An analytical proof of Kodaira's embedding theorem for Hodge manifolds

By Noboru TANAKA (Received July, 8, 1983)

Introduction

The main purpose of the present paper is to give a purely analytical proof of a famous theorem due to Kodaira [4] which states that every Hodge manifold X can be holomorphically embedded in a complex projective space $P^{N}(\mathbf{C})$.

Our proof of the theorem is based on Kohn's harmonic theory on compact strongly pseudo-convex manifolds ([2] and [3]), and has been inspired by the proof due to Boutet de Monvel [1] of the fact that every compact strongly pseudo-convex manifold M can be holomorphically embedded in a complex affine space \mathbb{C}^N , provided dim M>3. In this paper the differentiability will always mean that of class \mathbb{C}^{∞} . Given a vector bundle E over a manifold M, $\Gamma(E)$ will denote the space of \mathbb{C}^{∞} cross sections of E.

1. Let \widetilde{M} be an (n-1)-dimensional (para-compact) complex manifold, and F a holomorphic line bundle over \widetilde{M} . Let M' be the holomorphic C^* bundle associated with F, and π' the projection $M' \to \widetilde{M}$.

There are an open covering $\{U_{\alpha}\}$ of \widetilde{M} and for each α a holomorphic trivialization

$$\phi_{\alpha}: \pi'^{-1}(U_{\alpha}) \ni \mathbf{z} \longrightarrow (\pi'(\mathbf{z}), f_{\alpha}(\mathbf{z})) \in U_{\alpha} \times C^*$$
.

We have

$$f_{\alpha}(za) = f_{\alpha}(z)a, z \in \pi'^{-1}(U_{\alpha}), a \in C^*$$
.

Let $\{g_{\alpha\beta}\}$ be the system of holomorphic transition functions associated with the trivializations ϕ_{α} . Then for any α and β with $U_{\alpha} \cap U_{\beta} \neq \phi$ we have

$$f_{\alpha}(z) = g_{lphaeta}(\pi'(z)) f_{eta}(z), \ z \in \pi'^{-1}(U_{lpha} \cap U_{eta}) \ .$$

Let us now consider a U(1)-reduction M of the C^* -bundle M'. Let π denote the projection $M \rightarrow \widetilde{M}$. Then there is a unique positive function a_{α} on U_{α} such that

$$\pi^{-1}(U_{\alpha}) = \left\{ z \in \pi'^{-1}(U_{\alpha}) \middle| |f_{\alpha}(z)|^2 a_{\alpha}(\pi'(z)) = 1 \right\}.$$

Clearly we have $a_{\alpha}|g_{\alpha\beta}|^2 = a_{\beta}$, and hence

$$\gamma = \sqrt{-1} / 2\pi \cdot \partial \overline{\partial} \log a_{\alpha} = \sqrt{-1} / 2\pi \cdot \sum_{i,j} \partial^2 \log a_{\alpha} / \partial z_i \partial \overline{z}_j \cdot dz_i \wedge d\overline{z}_j$$

defines a glabal 2-form of type (1, 1) on \widetilde{M} , where $\{z_1, \dots, z_{n-1}\}$ denotes any complex coordinate system of \widetilde{M} defined on an open set of U_{α} . The form γ is usually called the Chern form (cf. [5]).

2. M being a real hypersurface of M', it is endowed with a pseudocomplex structure in a natural manner (cf. [6]). Let $T^{(1,0)}(M')$ be the vector bundle of tangent vectors of type (1,0) to M', and CT(M) the complexification of the tangent bundle T(M) of M. Then the pseudo-complex structure means the subbundle S of CT(M) defined by

$$S_x = CT(M)_x \cap T^{(1,0)}(M')_x$$
, $x \in M$.

We have

- 1) dim $S_x = n-1$,
- 2) $S \cap \overline{S} = 0$,
- 3) $[\Gamma(S), \Gamma(S)] \subset \Gamma(S).$

We remark that the differential π_* of π maps S onto $T^{(1,0)}(\widetilde{M})$, the bundle of tangent vectors of type (1,0) to \widetilde{M} . We also remark that S is invariant under the action of U(1) on M. More precisely, for each $a \in U(1)$ let R_a denote the right translation $M \ni x \rightarrow xa \in M$. Then we have $(R_a)_*S = S$ or in other words, R_a is an automorphism of the pseudo-complex manifold M.

