On the generalization of union of knots

By Ken Sakai
(Received July 13, 1982; Revised November 16, 1982)

1. Introduction

In this note, we generalize the union of knots introduced by Kinoshita and Terasaka [1] and consider its relation to the problem on the primeness of knots with the unknotting number one. All of our treatments are done in the piecewise linear category. The author is grateful to all members of Topology seminars at Kobe University, Tsuda College and Hokkaido University.
1.1 First of all, we will define a set of knots that is the central concept of this note. We use the following usual notation: Let k be a knot in the 3 -sphere S^{3} and let C be a 3 -cell in S^{3} satisfying $\left(^{*}\right)$ and $\left(^{* *)}\right.$:
(*) k intersects with ∂C transversely in two points.
(**) For $C_{0}=c l\left(S^{3}-C\right),\left(C_{0}, C_{0} \cap k\right)$ is the trivial cell pair.
Then we call $(C, C \cap k)$ the cell pair associated to the knot k. Now let K_{1} and K_{2} be knots in S^{3}. For non-negative integer $n, K_{1}+{ }_{n} K_{2}$ denotes the set of knots constructed in the following manner: Let \bar{K} denote the knot sum of K_{1} and K_{2}, and S^{2} be the decomposition sphere; $\bar{K}=K_{1} \# K_{2}$, and let $C_{i}(i=1,2)$ be the 3 -cell bounded by S^{2} such that the cell pair ($\left.C_{i}, C_{i} \cap \bar{K}\right)$ is equivalent to the one associated to K_{i}. Let Γ be an arc in S^{3} which satisfies the conditions (1) and (2) :
(1) $\Gamma \cap \bar{K}=\partial \Gamma \cap \bar{K}=\{a, b\}$ ($=$ two points) $\subset \bar{K}-S^{2}$ and $a \in C_{1}$,
(2) Γ and S^{2} intersect transversely in n points.

We put $\Gamma \cap S^{2}=\left\{a_{1}, \cdots, a_{n}\right\}$, where the ordering is from a_{1} to a_{n} counting from nearer point to a. Next we choose a regular n. b.d. of Γ, say \bar{B}, satisfying (3) and (4):
(3) Each component of $\bar{B} \cap S^{2}$ is a disc containing exactly one point of $\Gamma \cap S^{2}$.
Let D_{0}^{i} denote the disc in (3) containing a_{i}. Then \bar{B} is decomposed into $(n+1) 3$-cells by $D_{0}^{1} \cup \cdots \cup D_{0}^{n}$. Let $B_{j}(0 \leq j \leq n)$ denote the j-th cell counting from the side of a. Then:
(4) $\bar{B} \cap \bar{K}=\left(B_{0} \cap \bar{K}\right) \cup\left(B_{n} \cap \bar{K}\right)$ and, $\left(B_{0}, B_{0} \cap \bar{K}\right)$ and ($\left.B_{n}, B_{n} \cap \bar{K}\right)$ are trivial cell pairs.
\bar{B}

Fig. 1.

Fig. 2.
Now ($\bar{B}, \bar{B} \cap \bar{K}$) can be seen as in Fig. 1 abstractly. Taking off $\bar{B} \cap \bar{K}$ from \bar{K} and adding two arcs as in Fig. 2, we obtain a knot $K=K_{r}$ (Note that there is an ambiguity to twist \bar{B} around Γ, but we need not cause it for our problem). $K_{1}+{ }_{n} K_{2}$ is the set of all knots constructed in the above way using Γ 's satisfying above conditions. Specially $K_{1}+{ }_{1} K_{2}$ is the union of K_{1} and K_{2} in the sense of Kinoshita-Terasaka.

Here we settle two facts used later (§5). Let $K=K_{r}$ be a knot contained in $K_{1}+{ }_{n} K_{2}$. Then :

Proposition 1.1 Suppose there exists a disc Δ such that:
(1) $\Delta \cap \Gamma={\overparen{a_{i}} a_{i+1}}(1 \leq i \leq n-1)$.
(2) $\Delta \cap S^{2}$ is an arc in $S^{2}-(\Gamma-\Delta \cap \Gamma)$ whose boundary is $\left\{a_{i}, a_{i+1}\right\}$. Then K is also contained in $K_{1}+_{n-2} K_{2}$. (See Fig. 3)

In fact let $\Gamma^{\prime \prime}$ be the arc described in Fig. 3^{\prime}. Then K_{r} is equivalent to $K_{r^{\prime}}$ and this shows 1.1.

Proposition 1.2 Suppose there exists a disc Δ such that:
(1) $\Delta \cap \Gamma=\overparen{a a_{1}}\left(\right.$ or $\left.\overparen{a_{n} b}\right)$.
(2) $\Delta \cap S^{2}$ is an arc in $S^{2}-(\Gamma-\Delta \cap \Gamma)$ whose boundary is $\left\{a_{1}\left(\right.\right.$ resp. $\left.a_{n}\right)$, a point, say Q, in $\left.\bar{K} \cap S^{2}\right\}$.
(3) $\Delta \cap \bar{K}$ is an arc whose boundary is $\{a(r e s p . b), Q\}$. Then K is also contained in $K_{1}+_{n-1} K_{2}$. (See Fig. 4).

In fact let Γ^{\prime} be the arc described in Fig. 4^{\prime}. Then K_{Γ} is equivalent to $K_{r^{\prime}}$ and this shows 1.2.

Fig. 3.

Fig. 3'.

Fig. 4.

Fig. 4'.
1.2 We will show the reason why we consider $K_{1}+{ }_{n} K_{2}$. Let $U(n)$ be the following statement:
$U(n)$: For non-trivial knots K_{1} and $K_{2}, K_{1}+{ }_{n} K_{2}$ does not contain the trivial knot.
Then the following holds:
Proposition. (1) and (2) are equivalent.
(1) For all $n, U(n)$ is true.
(2) Knots with the unknotting number one are prime.

