An analytical proof of Kodaira's embedding theorem for Hodge manifolds

By Noboru Tanaka
(Received July, 8, 1983)

Introduction

The main purpose of the present paper is to give a purely analytical proof of a famous theorem due to Kodaira [4] which states that every Hodge manifold X can be holomorphically embedded in a complex projective space $P^{N}(\boldsymbol{C})$.

Our proof of the theorem is based on Kohn's harmonic theory on compact strongly pseudo-convex manifolds ([2] and [3]), and has been inspired by the proof due to Boutet de Monvel [1] of the fact that every compact strongly pseudo-convex manifold M can be holomorphically embedded in a complex affine space \boldsymbol{C}^{N}, provided $\operatorname{dim} M>3$. In this paper the differentiability will always mean that of class C^{∞}. Given a vector bundle E over a manifold $M, \Gamma(E)$ will denote the space of C^{∞} cross sections of E.

1. Let \widetilde{M} be an ($n-1$)-dimensional (para-compact) complex manifold, and F a holomorphic line bundle over \widetilde{M}. Let M^{\prime} be the holomorphic C^{*}. bundle associated with F, and π^{\prime} the projection $M^{\prime} \rightarrow \widetilde{M}$.

There are an open covering $\left\{U_{\alpha}\right\}$ of \widetilde{M} and for each α a holomorphic trivialization

$$
\phi_{\alpha}: \pi^{\prime-1}\left(U_{\alpha}\right) \ni \boldsymbol{z} \longrightarrow\left(\pi^{\prime}(\boldsymbol{z}), f_{\alpha}(\boldsymbol{z})\right) \in U_{\alpha} \times \boldsymbol{C}^{*} .
$$

We have

$$
f_{\alpha}(z a)=f_{\alpha}(z) a, z \in \pi^{\prime-1}\left(U_{\alpha}\right), a \in C^{*} .
$$

Let $\left\{g_{\alpha \beta}\right\}$ be the system of holomorphic transition functions associated with the trivializations ϕ_{α}. Then for any α and β with $U_{\alpha} \cap U_{\beta} \neq \phi$ we have

$$
f_{\alpha}(z)=g_{\alpha \beta}\left(\pi^{\prime}(z)\right) f_{\beta}(z), \quad z \in \pi^{\prime-1}\left(U_{\alpha} \cap U_{\beta}\right)
$$

Let us now consider a $U(1)$-reduction M of the C^{*}-bundle M^{\prime}. Let π denote the projection $M \rightarrow \widetilde{M}$. Then there is a unique positive function a_{α} on U_{α} such that

$$
\pi^{-1}\left(U_{\alpha}\right)=\left\{\left.z \in \pi^{\prime-1}\left(U_{\alpha}\right)| | f_{\alpha}(z)\right|^{2} a_{\alpha}\left(\pi^{\prime}(z)\right)=1\right\} .
$$

Clearly we have $a_{\alpha}\left|g_{\alpha \beta}\right|^{2}=a_{\beta}$, and hence

$$
\gamma=\sqrt{ }-1 / 2 \pi \cdot \partial \bar{\partial} \log a_{\alpha}=\sqrt{ }-1 / 2 \pi \cdot \sum_{i, j} \partial^{2} \log a_{\alpha} / \partial z_{i} \partial \bar{z}_{j} \cdot d z_{i} \wedge d \bar{z}_{j}
$$

defines a glabal 2 -form of type $(1,1)$ on \tilde{M}, where $\left\{z_{1}, \cdots, z_{n-1}\right\}$ denotes any complex coordinate system of \widetilde{M} defined on an open set of U_{α}. The form γ is usually called the Chern form (cf. [5]).
2. M being a real hypersurface of M^{\prime}, it is endowed with a pseudocomplex structure in a natural manner (cf. [6]). Let $T^{(1,0)}\left(M^{\prime}\right)$ be the vector bundle of tangent vectors of type $(1,0)$ to M^{\prime}, and $\boldsymbol{C} T(M)$ the complexification of the tangent bundle $T(M)$ of M. Then the pseudo-complex structure means the subbundle S of $\boldsymbol{C} T(M)$ defined by

$$
S_{x}=\boldsymbol{C} T(M)_{x} \cap T^{(1,0)}\left(M^{\prime}\right)_{x}, \quad x \in M
$$

We have

1) $\operatorname{dim} S_{x}=n-1$,
2) $S \cap \bar{S}=0$,
3) $[\Gamma(S), \Gamma(S)] \subset \Gamma(S)$.

