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\S 0. Introduction

Let G be a LCA group with the dual group G. m_{G} means the Haar
measure of G. M(G) and L^{1}(G) denote the measure algebra and the group
algebra respectively. Let M_{s}(G) be the closed subspace of M(G) consisting
of the singular measures on G. For a subset E of G, M_{E}(G) denotes the
space of measures in M(G) whose Fourier-Stieltjes transforms vanish off”\wedge E".
We denote by E^{0} and E^{-} the interior and closure of E respectively.
and ”\vee” denote the Fourier-Stieltjes transform and the inverse Fourier trans-
form respectively. For a subset B of M(G) , B^{\wedge} means a set \{\hat{\mu}:\mu\in B\} .
Let R be the reals and H^{1}(R) the Hardy space on R. Then, by the F. and
M. Riesz theorem, H^{1}(R)= {\mu\in M(R) : \hat{\mu}(x)=0 for x<0}. When there is
a nontrivial continuous homomorphism \psi:G\mapsto R , we define M^{a}(G) by
M^{a}(G)= {\mu\in M(G) : \hat{\mu}(\gamma)=0 for \gamma\in G with \psi(\gamma)<0}. If \mu\in M^{a}(G) , we say
that \mu is a measure of analytic type.

For compact abelian groups G, Doss proved that each multiplier on
M_{s}(G) is given by convolution with a discrete measure on G([3]) . In [5],
Graham and MaLean obtained an analogous result for LCA groups. On the
other hand, the author in ([10], Theorem 2. 3) proved that \Phi\circ\psi becomes
a multiplier on M^{a}(G) for each multiplier \Phi on L_{-\delta}^{1}(R)(\delta>0) , where L_{-\delta}^{1}(R)

= { f\in L^{1}(R):\hat{f}(x)=0 for x<-\delta}. However it is natural to consider whe-
ther \Phi\circ\psi becomes a multiplier on M^{a}(G) for each multiplier \Phi on H^{1}(R)

or not. There are two purpose in this paper. One is to prove that \Phi\circ\psi

becomes a multiplier on M^{a}(G) for each multiplier \Phi on H^{1}(R) . The other
is to improve Theorem 2. 4 in [10]. We state our results after the following
definition.

DEFINITION 0. 1 Let E be a aubset of G. A function \Phi on G which
is continuous on E^{0} is called a multiplier {or multiplier function) on M_{E}(G)

if \Phi\hat{\mu}\in M_{E}(G)^{\wedge} for each \mu\in M_{E}(G) . By the function \Phi , there exists a
unique bounded linear operator S on M_{E}(G) such that S(\mu)^{\wedge}=\Phi\hat{\mu} . Thus
defined S is called a multiplier operator {or merely multiplier) on M_{E}(G)
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induced by the function \Phi . We denote a norm ||\Phi|| by ||\Phi||=||S|| .
THEOREM I (cf. Theorem, 2. 3 in [10]).

Let G be a LCA group and \psi a nontrivial continuous homomorphism from
G into R. Suppose M^{a}(G)\cap M_{s}(G)\neq\{0\} . Let \Phi be a multiplier on H^{1}(R) .
Then \Phi\circ\psi is a multiplier on M^{a}(G) with the following properties:

(I) S(M^{a}(G)\cap L^{1}(G))\subset M^{a}(G)\cap L^{1}(G) ;
(II) S(M^{a}(G)\cap M_{s}(G))\subset M^{a}(G)\cap M_{s}(G) ;
(III) ||\Phi\circ\psi||\leqq|\Phi(0)|+2||\Phi|| ,

where S is the bounded linear operator on M^{a}(G) corresponding to \Phi\circ\psi .
THEOREM II (cf. Theorem 2. 4 in [10]).

Let G be a LCA group and P a semigroup in G such that P\cup(-P)=G .
We assume that P is not dense in G and M_{P}(G)\cap M_{s}(G)\neq\{0\} . Then there
exists a multiplier \Phi on M_{P}(G) which satisfies the following:

(I) S(M_{P}(G)\cap L^{1}(G))\subset M_{P}(G)\cap L^{1}(G) ;
(II) \{0\}\subset S(<M_{P}(G)\cap M_{s}(G))\subset M_{P}(G)\cap M_{s}(G) ;
(III) S is not given by convolution with a bounded regular measure

on G,
where S is the bounded linear operator on M_{P}(G) corresponding to \Phi .