Proof: $(1) \Rightarrow(2)$: Let \bar{K} be a knot with the unknotting number one and suppose that there exist knots K_{1} and K_{2} such that $\bar{K}=K_{1}{ }_{S^{2}}^{\#} K_{2}$, where S^{2} is the decomposition sphere. Then we obtain the trivial knot by exchanging over and under crossing at some crossing point for a suitable knot projection of \bar{K}. Let Γ be the vertical arc which connects the over-crossing point a to the under-crossing point b :

We may assume that Γ and S^{2} are in general position. Let n denote $\#\left(\Gamma \cap S^{2}\right)$. Then the trivial knot is contained in $K_{1}+{ }_{n} K_{2}$. So K_{1} or K_{2} must be trivial. The converse is similar.
1.3 Known results on $U(n)$ are as follows:

Theorem 0. $U(0)$ is true.
This is a corollary to Schubert's result in [2].
Theorem 1. ([1], Terasaka [3]). $U(1)$ is true.
Our result in this note is:
Theorem 2. $U(2)$ is true.
Our idea of the proof is similar in spirit to that of Terasaka's in [3].

2. Outline of Proof.

First we will describe the specialized situation explicitly. Since $n=2$, $\partial \Gamma=\{a, b\} \subset C_{1}$. Let B denote B_{1} and let B^{\prime} denote C_{1} and V be the solid torus $B \cup B^{\prime}$. And let $D_{i}(i=1,2)$ denote the disc D_{0}^{i}. See Fig. 5 and 6.

Fig. 5.

Fig. 6.

We say V the solid torus associated to $K=K_{r}$. Actually we will show Theorem A and B :

Theorem A. Suppose K_{1} and K_{2} is non-trivial. Let K be a knot in $K_{1}+{ }_{2} K_{2}$ and V be the solid torus associated to K. Then, if V is knotted in S^{3}, K is non-trivial.

Theorem B. Let K_{1}, K_{2}, K and V be as in Theorem A. Then, if V is unknotted in S^{3}, K is non-trivial.
Theorem A will be proved in section 3 and the remaining of this note is the proof of Theorem B, To prove Theorem B, we assume K is trivial and deduce a contradiction. To do so, first, we choose a disc bounded by K that is "nice" with respect to $\partial V \cup D_{1} \cup D_{2}(\S 4)$. Next we define a set Σ as follows: Let Σ be the set of all components of int $D-\left(\partial V \cup D_{1} \cup D_{2}\right)$ that are not open 2 -cells. Now we will complete the proof in $\S 6$ in case of $\Sigma=\phi$ and in $\S 7$ in case of $\Sigma \neq \phi$.

3. Proof of Theorem A.

Lemma 3.1 Suppose the trivial knot K is contained in $K_{1}+{ }_{2} K_{2}$ and let V be the solid torus associated to K. If there is a pair (W, D) satisfying (1) to (3) below, K_{1} is trivial.
(1) D is a disc bounded by K.
(2) D is contained in int W.
(3) W is a solid torus containing V in its interior and for some meridian disc of W, say $M, M \cap V$ is a meridian disc of V.

Remark: In this lemma, we do not assume that V is knotted.
Proof: Let $p:(\widetilde{W}, \widetilde{V}) \rightarrow(W, V)$ be the universal cover of (W, V) and let W_{0} be the closure of a connected component of $p^{-1}(W-V \cap M)$ and $V_{0}=$ $\tilde{V} \cap W_{0}$. Let \tilde{D} be a lift of D in \widetilde{W}. Then $\tilde{K}=\partial \tilde{D}$ intersects with $\partial \tilde{V}$ in two points. Let t be a covering translation which generates $\operatorname{Cov}(\widetilde{W} / W)$. Put $V_{i}=t^{-i} V_{0} \cup \cdots \cup V_{0} \cup \cdots \cup t^{i} V_{0}$. Then V_{i} is a 3-cell and $\partial \tilde{V} \cap \tilde{D}=\partial V_{i} \cap \tilde{D}$ for some i. Here the cell pair ($\left.V_{i}, V_{i} \cap \tilde{K}\right)$ is equivalent to the one associated to K_{1}. Also $\left(V_{i}, V_{i} \cap \tilde{K}\right)$ is trivial since $(\widetilde{W}, \tilde{K})$ is trivial. Thus K_{1} is trivial.

Lemma 3.2 Suppose the trivial knot K is contained in $K_{1}+{ }_{2} K_{2}$ and let V be the solid torus associated to K. If there is a disc D bounded by K and a meridian curve m of V such that m does not intersect with D, then K_{1} is trivial.

Proof: In fact there exists a solid torus W such that (W, D) satisfies
the conditions in 3.1 as follows: Let W be the closed complement of sufficiently small tubular $n . b . d$. of the loop that is a slight push of m out of $V \cup D$. This is a desired one.

Proof of Theorem A: Assume K is trivial. Then there exists a disc D bounded by K. Without loss of generality, we may assume D and ∂V are in general position. Since V is knotted and any cable of non-trivial knot is non-trivial, all loops in $D \cap \partial V$ are homologous to zero in V. So we can find a meridian curve m of V which does not intersect with $D \cap \partial V$. By Lemma 3.2, K_{1} must be trivial and this is a contradiction.

4. Preliminary Part of Proof of Theorem B:

We will proceed to the proof of Th. B. In this section, we will choose a disc D bounded by K which is in "nice" position with respect to $\partial V \cup D_{1} \cup D_{2}$.