For any integer k we denote by \mathscr{C}^k the space of cross sections of $\Lambda^k \bar{S}^*$, and define an operator $\bar{\partial}: \mathscr{C}^k \to \mathscr{C}^{k+1}$ by

$$(\overline{\partial}\varphi) (\bar{X}_1 \wedge \cdots \wedge \bar{X}_{k+1}) = \sum_i (-1)^{i+1} \bar{X}_i \varphi (\bar{X}_1 \wedge \cdots \wedge \hat{X}_i \wedge \cdots \wedge \bar{X}_{k+1})$$

+
$$\sum_{i < j} (-1)^{i+j} \varphi ([\bar{X}_i, \bar{X}_j] \wedge \bar{X}_1 \wedge \cdots \wedge \hat{X}_i \wedge \cdots \wedge \hat{X}_j \wedge \cdots \wedge \bar{X}_{k+1}) ,$$

where $\varphi \in \mathscr{C}^k$ and $X_i \in \Gamma(S)$. Then we have $\overline{\partial}^2 = 0$, and hence the system $\{\mathscr{C}^k, \overline{\partial}\}$ gives a complex (cf. [6]).

A function $\varphi \in \mathscr{C}^0$ is said to be holomorphic if it satisfies the (tangential Cauchy-Riemann) equation $\overline{\partial}\varphi = 0$.

For any integer m we define a subspace $\mathscr{C}^{0}_{(m)}$ of \mathscr{C}^{0} by

$$\mathscr{C}^{\mathbf{0}}_{(m)} = \left\{ \varphi \! \in \! \mathscr{C}^{\mathbf{0}} \middle| R_a^* \varphi = a^{-m} \varphi \text{ for all } a \! \in \! U(1) \right\}.$$

Let $\varphi \in \mathscr{C}^0$. Then it is clear that φ is in $\mathscr{C}^0_{(0)}$ if and only if there is a (unique) function $\tilde{\varphi}$ on \tilde{M} with $\varphi = \pi^* \tilde{\varphi}$. Since $\pi_* S = T^{(1,0)}(\tilde{M})$, we see that a function $\varphi \in \mathscr{C}^0_{(0)}$ is holomorphic if and only if $\tilde{\varphi}$ is holomorphic. In general consider the *m*-th power F^m of the line bundle *F*. Then it can be shown that there is a natural isomorphism of $\mathscr{C}^{0}_{(m)}$ onto $\Gamma(F^{m})$, say $\varphi \rightarrow \tilde{\varphi}$, and that φ is holomorphic if and only if $\tilde{\varphi}$ is holomorphic (cf. [6]).

3. Assume that \tilde{M} is compact. As is well known, the line bundle F is negative if and only if there is a U(1)-reduction M of M' such that the hermitian matrix $(\partial^2 \log a_{\alpha}/\partial z_i \partial \bar{z}_j)$ is positive definite at each point of \tilde{M} (cf. [5]).

Hereafter we assume that \widetilde{M} is compact and that F is negative with respect to a U(1)-reduction M of M'. Since M is locally defined by the equations $|f_{\alpha}|^2 \pi'^* a_{\alpha} = 1$ or equivalently

$$\log f_{\alpha} + \log f_{\alpha} + \pi' * (\log a_{\alpha}) = 0$$

we see that M is a (compact) strongly pseudo-convex real hypersurface of M' (cf. [6]).

Let $d(p,q)(p,q\in \widetilde{M})$ be a distance function on \widetilde{M} associated with a Riemannian metric on \widetilde{M} . Fix a point p_0 of \widetilde{M} and define a function ρ on \widetilde{M} by

$$ho(p) = d(p_0, p)^2, \qquad p \in \widetilde{M},$$

which can be confused with a function on M, i. e., the function $\pi^*\rho$. (Analogous confusions will be made frequently.)

LEMMA 1. There are a function h on M and a neighborhood V of p_0 having the following properties:

- 1) h is in $\mathscr{C}^{0}_{(-1)}$,
- 2) h is holomorphic on $\pi^{-1}(V)$,
- 3) $|h(x)| \leq e^{-K_1 \rho(x)}$, $x \in M$, where K_1 is a positive constant,
- 4) $|h(x)| \ge e^{-K_2\rho(x)}$, $x \in \pi^{-1}(V)$, where K_2 is a positive constant.

