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Maximal ideals in regular rings

By Roger Yue Chi MING
(Received January 21, 1982)

Introduction. A von Neumann regular ring A may be characterised
by any one of the following conditions: (a) every right (left) A-module is
flat; (b) every right (left) A-module is p-injective. Note that if I is a p-
injective right ideal of A, then A/I is a flat right A-module [21]. Von
Neumann regular rings and associated rings are studied by many authors
since several years (cf. for example, [1]-[5] , [7]-[11]). For rings without
identity, consult [13]. In this note, regular rings are considered essentially
through maximal (right) ideals. We introduce a class of rings with particular
maximal right ideals which generalise rings whose simple right modules are
flat (cf. definition below). Conditions for von Neumann regularity and strong
regularity are given. Commutative regular or self-injective regular rings
with non-zero socle are characterised in terms of a special maximal ideal
which acts as a “test module” Rings whose simple right modules are either
p-injective or flat and biregular rings are also considered.

Throughout, A represents an associative ring with identity and A-modules
are unitary. Z, Y, J will denote respectively the left singular ideal, the
right singular ideal and the Jacobson radical of A. Recall that a right A-
module M is p-injective if, for any principal right ideal P of A, any right
A-homomorphism q:Parrow M, there exists y\in M such that q(b)=yb for all
b\in P. Note that A is a right p-injective ring if, and only if, every principal
left ideal of A is a left annihilator [9, Theorem 1]. Following [3] and [13],

A is called a right V-ring (resp. p-V-ring) if every simple right A-module
is injective (resp. p-injective). It is now well-known that there is no inclusion
between the classes of arbitrary von Neumann regular rings and V-rings,
which has motivated the queries raised in [5] and many papers on connections
between those rings. However, a well-known result of I. KAPLANSKY
ensures that regular rings and V-rings coincide in the commutative case.
As usual, an ideal of A means a tw0-sided ideal. A left (right) ideal of A
is called rduced if it contains no non-zero nilpotent element. An element
c of A is called a non-zer0-divisor if l(c)=r(c)=0.

We introduce a generalisation of rings whose simple right modules are
flat (cf. the proof of Lemma 1).
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DEFINITION. A is called a GSF-ring {generalised simple flat) if, for
any maximal right ideal M of A, any b\in M, bA/bM_{A} is flat.

Lemma 1. Let A be a GSF ring. Then
(1) Any non-zerO-divisor of A is right invertible:
(2) Z\cap Y\subseteq J :
(3) If I is a reduced right ideal of A, then I is a strongly regular ring.
In particular, if I_{A} is cyclic, then it is a direct summand of A_{A} .

PROOF. (1) Let k be a non-zer0-divisor of A. If k\^A A, let M be
a maximal right ideal of A containing kA. Suppose that kA=kM. Then
k=kc for some c\in M implies 1-c\in r(k)=0 , whence 1=c\in M, contradicting
M\neq A . If k\^A kM, the right A-homomorphism q:A/Marrow kA/kM defined
by q(a+M)=ka+kM for all a\in A implies that A/M\approx kA/kM is right A-
flat (because A/M_{A} is simple). Then k\in M implies k=dk for some d\in M

which yields 1=d\in M, again a contradiction. This proves that ku=1 for
some u\in A .

(2) Let y\in Z\cap Y. For any a\in A , if c\in r(1-ya) , then c=yac and
cA\cap r(ya)=0 implies c=0. Similarly, if d\in l(1-ya) , since y\^a Z, then
d=0. By (1), (1-ya)w=1 for some w\in A , which proves that y\in J.

(3) Since I is reduced, for any b\in I, l(b)\subseteq r(b) . If bA+r(b)\neq A, let
M be a maximal right ideal containing bA+r(b) . If bA/bMA then b=bc
for some c\in M which implies 1-c\in r(b)\subseteq M, whence 1\in M, contradicting
M\neq A . If bM\neq bA , then from (1), we have A/M\approx bA/bM is right A-flat
and b=db for some d\in M. In that case, 1-d\in l(b)\subseteq r(b)\subseteq M implies
1\in M, again a contradiction.
Thus bA+r(b)=A for any b\in I from which b=b^{2}u , u\in A . Now b=
b(b^{2}u)u=b^{2}v , where v=bu^{2}\in I, and (b-bvb)^{2}=0 implies b=bvb which proves
that I is a strongly regular ring. Since bA=eA, where e=bv is idempotent,
the proof of (3) is complete.