Remark. In this section, we need not assume that V is unknotted.
It is trivial that there exists a disc D bounded by K which satisfies (1) and (2) :
(1) D and $\partial V \cup D_{1} \cup D_{2}$ are in general position.
(2) $\quad\left(\#\left(D \cap\left(D_{1} \cup D_{2}\right)\right), \sum_{k=1,2} \#\left(\right.\right.$ components of $\left.D \cap D_{k}\right)$, \# (loops of $\left.D \cap A^{\prime}\right)$, \# (loops of $D \cap A)$) is minimal with respect to the lexicographic order among the discs satisfying (1), where A denotes $\partial B-\left(\dot{D}_{1} \cup \breve{D}_{2}\right)$ and A^{\prime} denotes $\partial B^{\prime}-\left(\check{D}_{1} \cup \stackrel{\circ}{D}_{2}\right)$. For D above the followings hold :
(4.3) There is no arc among the components of $D \cap\left(D_{1} \cup D_{2}\right)$ whose boundary is $\partial D \cap D_{k}$ for some $k, k=1,2$.
(4.4) There is no meridian curve of V among the components of $D \cap A$.
(4.5) $\#$ (loops of $D \cap A)=0$.
(4.6) Let x be any component of $D \cap A$. Then x is a proper arc in A and the points of ∂x are contained in the different components of $\partial D_{1} \cup \partial D_{2}$ (i. e. x runs from ∂D_{1} to ∂D_{2}.).
(4.7) Let y be any component of $D \cap A^{\prime}$ such that ∂y is contained in ∂D_{i} for some $i=1,2$. Then y separates $K \cap \partial V$ on A^{\prime}.
(4.8) $\#\left(D \cap \partial D_{1}\right)=\#\left(D \cap \partial D_{2}\right)$.
(4.9) Let y, y^{\prime} be any components of $D \cap A^{\prime}$ such that $\partial y \cup \partial y^{\prime}$ is contained in ∂D_{i} for some $i=1,2$. Let ω (resp. ω^{\prime}) denote the disc in A^{\prime} bounded by y (resp. y^{\prime}) and a subarc of ∂D_{i}. Then $\omega \subset \omega^{\prime}$ or $\omega^{\prime} \subset \omega$ (i. e. y is parallel to y^{\prime} in $\left.A^{\prime}-K \cap \partial V\right)$.
(4.10) $\left(D_{i}, D_{i} \cap D\right)(i=1,2)$ is viewed as follows:

Proofs: (4.3) Suppose $D \cap D_{i}$ contains such a component as in (4.3). Then we may assume that $D \cap D_{i}$ contains only one arc whose boundary is $\partial D \cap D_{i}$. So there exists a meridian of V which does not intersect with D. By Lemma 3.2, K_{1} must be trivial and this is a contradiction. (4.4) is similar. (4.5) Suppose there exists a loop component c in $D \cap A$. Since A is an annulus, c is parallel to a boundary component of A or homotopic to a point in A. By (4.4), the first case cannot occur. So c must bound a disc in A and this contradicts to the minimality condition (2) by cut and paste argument.
(4.6) By (4.5), x must be an arc. Suppose ∂x is contained in ∂D_{i}. Then there exists a disc ω in A bounded by x and a subarc of D_{i}. So we can decrease $\#\left(D \cap\left(\partial D_{1} \cup \partial D_{2}\right)\right)$ by pushing D along ω and this contradicts to (2).
(4.7) This is proved similarly to (4.6).
(4.8) This follows from (4.6).
(4.9) It is sufficient to prove $\omega \cap \omega^{\prime} \neq \phi$. Suppose $\omega \cap \omega^{\prime}=\phi$ and $\partial y \cup$ $\partial y^{\prime} \subset \partial D_{1}$. Then, by (4.7), $\omega \cup \omega^{\prime} \supset K \cap \partial V$. This means that there is no component $y^{\prime \prime}$ of $D \cap A^{\prime}$ such that $\partial y^{\prime \prime} \subset \partial D_{2}$. This contradicts to (4.8).
(4.10) By (4.3), ($\left.D_{i}, D_{i} \cap D\right)$ contains four sorts of curves in general:
(a) various loops in int D_{i},
(b) two arcs which connect a point in $D_{i} \cap \partial D$ to a point in ∂D_{i},
(c) various arcs connecting two points in ∂D_{i} and separating $D_{i} \cap \partial D$ on D_{i},
(d) various arcs connecting two points in ∂D_{i} and not separating $D_{i} \cap \partial D$ on D_{i}.
But the curves in (a) and (d) cannot be contained by the minimality condition (2). In fact the curves in (a) can be removed by usual cut and paste arguments and the ones in (d) by "push out along the outermost disc" arguments. This shows (4.10).

5. Some Lemmas.

Lemma 5.1 Let $K=K_{r}$ be the trivial knot in $K_{1}+{ }_{2} K_{2}$ and let V be the solid torus associated to K. Suppose there is a disc \tilde{J} properly embedded

Fig. 7.

Fig. 8.
in S^{3}-int V such that $\partial \widetilde{J}$ intersects with $\partial D_{i}(i=1,2)$ in one point and \tilde{J} does not intersect with K. Then K_{1} or K_{2} is trivial.

Proof: Trivially there exists a disc Δ which satisfies the conditions in Proposition 1.1. Thus K is also contained in $K_{1}+{ }_{0} K_{2}$. So, by Theorem $0,5.1$ has been proved.

Lemma 5.2 Let $K=K_{\Gamma}$ be the trivial knot in $K_{1}+{ }_{2} K_{2}$ and let V be the solid torus associated to K. Suppose there is a disc \tilde{J} such that:
(1) \tilde{J} is properly embedded in $B^{\prime}-K$.
(2) $\tilde{J} \cap\left(D_{1} \cup D_{2}\right)$ is an arc.
(3) $\partial \widetilde{\triangle}$ separates $K \cap \partial V$ on ∂B^{\prime}.

