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On the generalization of union of knots

By Ken SAKAI
(Received July 13, 1982; Revised November 16, 1982)

1. Introduction

In this note, we generalize the union of knots introduced by Kinoshita
and Terasaka [1] and consider its relation to the problem on the primeness
of knots with the unknotting number one. All of our treatments are done
in the piecewise linear category. The author is grateful to all members of
Topology seminars at Kobe University, Tsuda College and Hokkaido Uni-
versity.

1. 1 First of all, we will define a set of knot\grave{s} that is the central con-
cept of this note. We use the following usual notation: Let k be a knot
in the 3-sphere S^{3} and let C be a 3-cell in S^{3} satisfying (^{*}) and (^{**}) :

(*) k intersects with \partial C transversely in two points.
(^{**}) For C_{0}=cl(S^{3}-C) , (C_{0}, C_{0}\cap k)js the trivial cell pair.

Then we call (C, C\cap k) the cell pair associated to the knot k. Now let K_{1}

and K_{2} be knots in S^{3}. For non-negative integer n, K_{1}+_{n}K_{2} denotes the set
of knots constructed in the following manner: Let \overline{K} denote the knot sum
of K_{1} and K_{2}, and S^{2} be the decomposition sphere; \overline{K}=K_{1}\# K_{2}S^{I}’ and let
C_{i}(i=1,2) be the 3-cell bounded by S^{2} such that the cell pair (C_{i}, C_{i}\cap\overline{K})

is equivalent to the one associated to K_{i} . Let \Gamma be an arc in S^{s} which
satisfies the conditions (1) and (2) :

(1) \Gamma\cap\overline{K}=\partial\Gamma\cap\overline{K}=\{a, b\}(=twopoints)\subset\overline{K}-S^{2} and a\in C_{1} ,
(2) \Gamma and S^{2} intersect transversely in n points.

We put \Gamma\cap S^{2}=\{a_{1^{ }},\cdots, a_{n}\} , where the ordering is from a_{1} to a_{n} counting
from nearer point to a. Next we choose a regular n . b. d . of \Gamma, say \overline{B},
satisfying (3) and (4) :

(3) Each component of \overline{B}\cap S^{2} is a disc containing exactly one point
of \Gamma\cap S^{2} .
Let D_{0}^{i} denote the disc in (3) containing a_{i} . Then \overline{B} is decomposed into
(n+1)3-cells by D_{0}^{1}\cup\cdots\cup D_{0}^{n} . Let B_{j}(0\leq j\leq n) denote the j\prime th cell counting
from the side of a. Then:

(4) \overline{B}\cap\overline{K}=(B_{0}\cap\overline{K})\cup(B_{n}\cap\overline{K}) and, (B_{0}, B_{0}\cap\overline{K}) and (B_{n}, B_{n}\cap\overline{K}) are
trivial cell pairs.
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\overline{B}

Fig. 1.

Fig. 2.

Now (\overline{B},\overline{B}\cap\overline{K}) can be seen as in Fig. 1 abstractly. Taking off \overline{B}\cap\overline{K} from
\overline{K} and adding two arcs as in Fig. 2, we obtain a knot K=K_{\Gamma} (Note that
there is an ambiguity to twist \overline{B} around \Gamma_{} but we need not cause it for
our problem). K_{1}+_{n}K_{2} is the set of all knots constructed in the above way
using \Gamma’s satisfying above conditions. Specially K_{1}+_{1}K_{2} is the union of K_{1}

and K_{2} in the sense of Kinoshita-Terasaka.
Here we settle two facts used later (\S 5). Let K=K_{\Gamma} be a knot con-

tained in K_{1}+_{n}K_{2} . Then:
PROPOSITION 1. 1 Suppose there exists a disc \Delta such that:
(1) \Delta\cap\Gamma=a_{i}a_{i+1}(1\leq i\leq n-1) .
(2) \Delta\cap S^{2} is an arc in S^{2}-(\Gamma-\Delta\cap\Gamma) whose boundary is \{a_{i}, a_{i+1}\} .

Then K is also contained in K_{1}+_{n-2}K_{2} . (See Fig. 3)
In fact let \Gamma’ be the arc described in Fig. 3’. Then K_{\Gamma} is equivalent to

K_{\Gamma’} and this shows 1. 1.
PROPOSITION 1. 2 Suppose there exists a disc \Delta such that:
(1) \Delta\cap\Gamma=\overline{aa}_{1} (or \overline{a_{n}b}).
(2) \Delta\cap S^{2} is an arc in S^{2}-(\Gamma-\Delta\cap\Gamma) whose boundary is { a_{1} (resp. a_{n}),

a point, say Q, in \overline{K}\cap S}.
(3) \Delta\cap\overline{K} is an arc whose boundary is \{a(resp. b), Q\} . Then K is

also contained in K_{1}+_{n-1}K_{2} . (See Fig. 4).
In fact let \Gamma’ be the arc described in Fig. 4’. Then K_{\Gamma} is equivalent

to K_{\Gamma’} and this shows 1. 2.
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Pig. 3’.