REMARK 1. In view of Lemma 1 (3), [2, Corollary 6] holds for GSF-
ring.

Lemma 2. Suppose that A has a maximal left ideal M with the fol -

lowing properties: (a) AA/M is flat and (b) for any u\in M, uM is a right
ideal such that A/uM_{A} is flat. Then J=0.

PROOF. If v\in J(\subseteq M) , then A/vM_{A} is flat, and for any a\in M, va\in vM

implies that va=vcva for some c\in M. Since w(1-vc)=1 for some w\in A

(because vc\in J ), then va=w(1-vc)va=w(va- vcva=0 which yields vM=
0. Now AA/M is flat which implies that v\in vM=0 , whence J=0.
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If A is a right p-injective ring whose complement right ideals are
principal, then A/Y is a von Neumann regular ring. Applying [14, Lemma
4. 1] to Lemma 2, we get

COROLLARY 2. 1. The following conditions are equivalent for a ring
A satisfying the hypothesis of Lemma 2;

(1) A is right continuous regular;
(2) A is right continuous ;
(3) A is right p-injective whose complement right ideals are principal.
We now consider a generalisation of both right p-V-rings and rings

whose simple right modules are flat.

DEFINITION. A is called a SPF-ring if every simple right A-module
is either p-injective or flat.

Lemma 3. Let A be a SPF ring. Then
(1) Any reduced right ideal of A is idempotent;
(2) A=AcA for any non-zerO-divisor c of A.

PROOF. (1) Let R be a reduced right ideal of A. For any b\in R,
l(b)\subseteq r(b) and if AbA+r(b)\neq A , let M be a maximal right ideal containing
AbA+r(b) . If A/M_{A} is flat, then b=cb fcr some c\in M and 1-c\in l(b)\subseteq

r(b)\subseteq M yields 1\in M, a contradiction. If A/M_{A} is p-injective, the right
A-homomorphism q:bAarrow A/M defined by q(ba)=a+M for all a\in A yields
1+M=q(b)=db+M for some d\in A , whence 1\in M, again a contradiction.
Thus AbA+r(b)=A for any b\in R , which proves that R=R^{2} .

(2) If AcA\neq A , let M be a maximal right ideal containing AcA.
Since l(c)=r(c)=0, the proof of (1) shows that either A/M_{A} flat or A/M_{A}

p-injective leads to a contradiction. This proves that AcA=A.

COROLLARY 3. 1. If A is SPF9 then any reduced ideal of A is a fully
right idempotent ring.

PROOF. Let T be a reduced ideal of A, I a right ideal of T Then
by Lemma 3 (1), for any b\in I, bA=(bA)^{2}=(bA)^{4} and since (bA)^{2}\underline{\subset}bT\subseteq I,
then b\in I^{2} which proves that T is a fully right idempotent ring.

COROLLARY 3. 2. If A is a prime left or right Goldie SPF-ring, then
A is simple (cf. [3, p. 130].)

PROOF. Since any non-zero ideal T of A is both left and right essential,
then whether A is left or right Goldie, T contains a non-zer0-divisor, whence
T=A by Lemma 3 (2)

Recall that (1) A is left duo if every left ideal of A is an ideal; (2)
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A is ELT (resp. MELT) if every essential (resp. maximal essential, if it
exists) left ideal of A is an ideal. Left duo rings and semi-simple Artinian
rings are ELT and MELT Similarly, ERT and MERT rings are defined
on the right. Following [10], A is called a right IF-ring if every injective
right A-module is flat. Note that if every factor ring of A is reduced (for
example, a simple domain), then A is not necessarily regular. We now
give a few characteristic properties of strongly regular rings.

THEOREM 4. The following conditions are equivalent:
(1) A is strongly regular;
(2) A is a GSF-ring such that l(a)\subseteq r(a) for every a\in A ;
(3) A is a reduced GSF-ring;
(4) Every maximal left ideal M of A is an ideal and for every

b\in M, both A/bM and bA/bM are right A-fifiat;
(5) A is a right IF-ring whose maximal left ideals are ideals such

that there exists a maximal left ideal M with AA/M flat and A/bM_{A} f or
for every b\in M ;

(6) A is a semi-prime left duo SPF-ring;
(7) A is a MELT reduced SPF-ring;
(8) A is an ELT-ring all of whose factor rings are reduced;
(9) A is a fully idempotent ring whose simple left modules are flat

such that any proper prime ideal is completely prime.