Then K_{1} or K_{2} is trivial.
Proof: Suppose $\tilde{\Delta} \cap D_{2}=\phi$. Then B^{\prime} is decomposed into two 3-cells by \tilde{d}. Let C denote the one that does not contain D_{2}. Since K is trivial, $(C, C \cap K)$ is the trivial cell pair. So we can find a disc Δ which satisfies the conditions in Proposition 1.2. Thus K is also contained in $K_{1}+{ }_{1} K_{2}$. So, by Theorem 1, 5.2 has been proved.

6. Completion of Proof in case of $\Sigma=\phi$.

As in $\S 2$, let Σ denote the set of all components of int $D-\left(\partial V \cup D_{1} \cup D_{2}\right)$ that are not open 2 -cells. The key point is that inequalities (6.1) to (6.5) hold except in cases that we can deduce contradictions comparatively easily.
6.1 Let D_{0} denote $D \cap V$ and consider $D_{0}^{*}=$ int $D_{0}-\left(D_{0} \cap\left(D_{1} \cup D_{2}\right)\right)$. By the assumption $\Sigma=\phi$, we know the followings easily :
(6.1.1) D_{0} is connected.
(6.1.2) Each component of D_{0}^{*} is an open 2-cell.

Now we set:

$$
D \cap \partial V=l \cup c_{1} \cup \cdots \cup c_{\mu}
$$

where l is an arc whose boundary is $K \cap \partial V$ and c_{i} 's are loops. Note that, by (6.1 .1) :
(6.1.3) Each c_{i} is innermost in D.

So :
(6.1.4) $\quad \partial D_{0}=(V \cap K) \cup(D \cap \partial V)$

See Fig. 9 and Fig. 10 for (6.1.1) to (6.1.4).

Fig. 9.

Fig. 10.

Let $m_{i}(i=1,2)$ denote $\#\left(l \cap \partial D_{i}\right)$. By (4.6), $m_{1}=m_{2}$, so we put $m \equiv m_{1}$. By similar consideration, we put $p_{j}=\#\left(c_{j} \cap \partial D_{1}\right)=\#\left(c_{j} \cap \partial D_{2}\right)$ and $p \equiv p_{1}+\cdots+$ p_{μ}. Then:
(6.1) $m \geqq 2$ and $p_{j} \geqq 3$ for all j.

Proof: Suppose $m \leqq 1$ or $p_{j} \leqq 2$ for some j. Then there exists a disc
$\tilde{\triangle}$ satisfying all conditions in Lemma 5.1, so K_{2} must be trivial. In fact, suppose $p_{j}=2$ for example. Let d_{j} denote the disc on D bounded by c_{j} (see (6.1.3)). Note c_{j} is homologous zero on ∂V since p_{j} is even and $d_{j} \subset S^{3}$ int V. Let d_{j}^{\prime} denote the disc bounded by c_{j} on ∂V and let C denote the 3 -cell in S^{3}-int V bounded by the 2 -sphere $d_{j} \cup d_{j}^{\prime \prime}$. Let W denote the union of V and C. Then K is contained in W and W is a solid torus which is unknotted in S^{3} (Recall the assumption V is unknotted in S^{3}). Since $p_{j}=2$, $d_{j}^{\prime} \cap \partial D_{i}=$ an subarc of ∂D_{i} for $i=1,2$. So there exists a longitude c of V that is contained in $\partial V-d_{j}=\partial W-d_{j}^{\prime}$ and intersects with ∂D_{i} in one point for $i=1,2$. Since W is unknotted, there is a disc \tilde{J} in S^{3} int W such that $\partial \tilde{\triangle}=c$. Then $\tilde{\triangle}$ is a desired one. Other cases are similar.
6.2 We consider ($D_{0}, D \cap\left(D_{1} \cup D_{2}\right)$. Let Ω_{0} denote the set of points in $\partial\left(D \cap\left(D_{1} \cup D_{2}\right)\right.$. We call a element of Ω_{0} a vertex (of $\left.D_{0}\right)$. The points of Ω_{0} devide $\partial D_{0} \cup\left(D \cap\left(D_{1} \cup D_{2}\right)\right)$ into N_{1} subarcs $\Omega_{1}=\left\{\lambda_{1}, \cdots, \lambda_{N_{1}}\right\}$. Let $\Omega_{2}=\left\{O_{1}, \cdots\right.$, $\left.O_{N_{2}}\right\}$ denote the set of closures of components of D_{0}^{*}. Then :
(6.2.1) For each vertex v of D_{0}, there are exactly three elements of Ω_{1} each of which contains v as one of its end points.
(6.2.2) Let ε be any component of $D \cap\left(D_{1} \cup D_{2}\right)$. Then there are exactly two elements of Ω_{2}, say O_{i} and O_{j}, such that $O_{i} \cap O_{j} \supset \varepsilon$ and if $O_{i} \subset B$, then $O_{j} \subset B^{\prime}$.
By (6.1.2) and (6.2.2), O_{i} 's are closed 2-cells. Therefore we obtain the cell decomposition of D_{0} by considering Ω_{0}, Ω_{1} and Ω_{2} as 0,1 and 2 -cells respectively.

The following property is used later.
(6.2.3) For any 1 -cell one of whose end points is contained in $V \cap K$, another end point is contained in $D \cap \partial V$.

In fact, if not so, it contradicts to (4.3).
Remark: For (6.2.1) to (6.2.3), we do not need the assumption $\Sigma=\phi$. We will use these facts in $\S 7$ again.