We remark that the differential π_{*} of π maps S onto $T^{(1,0)}(\widetilde{M})$, the bundle of tangent vectors of type $(1,0)$ to \widetilde{M}. We also remark that S is invariant under the action of $U(1)$ on M. More precisely, for each $a \in U(1)$ let R_{a} denote the right translation $M \ni x \rightarrow x a \in M$. Then we have $\left(R_{a}\right)_{*} S=S$ or in other words, R_{a} is an automorphism of the pseudo-complex manifold M.

For any integer k we denote by \mathscr{C}^{k} the space of cross sections of $\Lambda^{k} \bar{S}^{*}$, and define an operator $\bar{\partial}: \mathscr{C}^{k} \rightarrow \mathscr{C}^{k+1}$ by

$$
\begin{aligned}
& (\bar{\partial} \varphi)\left(\bar{X}_{1} \wedge \cdots \wedge \bar{X}_{k+1}\right)=\sum_{i}(-1)^{i+1} \bar{X}_{i} \varphi\left(\bar{X}_{1} \wedge \cdots \wedge \hat{\bar{X}}_{i} \wedge \cdots \wedge \bar{X}_{k+1}\right) \\
& \quad+\sum_{i<j}(-1)^{i+j} \varphi\left(\left[\bar{X}_{i}, \bar{X}_{j}\right] \wedge \bar{X}_{1} \wedge \cdots \wedge \hat{\bar{X}}_{i} \wedge \cdots \wedge \hat{X}_{j} \wedge \cdots \wedge \bar{X}_{k+1}\right)
\end{aligned}
$$

where $\varphi \in \mathscr{C}^{k}$ and $X_{i} \in \Gamma(S)$. Then we have $\bar{\partial}^{2}=0$, and hence the system $\left\{\mathscr{C}^{k}, \bar{\partial}\right\}$ gives a complex (cf. [6]).

A function $\varphi \in \mathscr{C}^{0}$ is said to be holomorphic if it satisfies the (tangential Cauchy-Riemann) equation $\bar{\partial} \varphi=0$.

For any integer m we define a subspace $\mathscr{C}_{(m)}^{0}$ of \mathscr{C}^{0} by

$$
\mathscr{C}_{(m)}^{0}=\left\{\varphi \in \mathscr{C}^{0} \mid R_{a}^{*} \varphi=a^{-m} \varphi \text { for all } a \in U(1)\right\}
$$

Let $\varphi \in \mathscr{C} \mathscr{C}^{0}$. Then it is clear that φ is in $\mathscr{C}_{(0)}^{0}$ if and only if there is a (unique) function $\tilde{\varphi}$ on \widetilde{M} with $\varphi=\pi^{*} \tilde{\varphi}$. Since $\pi_{*} S=T^{(1,0)}(\widetilde{M})$, we see that a function $\varphi \in \mathscr{C}_{(0)}^{0}$ is holomorphic if and only if $\tilde{\varphi}$ is holomorphic. In general consider the m-th power F^{m} of the line bundle F. Then it can be shown
that there is a natural isomorphism of $\mathscr{C}_{(m)}^{0}$ onto $\Gamma\left(F^{m}\right)$, say $\varphi \rightarrow \tilde{\varphi}$, and that φ is holomorphic if and only if $\tilde{\varphi}$ is holomorphic (cf. [6]).
3. Assume that \tilde{M} is compact. As is well known, the line bundle F is negative if and only if there is a $U(1)$-reduction M of M^{\prime} such that the hermitian matrix $\left(\partial^{2} \log a_{\alpha} / \partial z_{i} \partial \bar{z}_{j}\right)$ is positive definite at each point of \widetilde{M} (cf. [5]).

Hereafter we assume that \tilde{M} is compact and that F is negative with respect to a $U(1)$-reduction M of M^{\prime}. Since M is locally defined by the equations $\left|f_{\alpha}\right|^{2} \pi^{\prime} * a_{\alpha}=1$ or equivalently

$$
\log f_{\alpha}+\log f_{\alpha}+\pi^{\prime *}\left(\log a_{\alpha}\right)=0
$$

we see that M is a (compact) strongly pseudo-convex real hypersurface of M^{\prime} (cf. [6]).