PROOF. Fix an α with $p_0 \in U_{\alpha}$, and denote by u the restriction of f_{α} to $\pi^{-1}(U_{\alpha})$. Then u is holomorphic, and we have:

$$R_a^* u = ua$$
, $a \in U(1)$,
 $|u|^2 a_a = 1$ on $\pi^{-1}(U_a)$.

Let $\{z_1, \dots, z_{n-1}\}$ be a complex coordinate system around p_0 with $z_i(p_0)=0$. Then the function $b=\log a_{\alpha}$ can be expanded as follows:

$$b = b(p_0) + 2\operatorname{Re} \sum_i b_i(p_0) z_i + \operatorname{Re} \sum_{i,j} b_{ij}(p_0) z_i z_j + \sum_{i,j} b_{i\bar{j}}(p_0) z_i \bar{z}_j + O(|z|^3),$$

where $b_i = \partial b/\partial z_i$, $b_{ij} = \partial^2 b/\partial z_i \partial z_j$, $b_{i\bar{j}} = \partial^2 b/\partial z_i \partial \bar{z}_j$, and $|z|^2 = \sum_i |z_i|^2$. We define a function t on U_{α} by

$$t = 1/2 \cdot b(p_0) + \sum_i b_i(p_0) z_i + 1/2 \cdot \sum_{i,j} b_{ij}(p_0) z_i z_j$$

and a function h' on $\pi^{-1}(U_{\alpha})$ by

 $h' = u \cdot e^t$.

Since $|h'|^2 = |u|^2 \cdot e^{2\operatorname{Re}t}$, it follows that

$$\log |h'|^2 = \log |u|^2 + 2\operatorname{Re} t$$
$$= -b + 2\operatorname{Re} t$$
$$= -\sum_{i,j} b_{ij}(p_0) \, z_i \bar{z}_j + O(|z|^3)$$

Since the hermitian matrix $(b_{ij}(p_0))$ is positive definite, we can find a neighborhood $V'(\subset U_{\alpha})$ of p_0 and positive constants K_1 and K_2 such that

$$-K_2
ho(x) \leq \log |h'(x)| \leq -K_1
ho(x)$$
, $x \in \pi^{-1}(V')$.

Now take a neighborhood V of p_0 with $V \subset \subset V'$ and a function η on \widetilde{M} having the following properties: 1) $0 \leq \eta \leq 1, 2$) Supp $\eta \subset V'$, and 3) $\eta = 1$ on V. And define a function h on M by h(x)=0 if $x \notin \pi^{-1}(V')$ and $h(x)=\eta(x) h'(x)$ if $x \in \pi^{-1}(V')$. Then it is easy to see that h and V, thus obtained, have the desired properties.

4. Let g be a Riemannian metric on M such that g(X, Y)=0 for all X, $Y \in S_x$ and $x \in M$. Since S is U(1)-invariant, we may assume that g is U(1)-invariant, i. e., $R_a^*g=g$, $a \in U(1)$. Let ω denote the volume element associated with g, which is also U(1)-invariant.

For any φ , $\psi \in \mathscr{C}^k$ we define a function $\langle \varphi, \psi \rangle$ on M in the following manner: Let $x \in M$ and let $\{e_1, \dots, e_{n-1}\}$ be any basis of S_x with $g(e_i, \bar{e}_j) = \delta_{ij}$. Then

$$\langle \varphi, \psi \rangle(x) = 1/k! \cdot \sum_{i_1, \cdots, i_k} \varphi(\bar{e}_{i_1} \wedge \cdots \wedge \bar{e}_{i_k}) \overline{\psi(\bar{e}_{i_1} \wedge \cdots \wedge \bar{e}_{i_k})}$$

We now define an inner product (,) in \mathscr{C}^k by

$$\langle \varphi, \psi \rangle = \int_{\mathcal{M}} \langle \varphi, \psi \rangle \omega$$
.

Let $\varphi \in \mathscr{C}^k$ and $a \in U(1)$. Since S is U(1)-invariant, $R_a^* \varphi$ can be naturally defined to give an element of \mathscr{C}^k . In this way the group U(1) acts on the space \mathscr{C}^k , and we see that the inner product (,) is U(1)-invariant, i.e., $(R_a^* \varphi, R_a^* \psi) = (\varphi, \psi), \ a \in U(1)$.