Fig. 4. Fig. 4’.

1. 2 We will show the reason why we consider K_{1}+_{n}K_{2} . Let U(n)
be the following statement:

U(n) : For non-trivial knots K_{1} and K_{2}, K_{1}+_{n}K_{2} does not contain the
trivial knot.

Then the following holds :
PROPOSITION. (1) and (2) are equivalent.

(1) For all n, U(n) is true.
(2) Knots with the unknotting number one are prime.

PROOF: (1)\Rightarrow(2) : Let \overline{K} be a knot with the unknotting number one
and suppose that there exist knots K_{1} and K_{2} such that \overline{K}=K_{1}\# K_{2}s^{2}’ where
S^{2} is the decomposition sphere. Then we obtain the trivial knot by exchang-
ing over and under crossing at some crossing point for a suitable knot pr0-

jection of \overline{K}. Let \Gamma be the vertical arc which connects the over-crossing
point a to the under-crossing point b :
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\overline{K}

\Rightarrow trivial

We may assume that \Gamma and S^{2} are in general position. Let n denote
\#(\Gamma\cap S^{2}) . Then the trivial knot is contained in K_{1}+_{n}K_{2} . So K_{1} or K_{2}

must be trivial. The converse is similar.
1. 3 Known results on U(n) are as follows:

THEOREM 0. U(0) is true.
This is a corollary to Schubert’s result in [2].

THEOREM 1. ([1], Terasaka [3]). U(1) is true.
Our result in this note is:

THEOREM 2. U(2) is true.
Our idea of the proof is similar in spirit to that of Terasaka’s in [3].

2. Outline of Proof.

First we will describe the specialized situation explicitly. Since n=2,
\partial\Gamma=\{a, b\}\subset C_{1} . Let B denote B_{1} and let B’ denote C_{1} and V be the solid
torus B\cup B’ . And let D_{i}(i=1,2) denote the disc D_{0}^{i} . See Fig. 5 and 6.

Fig. 5. Fig. 6.
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We say V the solid torus associated to K=K_{\Gamma}. Actually we will show
Theorem A and B :

THEOREM A. Suppose K_{1} and K_{2} is non-trivial. Let K be a knot in
K_{1}+_{2}K_{2} and V be the solid torus associated to K. Then, if V is knotted
in S^{3}, K is non-trivial.

THEOREM B. Let K_{1} , K_{2}, K and V be as in Theorem A. Then, if
V is unknotted in S^{3}, K is non-trivial.

Theorem A will be proved in section 3 and the remaining of this note is
the proof of Theorem B. To prove Theorem B, we assume K is trivial
and deduce a contradiction. To do so, first, we choose a disc bounded by
K that is “nice” with respect to \partial V\cup D_{1}\cup D_{2} (\S 4). Next we define a set \Sigma

as follows: Let \Sigma be the set of all components of int D-(\partial V\cup D_{1}\cup D_{2})

that are not open 2-cells. Now we will complete the proof in \S 6 in case of
\Sigma=\phi and in \S 7 in case of \Sigma\neq\emptyset .

3. Proof of Theorem A.

Lemma 3. 1 Suppose the trivial knot K is contained in K_{1}+_{2}K_{2} and let
V be the solid torus associated to K. If there is a pair (W, D) satisfying
(1) to (3) below, K_{1} is trivial.

(1) D is a disc bounded by K.
(2) D is contained in int W.
(3) W is a solid torus containing V in its interior and for some

meridian disc of W, say M, M\cap V is a meridian disc of V.
REMARK: In this lemma, we do not assume that V is knotted.

PROOF : Let p : (\overline{W}, 1^{7})arrow(W, V) be the universal cover of (W, V) and
let W_{0} be the closure of a connected component of p^{-1}(W-V\cap M) and V_{0}=

|\tau_{\cap}W_{0} . Let \tilde{D} be a lift of D in \overline{W}. Then \tilde{K}=\partial\tilde{D} intersects with \partial I^{7} in
two points. Let t be a covering translation which generates Cov (\overline{W}/W) .
Put V_{i}=t^{-i}V_{0}\cup 11\cup V_{0}\cup\circ\circ\cup t^{i}V_{0} . Then V_{i} is a 3-cell and \partial T^{7}\cap\tilde{D}=\partial V_{i}\cap\tilde{D}

for some i. Here the cell pair ( V_{i}, V_{i}\cap\tilde{K}) is equivalent to the one associated
to K_{1} . Also (V_{i}, V_{i}\cap\tilde{K}) is trivial since (\overline{W},\tilde{K}) is trivial. Thus K_{1} is trivial.

Lemma 3. 2 Suppose the trivial knot K is contained in K_{1}+_{2}K_{2} and
let V be the solid torus associated to K. If there is a disc D bounded by

K and a meridian curve m of V such that m does not intersect with D,

then K_{1} is trivial.

PROOF: In fact there exists a solid torus W such that (W, D) satisfies
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the conditions in 3. 1 as follows: Let W be the closed complement of
sufficiently small tubular n . b. d. of the loop that is a slight push of m out
of V\cup D. This is a desired one.