Let $d(p, q)(p, q \in \widetilde{M})$ be a distance function on \widetilde{M} associated with a Riemannian metric on \widetilde{M}. Fix a point p_{0} of \widetilde{M} and define a function ρ on \widetilde{M} by

$$
\rho(p)=d\left(p_{0}, p\right)^{2}, \quad p \in \widetilde{M}
$$

which can be confused with a function on M, i. e., the function $\pi^{*} \rho$. (Analogous confusions will be made frequently.)

Lemma 1. There are a function h on M and a neighborhood V of p_{0} having the following properties:

1) h is in $\mathscr{C}_{(-1)}^{0}$,
2) h is holomorphic on $\pi^{-1}(V)$,
3) $|h(x)| \leqq e^{-K_{1} \rho(x)}, x \in M$, where K_{1} is a positive constant,
4) $|h(x)| \geqq e^{-K_{2} \rho(x)}, x \in \pi^{-1}(V)$, where K_{2} is a positive constant.

Proof. Fix an α with $p_{0} \in U_{\alpha}$, and denote by u the restriction of f_{α} to $\pi^{-1}\left(U_{\alpha}\right)$. Then u is holomorphic, and we have:

$$
\begin{aligned}
& R_{a}^{*} u=u a, \quad a \in U(1) \\
& |u|^{2} a_{\alpha}=1 \text { on } \pi^{-1}\left(U_{\alpha}\right)
\end{aligned}
$$

Let $\left\{z_{1}, \cdots, z_{n-1}\right\}$ be a complex coordinate system around p_{0} with $z_{i}\left(p_{0}\right)=0$. Then the function $b=\log a_{\alpha}$ can be expanded as follows:

$$
\begin{aligned}
b=b\left(p_{0}\right) & +2 \operatorname{Re} \sum_{i} b_{i}\left(p_{0}\right) z_{i}+\operatorname{Re} \sum_{i, j} b_{i j}\left(p_{0}\right) \boldsymbol{z}_{i} z_{j} \\
& +\sum_{i, j} b_{i \bar{j}}\left(p_{0}\right) \boldsymbol{z}_{i} \bar{z}_{j}+O\left(|z|^{3}\right)
\end{aligned}
$$

where $\quad b_{i}=\partial b / \partial z_{i}, \quad b_{i j}=\partial^{2} b / \partial z_{i} \partial z_{j}, \quad b_{i j}=\partial^{2} b / \partial z_{i} \partial \bar{z}_{j}, \quad$ and $\quad|z|^{2}=\sum_{i}\left|z_{i}\right|^{2}$. We define a function t on U_{α} by

$$
t=1 / 2 \cdot b\left(p_{0}\right)+\sum_{i} b_{i}\left(p_{0}\right) z_{i}+1 / 2 \cdot \sum_{i, j} b_{i j}\left(p_{0}\right) z_{i} z_{j}
$$

and a function h^{\prime} on $\pi^{-1}\left(U_{\alpha}\right)$ by

$$
h^{\prime}=u \cdot e^{t}
$$

Since $\left|h^{\prime}\right|^{2}=|u|^{2} \cdot e^{2 R e t}$, it follows that

$$
\begin{aligned}
\log \left|h^{\prime}\right|^{2} & =\log |u|^{2}+2 \operatorname{Re} t \\
& =-b+2 \operatorname{Re} t \\
& =-\sum_{i, j} b_{i \bar{j}}\left(p_{0}\right) z_{i} \bar{z}_{j}+O\left(|z|^{3}\right) .
\end{aligned}
$$

Since the hermitian matrix $\left(b_{i \bar{j}}\left(p_{0}\right)\right)$ is positive definite, we can find a neighborhood $V^{\prime}\left(\subset U_{a}\right)$ of p_{0} and positive constants K_{1} and K_{2} such that

$$
-K_{2} \rho(x) \leqq \log \left|h^{\prime}(x)\right| \leqq-K_{1} \rho(x), \quad x \in \pi^{-1}\left(V^{\prime}\right)
$$