\S 1. Some lemmas

In this section we state lemmas which are needeful for the proofs of
Theorems I and II . For a subgroup \Lambda of G, \Lambda^{\perp} means the annihilator of \Lambda .

Lemma 1. 1. Let G be a metrizable LCA group and P a semigr oup

in G such that P\cup(-P)=G . Put \Lambda=P\cap(-P) and H=\Lambda^{\perp} . If P is open,
we have

m_{H}*\{M_{P}(G)\cap M_{s}(G)\}\subset M_{P}(G)\cap M_{s}(G)

PROOF. We may assume that P\subset G< . First we consider the case that
G is \sigma-compact metrizable. Let \mu be a measure in M_{P}(G)\cap M_{s}(G) . Put
\eta=\pi(|\eta|) , where \pi:G\mapsto G/H is the natural homomorphism. Then by the
theory of disintegration (cf. [1], Th\’eor\‘eme 1, p. 58) there exists a family
\{\xi_{x}\}_{x\in G/H} of positive measures in M(G) with the following properties:

(1) \dot{x}\mapsto\xi_{x}(f) is a Borel measurable function for each bounded
Borel function f on G ;

(2) supp (\xi_{x})\subset\pi^{-1}(\dot{x}) ;

(3) ||\xi_{x}||\leq 1 ;

(4) |\mu|(f)=.|_{G/H}\xi_{x}(f)d\eta(\dot{x}) for each bounded Borel f on G
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For \dot{x}\in G/H, m_{\dot{x}} denotes the measure on \pi^{-1}(\dot{x}) which is given by translating
m_{H} to \pi^{-1}(\dot{x}) . Let \xi_{x}=\xi_{x}^{a}+\xi_{\dot{x}}^{s} be the Lebesgue’s decomposition of \xi_{\dot{x}} with
respect to m_{\dot{x}} , where \xi_{oe}^{a}\ll m_{x} and \xi_{x}^{s}\perp m_{x} . Let h be a unimodular Borel
function on G such that \mu=h|\mu| . We define measures \lambda_{\dot{x}} , \lambda_{\dot{x}}^{a} and \lambda_{\dot{x}}^{s} on G
as follows :

\lambda_{\dot{x}}=h\xi_{\dot{x}} , \lambda_{x}^{a}=h\xi_{x}^{a}’. \lambda_{\dot{x}}^{s}=h\xi_{\dot{x}}^{s}

Then, by (1)-(4) and ([11], Lemma 2. 5), we have
(5) \dot{x}\mapsto\lambda_{\dot{x}}(f) is a Borel measurable function for each bounded

Borel function f on G ;

(6) supp (\lambda_{\dot{x}})\subset\pi^{-1}(\dot{x}\cdot) ;

(7) ||\lambda_{i}||\leq 1 ;

(8) \mu(f)=\int_{G/H}\lambda_{\dot{x}}(f)d\eta(\dot{x}) for each bounded Borel f on G ;

(9) ’\dot{x}\mapsto\lambda_{\dot{\alpha}}^{a}(f) and \dot{x}\mapsto\lambda_{\dot{l}}^{s}(f) are Borel measurable functions for
each bounded Borel function f on G

Since P is open, we note that P is closed. Moreover, since P^{e}+\Lambda=P^{e}, we
note that ([11], Lemma 2. 4 (5)) is satisfied even if we replace P by P^{c} .
Hence, since \mu\in M_{P}(G) , we have

(10) \hat{\lambda}_{\dot{x}}(\gamma)=0 on P^{e}
\eta-a . a.\dot{x}\in G/H

Then, by (6), (10) and ([8], 8. 2. 3. Theorem (b), p. 200), we have
(11) \lambda_{i}^{s^{\wedge}}(\gamma)=0 on -P \eta-a . a.\dot{x}\in G/H .