We denote by ϑ the formal adjoint operator of the operator $\overline{\partial}$ with respect to the inner product (,). The operator $\Box = \vartheta \overline{\partial} + \overline{\partial} \vartheta$ is usually called the Laplacian.

Now it is known that, for every $1 \le k \le n-2$, there are unique operators $H, G: \mathscr{C}^k \to \mathscr{C}^k$ such that

$$\square H = HG = 0$$
, and $\square G + H = 1$.

(See [2], [3] and [6].) The operator G is usually called the Green operator.

Here we notice that the operators ∂ , ϑ , \Box , H and G are all compatible with the U(1)-action: For any $a \in U(1)$ and $\varphi \in \mathscr{C}^k$ we have $R_a^*(\overline{\partial}\varphi) = \overline{\partial}(R_a^*\varphi)$, $R_a^*(\vartheta\varphi) = \vartheta(R_a^*\varphi)$, etc.

In the following we assume that $n \ge 3$. Then we define an operator $H: \mathscr{C}^0 \rightarrow \mathscr{C}^0$ by

$$H \varphi = \varphi - \vartheta G \overline{\partial} \varphi , \qquad \varphi \in \mathscr{C}^{\mathbf{0}} .$$

It is easy to see that $H\varphi$ is holomorphic and that the operator $H: \mathscr{C}^{0} \to \mathscr{C}^{0}$ is compatible with U(1)-action. In particular we have $H\mathscr{C}^{0}_{(m)} \subset \mathscr{C}^{0}_{(m)}$.

5. Let p_0 be any point of \widetilde{M} . We take a function h on M and a neighborhood V of p_0 having the properties in Lemma 1. Let φ be a function on \widetilde{M} that is holomorphic on a neighborhood $O(\subset V)$ of p_0 . For any positive integer m let us consider the function $h^m \varphi$ on M, which is clearly in $\mathscr{C}^0_{(-m)}$. Accordingly the function

$$H(h^{m}\varphi) = h^{m}\varphi - \vartheta G\overline{\partial}(h^{m}\varphi)$$

is holomorphic and is in $\mathscr{C}^{0}_{(-m)}$.

We denote by $|| \quad ||_{(s)}$ (resp. by $| \quad |_s$) a Sobolev norm (resp. a C^s -norm) in \mathscr{C}^k corresponding to any non-negative integer s (cf. [2]). Putting

$$a = \underset{p \in \widetilde{M} = 0}{\operatorname{Min}} \rho(p) (>0) \quad \text{and} \quad A = e^{-\kappa_1 a}$$

we see that

$$|h(x)| \leq e^{-\kappa_1 \rho(x)} \leq A \text{ if } x \in \pi^{-1}(\widetilde{M} - O).$$

LEMMA 2. For every non-negative integer s there is a positive constant C_s such that

$$||\overline{\partial}(h^m \varphi)||_{(s)} \leq C_s m^{s+1} A^m, \qquad m > 0.$$

PROOF. Let $\{x_1, \dots, x_l\}$ (l=2n-1) be a coordinate system of M defined on an open set W of M. Let X be a cross section of S supported in W. Then we have

$$ar{X}(h^marphi)=mh^{m-1}ar{X}hulletarphi+h^mulletar{X}arphi$$
 .

Since both h and φ are holomorphic on $\pi^{-1}(O)$, we have $\bar{X}(h^m \varphi) = 0$ on $\pi^{-1}(O)$. Therefore it follows that

An analytical proof of Kodaira's embedding theorem for Hodge manifolds 237

$$|ar{X}(h^marphi)|_{m 0}\!\leq\! C_{m 0}\,mA^m$$
 .

Applying the operator $\partial_i = \partial/\partial x_i$ to the equality above for $\bar{X}(h^m \varphi)$, we obtain

$$\begin{split} \partial_i \Big(\bar{X}(h^m \varphi) \Big) &= m(m-1) \ h^{m-2} \partial_i h \cdot \bar{X} h \cdot \varphi + m h^{m-1} \partial_i (\bar{X} h \cdot \varphi) \\ &+ m h^{m-1} \partial_i h \cdot \bar{X} \varphi + h^m \cdot \partial_i (\bar{X} \varphi) \ . \end{split}$$

As above it follows that

$$|\partial_i \left(ar{X}(h^m arphi)
ight)|_{\mathbf{0}} \leq C_1 m^2 A^m$$
 .