Now take a neighborhood V of p_{0} with $V \subset \subset V^{\prime}$ and a function η on \widetilde{M} having the following properties : 1) $0 \leqq \eta \leqq 1$, 2) Supp $\eta \subset V^{\prime}$, and 3) $\eta=1$ on V. And define a function h on M by $h(x)=0$ if $x \notin \pi^{-1}\left(V^{\prime}\right)$ and $h(x)=$ $\eta(x) h^{\prime}(x)$ if $x \in \pi^{-1}\left(V^{\prime}\right)$. Then it is easy to see that h and V, thus obtained, have the desired properties.
4. Let g be a Riemannian metric on M such that $g(X, Y)=0$ for all $X, Y \in S_{x}$ and $x \in M$. Since S is $U(1)$-invariant, we may assume that g is $U(1)$-invariant, i. e., $R_{a}^{*} g=g, a \in U(1)$. Let ω denote the volume element associated with g, which is also $U(1)$-invariant.

For any $\varphi, \psi \in \mathscr{C}^{k}$ we define a function $\langle\varphi, \psi\rangle$ on M in the following manner: Let $x \in M$ and let $\left\{e_{1}, \cdots, e_{n-1}\right\}$ be any basis of S_{x} with $g\left(e_{i}, \bar{e}_{j}\right)=$ $\delta_{i j}$. Then

$$
\langle\varphi, \phi\rangle(x)=1 / k!\cdot \sum_{i_{1}, \cdots, i_{k}} \varphi\left(\bar{e}_{i_{1}} \wedge \cdots \wedge \bar{e}_{i_{k}}\right) \overline{\psi\left(\bar{e}_{i_{1}} \wedge \cdots \wedge \bar{e}_{i_{k}}\right)} .
$$

We now define an inner product (,) in \mathscr{C}^{k} by

$$
(\varphi, \phi)=\int_{M}\langle\varphi, \phi\rangle \omega .
$$

Let $\varphi \in \mathscr{C}^{k}$ and $a \in U(1)$. Since S is $U(1)$-invariant, $R_{a}^{*} \varphi$ can be naturally defined to give an element of \mathscr{C}^{k}. In this way the group $U(1)$ acts on the space \mathscr{C}^{k}, and we see that the inner product (,) is $U(1)$-invariant, i.e., $\left(R_{a}^{*} \varphi, R_{a}^{*} \psi\right)=(\varphi, \phi), a \in U(1)$.

We denote by ϑ the formal adjoint operator of the operator $\overline{\hat{\partial}}$ with respect to the inner product (,). The operator $\square=\vartheta \bar{\partial}+\bar{\partial} \vartheta$ is usually called the Laplacian.

Now it is known that, for every $1 \leqq k \leqq n-2$, there are unique operators $H, G: \mathscr{C}^{k} \rightarrow \mathscr{C}^{k}$ such that

$$
\square H=H G=0, \quad \text { and } \quad \square G+H=1
$$

(See [2], [3] and [6].) The operator G is usually called the Green operator.
Here we notice that the operators $\bar{\partial}, \vartheta, \square, H$ and G are all compatible with the $U(1)$-action: For any $a \in U(1)$ and $\varphi \in \mathscr{C}^{k}$ we have $R_{a}^{*}(\bar{\partial} \varphi)=$ $\bar{\partial}\left(R_{a}^{*} \varphi\right), R_{a}^{*}(\vartheta \varphi)=\vartheta\left(R_{a}^{*} \varphi\right)$, etc.

In the following we assume that $n \geqq 3$. Then we define an operator $H: \mathscr{C}^{0} \rightarrow \mathscr{C}^{0}$ by

$$
H \varphi=\varphi-\vartheta G \bar{\partial} \varphi, \quad \varphi \in \mathscr{C}^{0}
$$

It is easy to see that $H \varphi$ is holomorphic and that the operator $H: \mathscr{C}^{0} \rightarrow \mathscr{C}^{0}$ is compatible with $U(1)$-action. In particular we have $H \mathscr{C}_{(m)}^{0} \subset \mathscr{C}_{(m)}^{0}$.
5. Let p_{0} be any point of \widetilde{M}. We take a function h on M and a neighborhood V of p_{0} having the properties in Lemma 1. Let φ be a function on \widetilde{M} that is holomorphic on a neighborhood $O(\subset V)$ of p_{0}. For any positive integer m let us consider the function $h^{m} \varphi$ on M, which is clearly in $\mathscr{C}_{(-m)}^{0}$. Accordingly the function