PROOF OF THEOREM A : Assume K is trivial. Then there exists a disc
D bounded by K. Without loss of generality, we may assume D and \partial V

are in general position. Since V is knotted and any cable of non-trivial
knot is non-trivial, all loops in D\cap\partial V are homologous to zero in V. So
we can find a meridian curve m of V which does not intersect with D\cap\partial V.
By Lemma 3. 2, K_{1} must be trivial and this is a contradiction.

4. Preliminary Part of Proof of Theorem B.

We will proceed to the proof of Th. B. In this section, we will choose a
disc D bounded by K which is in “nice” position with respect to \partial V\cup D_{1}\cup D_{2} .

REMARK. In this section, we need not assume that V is unknotted.
It is trivial that there exists a disc D bounded by K which satisfies (1)

and (2) :
(1) D and \partial V\cup D_{1}\cup D_{2} are in general position.
(2) (\# (D \cap(D_{1}\cup D_{2})),\sum_{k=1,2}\# (components of D\cap D_{k}), \# (loops of D\cap A’ ),

\# (loops of D\cap A) ) is minimal with respect to the lexicographic order among
the discs satisfying (1), where A denotes \partial B-(D_{1}\cup\dot{D}_{2}) and A’ denotes
\partial B’-(D_{1}\cup D_{2}^{Q}) . For D above the followings hold:

(4. 3) There is no arc among the components of D\cap(D_{1}\cup D_{2}) whose
boundary is \partial D\cap D_{k} for some k, k=1,2.

(4. 4) There is no meridian curve of V among the components of D\cap A .
(4. 5) \# (loops of D\cap A) =0.
(4. 6) Let x be any component of D\cap A . Then x is a proper arc in

A and the points of \partial x are contained in the different components of \partial D_{1}\cup\partial D_{2}

(i . e . x runs from \partial D_{1} to \partial D_{2}.).
(4. 7) Let y be any component of D\cap A’ such that \partial y is contained in

\partial D_{i} for some i=1,2. Then y separates K\cap\partial V on A’ .
(4. 8) \# (D\cap\partial D_{1})=\#(D\cap\partial D_{2}) .
(4. 9) Let y, y’ be any components of D\cap A’ such that \partial y\cup\partial y’ is con-

tained in \partial D_{i} for some i=1,2. Let \omega (resp. \omega’ ) denote the disc in A’ bounded
by y (resp. y’ ) and a subarc of \partial D_{i} . Then \omega\subset\omega’ or \omega’\subset\omega(i. e . y is parallel
to y’ in A’-K\cap\partial V).

(4. 10) (D_{i}, D_{i}\cap D)(i=1,2) is viewed as follows:
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PROOFS: (4. 3) Suppose D\cap D_{i} contains such a component as in (4. 3).

Then we may assume that D\cap D_{i} contains only one arc whose boundary is
\partial D\cap D_{i} . So there exists a meridian of V which does not intersect with D.
By Lemma 3. 2, K_{1} must be trivial and this is a contradiction. (4.4) is
similar. (4. 5) Suppose there exists a loop component c in D\cap A . Since A
is an annulus, c is parallel to a boundary component of A or homotopic to
a point in A. By (4. 4), the first case cannot occur. So c must bound
a disc in A and this contradicts to the minimality condition (2) by cut and
paste argument.

(4. 6) By (4. 5), x must be an arc. Suppose \partial x is contained in \partial D_{i} .
Then there exists a disc \omega in A bounded by x and a subarc of D_{i} . So we
can decrease \#(D\cap(\partial D_{1}\cup\partial D_{2})) by pushing D along \omega and this contradicts to
(2).

(4. 7) This is proved similarly to (4. 6).
(4. 8) This follows from (4. 6).
(4. 9) It is sufficient to prove \omega\cap\omega’\neq\phi . Suppose \omega\cap\omega’=\phi and \partial y\cup

\partial y’\subset\partial D_{1} . Then, by (4. 7), \omega\cup\omega’\supset K\cap\partial V. This means that there is no
component y’ of D\cap A’ such that \partial y’\subset\partial D_{2} . This contradicts to (4. 8).

(4. 10) By (4. 3), (D_{i}, D_{i}\cap D) contains four sorts of curves in general:
(a) various loops in int D_{i} ,
(b) two arcs which connect a point in D_{i}\cap\partial D to a point in \partial D_{i} ,

(c) various arcs connecting two points in \partial D_{i} and separating D_{i}\cap\partial D

on D_{i} ,
(d) various arcs connecting two points in \partial D_{i} and not separating D_{i}\cap\partial D

on D_{i} .
But the curves in (a) and (d) cannot be contained by the minimality con-
dition (2). In fact the curves in (a) can be removed by usual cut and paste
arguments and the ones in (d) by “push out along the outermost disc”
arguments. This shows (4. 10).