PROOF. Obviously, (1) implies (2).
Assume (2). Suppose there exists 0\neq b\in A such that b^{2}=0 . If bA+

r(b)\neq A , let M be a maximal right ideal containing bA+r(b) . If bA=bM,
we get 1\in M, a contradiction. If bA\neq bM, following the proof of Lemma
1 (1) since l(b)\subseteq r(b) , we get 1\in M again. Therefore bA+r(b)=A which
yields b=0. This proves that A is reduced and (2) implies (3).

(3) implies (4) by Lemma 1 (3).
Assume (4). First suppose that there exists a maximal left ideal K

such that bK=bA for all b\in K. Then AA/K is flat and since A/bK_{A} is
flat by hypothesis, then J=0 by Lemma 2. Since every maximal left ideal
is an ideal, then A is reduced which implies that for any maximal left ideal
M such that cM=cA for all c\in M, then c\in Mc (because A is reduced),
which yields A/M_{A} flat. Now for any maximal left ideal L such that there
exists d\in L with dA\neq dL, since L is also a maximal right ideal, then A/L\approx

dA/dL is right A-flat. Now suppose that for every maximal left ideal T of
A, there exists u\in T such that uA\neq uT Then A/T\approx uA/uT is right A-
flat again. Thus we see that in any case, A/M_{A} is flat for every maximal
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left ideal M of A, which proves A strongly regular [21, Theorem 1. 7 (8)]
and hence (4) implies (5).

Assume (5). Since any maximal left ideal of A is an ideal then A is
reduced by Lemma 2. Since every principal right ideal of A is a right
annihilator [10], then (5) implies (6) by [16, Theorem 1],

It is easy to see that (6) implies (7).
Since a MELT reduced fully right idempotent ring is fully left idempotent,

then (7) implies (8) by [18, Proposition 9] and Lemma 3 (5).
Assume (8). Since every factor ring of A is reduced, then A is fully

idempotent which implies that each factor ring of A is fully idempotent. If
B is a prime factor ring of A, then B is an integral domain by [20, Proposi-
tion 6] and since B is prime ELT fully idempotent, then B is fully left
idempotent which yields B a simple domain. Now the only essential left
ideal of B (being ELT) is B which proves B Artinian, whence B is a division
ring. Therefore (8) implies (9) by [8, Corollary 1. 18].

Finally assume (9). If P is a proper prime ideal of A, then B=A/P is
an integral domain. If M is a non-zero maximal left ideal of B, since BB/M
is flat, for any 0\neq b\in M, b=bd for some d\in M which implies 1=d\in M,
a contradiction. This proves that B is a division ring and (_{\backslash }9) implies (1)
by [8, Colollary 1. 18 and Theorem 3. 2].

Applying [1, Theorem 12] to Theorem 4, we get

COROLLARY 4. 1. Let A be GSF-ring such that any reduced right
ideal is essential in a principal right ideal. Then A=B\oplus C, where B is
a {left and right) continuous strongly regular ring and C is the minimal
direct summand of A_{A} containing the nilpotent elements.

The next remark improves [16, Theorem 1 (2)].

REMARK 2. If every principal left ideal of A generated by a non-
nilpotent element is a left annihilator, then any reduced principal right
ideal is a direct summand of A_{A} .

At this point, we raise the following question: In the non-reduced case,
what connections are there between GSF and SPF rings .p

PROPOSITION 5. If A is a MERT, GSF-ring, then A is SPF.
PROOF. Let M be a maximal right ideal of A. If M_{A} is a direct

summand of A_{A}, then A/M_{A} is projective which implies that it is flat. Now
suppose that M is an essential right ideal (which is therefore an ideal of
A) . If uA=uM for every u\in M, then AA/M is flat and for any 0\neq b\in A ,
if q : bAarrow A/M is a non-zero right A-homomorphism, then M+bA=A
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(because q\neq 0) which yield b=cb+bdb, , where c\in M, d\in A and since brightarrow

bdb=cb=cbk for some k\in M, then q(cb)=0 implies g,(ba)=q(bd)baY for all
a\in A , which proves that A/M_{A} is p-injective. If there exists v\in M such
that vA\text{\^{i}} vM_{;} then A/M\approx vA/vM is right A-flat. Thus A is 5FF.