$$
H\left(h^{m} \varphi\right)=h^{m} \varphi-\vartheta G \bar{\partial}\left(h^{m} \varphi\right)
$$

is holomorphic and is in $\mathscr{C}_{(-m)}^{0}$.
We denote by $\left\|\|_{(s)}\right.$ (resp. by $\left|\left.\right|_{s}\right.$) a Sobolev norm (resp. a C^{s}-norm) in \mathscr{C}^{k} corresponding to any non-negative integer s (cf. [2]). Putting

$$
a=\operatorname{Min}_{p \in \widetilde{\tilde{L}}-o} \rho(p)(>0) \quad \text { and } \quad A=e^{-K_{1} a}
$$

we see that

$$
|h(x)| \leqq e^{-K_{1} \rho(x)} \leqq A \text { if } x \in \pi^{-1}(\widetilde{M}-O)
$$

Lemma 2. For every non-negative integer sthere is a positive constant C_{s} such that

$$
\left\|\bar{\partial}\left(h^{m} \varphi\right)\right\|_{(s)} \leqq C_{s} m^{s+1} A^{m}, \quad m>0 .
$$

Proof. Let $\left\{x_{1}, \cdots, x_{l}\right\}(l=2 n-1)$ be a coordinate system of M defined on an open set W of M. Let X be a cross section of S supported in W. Then we have

$$
\bar{X}\left(h^{m} \varphi\right)=m h^{m-1} \bar{X} h \cdot \varphi+h^{m} \cdot \bar{X} \varphi
$$

Since: both h and φ are holomorphic on $\pi^{-1}(O)$, we have $\bar{X}\left(h^{m} \varphi\right)=0$ on $\pi^{-1}(O)$. Therefore it follows that

$$
\left|\bar{X}\left(h^{m} \varphi\right)\right|_{0} \leqq C_{0} m A^{m}
$$

Applying the operator $\partial_{i}=\partial / \partial x_{i}$ to the equality above for $\bar{X}\left(h^{m} \varphi\right)$, we obtain

$$
\begin{aligned}
& \partial_{i}\left(\bar{X}\left(h^{m} \varphi\right)\right)=m(m-1) h^{m-2} \partial_{i} h \cdot \bar{X} h \cdot \varphi+m h^{m-1} \partial_{i}(\bar{X} h \cdot \varphi) \\
& \quad+m h^{m-1} \partial_{i} h \cdot \bar{X} \varphi+h^{m} \cdot \partial_{i}(\bar{X} \varphi) .
\end{aligned}
$$

As above it follows that

$$
\left|\partial_{i}\left(\bar{X}\left(h^{m} \varphi\right)\right)\right|_{0} \leqq C_{1} m^{2} A^{m}
$$

In general consider the operators $D^{\alpha}=\partial^{|\alpha|} / \partial x_{1}^{\alpha_{1}} \ldots \partial x_{l}^{\alpha} l$ where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{l}\right)$ and $|\alpha|=\alpha_{1}+\cdots+\alpha_{l} \leqq s$. Then we have

$$
\left|D^{\alpha}\left(\bar{X}\left(h^{m} \varphi\right)\right)\right|_{0} \leqq C_{s} m^{s+1} A^{m}
$$

from which follows easily the lemma.
Lemma 3. There is a positive constant C such that

$$
\left|H\left(h^{m} \varphi\right)-h^{m} \varphi\right|_{1} \leqq C m^{n+2} A^{m}, \quad m>0
$$

Proof. Using the Sobolev lemma, we obtain

$$
\left|\vartheta G \bar{\partial}\left(h^{m} \varphi\right)\right|_{1} \leqq C_{1} \mid \vartheta \vartheta G \bar{\partial}\left(h^{m} \varphi\right)\left\|_{(n+1)} \leqq C_{2}\right\| G \bar{\partial}\left(h^{m} \varphi\right) \|_{(n+2)} .
$$

By Folland-Kohn [2] we know that

$$
\|G \phi\|_{(n+2)} \leqq C_{3}\|\varphi\|_{(n+1)}, \quad \psi \in \mathscr{C}^{1} .
$$

Therefore it follows from Lemma 2 that

$$
\left|H\left(h^{m} \varphi\right)-h^{m} \varphi\right|_{1} \leqq C_{4}| | \bar{\partial}\left(h^{m} \varphi\right) \|_{(n+1)} \leqq C m^{n+2} A^{m}
$$

6. By using Lemmas 1 and 3 we shall show that the complex manifold \widetilde{M} can be holomorphically embedded in a complex projective space.