5. Some Lemmas.

LEMMA 5. 1 Let K=K_{\Gamma} be the trivial knot in K_{1}+_{2}K_{2} and let V be
the solid torus associated to K. Suppose there is a disc Z properly embedded
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Fig. 7. Fig. 8.

in S^{3}-int V such that \partial Z intersects with \partial D_{i}(i=1,2) in one point and \tilde{\Delta} does
not intersect with K. Then K_{1} or K_{2} is trivial.

PROOF: Trivially there exists a disc \Delta which satisfies the conditions in
Proposition 1. 1. Thus K is also contained in K_{1}+_{0}K_{2} . So, by Theorem
0, 5. 1 has been proved.

Lemma 5. 2 Let K=K_{\Gamma} be the trivial knot in K_{1}+_{2}K_{2} and let V be
the solid torus associated to K. Suppose there is a disc Z such that:

(1 ) Z is properly embedded in B’-K.
(2) \tilde{\Delta}\cap(D_{1}\cup D_{2}) is an arc.
(3) \partial\tilde{\Delta} separates K\cap\partial V on \partial B’ .

Then K_{1} or K_{2} is trivial.

PROOF: Suppose \tilde{\Delta}\cap D_{2}=\phi . Then B’ is decomposed into two 3-cells
by Z. Let C denote the one that does not contain D_{2} . Since K is trivial,
(C, C\cap K) is the trivial cell pair. So we can find a disc \Delta which satisfies the
conditions in Proposition 1. 2. Thus K is also contained in K_{1}+_{1}K_{2} . So,
by Theorem 1, 5. 2 has been proved.
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6. Completion of Proof in case of \Sigma=\emptyset.
As in \S 2, let \Sigma denote the set of all components of int D-(\partial V\cup D_{1}\cup D_{2})

that are not open 2-cells. The key point is that inequalities (6. 1) to (6. 5)
hold except in cases that we can deduce contradictions comparatively easily.

6. 1 Let D_{0} denote D\cap V and consider D_{0}^{*}=intD_{0}-(D_{0}\cap(D_{1}\cup D_{2})) .
By the assumption \Sigma=\emptyset , we know the followings easily:

(6. 1. 1) D_{0} is connected.
(6. 1. 2) Each component of D_{0}^{*} is an open 2-cell.

Now we set :

D\cap\partial V=l\cup c_{1}\cup\circ\cdot\cup c_{\mu}

where l is an arc whose boundary is K\cap\partial V and c_{i}’s are loops. Note that,
by (6. 1. 1) :

(6. 1. 3) Each c_{i} is innermost in D.
So :

(6. 1. 4) \partial D_{0}=(V\cap K)\cup(D\cap\partial V)

See Fig. 9 and Fig. 10 for (6. 1. 1) to (6. 1. 4).

Fig. 9. Pig. 1O.
Let m_{i}(i=1,2) denote \# (l\cap\partial D_{i}) . By (4. 6), m_{1}=m_{2} , so we put m\equiv m_{1} .

By similar consideration, we put p_{j}=\#(c_{j}\cap\partial D_{1})=\#(c_{j}\cap\partial D_{2}) and p\equiv p_{1}+\cdots+

p_{\mu} . Then :
(6. 1) m\geqq 2 and p_{j}\geqq 3 for all j.
PROOF: Suppose m\leqq 1 or p_{j}\leqq 2 for some j. Then there exists a disc
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\tilde{\Delta} satisfying all conditions in Lemma 5. 1, so K_{2} must be trivial. In fact,
suppose p_{j}=2 for example. Let d_{j} denote the disc on D bounded by c_{j}

(see (6. 1. 3)). Note c_{j} is homologous zero on \partial V since p_{j} is even and d_{j}\subset S^{3} -

int V. Let d_{j}’ denote the disc bounded by c_{j} on \partial V and let C denote the
3-cell in S^{3}-int V bounded by the 2-sphere d_{j}\cup d_{j}’ . Let W denote the union
of V and C. Then K is contained in W and W is a solid torus which is
unknotted in S^{3} (Recall the assumption V is unknotted in S^{3}). Since p_{j}=2 ,
d_{j}’\cap\partial D_{i}=an subarc of \partial D_{i} for i=1,2. So there exists a longitude c of V
that is contained in \partial V-d_{j}=\partial W-d_{f}’ and intersects with \partial D_{i} in one point
for i=1,2. Since W is unknotted, there is a disc Z in S^{3}-int W such that
\partial\tilde{\Delta}=c . Then \tilde{\Delta} is a desired one. Other cases are similar.

6. 2 We consider (D_{0}, D\cap(D_{1}\cup D_{2})) . Let \Omega_{0} denote the set of points in
\partial(D\cap(D_{1}\cup D_{2})) . We call a element of \Omega_{0} a vertex (of D_{0}). The points of \Omega_{0}

devide \partial D_{0}\cup(D\cap(D_{1}\cup D_{2})) into N_{1} subarcs \Omega_{1}=\{\lambda_{1^{ }},\cdots, \lambda_{N_{1}}\} . Let \Omega_{2}=\{O_{1},\cdots ,
O_{N_{2}}\} denote the set of closures of components of D_{0}^{*} . Then:

(6. 2. 1) For each vertex v of D_{0} , there are exactly three elements of
\Omega_{1} each of which contains v as one of its end points.