By (5) and (9) we can define measures \mu_{i}\in M(G) as follows:

\mu_{1}(f)=\int_{G/H}\lambda_{x}^{a}(f)d\eta_{a}(\dot{x}) ,

\mu_{2}(f)=\int_{a/H}\lambda_{\dot{x}}^{s}(f)d\eta_{a}(\dot{x}) ,

\mu_{3}(f)=\int_{G/H}\lambda_{\dot{x}}(f)d\eta_{s}(\dot{x})

for f\in C_{0}(G) , where \eta=\eta_{a}+\eta_{s} is the Lebesgue’s decomposition of \eta with
respect to m_{G/H}. Then by ([11], Lemma 2.6, Claims 1-3) and the con-
function of \mu_{i} , we have \mu_{1}\in L^{1}(G) and \mu_{2}, \mu_{3}\in M_{s}(G) . Since \mu\in M_{s}(G) and

\mu=\mu_{1}+\mu_{2}+\mu_{3}, we get

(12) \mu=\mu_{2}+\mu_{S} .
By (11) and the construction of \mu_{2}, we have \hat{\mu}_{2}=0 on -P, which yields
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(13) m_{H}*\mu_{2}=0 .
Moreover we have

(14) m_{H}*\mu_{3}\in M_{s}(G) .
Indeed, since \pi(|\mu_{3}|)\leq\eta_{s}, we have \pi(m_{H}*|\mu_{\}|)\in M_{s}(G/H) , hence m_{H}*|\mu_{8}|\in

M_{s}(G) (cf. [11], Lemma 2. 3). Thus (14) is obtained. Hence, when G is
\sigma-compact metrizable, the lemma follows from (12)-(14).

Next we consider the case that G is metrizable. Let \mu be a measure in
M_{P}(G)\cap M_{s}(G) . Then by ([11], Lemma 3. 1) there exists a \sigma-compact open
subgroup G_{1} of G such that

(15) supp (\mu)\subset G_{1} and G_{1}^{\perp}\subset\Lambda .
We note that H\subset G_{1} . Let \tau be the natural homomorphism from G onto
G/G_{1}^{\perp} and put F=\tau(P) . Then we have

(16) \tilde{\Lambda}^{\perp}=H ,

where \tilde{\Lambda}=Pn(-P) . By (15), we can regard \mu as a measure in M_{\}(G_{1}) .
Since G_{1}^{\perp}\subset P\cap(-P) , we have \tau(P^{e})=\tau(P)^{e} . Hence \mu belongs to M_{F}(G_{1})\cap

M_{s}(G_{1}) . Since G_{1} is \sigma-compact metrizable, it follows from (16) and the first
half that m_{H}*\mu\in M_{B}(G_{1})\cap M_{s}(G_{1}) . In particular, m_{H}*\mu belongs to M_{P}(G)\cap

M_{s}(G) and the proof is complete.

Lemma 1. 2. Let G be a LCA group and P an open semigroup in G

such that P\cup(-P)=G . Then the previous lemma is also satisfied.
PROOF. Let \Lambda and H be as in the previous lemma. Let \mu be a measure

in M_{P}(G)\cap M_{s}(G) . Suppose m_{H}*\mu does not belong to M_{P}(G)\cap M_{s}(G) .
Then m_{H}*\mu=f+\nu, where \nu\in M_{s}(G) and f is a nonzero function in L^{1}(G) .
Since \hat{f}\in C_{0}(G) , there exists a \sigma-compact open subgroup F of G such that
\hat{f}(\gamma)=0 for \gamma\not\in F. Since \mu, \nu\in M_{s}(G) , there exist \sigma-compact subsets E_{\mu} and
E_{\nu} of G such that |\mu|(E_{\mu^{l}})=0 , |\nu|(E_{\nu}^{c})=0 and m_{G}(E_{\mu}\cup E_{\nu})=0 . Hence by
([7], Lemma 4) there exists a \sigma-compact open subgroup \Gamma of G such that
(a) \Gamma\supset F and (b) m_{G}(\Gamma^{\perp}+E_{\mu}\cup E_{\nu})=0 . Let \pi be the natural homomorphism
from G onto G/\Gamma^{\perp} . Then, by (b), we have

(1) \pi(\mu) , \pi(\nu)\in M_{s}(G/\Gamma^{\perp})

Put P_{1}=P\cap\Gamma Then P_{1} is an open semigroup in \Gamma such that P_{1}\cup(-P_{1})=\Gamma-

Put \Lambda_{1}=P_{1}\cap(-P_{1}) , and let H be the annihilator of \Lambda_{1} in G/\Gamma^{\perp} . Then we
have \pi(m_{H})=m_{\tilde{ff}} . Since G/\Gamma^{\perp} is metrizable, it follows from (1) and Lemma
1. 1 that