In the following, we consider to estimate the number of 2 -cells. First of all : $N_{0}=2 m+2 p+4$. By (6.2.1), $N_{1}=3 N_{0} / 2$. By calculating Euler characteristic number of D_{0} :

$$
N_{0}-N_{1}+N_{2}=1-\mu
$$

Thus we obtain:
(6.2) $\quad N_{2}=m+p+3-\mu$
6.3 We use the following notation. For any subset X of D_{0}, let $\mathscr{V}(X)$ denote the set of all vertices contained in X and for any subset Y of Ω_{2} : $\mathscr{V}(Y)=\bigcup_{0 \in Y}\{$ vertices contained in $\partial O\}$. A 2 -cell O is called k-gonal if its
boundary is the union of $k 1$-cells (or equivalently $\#(\mathscr{V}(\mathrm{O}))=k)$. Note that k is always even.

Now we devide Ω_{2} into the disjoint union of subsets. First:

$$
\Omega_{2}=\Omega_{2}(B) \cup \Omega_{2}\left(B^{\prime}\right)
$$

where $\Omega_{2}(B)=\left\{O \in \Omega_{2} \mid O \subset B\right\}$ and $\Omega_{2}\left(B^{\prime}\right)=\left\{O \in \Omega_{2} \mid O \subset B^{\prime}\right\}$. Moreover :

$$
\begin{aligned}
& \Omega_{2}(B)=\Omega_{2}^{0}(B) \cup \Omega_{2}^{1}(B) \\
& \Omega_{2}\left(B^{\prime}\right)=\Omega_{2}^{0}\left(B^{\prime}\right) \cup \Omega_{2}^{1}\left(B^{\prime}\right)
\end{aligned}
$$

where $\Omega_{2}^{0}(B)=\left\{O \in \Omega_{2}(B) \mid \mathscr{V}(O) \cap \mathscr{V}(V \cap K) \neq \phi\right\}$ and $\Omega_{2}^{1}(B)=\Omega_{2}(B)-\Omega_{2}^{0}(B)$. $\Omega_{2}^{0}\left(B^{\prime}\right)$ and $\Omega_{2}^{1}\left(B^{\prime}\right)$ are similar. Then:
(i) $\Omega_{2}=\Omega_{2}^{0}(B) \cup \Omega_{2}^{0}\left(B^{\prime}\right) \cup \Omega_{2}^{1}(B) \cup \Omega_{2}^{1}\left(B^{\prime}\right)$ (disjoint)
(ii) $\Omega_{2}^{0}(B) \cup \Omega_{2}^{0}\left(B^{\prime}\right)=\left\{O \in \Omega_{2} \mathscr{V}(O) \cap \mathscr{V}(V \cap K) \neq \phi\right\}$

Note that $\mathscr{V}(V \cap K)=K \cap\left(D_{1} \cup D_{2}\right)($ See Fig. 10). So $\#(\mathscr{V}(V \cap K))=4$. Thus, by (ii) :
(iii) $\#\left(\Omega_{2}^{0}(B) \cup \Omega_{2}^{0}\left(B^{\prime}\right)\right) \leqq 5$

We put:

$$
\begin{aligned}
& \alpha=\#\left(\Omega_{2}^{1}(B)\right) \\
& \beta=\#\left(\Omega_{2}^{1}\left(B^{\prime}\right)\right)
\end{aligned}
$$

Then, by (i) and (iii) (recall $N_{2}=\#\left(\Omega_{2}\right)$):
(6.3) $\alpha+\beta+5 \geqq N_{2}$
6.4 Now consider $\Omega_{2}(B)$
(iv) Let O_{i} and O_{j} be different elements of $\Omega_{2}(B)$. Then $O_{i} \cap O_{j}$ is empty.

Proof: This follows easily from (6.2.1) and (6.2.2).
(v) $\mathscr{V}\left(\Omega_{2}^{1}(B)\right)=\cup\left\{\mathscr{V}(O) \mid O \in \Omega_{2}^{1}(B)\right\}$ (disjoint)

Proof: This is trivial by (iv).
(vi) For $O \in \Omega_{2}^{1}(B)$, suppose O is $2 m$-gonal. Then $m \geqq 4$.

Proof: By (4.6), m cannot be odd. Suppose $m=2$. Then, by (4.6) and (4.10), O must have the form as indicated in Fig. 11. and so, $O \cap(K \cap B)$ $\neq \phi$. This is impossible since $O \subset \operatorname{int} D$.

By (v) and (vi), we obtain :
(a)

$$
\#\left(\mathscr{Y}\left(\Omega_{2}^{1}(B)\right)\right)=\sum_{O \in \Omega_{2}^{2}(B)} \#(\mathscr{Y}(O)) \geqq 8 \alpha
$$

The following is trivial by the definition of $\Omega_{2}^{1}(B)$.
(vii) For $O \in_{2}^{1}(B)$, the vertices of ∂O is contained in $D \cap \partial V$.

By (iv) and (vii) :

Fig. 11.
(viii) For $O \in \Omega_{2}^{1}(B)$;

$$
\begin{aligned}
\mathscr{V}(O) & \subset(D \cap \partial V)-\mathscr{Y}\left(\Omega_{2}^{0}(B)\right) \\
& =\mathscr{V}(D \cap \partial V)-\left(\mathscr{V}(D \cap \partial V) \cap \mathscr{V}\left(\Omega_{2}^{0}(B)\right)\right)
\end{aligned}
$$

Here, by (6.2.3) and the fact $\#(V \cap K)=4$, we have :
(ix) $\mathscr{Y}(D \cap \partial V) \cap \mathscr{V}\left(\Omega_{2}^{0}(B)\right)$ contains at least four points.