Let $p_{0} \in \widetilde{M}$, and let $\varphi_{1}, \cdots, \varphi_{n-1}$ be functions on \widetilde{M} having the following properties:

1) Each function φ_{i} is holomorphic on a common neighborhood $O(\subset V)$ of p_{0},
2) $\left\{\varphi_{1}, \cdots, \varphi_{n-1}\right\}$ gives a coordinate system on O.

Putting $\varphi_{n}=1$, we define functions $f_{1}^{(m)}, \cdots, f_{n}^{(m)}$ on M by

$$
f_{j}^{(m)}=H\left(h^{m} \varphi_{j}\right), \quad 1 \leqq j \leqq n
$$

Then $f_{j}^{(m)}$ are holomorphic and are in $\mathscr{C}_{(-m)}^{0}$. Furthermore by Lemma 3 we have

$$
\begin{equation*}
\left|f_{j}^{(m)}-h^{m} \varphi_{j}\right|_{1} \leqq C m^{n+2} A^{m}, \quad m>0 \tag{*}
\end{equation*}
$$

Let us define functions $\psi_{1}^{(m)}, \cdots, \psi_{n}^{(m)}$ on $\pi^{-1}(V)$ by

$$
\psi_{j}^{(m)}=f_{j}^{(m)} / h^{m}, \quad 1 \leqq j \leqq n .
$$

Let ε be a positive number with $K_{1} a-K_{2} \varepsilon>0$, and let $O^{\prime}(\subset O)$ be a neighborhood of p_{0} such that $\rho(p) \leqq \varepsilon$ for all $p \in O^{\prime}$. Putting $B=e^{-\left(K_{1} a-K_{2}\right)}$, we see that if $x \in \pi^{-1}\left(O^{\prime}\right)$,

$$
A|h(x)|^{-1} \leqq A e^{K_{2} \rho^{\prime}(x)} \leqq e^{-K_{1} a+K_{2} \rho^{\prime}(x)} \leqq B .
$$

For every cotangent vector α we denote by $|\alpha|$ the norm of α with respect to a fixed Riemannian metric on M.

Lemma 4. There is a positive constant C^{\prime} such that

$$
\begin{gathered}
\left|\psi_{j}^{(m)}(x)-\varphi_{j}(x)\right|+\left|d \psi_{j x}^{(n)}-d \varphi_{j x}\right| \leqq C^{\prime} m^{n+3} B^{m}, \\
m>0, \quad x \in \pi^{-1}\left(O^{\prime}\right), \quad 1 \leqq j \leqq n .
\end{gathered}
$$

Proof. By (*) we have the inequalities:

$$
\begin{aligned}
& \left|f_{j}^{(m)}(x)-h(x)^{m} \varphi_{j}(x)\right|+\left|d f_{j x}^{(n)}-d\left(h^{m} \varphi_{j}\right) x\right| \leqq C m^{n+2} A^{m}, \\
& m>0, \quad x \in M, \quad 1 \leqq j<n .
\end{aligned}
$$

For every $x \in \pi^{-1}\left(O^{\prime}\right)$ we have

$$
\begin{aligned}
\psi_{j}^{(m)}(x)-\varphi_{j}(x) & =h(x)^{-m}\left(f_{j}^{(m)}(x)-h(x)^{m} \varphi_{j}(x)\right), \\
d \psi_{j x}^{(m)}-d \varphi_{j x} & =h(x)^{-m}\left(d f_{j x}^{(m)}-d\left(h^{m} \varphi_{j}\right)_{x}\right) \\
& -m\left(\psi_{j}^{(m)}(x)-\varphi_{j}(x)\right) h(x)^{-1} d h_{x} .
\end{aligned}
$$

From these facts follows easily the lemma.
Lemma 5. There are neighborhoods O_{1} and O_{2} with $O_{2} \subset O_{1} \subset O$, and a positive integer μ such that for all $m \geqq \mu$ the following hold:

1) $f_{n}^{(m)}(x) \neq 0$ for all $x \in \pi^{-1}\left(O_{1}\right)$,
2) The functions $f_{i}^{(m)} \mid f_{n}^{(m)}(1 \leqq i \leqq n-1)$ on $\pi^{-1}\left(O_{1}\right)$ are holomorphcc, and are reduced to holomorphic functions on O_{1},
3) The functions $f_{i}^{(n)} / f_{n}^{(m)}$, regarded as holomorphic functions on O_{1}, give a coordinate system on O_{1},
4) $\left|f_{n}^{(m)}(y)\right| /\left|f_{n}^{(m)}(x)\right|<1 / 2, x \in \pi^{-1}\left(O_{2}\right), y \in \pi^{-1}\left(\widetilde{M}-O_{1}\right)$.

Proof. By Lemma 4 we see that $\lim _{m \rightarrow \infty}\left|\psi_{n}^{(m)}(x)-1\right|=0$ uniformly for $x \in \pi^{-1}\left(O^{\prime}\right)$. Hence there is a positive integer μ such that $\psi_{n}^{(m)}(x) \neq 0$ and hence $f_{n}^{(m)}(x) \neq 0$ for all $m \geqq \mu$ and $x \in \pi^{-1}\left(O^{\prime}\right)$. For any $1 \leqq i \leqq n-1$ and $m \geqq \mu$, the function $\varphi_{i}^{(m)}=f_{i}^{(m)} / f_{n}^{(m)}$ on $\pi^{-1}\left(O^{\prime}\right)$ is holomorphic, and is reduced
to a holomorphic function on O^{\prime}, because $\varphi_{i}^{(m)}(x a)=\varphi_{i}^{(m)}(x), x \in \pi^{-1}\left(O^{\prime}\right)$ and $a \in U(1)$. Clearly we have $\varphi_{i}^{(m)}=\phi_{i}^{(m)} / \psi_{n}^{(m)}$. Therefore we see from Lemma 4 that

$$
\lim _{m \rightarrow \infty}\left(\left|\varphi_{i}^{(m)}\left((x)-\varphi_{i}(x)\right)\right|+\left|d \varphi_{i x}^{(m)}-d \varphi_{i x}\right|\right)=0
$$

uniformly for $x \in \pi^{-1}\left(O^{\prime}\right)$. Let O_{1} be a neighborhood of p_{0} with $O_{1} \subset \subset O^{\prime}$. Since $\left\{\varphi_{1}, \cdots, \varphi_{n-1}\right\}$ gives a coordinate system on O, it follows that if we choose a sufficiently large $\mu,\left\{\varphi_{1}^{(m)}, \cdots, \varphi_{n-1}^{(m)}\right\}$ gives a coordinate system on O_{1} for every $m \geqq \mu$.

Now from (*) we obtain

$$
\left|f_{n}^{(m)}(z)-h(z)^{m}\right| \leqq C m^{n+2} A^{m}, \quad z \in M, \quad m>0
$$

Therefore if $x \in \pi^{-1}\left(O_{1}\right)$, we have

$$
\left|f_{n}^{(m)}(x)\right| \geqq|h(x)|^{m}-C m^{n+2} A^{m} \geqq e^{-m K_{2 \rho}(x)}-C m^{n+2} A^{m}
$$

and if $y \in \pi^{-1}\left(\widetilde{M}-O_{1}\right)$, we have

$$
\left|f_{n}^{(m)}(y)\right| \leqq|h(y)|^{m}+C m^{n+2} A^{m} \leqq e^{-m K_{1} \rho(y)}+C m^{n+2} A^{m}
$$

Put $b=\operatorname{Min}_{p \in \tilde{X}-0_{1}} \rho(p)(>0)$, and let δ be a positive number such that $K_{1} b-K_{2} \delta$ >0 and hence $K_{1} a-K_{2} \delta>0$. Let $O_{2}\left(\subset O_{1}\right)$ be a neighborhood of p_{0} such that $\rho(p) \leqq \delta$ for all $p \in O_{2}$. Then it follows that if $x \in \pi^{-1}\left(O_{2}\right)$ and $y \in \pi^{-1}$ ($\widetilde{M}-O_{1}$), then

$$
\begin{aligned}
\left|f_{n}^{(m)}(y)\right| /\left|f_{n}^{(m)}(x)\right| & \leqq\left(e^{-m K_{1} \rho(y)}+C m^{n+2} A^{m}\right) /\left(e^{-m K_{2} \rho(x)}-C m^{n+2} A^{m}\right) \\
& \leqq\left(e^{-m K_{1} b}+C m^{n+2} A^{m}\right) /\left(e^{-m K_{2} \delta}-C m^{n+2} A^{m}\right) \\
& =\left(B_{2}^{m}+C m^{n+2} B_{1}^{m}\right) /\left(1-C m^{n+2} B_{1}^{m}\right),
\end{aligned}
$$