We know that right p-V-rings are fully right idempotent (cf. [13,

Proposition 6]). Theorem 4 (2) and the proof of Proposition 5 yield

THEOREM 6. The following conditions are equivalent Jor a commuta-

tivre ring A :
(1) A is regular;
(2) Every simple A-module is either injective or f or;
(3) A is SPF ;
(4) A is GSF.

J

Lemma 7. Let A be a ring whose complement left ideals are ideals
and containing a finitely generated p-injective maximal left ideal M such
that for any b\in M, A/bM_{A} is flat. Then A is strongly regular with
non_{\urcorner}zero socle.

PROOF. Since AM is finitely generated p-injective, then by [17, Lemma
1. 2], A=M\oplus I, where I is a minimal left ideal of A which implies A has
non-zero socle. Since M is an ideal of A and AA/M is projective, then
J=0 by Lemma 2, which implies that M is generated by a central idempot-
ent e. Therefore M=eA and A/M_{A} is projective which implies AA/M p-
injective (cf. the proof of Proposition 5), whence I is a p-injective minimal
left ideal. Thus A=M\oplus I is left p-injective ahd since J=0, then Z=0 and
by [16, Lemma 1], A is reduced. Then A is strongly regular by [9, Theorem
1] and [16, Theorem 1].

We are now in a position to give “test modules” for commutative rings
to be regular and self-injective regular.

THEOREM 8. The following conditions are equivalent for commutative
ring A :

(1) A is regular with non-zero socle;
(2) A contains finitely generated p-injective maximal ideal M such

that for any a\in M, aM is p-injective;
(3) A contains a finitely generated p-injective maximal ideal M such

that for any a\in M, A/aM is flat.
PROOF. Apply [21, Remark 1] to Lemma 7.
The maximal ideal M in Theorem 8 needs not be injective even in the

case of continuous rings (cf. [14, Remark 7. 11]). Indeed, we may similarly
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have the next result for self-injective rings. Note that if A is commutative,
then a minimal ideal of A is injective iff it is p-injective [19, Lemma L_{I}1].

THEOREM 9. A commutative ring A is self-injective regular with
non-zero socle if, and only if, A contains an injective maximal ideal M
such that for any b\in M, A/bM is a flat A-module.

We next consider various generalisations of strongly regular rings. ALD
(almost left duo) rings, which generalise left duo rings and semi-simple
Artinian rings, are studied in [19] and [21].

Applying [9, Theorem 1], [16, Theorem 1], [21, Lemma 1] to Lemmas
1 and 2, we get

PROPOSITION 10. (1) If A is an ALD, GSF-ring containing a maximal
left ideal M such that AA/M is flat and for any u\in M, A/uM_{A} is flat,
then A is either semi-simple Artinian or strongly regular.

(2) The following conditions are equivalent: (a) A is either semi-
simple Artinian or (left and right_{l} self-injective strongly regular with
non-zero socle; (b) A is a semi-prime ALD ring with an injective maximal
left ideal.

REMARK 3. A is simple Artinian if, and only if, A is a prime ALD
ring with non-zero socle.

The next result is motivated by [18, Question (p. 128)] and [5, Query
(b)] .

PROPOSITION 11. Let A be an ERT fully right idempotent ring such
that for a7\iota y maximal right ideal M of A, any b\in M, A/bM_{A} is flat.
Then A is regular.

PROOF. Suppose there exists b\in A such that bA is not a direct sum-
mand of A_{A} . If K is a complement right ideal such that R=bA\oplus K is an
essential right ideal, let M be a maximal right ideal containing R. Since
A is fully right idempotent and M is an ideal of A, then AA/M is flat which
implies b=bd for some d\in M. Now A/bM_{A} flat and b\in bM together imply
b=bcb for some c\in M, which proves that bA is generated by the idempotent
be, contradicting our hypothesis. This proves the proposition.

Similarly, [18, Proposition 9], [21, Remark 1 and Theorem 1. 7 (8)] and
the proof of Proposition 5 yield

PROPOSITION 12. The following conditions are equivalent:
(1) A is an ELT, ERT regular ring;
(2) A is a MELT, MERT ring such that AM is a p injective left

and right A-module for every maximal right ideal M of A.
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We here include some information on biregular rings. Recall that A
is biregular if AaA is generated by a central idempotent for each a\in A .