In general consider the operators $D^{\alpha} = \partial^{|\alpha|} / \partial x_1^{\alpha_1} \cdots \partial x_l^{\alpha_l}$ where $\alpha = (\alpha_1, \dots, \alpha_l)$ and $|\alpha| = \alpha_1 + \cdots + \alpha_l \leq s$. Then we have

$$|D^{lpha}ig(ar{X}(h^marphi)ig)|_{m 0} \leq C_s \, m^{s+1} A^m$$
 ,

from which follows easily the lemma.

LEMMA 3. There is a positive constant C such that

$$|H(h^m \varphi) - h^m \varphi|_1 \leq C m^{n+2} A^m$$
, $m > 0$.

PROOF. Using the Sobolev lemma, we obtain

$$|\Im G\overline{\partial}(h^m \varphi)|_1 \leq C_1 ||\Im G\overline{\partial}(h^m \varphi)||_{(n+1)} \leq C_2 ||G\overline{\partial}(h^m \varphi)||_{(n+2)}.$$

By Folland-Kohn [2] we know that

$$||G \psi||_{\scriptscriptstyle (n+2)} \leq C_{\scriptscriptstyle 3} ||\psi||_{\scriptscriptstyle (n+1)}$$
 , $\psi \in \mathscr{C}^1$.

Therefore it follows from Lemma 2 that

$$|H(h^{m}\varphi) - h^{m}\varphi|_{1} \leq C_{4} ||\overline{\partial}(h^{m}\varphi)||_{(n+1)} \leq Cm^{n+2}A^{m}.$$

6. By using Lemmas 1 and 3 we shall show that the complex manifold \widetilde{M} can be holomorphically embedded in a complex projective space.

Let $p_0 \in \widetilde{M}$, and let $\varphi_1, \dots, \varphi_{n-1}$ be functions on \widetilde{M} having the following properties:

1) Each function φ_i is holomorphic on a common neighborhood $O(\subset V)$ of p_0 ,

2) $\{\varphi_1, \dots, \varphi_{n-1}\}$ gives a coordinate system on O.

Putting $\varphi_n = 1$, we define functions $f_1^{(m)}, \dots, f_n^{(m)}$ on M by

$$f_j^{(m)} = H(h^m \varphi_j), \qquad 1 \leq j \leq n.$$

Then $f_j^{(m)}$ are holomorphic and are in $\mathscr{C}_{(-m)}^0$. Furthermore by Lemma 3 we have

(*)
$$|f_{j}^{(m)}-h^{m}\varphi_{j}|_{1} \leq Cm^{n+2}A^{m}, \quad m>0.$$

N. Tanaka

Let us define functions $\phi_1^{(m)}, \cdots, \phi_n^{(m)}$ on $\pi^{-1}(V)$ by

 $\psi_j^{\scriptscriptstyle(m)} = \! f_j^{\scriptscriptstyle(m)} / h^m$, $1 \leq \! j \leq n$.

Let ε be a positive number with $K_1 a - K_2 \varepsilon > 0$, and let $O'(\subset O)$ be a neighborhood of p_0 such that $\rho(p) \leq \varepsilon$ for all $p \in O'$. Putting $B = e^{-(K_1 a - K_2 \cdot)}$, we see that if $x \in \pi^{-1}(O')$,

$$A|h(x)|^{-1} \leq Ae^{K_2\rho(x)} \leq e^{-K_1a+K_2\rho(x)} \leq B.$$

For every cotangent vector α we denote by $|\alpha|$ the norm of α with respect to a fixed Riemannian metric on M.

LEMMA 4. There is a positive constant C' such that

$$egin{aligned} &| \psi_{j}^{(m)}(x) \! - \! arphi_{j}(x) | + | d\psi_{jx}^{(m)} \! - \! darphi_{jx} | &\leq C' \, m^{n+3} B^{m} \, , \ &m \! > \! 0 \, , \qquad x \! \in \! \pi^{-1}(O') \, , \qquad 1 \leq \! j \leq n \, . \end{aligned}$$

PROOF. By (*) we have the inequalities :

$$egin{aligned} &|f_{j}^{(m)}(x) - h(x)^{m} \varphi_{j}(x)| + |df_{jx}^{(m)} - d(h^{m} \varphi_{j})_{x}| \leq Cm^{n+2}A^{m}, \\ &m > 0, \quad x \in M, \quad 1 \leq j < n. \end{aligned}$$

For every $x \in \pi^{-1}(O')$ we have

$$\begin{split} \psi_{j}^{(m)}(x) - \varphi_{j}(x) &= h(x)^{-m} \Big(f_{j}^{(m)}(x) - h(x)^{m} \varphi_{j}(x) \Big) \,, \\ d\psi_{jx}^{(m)} - d\varphi_{jx} &= h(x)^{-m} \Big(df_{jx}^{(m)} - d(h^{m} \varphi_{j})_{x} \Big) \\ &- m \Big(\psi_{j}^{(m)}(x) - \varphi_{j}(x) \Big) \, h(x)^{-1} dh_{x} \,. \end{split}$$

From these facts follows easily the lemma.