(2) \pi(m_{H})*\pi(\mu)=m_{\tilde{ff}}*\pi(\mu)\in M_{P_{1}}(G/\Gamma^{\perp})\cap M_{s}(G/\Gamma^{\perp}) .
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On the other hand, we have
\pi(m_{H})*\pi(\mu)=\pi(m_{H}*\mu)=\pi(\mu)+\pi(f)

By the construction of \Gamma,\cdot\pi(f) is a nonzero function in L^{1}(G/\Gamma^{\perp}) . Hence by
(1) and (2) we have a contradiction. Thus m_{H}*\mu belongs to M_{P}(G)\cap M_{s}(G)

and the proof is complete.

PROPOSITION 1. 3. Let G be a LCA group and P a semigroup in G
such that P\cup(-P)=G . Put \Lambda=P^{-}\cap(-P)^{-} and H=\Lambda^{\perp} . If \Lambda is open, we
have m_{H}*\{M_{P}(G)\cap M_{s}(G)\}\subset M_{P}(G)\cap M_{s}(G) .

PROOF. If \Lambda is open, P^{-} is an open semigroup in G such that P^{-}\cup

(-P)^{-}=G . Hence by Lemma 1. 2 and the fact that M_{P}(G)\subset M_{P^{-}}(G) , the
proposition is obtained.

\S 2. Proof of Theorem I.

In this section we prove Theorem I.

DEFINITION 2. 1. Let G be a LCA group and \psi:G\mapsto R a nontrivial
continuous homomorphism. Let \delta be a positive real number. We define
M_{\delta}(G) as follows :

M_{\delta}(G)=\{\mu\in M(G) : \hat{\mu}(\gamma)=0 for r\in G with \psi(\gamma)<\delta\}

Let \Phi be a multiplier on H^{1}(R) . Then \Phi_{\delta}(x)=\Phi(x+\delta) becomes a
multiplier on L_{-\delta}^{1}(R) . Hence the following lemma is obtained from ([10,
Theorem 2. 3).

Lemma 2. 2. Let G be a LCA group and \psi:G\mapsto R a nontrivial con-
tinuous homomorphism. Let \delta be a positive real number and \gamma_{\delta} an element
in G such that \psi(\gamma_{\delta})=\delta . Let \Phi be a multiplier on H^{1}(R) . Then \Phi\circ\psi is
a multiplier on M_{\delta}(G) satisfying the following:

(I) S(M_{\delta}(G)\cap L^{1}(G))\subset M_{\delta}(G)\subset L^{1}(G) ;
(II) S(M_{\delta}(G)\cap M_{s}(G))\subset M_{\delta}(G)\cap M_{s}(G) ;
(III) ||\Phi\circ\psi||\leqq||\Phi|| ,

where S is the bounded linear operator on M_{\delta}(G) corresponding to \Phi\circ\psi.
Lemma 2. 3. Let G be a LCA group and \psi:G\mapsto R a nontrivial con-

tinuous homomorphism. Put Q=\{\gamma\in G:\psi(\gamma)>0\} . Let \Phi be a multiplier on
H^{1}(R) . Then \Phi\circ\psi is a multiplier on M_{Q}(G) with the following properties:

(I) S(M_{Q}(G)\cap L^{1}(G))\subset M_{Q}(G)\cap L^{1}(G) ;
(II) S(M_{Q}(G)\cap M_{s}(G))\subset M_{Q}(G)\subset M_{s}(G) ;
(III) ||\Phi\circ\psi||\leq||\Phi|| ,
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where S is the bounded linear operator on M_{Q}(G) corresponding to \Phi\circ\psi .
PROOF. By Lemma 2. 2, we may assume that \psi(G) is dense in R.

Then we have
(*) \Phi\circ\psi\hat{\mu}\in M_{Q}(G)^{\wedge} and ||\Phi\circ\psi\hat{\mu}||\leq||\Phi||||\mu|| for \mu\in M_{Q}(G)

We can easily verify that \Phi\circ\psi\hat{\mu} is continuous. Put \Lambda=ker(\psi) , and let p(x)=
\sum_{i=1}^{n}c_{i}(-x, \gamma_{i}) be a trigonometric polynomial on G. We consider (^{*}) by
dividing two cases that \Lambda is open or not.