Therefore, by (v), (viii) and (ix) :
(b)

$$
\begin{aligned}
\#\left(\mathscr{V}\left(\Omega_{2}^{1}(B)\right)\right) & =\#\left(\cup\left\{\mathscr{V}(O) \mid O \in \Omega_{2}^{1}(B)\right\}\right) \\
& =\#(\mathscr{Y}(D \cap \partial V))=\#\left(\mathscr{V}(D \cap \partial V) \cap \mathscr{Y}\left(\Omega_{2}^{0}(B)\right)\right) \\
& \leqq 2 m+2 p-4
\end{aligned}
$$

Combining (a) and (b), we obtain :

$$
8 \alpha \leqq 2 m+2 p-4
$$

Thus we have the estimate for α :
(6. 4) $4 \alpha \leqq m+p-2$
6.5 We consider $\Omega_{2}\left(B^{\prime}\right)$. As in 6.4 , we know :
(iv') Let O_{i} and O_{j} be different elements of $\Omega_{2}\left(B^{\prime}\right)$. Then $O_{i} \cap O_{j}$ is empty.
($\left.\mathrm{v}^{\prime}\right) \mathscr{V}\left(\Omega_{2}^{1}\left(B^{\prime}\right)\right)=\cup\left\{\mathscr{V}(O) \mid O \in \Omega_{2}^{1}\left(B^{\prime}\right)\right\}$ (disjoint)
(vii') For $O \in \Omega_{2}^{1}\left(\mathrm{~B}^{\prime}\right)$, the vertices of ∂O is contained in $D \cap \partial V$.
(viii') For $O \in \Omega_{2}^{1}\left(B^{\prime}\right)$;

$$
\mathscr{Y}(O) \subset \mathscr{V}(D \cap \partial V)-\left(\mathscr{V}(D \cap \partial V) \cap \mathscr{V}\left(\Omega_{2}^{0}\left(B^{\prime}\right)\right)\right)
$$

(ix') $\mathscr{V}(D \cap \partial V) \cap \mathscr{V}\left(\Omega_{2}^{0}\left(B^{\prime}\right)\right.$ contains at least four points.
(b^{\prime}) \quad ($\mathscr{V}\left(\Omega_{2}^{1}\left(B^{\prime}\right) \leqq 2 m+2 p-4\right.$
6. 6 Next we consider $\Omega_{2}^{1}\left(B^{\prime}\right)$. First we may assume that no 2 -cell in
$\Omega_{2}^{1}\left(B^{\prime}\right)$ is 2 -gonal (in fact: Suppose there exists a 2 -gonal 2 -cell \widetilde{J} in $\Omega_{2}^{1}\left(B^{\prime}\right)$. Then $\partial \tilde{D}$ is the union of two 1 -cells y and z, where y is contained in A^{\prime} and z is contained in $D_{i}, i=1$ or 2 and $\bar{\partial} y \subset \partial D_{i}$. By (4.7) and (4.10), \tilde{J} satisfies the conditions in Lemma 5.2. Thus K_{2} must be trivial, so a contradiction.)
(6.6.1) There are 4 -gonal 2 -cells in $\Omega_{2}^{1}\left(B^{\prime}\right)$.

Proof: Suppose the contrary, i. e. $\#(\mathscr{Y}(O)) \geqq 6$ for every 2 -cell O in $\Omega_{2}^{1}\left(B^{\prime}\right)$. Then by $\left(\mathrm{v}^{\prime}\right)$ and $\left(\mathrm{b}^{\prime}\right)$ in 6.5 , we have:
(*) $\quad 6 \beta \leqq 2 m+2 p-4$
Then we can deduce a contradiction from (6.1) to (6.4) and (*). In fact : By (6.3), $12 \alpha+12 \beta \geqq 12\left(N_{2}-5\right)$. Using (6.2), (6.4) and (*) ; $12 \mu+10 \geqq 5 m+5 p$ By (6.1) $; 12 \mu+10 \geqq 10+15 \mu$. This is a contradiction.

Next we show that 4 -gonal 2 -cells and 6 -gonal 2 -cells in $\Omega_{2}^{1}\left(B^{\prime}\right)$ must have restricted forms ((6.6.2) and (6.6.3) below). In general let O be an $2 n$-gonal 2 -cell in $\Omega_{2}^{1}\left(B^{\prime}\right)$. Then $\partial O\left(\subset \partial B^{\prime}\right)$ is built up from $n 1$-cells $\left\{\lambda_{1}^{\prime}, \cdots\right.$, $\left.\lambda_{n}^{\prime}\right\}$ which are contained in A^{\prime} and $n 1$-cells $\left\{\lambda_{1}^{\prime \prime}, \cdots, \lambda_{n}^{\prime \prime}\right\}$ which are contained in $D_{1} \cup D_{2}$. Now let O be a 4 -gonal 2 -cell and $\partial O=\lambda_{1}^{\prime} \cup \lambda_{2}^{\prime} \cup \lambda_{1}^{\prime \prime} \cup \lambda_{2}^{\prime \prime}$. Then :
(6.6.2) $\lambda_{1}^{\prime \prime} \cup \lambda_{2}^{\prime \prime}$ cannot be contained in the same component of $D_{1} \cup D_{2}$. That is, O must have the form as indicated in Fig. 12.

Proof: Suppose $\lambda_{1}^{\prime \prime} \cup \lambda_{2}^{\prime \prime} \subset D_{1}$. Then $\partial \lambda_{1}^{\prime} \cup \partial \lambda_{2}^{\prime} \subset \partial D_{1}$. So, by (4.9), λ_{1}^{\prime} and λ_{2}^{\prime} are parallel in $A^{\prime}-(K \cap \partial V)$. Let δ be a component of $B^{\prime} \cap K$ such

Fig. 12.