(6. 2. 2) Let \epsilon be any component of D\cap(D_{1}\cup D_{2}) . Then there are
exactly two elements of \Omega_{2}, say O_{i} and O_{j} , such that O_{i}\cap O_{j}\supset\epsilon and if
O_{i}\subset B, then O_{j}\subset B’ .
By (6. 1. 2) and (6. 2. 2), O_{i}’s are closed 2-cells. Therefore we obtain the
cell decomposition of D_{0} by considering \Omega_{0} , \Omega_{1} and \Omega_{2} as 0, 1 and 2-cells
respectively.

The following property is used later.
(6. 2. 3) For any 1-cell one of whose end points is contained in V\cap K,

another end point is contained in D\cap\partial V.
In fact, if not so, it contradicts to (4. 3).

REMARK: For (6. 2. 1) to (6. 2. 3), we do not need the assumption \Sigma=\emptyset .
We will use these facts in \S 7 again.

In the following, we consider to estimate the number of 2-cells. First
of all: N_{0}=2m+2p+4 . By (6. 2. 1), N_{1}=3N_{0}/2 . By calculating Euler char-
acteristic number of D_{0} :

N_{0}-N_{1}+N_{2}=1-\mu

Thus we obtain:
(6. 2) N_{2}=m+p+3-\mu

6. 3 We use the following notation. For any subset X of D_{0}, let T\{X)
denote the set of all vertices contained in X and for any subset Y of \Omega_{2} :
\zeta X(Y)=\bigcup_{o\epsilon Y} {vertices contained in \partial O}. A 2-cell O is called k-gonal if its
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boundary is the union of k1 -cells (or equivalently \# ( \Psi (O))=k). Note that
k is always even.

Now we devide \Omega_{2} into the disjoint union of subsets. First:
\Omega_{2}=\Omega_{2}(B)\cup\Omega_{2}(B’)

where \Omega_{2}(B)=\{O\in\Omega_{2}|O\subset B\} and \Omega_{2}(B’)=\{O\in\Omega_{2}|O\subset B’\} . Moreover :
\Omega_{2}(B)=\Omega_{2}^{0}(B)\cup\Omega_{2}^{1}(B)

\Omega_{2}(B’)=\Omega_{2}^{0}(B’)\cup\Omega_{2}^{1}(B’)

where \Omega_{2}^{0}(B)=\{O\in\Omega_{2}(B)|\Psi(O)\cap r(V\cap K)\neq\phi\} and \Omega_{2}^{1}(B)=\Omega_{2}(B)-\Omega_{2}^{0}(B) .
\Omega_{2}^{0}(B’) and \Omega_{2}^{1}(B’) are similar. Then :

(i) \Omega_{2}=\Omega_{2}^{0}(B)\cup\Omega_{2}^{0}(B’)\cup\Omega_{2}^{1}(B)\cup\Omega_{2}^{1}(B’) (disjoint)
(ii) \Omega_{2}^{0}(B)\cup\Omega_{2}^{0}(B’)=\{O\in\Omega_{2}|{?}’(O)\cap\Psi(V\cap K)\neq\phi\}

Note that cX(V\cap K)=K\cap(D_{1}\cup D_{2}) (See Fig. 10). So \# (.\mathscr{K}’(V\cap K))=4 . Thus,
by (i) :

(iii) \# (\Omega_{2}^{0}(B)\cup\Omega_{2}^{0}(B’))\leqq 5

We put :
\alpha=\#(\Omega_{2}^{1}(B))

\beta=\#(\Omega_{2}^{1}(B’))

Then, by (i) and (iii) (recall N_{2}=\#(\Omega_{2}) ) :
(6. 3) \alpha+\beta+5\geqq N_{2}

6. 4 Now consider \Omega_{2}(B)

(iv) Let O_{i} and O_{j} be different elements of \Omega_{2}(B) . Then O_{i}\cap O_{j} is
empty.

PROOF: This follows easily from (6. 2. 1) and (6. 2. 2).
(v) {?}’(\Omega_{2}^{1}(B))=\cup\{\mathscr{K’(O)|O\in\Omega_{2}^{1}(B)\} (disjoint)

PROOF: This is trivial by (iv).
(vi) For O\in\Omega_{2}^{1}(B) , suppose O is 2m-gonal. Then m\geqq 4 .
PROOF : By (4. 6), m cannot be odd. Suppose m=2. Then, by (4. 6)

and (4. 10), O must have the form as indicated in Fig. 11. and so, O\cap(K\cap B)

\neq\phi. This is impossible since O\subset intD.
By (v) and (vi), we obtain :

(a) \# ({?}’(\Omega_{2}^{1}(B)))= \sum \# (X(O))\geqq 8\alpha

o\epsilon 0\S(B)

The following is trivial by the definition of \Omega_{2}^{1}(B) .
(vii) For O\in_{2}^{1}(B) , the vertices of \partial O is contained in D\cap\partial V.