Case 1. \Lambda is open.
Let \epsilon>0 be any positive real number. Then by ([8], Theorem 2. 6. 8) there
exists \nu\in L^{1}(G) with the following properties :

(1) \hat{\nu}(\gamma_{i})=1 (1\leq i\leq n) ;

(2) \hat{\nu} has a compact support ;

(3) ||\nu||\leq 1+\epsilon .
Then, since \Lambda is open, it follows from (2) that \mu*\nu\in M_{\delta}(G) for some \delta>0 .
Hence by Lemma 2. 2 and (3) we have \Phi\circ\psi\hat{\mu}\hat{\nu}\in M_{Q}(G)^{\wedge} and ||\Phi\circ\psi\hat{\mu}\hat{\nu}||\leq

(1+\epsilon)||\Phi||||\mu|| . Thus it follows from (1) that

| \sum_{i=1}^{n}c_{i}\Phi\circ\psi(\gamma_{i})\hat{\mu}(\gamma_{i})|=|\sum_{i=1}^{n}c_{i}\Phi\circ\psi(\gamma_{i})\hat{\mu}(\gamma_{i})\hat{\nu}(\gamma_{i})|

\leq(1+\epsilon)||p||_{\infty}||\Phi||||\mu||

Hence if \Lambda is open, (^{*}) follows from ([8], 1. 9. 1 Theorem) since \epsilon is any
positive real number.

Case 2. \Lambda is not open.
In this case, we note G/\Lambda\cong R . For any \epsilon>0 , we choose \nu\in L^{1}(G) which
satifies (1)-(3) . Then \mu*\nu\in L^{1}(G) and \mu*\nu=0\wedge on \Lambda . Hence by ([8], Theorem
2. 7. 5) there exists \xi\in M(\Lambda^{\perp}) with the following properties:

(4) \hat{\xi}=1 on an open set containing \Lambda ;

(5) ||\mu*\nu*\xi||<\epsilon .
Then by (4) we have \mu*\nu-\mu*\nu*\xi\in M_{\delta}(G) for some \delta>0 . Hence by

(5) and Lemma 2. 2 we have

| \sum_{i=1}^{n}c_{i}\Phi\circ\psi(\gamma_{i})\hat{\mu}(\gamma_{i})|=|\sum_{i=1}^{n}c_{i}\Phi\circ\psi(\gamma_{i})(\mu*\nu)^{\wedge}(\gamma_{i})|

\leq|\sum_{i=1}^{n}c_{i}\Phi\circ\psi(\gamma_{i})(\mu*\nu-\mu*\nu*\xi)^{\wedge}(\gamma_{i})|

+| \sum_{i=1}^{n}c_{i}\Phi\circ\psi(\gamma_{i})(\mu*\nu*\xi)^{\wedge}(\gamma_{i})|
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\leq||\Phi||||\mu*\nu-\mu*\nu*\xi||||p||_{\infty}+(\sum_{i=1}^{n}|c_{i}|)||\Phi||||\mu*\nu*\xi||

\leq||\Phi||||p||_{\infty}\{(1+\epsilon)||\mu||+\epsilon\}+\epsilon(\sum_{i=1}^{n}|c_{i}|)||\Phi||

Letting \epsilon_{\vee}|0 , then (^{*}) follows from ([8], 1. 9. 1 Theorem). Thus our claim
is satisfied. By (^{*}) , \Phi\circ\psi is a multiplier on M_{Q}(G) and (III) is obtained. (I)
follows from ([10], Lemma (E), p. 175). Finally we prove (II). For each
n\in N, let u_{n} be a function in L^{1}(R) such that \hat{u}_{n}(x)=1 for |x| \underline{<}\frac{1}{n} and
\hat{u}_{n}(x)=0 for |x| \geq\frac{2}{n} Let \phi:R\mapsto G be the dual homomorphism of \psi, and
put \xi_{n}=\phi(u_{n}) . We define bounded linear operators U_{n} on M_{Q}(G) by

(5) U_{n}(\eta)=\eta-\eta*\xi_{n} .
Let \mu\in M_{Q}(G)\cap M_{s}(G) . We note

(6) U_{n}((\Phi\circ\psi\hat{\mu})^{\vee})=(\Phi\circ\psi U_{n}(\mu)^{\wedge})^{\vee} (n=1,2,3, \cdots)