Fig. 13.
that $\delta \cap D_{1}=\phi$. Then ∂O separates $\partial \delta$ on ∂B^{\prime} and this is impossible since $O \cap \delta=\phi$.

Let O_{0} be a fixed 4-gonal 2 -cell and A_{0} denote the disc bounded by ∂O_{0} on ∂B^{\prime} that contains $K \cap \partial V$ in its interior. Let O be any 6-gonal 2cell and $\partial O=\lambda_{1}^{\prime} \cup \lambda_{2}^{\prime} \cup \lambda_{3}^{\prime} \cup \lambda_{1}^{\prime \prime} \cup \lambda_{2}^{\prime \prime} \cup \lambda_{3}^{\prime \prime}$. Then :
(6.6.3) (i) ∂O is contained in A_{0}.
(ii) Two of λ_{j}^{\prime} 's run from ∂D_{1} to ∂D_{2}.

That is any 6-gonal 2 -cell must have the form as indicated in Fig. 13.
Proof : (i) Since O is 6 -gonal, for some $j=1,2,3, \lambda_{j}^{\prime}$ is a component of $D \cap A^{\prime}$ such that $\partial \lambda_{j}^{\prime} \subset \partial D_{i}, i=1$ or 2 . Thus, by (4.7), $\lambda_{j}^{\prime} \subset A_{0}$ and so $\partial O \subset A_{0}$.
(ii) Suppose $\lambda_{1}^{\prime \prime} \cup \lambda_{2}^{\prime \prime} \cup \lambda_{3}^{\prime \prime} \subset D_{1}$. Then, by (i) and (4.9), λ_{j}^{\prime} 's are parallel in $A_{0} \cap\left(A^{\prime}-(K \cap \partial V)\right)$. Also, by (4.10), $\lambda_{j}^{\prime \prime}$'s are parallel in $D_{1}-\left(K \cap D_{1}\right)$. These facts contradict to each other (See Fig. 14).
6. 7 Now let β_{1} denote the number of 4 -gonal 2 -cells in $\Omega_{2}^{1}\left(B^{\prime}\right)$ and β_{2} denote the number of 6 -gonal 2 -cells in $\Omega_{2}^{1}\left(B^{\prime}\right)$ and $\beta_{3}=\beta-\beta_{1}-\beta_{2}$. And let $\tilde{\Omega}$ denote the set $\left\{\varepsilon \in \Omega_{1} \mid \varepsilon \subset \partial O, O \in \Omega_{2}^{1}\left(B^{\prime}\right)\right\}$ and let Ω denote $\{\varepsilon \in \widetilde{\Omega} \mid \varepsilon \not \subset \partial O$ for any 4-gonal 2 -cell O in $\left.\Omega_{2}^{1}\left(B^{\prime}\right)\right\}$. Recall $\#(\widetilde{\Omega})=\#\left(\mathscr{Y}\left(\Omega_{2}^{1}\left(B^{\prime}\right)\right)\right)$. By ($\left.\mathrm{b}^{\prime}\right)$ in 6.5 :

Also :

$$
\#(\tilde{\Omega}) \leqq 2 m+2 p-4
$$

$$
\#(\tilde{\Omega})=4 \beta_{1}+\#(\Omega)
$$

Fig. 14.
We will count \#(Ω) to estimate β. Now Ω contains the following three sorts of 1-cells :
(a) 1-cells contained in $D_{1} \cup D_{2}$ that are contained in the boundaries of $2 n$-gonal 2 -cells, where $n \geqq 3$. \# (this sort of 1 -cells) is at least $3 \beta_{2}+4 \beta_{3}$.
(b) 1-cells contained in $A^{\prime}\left(=\partial B^{\prime}-\left(\dot{D}_{1} \cup \stackrel{\circ}{D}_{2}\right)\right)$ each of which connects two points belonging to the same component of $\partial D_{1} \cup \partial D_{2}$. (Recall (6.6.2)). \# (this sort of 1 -cells) is at least 2μ (Proof : Recall that each c_{j}, a loop component of $D \subset \partial V$, is a longitude of V or homologous zero on ∂V. Thus, by the fact $p_{j} \geqq 3$ (by (6.1)) there are at least two such 1-cells as above that are contained in c_{j}.).
(c) 1-cells contained in A^{\prime} that run from ∂D_{1} to ∂D_{2} and are contained in the boundaries of $2 n$-gonal 2 -cells, where $n \geqq 3$. \# (this sort of 1 -cells) is at least $2 \beta_{2}$ by (ii) of (6.6.3). Thus \# $(\Omega) \geqq 2 \mu+5 \beta_{2}+4 \beta_{3}$. Therefore :

$$
4 \beta_{1}+\left(2 \mu+5 \beta_{2}+4 \beta_{3}\right) \leqq 4 \beta_{1}+\#(\Omega)=\#(\tilde{\Omega}) \leqq 2 m+2 p-4
$$

I. e : $\quad 4\left(\beta_{1}+\beta_{2}+\beta_{3}\right) \leqq 4 \beta_{1}+5 \beta_{2}+4 \beta_{3} \leqq 2 m+2 p-4-2 \mu$

Thus we obtain the following estimate for β :
(6.5) $2 \beta \leqq m+p-2-\mu$
6. 8 Now we can deduce a contradiction from (6.1) to (6.5) as follows : By (6.3) :

$$
4 \alpha+4 \beta \geqq 4\left(N_{2}-5\right)
$$

Using (6.2), (6.4) and (6.5):

$$
m+p-2+2(m+p-2-\mu) \geqq 4(m+p-2-\mu)
$$

I. e. $\quad 2+2 \mu \geqq m+p . \quad$ By (6.1) :

$$
2+2 \mu \geqq m+p \geqq 2+3 \mu
$$

This is a contradiction.