(provided $C m^{n+2} B_{1}^{m}<1$), where $B_{1}=A e^{K_{2} \delta}=e^{-\left(K_{1} a-K_{2} \delta\right)}$ and $B_{2}=e^{-\left(K_{1} b-K_{2}\right)}$. Therefore if we again choose a sufficiently large μ, we know that $\left|f_{n}^{(m)}(y)\right| /$ $\left|f_{n}^{(m)}(x)\right|<1 / 2$ for all $x \in \pi^{-1}\left(O_{2}\right), y \in \pi^{-1}\left(\widetilde{M}-O_{1}\right)$ and $m \geqq \mu$. We have thus proved Lemma 5.
7. The functions $f_{j}^{(m)}$, the neighborhoods O_{1}, O_{2}, and the integer μ in Lemma 5 are all dependent on the arbitrarily given point $p=p_{0}$. Thus we write these things respectively as follows: $f_{j, p}^{(m)}, O_{1}(p), O_{2}(p)$, and $\mu(p)$. Since \widetilde{M} is compact, we can find a finite number of points p_{1}, \cdots, p_{k} of \widetilde{M} such that $\widetilde{M}=\bigcup_{2} O_{2}\left(p_{2}\right)$. Let $\mu_{0}=\underset{2}{\operatorname{Max}} \mu\left(p_{2}\right)$. Then for every $m \geqq \mu_{0}$ we define a $\operatorname{map} \boldsymbol{f}: M \rightarrow \boldsymbol{C}^{n k}$ by

$$
\boldsymbol{f}=\left(f_{1, p_{1}}^{(m)}, \cdots, f_{n, p_{1}}^{(m)}, \cdots, f_{1, p_{k}}^{(m)}, \cdots, f_{n, p_{k}}^{(m)}\right) .
$$

We have $R_{a}^{*} f=a^{m} f, a \in U(1)$, and by Lemma 5 we have $f(x) \neq 0$ for all
$x \in M$. Hence we see that \boldsymbol{f} induces a map \tilde{f} of \widetilde{M} into the ($n k-1$)-dimensional complex projective space $P^{n k-1}(\boldsymbol{C})$. By virtue of Lemma 5 we can easily show that \tilde{f} is a holomorphic embedding.

As is well known, a compact complex manifold is a Hodge manifold if and only if it admits a negative line bundle (cf. [5]]). Therefore we have shown that every Hodge manifold \widetilde{M} of dimension $\geqq 2$ can be holomorphically embedded in a complex projective space. Finally we note that a compact Riemann surface R, being a Hodge manifold, can be holomorphically embedded in a complex projective space, because the product $R \times R$ is a 2 -dimensional Hodge manifold.

Bibliography

[1] Boutet de Monvel: Intégration des équations de Cauchy-Riemann induites formelles, Seminaire Goulaouic-Lions-Schwartz, 1974-1975.
[2] G. B. Folland and J. J. Kohn: The Neumann problem for the CauchyRiemann complex, Ann. of Math. Studies, 75, Princeton University Press, New Jersey, 1972.
[3] J. J. Kohn: Boundaries of complex manifolds, Proc. Conference on Complex Manifolds (Minneapolis), Springer-Verlag, New York, 1965.
[4] K. Kodaira: On Kähler varieties of restricted type (An Intrinsic characterization of algebraic varieties), Ann. Math., 60 (1954), 28-48.
[5] J. Morrow and K. Kodaira: Complex manifolds, Holt, Rinehart and Winston, New York, 1971.
[6] N. TANAKA: A differential geometric study on strongly pseudo-convex manifolds, Lectures in Math., Dept. Math., Kyoto Univ., 9, Kinokuniya, Tokyo, 1975.