Suppose (\Phi\circ\psi\hat{\mu})^{\vee}=\omega+f, where \omega\in M_{s}(G) and f is a nonzero function in
L^{1}(G) . Then by ([10], Theorem 4. 1) and Lemma 1. 2 we have \omega,f\in M_{Q}(G) .
Hence there exists a positive integer m such that U_{m}(f)\neq 0 . By ([10],
Theorem 2. 3), we note U_{m} maps M_{Q}(G)\cap M_{s}(G) into itself. Hence we have

(8) U_{m}((\Phi\circ\psi\hat{\mu})^{\vee})=U_{m}(\omega)+U_{m}(f)

\not\in M_{s}(G)\epsilon

On the other hand, since U_{m}(\mu)\in M_{-}(G)\cap M_{s}(G) , it follows from Lemma
2. 2 that \Phi\circ\psi U_{m}(\mu)^{\wedge}\in M_{s}(G)^{\wedge} This contradicts (7) and (8), and the proof
is complete.

Now we prove Theorem I. First we consider the case that ker (\psi) is
not open. In this case, we note M^{a}(G)=M_{Q}(G) , where Q=\psi^{-1}((0, \infty)) .
Hence the theorem follows from Lemma 2. 3. Next we consider the case
that ker (\psi) is open. Let H=ker(\psi)^{\perp}, and we define a bounded linear
operator U : M^{a}(G)\mapsto M_{Q}(G) by U(\mu)=\mu-\mu*m_{H}. Then, for \mu\in M^{a}(G) , we
have

(1) \Phi\circ\psi(\gamma)\hat{\mu}(\gamma)=\Phi(0)(\mu*m_{H})^{\wedge}(\gamma)+\Phi\circ\psi(\gamma)U(\mu)^{\wedge}(\gamma)

Hence, by Lemmas 1. 2 and 2. 3, we can verify that \Phi\circ\psi is a multiplier on
M^{a}(G) which satisfies (I) and (II). Moreover, by (1), Lemma 2. 3 and the
construction of U, we have ||\Phi\circ\psi||\leq|\Phi(0)|+2||\Phi|| , hence (III) is obtained.
This completes the proof.

\S 3. Proof of Theorem II

In this section we prove Theorem II.
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Lemma 3. 1. Let \Gamma be a LCA group with dual G. Suppose P is a
proper closed semigroup in \Gamma such that (i) P\cup(-P)=\Gamma-(ii) P\cap(-P)=\{0\}

and (iii) P induces a nonarchimedean order on \Gamma Then there exists an
open subgroup \Lambda of \Gamma with the following properties:

(I) \Lambda=(\Lambda+P)\cap(\Lambda-P) ;
(II) M_{P\cap A}(G/\Lambda^{\perp})\cap M_{s}(G/\Lambda^{\perp})\neq\{0\} ;
(III) there exists a nontrivial continuous homomorphism \psi:\Lambda\mapsto R such

that \psi^{-1}([0, \infty))\supset P\cap\Lambda .
PROOF. We consider the lemma by dividing two cases that \Gamma is discrete

or not.

Case 1. \Gamma is discrete.
In this case, there exist \gamma_{1} , \gamma_{2}\in P\backslash \{0\} such that n\gamma_{1}<\gamma_{2} for all n\in Z (the

integers). We define S_{1} and S_{2} as follows :

S_{1}= {\gamma\in P : n\gamma<\gamma_{2} for all n\in Z} ;

S_{2}=|\gamma\in P:n\gamma>\gamma_{2} for some n\in Nand|\cup\{0\}

|
\gamma<m\gamma_{2} for some m\in N 1

Put \Lambda_{1}=S_{1}\cup(-S_{1}) and \Lambda=(\Lambda_{1}+S_{2})\cup(\Lambda_{1}-S_{2}) . Then it is easy to see that
\Lambda_{1} and \Lambda are subgroups of \Gamma We show that \Lambda is the desired one. First
we prove (I). Let \gamma be an element in (\Lambda+P)\cap(\Lambda-P) . We may assume that
\gamma\in P. Suppose \gamma\not\in\Lambda . Then we have

(1) \gamma\nearrow n\gamma_{2}\backslash for all n\in Z .
Since \gamma\in\Lambda-P, there exist \xi\in\Lambda and p\in P such that \gamma=\xi-p . Then \xi\geq\gamma .
Since \xi\in\Lambda , there exists a positive integer m such that m\gamma_{2}>\xi\geq\gamma . This
contradicts (1). Thus we have (\Lambda+P)\cap(\Lambda-P)\subset\Lambda . The converse inclusion
is easily obtained. (II) is easily obtained from the construction of \Lambda . Next
we prove (III). Let \pi : \Lambda\mapsto\Lambda/\Lambda_{1} be the natural homomorphism. Then

(2) \pi(P\cap\Lambda) induced an archimedean order on \Lambda/\Lambda_{1} .