By (iv) and (vii) :
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Fig. 11 \cdot(( )Ir

(viii) For O\in\Omega_{2}^{1}(B) ;

r(O)\subset(D\cap\partial V)-\mathscr{X}\backslash (\Omega_{2}^{0}(B, ))

\backslash \backslash

=r(D\cap\partial V)-({?}’(D\cap\partial V)\cap r(\Omega_{2}^{0}(B)))

Here, by (6. 2. 3) and the fact \# ( V\cap K)=4 , we have :
(ix) \Psi(D\cap\partial V)\cap\Psi(\Omega_{2}^{0}(B)) contains at least four points.

Therefore, by (v), (viii) and (ix) : r_{c}^{-\backslash }

(b) \# ({?}^{r}(\Omega_{2}^{1}(B)))=\#(\cup\{\mathscr{K_{\wedge}’(O)|O\in\Omega_{2}^{1}(B)\})

=\#(\Psi(D\cap\partial V))-\#(r(D_{\vee}\cap\partial V)n\mathscr{K}’(\Omega_{2}^{0}(B)))

\leqq 2m+2p-4

Combining (a) and (b), we obtain :

8\alpha\leqq 2m+2p-4

Thus we have the estimate for \alpha :
(6. 4) 4\alpha\leqq m+p-2

6. 5 We consider \Omega_{2}(B’) . As in 6. 4, we know:
(iv’) Let O_{i} and O_{j} be different elements of \Omega_{2}(B’) . Then O_{i}\cap O_{j} is

empty.
(v’) \mathscr{K}’(\Omega_{2}^{1}(B’))=\cup\{\Psi(O)|O\in\Omega_{2}^{1}(B’)\} (disjoint)

(vii’) For O\in\Omega_{2}^{1}(B’) , the vertices of \partial O is contained in D\cap\partial V.
(viii’) For O\in\Omega_{2}^{1}(B’) ;

Cff(O)\subset r(D\cap\partial V)-(X(D\cap\partial V)\cap r(\Omega_{2}^{0}(B’)))

(ix’) \mathscr{K}’(D\cap\partial V)\cap\Psi(\Omega_{2}^{0}(B’) contains at least four points.
(b’) \# (\Psi(\Omega_{2}^{1}(B’)\leqq 2m+2p-4

6. 6 Next we consider \Omega_{2}^{1}(B’) . First we may assume that no 2-cell in
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\Omega_{2}^{1}(B’) is 2-gonal (in fact: Suppose there exists a 2-gonal 2-cell \tilde{\Delta} in \Omega_{2}^{1}(B’) .
Then \partial\tilde{\Delta} is the union of two 1-cells y and z, where y is contained in A’

and z is contained in D_{i} , i=1 or 2 and \overline{\partial}y\subset\partial D_{i} . By (4. 7) and \backslash ’.4.10_{/}^{\backslash },\tilde{\Delta}

satisfies the conditions in Lemma 5. 2. Thus K_{2} must be trivial, so a con-
tradiction.)

(6. 6. 1) There are 4-gonal 2-cells in \Omega_{2}^{1}(B’) .
PROOF : Suppose the contrary, i . e . \# (Z(O))\geqq 6 for every 2-cell O in

\Omega_{2}^{1}(B’) . Then by (V) and (b’) in 6. 5, we have :

(*) 6\beta\leqq 2m+2p-4

Then we can deduce a contradiction from (6. 1) to (6. 4) and (^{*}) . In fact:
By (6. 3), 12\alpha+12\beta\geqq 12(N_{2}-5) . Using (6. 2), (6. 4) and (^{*}) ; 12\mu+10\geqq 5m+5p

By (6. 1); 12\mu+10\geqq 10+15\mu . This is a contradiction.
Next we show that 4-gonal 2-cells and 6-gonal 2-cells in \Omega_{2}^{1}(B’) must

have restricted forms ((6. 6. 2) and (6. 6. 3) below). In general let O be an
2n-gonal 2-cell in \Omega_{2}^{1}(B’) . Then \partial O(\subset\partial B’) is built up from n1-cells \{\lambda_{1}’ , \cdots ,
\lambda_{n}’\} which are contained in A’ and n1-cells \{\lambda_{1}’, \cdots, \lambda_{n}’\} which are contained
in D_{1}\cup D_{2} . Now let O be a 4-gonal 2-cell and \partial O=\lambda_{1}’\cup\lambda_{2}’\cup\lambda_{1}’\cup\lambda_{2}’ . Then:

(6. 6. 2) \lambda_{1}’\cup\lambda_{2}’ cannot be contained in the same component of D_{1}\cup D_{2} .
That is, O must have the form as indicated in Fig. 12.

PROOF : Suppose \lambda_{1}’\cup\lambda_{2}’\subset D_{1} . Then \partial\lambda_{1}’\cup\partial\lambda_{2}’\subset\partial D_{1} . So, by (4. 9), \lambda_{1}’

and \lambda_{2}’ are parallel in A’-(K\cap\partial V) . Let \delta be a component of B’\cap K such

Fig. 12.
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\partial B’=R^{g}\cup\{\infty\}

Fig. 13.

that \delta\cap D_{1}=\phi . Then \partial O separates \partial\delta on \partial B’ and this is impossible since
O\cap\delta=\phi .