7. Completion of Proof in case of $\boldsymbol{\Sigma} \neq \boldsymbol{\phi}$.

In this section, we will find a suitable subset of $D\left(X_{0}\right.$ below) and do similar arguments to the previous section. First we consider ($D, D \cap \partial V$). Let Φ denote the set of all loops of $D \cap \partial V$ that are innermost in D and let θ denote the set of discs in D bounded by the loops in Φ. Note that Φ is non-empty (In fact, if not so, applying Lemma 3.2 again, K_{1} must be trivial). Now :
(*) Every disc in θ is contained in S^{3}-int V.
Proof: Let c be a loop in Φ and d be the disc bounded by c. Assume d is contained in V. If $d \cap\left(D_{1} \cup D_{2}\right)=\phi$, by (4.5), c must be contained in A^{\prime}. Since c does not separate D_{1} and D_{2} on $\partial B^{\prime}, c$ must bound a disc d^{\prime} in A^{\prime}. Since $d^{\prime} \supset K \cap \partial V$ means K_{2} is trivial, $d^{\prime} \nsucceq K \cap \partial V$. So we can remove c. This contradicts to (2) in §4. Thus we may assume $d \cap\left(D_{1} \cup D_{2}\right) \neq \phi$. Then by usual outermost disc argument on d, we have a disc \tilde{J} satisfying all conditions in Lemma 5.2, so a contradiction.

Now we define a order $>$ on Σ as follows: Let σ and σ^{\prime} be elements of Σ. Then $c l(\sigma)$ is a submanifold of D homeomorphic to the disc with holes. Let X_{1}, \cdots, X_{n} denote the discs in D bounded by the innerboundaries of σ. We define $\sigma>\sigma^{\prime}$ iff σ^{\prime} is contained in X_{j} for some j. Since $\Sigma \neq \phi$,
there is a minimal element σ_{0} in Σ with respect to this order. Let X_{0} be a disc bounded by some inner boundary of σ_{0}. Then we obtain a cell decomposition for X_{0} as follows: Let Ω_{0} be the set of points in $X_{0} \cap\left(\partial D_{1} \cup \partial D_{2}\right)$ and Ω_{1} be the set of subarcs of $X_{0} \cap\left(\partial V \cup D_{1} \cup D_{2}\right)$ devided by the points in Ω_{0} : Let $\tilde{\Omega}_{2}=\left\{O_{1}, \cdots, O_{N_{2}}\right\}$ denote the set of closures of all components of $D_{0}^{*}\left(=\operatorname{int} D_{0}-\left(D_{0} \cap\left(D_{1} \cup D_{2}\right)\right)\right)$ that are contained in X_{0}. Then, by the choice of σ_{0}, O_{i} 's are closed 2 -cells (Recall $\S 6.2$). Let θ_{0} denote the set of all discs belonging to θ and contained in X_{0}. Then, by $(*)$ above, X_{0} is the union of all O_{i} 's in $\tilde{\Omega}_{2}$ and discs in θ_{0}. Now setting $\Omega_{2}=\theta_{0} \cup \widetilde{\Omega}_{2}$ and considering Ω_{0}, Ω_{1} and Ω_{2} as 0,1 and 2 -cells, we obtain a cell decomposition for X_{0}.

Let N_{0} denote $\#\left(\Omega_{0}\right)$ and N_{1} denote $\#\left(\Omega_{1}\right)$ and let $\Phi_{0}=\left\{c_{1}, \cdots, c_{\mu}\right\}$ denote the set of all loops in Φ that are contained in X_{0}. Of course \# $\left(\Phi_{0}\right)=\#\left(\theta_{0}\right)$. Then as in $\S 6.2$:

$$
N_{0}-N_{1}+\left(N_{2}+\mu\right)=1 \quad \text { and } \quad N_{1}=3 N_{0} / 2
$$

Thus we have:

$$
N_{2}=N_{0} / 2+1-\mu
$$

Let p_{j} denote $\#\left(c_{j} \cap \partial D_{1}\right)=\#\left(c_{j} \cap \partial D_{2}\right)$ and $p=p_{1}+\cdots+p_{\mu}$. As in §6.1: (7.1) $\quad p_{j} \geqq 3$ for all j.

Let α (resp. β) denote the number of 2 -cells of $\tilde{\Omega}_{2}$ that are contained in B (resp. B^{\prime}). We must consider two cases :
(I) $\partial X_{0}=\tilde{c}$ is a single loop of $D \cap \partial V$.
(II) Otherwise.
(I) In this case $N_{0}=2(p+\tilde{p})$, where $\tilde{p}=\#\left(\tilde{c} \cap \partial D_{1}\right)$. So, by ($\$$) above, we have:
(7.2) $\quad N_{2}=p+\tilde{p}+1-\mu$

Trivially :
(7.3)

$$
N_{2}=\alpha+\beta
$$

As in §6.4:
(7.3) $4 \alpha \leqq p+\tilde{p}$

As in $\S 6.5$ to $\S 6.7$:
(7. 5) $2 \beta \leqq p+\tilde{p}-\mu$

In case (II), the correspondings are the ones that are obtained from (7.1) to (7.5) by setting \tilde{p} to be zero.

Now the computations similar to those in $\S 6.8$ complete the whole proof of our theorem.

References

[1] S. Kinoshita and H. Terasaka: On unions of knots, Osaka Math. J. 9 (1957), 131-153.
[2] H. Schubert: Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, Sitz. Akad. Wiss. Heiderberg, math.-nat. Kl. 3 Abh. (1949).
[3] H. Terasaka: On the non-triviality of some kind of knots, Osaka Math. J. 12 (1960), 113-144.

Department of Mathematics
Hokkaido University