In fact, it is easy to see that \pi(P\cap\Lambda) is a semigroup in \Lambda/\Lambda_{1} such that
\pi(P\cap\Lambda) induces a total order on \Lambda/\Lambda_{1} . Let \pi(\xi_{1}) and \pi(\xi_{2}) be nonzero
elements in \pi(P\cap\Lambda) . We may assume \xi_{1} , \xi_{2}\in S_{2}\backslash \{0\} . Then there exist
positive integers n_{1} and n_{2} such that n_{1}\gamma_{2}>\xi_{1} and n_{2}\xi_{2}>\gamma_{2} . Hence we have

2n_{1}n_{2}\xi_{2}=n_{1}n_{2}\xi_{2}+n_{1}n_{2}\xi_{2}

>n_{1}\gamma_{2}+n_{1}n_{2}\xi_{2}

>\xi_{1}+\gamma_{2} .
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Thus we have 2n_{1}n_{2}\pi(\xi_{2})>\pi(\xi_{1}) , and (2) is obtained. By (2), there exists an
order preserving isomorphism \alpha from \Lambda/\Lambda_{1} into R. We define \psi:\Lambda\mapsto R by
\psi=\alpha\circ\pi . Then we can verify that \psi satisfies (III).

Case 2. \Gamma is not discrete.
By ([8], 8. 1. 5 Theorem), we have

(3) \Gamma\cong R\oplus D ,

where D is a ncntrivial discrete ordered group. We note

(4) P\cong\{(x, d)\in R\oplus D:d>0 , or d=0 and x\geq 0\}

Let d>0 be an element in D, and put \gamma_{2}=(0, d) . For this \gamma_{2}\in P\backslash \{0\} , we
construct subgroups \Lambda_{1} and \Lambda of \Gamma as in Case 1. Then 11 is an open sub-
group of \Gamma which satisfies (I) and (II). Moreover, by the similar argument
in Case 1, we can verify that (III) is satisfied. This completes the proof.

Lemma 3. 2. Let G be a LCA group and P a semigroup in G such
that P\cup(-P)=G and M_{P}(G)\cap M_{s}(G)\neq\{0\} . If there exists a nontrivial
continuous homomorphism \psi:G\mapsto R such that \psi^{-1}([0, \infty))\supset P. Then there
exists a multiplier \Phi on M_{P}(G) with the folloxving properties :

(1) \{0\}\subset S(<M_{P}(G)\cap M_{s}(G))\backslash \subset M_{P}(G)\cap M_{s}(G) ;

(2) S is not given by convolution with a bounded regular
measure on G ,

where S is the bounded linear operator on M_{P}(G) corresponding to \Phi .
PROOF. This follows from ([8], Theorem 2. 4) and its proof.

Now we prove Theorem II. Put F=P^{-}\cap(-F)^{-} Let \pi:G\mapsto G/F be
the natural homomorphism. Then \pi(P^{-}) is a proper closed semigroup in
G/F such that (i) \pi(P^{-})\cup(-\pi(P^{-}))=G/F and (ii) \pi(P^{-})\cap(-\pi(P^{-}))=\{0\} .
We consider the theorem by dividing two cases that \pi(P^{-}) induces an
archimedean order on G/F or not.