Let O_{0} be a fixed 4-gonal 2-cell and A_{0} denote the disc bounded by
\partial O_{0} on \partial B’ that contains K\cap\partial V in its interior. Let O be any 6-gonal 2-
cell and \partial O=\lambda_{1}’\cup\lambda_{2}’\cup\lambda_{3}’\cup\lambda_{1}’\cup\lambda_{2}’\cup\lambda_{3}’ . Then :

(6. 6. 3) ( i) \partial O is contained in A_{0} .
(ii) Two of \lambda_{j}’ ’s run from \partial D_{1} to \partial D_{2} .

That is any 6-gonal 2-cell must have the form as indicated in Fig. 13.
PROOF (i) Since O is 6-gonal, for some j=1,2,3 , \lambda_{j}’ is a component of

D\cap A’ such that \partial\lambda_{j}’\subset\partial D_{i} , i=1 or 2. Thus, by (4. 7), \lambda_{j}’\subset A_{0} and so \partial O\subset A_{0} .
(ii) Suppose \lambda_{1}’\cup\lambda_{2}’\cup\lambda_{3}’\subset D_{1} . Then, by (i) and (4. 9), \lambda_{j}’ ’s are parallel

in A_{0}\cap(A’-(K\cap\partial V)) . Also, by (4. 10), \lambda_{j}’ ’s are parallel in D_{1}-(K\cap D_{1}) .
These facts contradict to each other (See Fig. 14).

6. 7 Now let \beta_{1} denote the number of 4-gonal 2-cells in \Omega_{2}^{1}(B’) and \beta_{2}

denote the number of 6-gonal 2-cells in \Omega_{2}^{1}(B’) and \beta_{3}=\beta-\beta_{1}-\beta_{2} . And let
\tilde{\Omega} denote the set \{\epsilon\in\Omega_{1}|\epsilon\subset\partial O, O\in\Omega_{2}^{1}(B’)\} and let 12 denote { \epsilon\in\tilde{\Omega}|\epsilon\prod\partial O for
any 4-gonal 2-cell O in \Omega_{2}^{1}(B’)\} . Recall \#(\tilde{\Omega})=\#(\Psi(\Omega_{2}^{1}(B’))) . By (b’) in 6. 5:

\# (\tilde{\Omega})\leqq 2m+2p-4

Also : \# (\tilde{\Omega})=4\beta_{1}+\#(\Omega)



On the generalization of union of knots 143

\lambda_{\acute{j}}’ s

Fig. 14.

We will count \# (\Omega) to estimate \beta . Now f2 contains the following three
sorts of 1-cells :
(a) 1-cells contained in D_{1}\cup D_{2} that are contained in the boundaries of
2n-gonal 2-cells, where n\geqq 3 . \# (this sort of 1-cells) is at least 3\beta_{2}+4\beta_{3} .
(b) 1-cells contained in A’(=\partial B’-(\Gamma_{-}^{o})_{1}\cup[mathring]_{2}_{D})) each of which connects two
points belonging to the same component of \partial D_{1}\cup\partial D_{2} . (Recall (6. 6. 2)).
\# (this sort of 1-cells) is at least 2\mu (Proof: Recall that each c_{j}, a loop com-
ponent of D\subset\partial V, is a longitude of V or homologous zero on \partial V. Thus,
by the fact p_{f}\geqq 3 (by (6. 1)) there are at least two such 1-cells as above that
are contained in c_{f} .).
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(c) 1-cells contained in A’ that run from \partial D_{1} to \partial D_{2} and are contained in
the boundaries of 2n\sim gonal 2-cells, where n\geqq 3 . \# (this sort of 1-cells) is
at least 2\beta_{2} by (ii) of (6. 6. 3). Thus \# (\Omega)\geqq 2\mu+5\beta_{2}+4\beta_{3} . Therefore :

4\beta_{1}+(2\mu+5\beta_{2}+4\beta_{3})\leqq 4\beta_{1}+\#(\Omega)=\#(\tilde{\Omega})\leqq 2m+2p-4

I. e : 4 (\beta_{1}+\beta_{2}+\beta_{3})\leqq 4\beta_{1}+5\beta_{2}+4\beta_{3}\leqq 2m+2p-4-2\mu

Thus we obtain the following estimate for \beta :
(6. 5) 2\beta\leqq m+p-2-\mu

6. 8 Now we can deduce a contradiction from (6. 1) to (6. 5) as follows:
By (6. 3) :

4\alpha+4\beta\geqq 4(N_{2}-5)

Using (6. 2), (6. 4) and (6. 5) :

m+p-2+2(m+p-2-\mu)\geqq 4(m+p-2-\mu)

I. e . 2+2\mu\geqq m+p . By (6. 1) :

2+2\mu\geqq m+p\geqq 2+3\mu

This is a contradiction.