PROPOSITION 13. Suppose that for any a\in A , AaA is a direct summand
of A_{A} . Then A is a biregular fully left and right idempotent ring. Con-
sequently, A is a left (resp. right) V-ring iff every simple factor ring of
A is a left (resp. right) V-ring.

PROOF. If u\in J, then AuA is a right ideal generated by an idempotent
e. Since J contains no non-zero idempotent, then e=0 which implies u=0,
whence J=0. Then for any a\in A , AaA is generated by a central idempot-
ent, whence AA/AaA is projective and therefore flat. This proves that
a\in aAaA which implies that A is fully right idempotent. Similarly, A is
fully left idempotent. Since any non-zero ideal in a prime ring is both left
and right essential, then any prime factor ring of A is simple and the last
part of Proposition 13 follows from [5, Theorem 14].

Applying [8, Corollary 1. 18 and Theorem 6. 10] and [21, Theorem 1. 7],

we get

COROLLARY 13. 1. Let A satisfy the hypothesis of Proposition 13.
(1) If A is MELT, then A is a unit-regular left and right V-ring

whose prime factor rings are Artinian;
(2) If every maximal left ideal of A is an ideal, then A is strongly

regular.

Applying [10, Theorem 3. 3], [9, Theorem 1], [18, Proposition 9] to
Proposition 13 and Corollary 13.1 (1), we get

COROLLARY 13. 2. If A is a semi-prime ERT right IF-ring such that
for any a\in A , AaA is the right annihilator of an element, then A is a
biregular, unit-regular left and right V-ring.

COROLLARY 13. 3. If A is a GSF-ring such that for any a\in A , there
exists b\in A such that AaA=r(b)=l(b) , then A is biregular.

PROOF. If AaA=r(b)=l(b) and bA+l(b) -\neq A , let M be a maximal
right ideal containing bA+l(b) . Then, whether bA=bM or not, we arrive
at 1\in M, a contradiction. Thus bA+l(b)=A and b=bcb for some c\in A .
Then AaA=r(e)=(1-e)A, where e=cb is idempotent, which proves A
biregular by Proposition 13.

REMARK 4. If A is a fully right idempotent ring with maximun condi-
tion on left and right annihilators, then any ideal of A is generated by a
central idempotent.
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We now turn to semi-simple Artinian rings. [6, Theorem 3. 3], [10,
Theorem 3. 3], [17, Lemma 1. 2], Lemma 1 (1) and Lemma 3 yield

THEOREM 14. The following conditions are equivalent:
(1) A is semi-simple Artinian ;
(2) A is a MELT ring such that AAM is injective for every maximal

right ideal M of A ;
(3) A is a semi-prime right Goldie GSF-ring;
(4) A is a semi-prime ELT right Goldie SPF-ring;
(5) A is a semi-prime ERT right Goldie SPF-ring;
(6) A is a right IF-ring with finitely generated projective essential

left socle.

We add a last result motivated by [12]. Write Z_{2}(A)=\{a\in A/there

exists an essential left ideal L with LaQZ}. An element y of a left (or
right) A-module is called left regular if l(y)=0 in A.

PROPOSITION 15. If every non-zero non-singular left A-module is prO-
jective and contains a left regular element, then either Z is an essential
left ideal of A or A is simple Artinian.

PROOF. It is easy to see that Z is an essential left ideal of A if, and
only if, Z_{2}(A)=A . Consequently, if we suppose that Z is not essential,
then A/Z_{2}(A) is a non-zero non-singular left A-module by [15, Lemma 1],
which therefore contains a left regular element. By [15, Lemma 3], Z=0
and by [7, Theorem 5. 23], A is Artinian. Now every non-zero left ideal
of A contains a left regular element which implies A semi-prime, and hence
semi-simple Artinian. But then, every left A-module is non-singular and
therefore every simple left A-module is faithful which implies A primitive
and hence simple Artinian.

Applying [15, Proposition 8] to Proposition 15, we get

COROLLARY 15. 1. The following conditions are equivalent:
(1) Either A is a division ring or Z is an essential left ideal of A ;
(2) Any non-zero non-singular left A-module {if it exists) is projective

and contains a left and right regular element.

REMARK 5. In view of the above corollary, [12, Remark 3. 5] should be
reformulated as follows: A is left non-singular if, and only if, there exists
a non-singular left A-module containing a left regular element. It is easily
seen that [12, Corollary 3. 7] cannot be true.
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