\leq b

y^{*}(\xi)=0

has a nontrivial solution y(k) which has a node \delta in
’

(\xi, \beta] . Since

a-1^{\cdot}/(1+\sigma)\leq\xi\underline{<}\delta\leq\beta\leq b+/(1+\lambda) ,

by Proposition 3,

\sum_{k=a}^{b} max \{p(k) , 0 \}\geq\mu(b-a+1, \sigma, \lambda)>\sum_{k=a}^{b} max \{p(k) , 0\}

which is the desired contradiction. The sharpness of inequality (20) has
been shown in Section 3. Q. E. D.
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