7. Completion of Proof in case of \Sigma\neq\emptyset.
In this section, we will find a suitable subset of D ( X_{0} below) and do

similar arguments to the previous section. First we consider (D, D\cap\partial V) .
Let \Phi denote the set of all loops of D\cap\partial V that are innermost in D and
let \theta denote the set cf discs in D bounded by the loops in \Phi . Note that
\Phi is non-empty (In fact, if not so, applying Lemma 3. 2 again, K_{1} must be
trivial). Now :

(*) Every disc in \theta is contained in S^{3}-int V.
PROOF: Let c be a loop in \Phi and d be the disc bounded by c. Assume

d is contained in V. If d\cap(D_{1}\cup D_{2})=\emptyset, by (4. 5), c must be contained in A’ .
Since c does not separate D_{1} and D_{2} on \partial B’ , c must bound a disc d’ in A’r

Since d’\supset K\cap\partial V means K_{2} is trivial, d’\mathfrak{D}_{\backslash }K\cap\partial V. So we can remove c.
This contradicts to (2) in \S 4. Thus we may assume d\cap(D_{1}\cup D_{2})\neq\emptyset . Then
by usual outermost disc argument on d, we have a disc \tilde{\Delta} satisfying all
conditions in Lemma 5. 2, so a contradiction.

Now we define a order > on \Sigma as follows: Let \sigma and \acute{\sigma} be elements
of \Sigma . Then cl(\sigma) is a submanifold of D homeomorphic to the disc with
holes. Let X_{1} , \cdots , X_{n} denote the discs in D bounded by the innerboundaries
of \sigma. We define \sigma>\sigma’ iff \sigma’ is contained in X_{j} for some j. Since \Sigma\neq\emptyset,
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there is a minimal element \sigma_{0} in \Sigma with respect to this order. Let X_{0} be
a disc bounded by some inner boundary of \sigma_{0} . Then we obtain a cell decom-
position for X_{0} as follows: Let \Omega_{0} be the set of points in X_{0}\cap(\partial D_{1}\cup\partial D_{2})

and \Omega_{1} be the set of subarcs of X_{0}\cap(\partial V\cup D_{1}\cup D_{2}) devided by the points in
\Omega_{0} : Let \tilde{\Omega}_{2}=\{O_{1^{ }},\cdots, O_{N_{2}}\} denote the set of closures of all^{J} components of
D_{0}^{*}(=intD_{0}-(D_{0}\cap(D_{1}\cup D_{2}))) that are containedd ^{t}inX_{0} . The^{\nun} , by the choice
of.\sigma_{0} , O_{i}^{j}s are closed 2-cells (Recall \S 6. 2). Let \theta_{0}de^{Y}note the set of^{t}\dot{A}a11 discs
belonging to \theta and contained in X_{0} . Then, by (^{*}) above, X_{0} is the union
of all O_{i}’s in \tilde{\Omega}_{2} and discs in \theta_{0} . Now setting \Omega_{2}=\theta_{0}\cup\tilde{\Omega}_{2} and considering
\Omega_{0}, \Omega_{1} and \Omega_{2} as 0, 1 and 2-cells, we obtain a cell decomposition for X_{0} .

Let N_{0} denote \# (\Omega_{0}) and N_{1} denote \# (\Omega_{1}) and let \Phi_{0}=\{C_{1}^{ },\cdots, C_{\mu}\} denote
the set of all loops in \Phi that are contained in X_{0} . Of course \# (\Phi_{0})=\#(\theta_{0}) .
Then as in \S 6. 2:

N_{0}-N_{1}+(N_{2}+\mu)=1 and N_{1}=3N_{0}/2

Thus we have :

($) N_{2}=N_{0}/2+1-\mu

Let p_{j} denote \# (c_{j}\cap\partial D_{1})=\#(c_{j}\cap\partial D_{2}) and p=p_{1}+\cdots+p_{\mu} . As in \S 6. 1 :
(7. 1) p_{j}\geqq 3 for all j.
Let \alpha (resp. \beta) denote the number of 2-cells of \tilde{\Omega}_{2} that are contained in

B (resp. B’ ). We must consider two cases:
(I) \partial X_{0}=\tilde{c} is a single loop of D\cap\partial V.
(II) Otherwise.
(I) In this case N_{0}=2(p+\tilde{p}) , where \tilde{p}=\#(\tilde{c}\cap\partial D_{1}) . So, by ($) above,

we have :
(7. 2) N_{2}=p+\tilde{p}+1-\mu

Trivially :
(7. 3) N_{2}=\alpha+\beta

As in \S 6. 4 :
(7. 3) 4\alpha\leqq p+\tilde{p}

As in \S 6. 5 to \S 6. 7 j

(7. 5) 2\beta\leqq p+\tilde{p}-\mu

In case (II), the correspondings are the ones that are obtained from (7. 1)
to (7. 5) by setting \tilde{p} to be zero.

Now the computations similar to those in \S 6. 8 complete the whole
proof of our theorem.
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