Case 1. \pi(P^{-}) induces an archimedean order on G/F.
In this case, by ([8], Theorems 8. 1.2 and 8. 1.6, p. 194 and 196), there
exists exists a nontrivial continuous homomorphism \psi_{1} : G/F\mapsto R such that
\psi^{-1}([0, \infty))=\pi(P^{-}) . Put \psi=\psi_{1}\circ\pi . Then \psi:G\mapsto R is a nontrivial continuous
homomorphism such that \psi^{-1}([0, \infty))\supset P. Hence by Lemma 3. 2 there exists
a multiplier \Phi on M_{P}(G) which satisfies (II) and (III) of the theorem. (I)
follows from ([10], Lemma (E), p. 175).
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Case 2. \pi(P^{-}) induces a nonarchimedean order on G/F.
By Lemma 3. 1 there exist an open subgroup \tilde{\Lambda} of G/F and a nontrivial

continuous homomorphism \tilde{\psi}:\tilde{\Lambda}\mapsto R with the following properties:

(1) \tilde{\Lambda}=(\tilde{\Lambda}+\pi(P^{-}))\cap(\tilde{\Lambda}-\pi(P^{-})) ;

(2) M_{\pi(P^{-})\cap\tilde{A}}(\hat{\tilde{\Lambda}})\cap M_{s}(\hat{\tilde{\Lambda}})\neq\{0\} ;

(3) \tilde{\psi}^{-1}([0, \infty))\supset\pi(P^{-})\cap\tilde{\Lambda} .

Put \Lambda=\pi^{-1}(\tilde{\Lambda}) and \psi=\emptyset\circ\pi . Then \psi:\Lambda\mapsto R is a nontrivial continuous hom0-
morphism, and it follows from (1)-(3) that

(4) \Lambda=(\Lambda+P^{-})\cap(\Lambda-P^{-}) ;

(5) M_{P^{-}\cap A}(G/H)\cap M_{s}(G/H)\neq\{0\} ;

(6) \psi^{-1}([0, \infty))\supset P^{-}\cap\Lambda ,

where H is the annihilator of \Lambda . We note P^{-}\cap\Lambda\subset\Lambda< . Put P_{A}=P\cap\backslash \Lambda .
Then by (5) we have

(7) M_{P_{A}}(G/H)\cap M‘(G/H)\neq\{0\}

We define a bounded linear operator S_{1} : M_{P}(G)\mapsto M_{P_{A}}(G) by S_{1}(\mu)=\mu*m_{H}.
Then, since \Lambda+P is an open semigroup in G with (\Lambda+P)U(\Lambda-P)=G, it
follows from (4) and Lemma 1. 2 that

(8) S_{1}(M_{P}(G)\cap M_{s}(G))=M_{P_{A}}(G)\cap M_{s}(G)

By (6), (7) and Lemma 3. 2, there exists a multiplier \Phi_{0} on M_{P_{A}}(G/H) with
the following properties :

(9) \{0\}\subseteq S_{e_{0}}(M_{P_{A}}(G/H)\cap M_{s}(G))\subset M_{P_{A}}(G/H)\cap M_{s}(G/H) ;

(10) S_{\Phi_{0}} is not given convolution with a bounded regular measure
on G/H ,

where S_{\Phi_{0}} is the bounded linear operator on M_{P_{A}}(G/H) corresponding to
\Phi_{0} . We define bounded linear operators S_{2} : M_{A}(G)\mapsto M(G/H) and S_{3} :
M(G/H)\mapsto M(G) as follows :

S_{2}(\mu)^{\wedge}(\gamma)=\hat{\mu}(\gamma) for \gamma\in\Lambda ;

S_{3}(\nu)^{\wedge}(\gamma)=\{\begin{array}{l}\hat{\nu}(\gamma)0\end{array}

for \gamma\in\Lambda

for \gamma\not\in\Lambda .
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Now we define a bounded linear operator S on M_{P}(G) by S=S_{3}\circ S_{\Phi_{0}}\circ S_{2}\circ S_{1}

(see Figure I).

Fig- 1.

Then we have S(\mu)^{\wedge}(\gamma)=\Phi(\gamma)\dot{‘}\hat{u}(\gamma) for \mu\in M_{P}(G) , where \Phi is a function on
G such that \Phi(\gamma)=\Phi_{0}(\gamma) for \gamma\in\Lambda and \Phi(\gamma)=0 for \gamma\not\in\Lambda . Hence \Phi is a
multiplier on M_{P}(G) corresponding to S. (I) of the theorem follows from
([10], Lemma (E)). By (7)-(9) and ([10], Lemmas (B) and (C), p. 174), we
can verify that (II) is satisfied. Moreover (III) follows from (10). This com-
pletes the proof.

Finally the author wishes to express his thanks to Professor J. Inoue for
his valuable advice.
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