LEMMA 5. There are neighborhoods O_1 and O_2 with $O_2 \subset O_1 \subset O$, and a positive integer μ such that for all $m \geq \mu$ the following hold:

1) $f_n^{(m)}(x) \neq 0$ for all $x \in \pi^{-1}(O_1)$,

2) The functions $f_i^{(m)}/f_n^{(m)}$ $(1 \leq i \leq n-1)$ on $\pi^{-1}(O_1)$ are holomorphic, and are reduced to holomorphic functions on O_1 ,

3) The functions $f_i^{(m)}/f_n^{(m)}$, regarded as holomorphic functions on O_1 , give a coordinate system on O_1 ,

4) $|f_n^{(m)}(y)|/|f_n^{(m)}(x)| < 1/2, x \in \pi^{-1}(O_2), y \in \pi^{-1}(\widetilde{M} - O_1).$

PROOF. By Lemma 4 we see that $\lim_{m\to\infty} |\phi_n^{(m)}(x)-1|=0$ uniformly for $x \in \pi^{-1}(O')$. Hence there is a positive integer μ such that $\phi_n^{(m)}(x) \neq 0$ and hence $f_n^{(m)}(x) \neq 0$ for all $m \ge \mu$ and $x \in \pi^{-1}(O')$. For any $1 \le i \le n-1$ and $m \ge \mu$, the function $\varphi_i^{(m)} = f_i^{(m)}/f_n^{(m)}$ on $\pi^{-1}(O')$ is holomorphic, and is reduced

238

to a holomorphic function on O', because $\varphi_i^{(m)}(xa) = \varphi_i^{(m)}(x)$, $x \in \pi^{-1}(O')$ and $a \in U(1)$. Clearly we have $\varphi_i^{(m)} = \psi_i^{(m)}/\psi_n^{(m)}$. Therefore we see from Lemma 4 that

$$\lim_{m\to\infty} \left(|\varphi_i^{(m)}(x) - \varphi_i(x)| + |d\varphi_{ix}^{(m)} - d\varphi_{ix}| \right) = 0$$

uniformly for $x \in \pi^{-1}(O')$. Let O_1 be a neighborhood of p_0 with $O_1 \subset \subset O'$. Since $\{\varphi_1, \dots, \varphi_{n-1}\}$ gives a coordinate system on O, it follows that if we choose a sufficiently large μ , $\{\varphi_1^{(m)}, \dots, \varphi_{n-1}^{(m)}\}$ gives a coordinate system on O_1 for every $m \geq \mu$.

Now from (*) we obtain

$$|f_n^{(m)}(z) - h(z)^m| \leq Cm^{n+2}A^m, \quad z \in M, \quad m > 0.$$

Therefore if $x \in \pi^{-1}(O_1)$, we have

$$|f_n^{(m)}(x)| \ge |h(x)|^m - Cm^{n+2}A^m \ge e^{-mK_2\rho(x)} - Cm^{n+2}A^m$$

and if $y \in \pi^{-1}(\widetilde{M} - O_1)$, we have

$$|f_n^{(m)}(y)| \leq |h(y)|^m + Cm^{n+2}A^m \leq e^{-mK_1\rho(y)} + Cm^{n+2}A^m.$$

Put $b = \underset{\substack{p \in \widetilde{M} - O_1 \\ p \in \widetilde{M} - O_1}}{\min} \rho(p)$ (>0), and let δ be a positive number such that $K_1 b - K_2 \delta$ >0 and hence $K_1 a - K_2 \delta > 0$. Let O_2 ($\subset O_1$) be a neighborhood of p_0 such that $\rho(p) \leq \delta$ for all $p \in O_2$. Then it follows that if $x \in \pi^{-1}(O_2)$ and $y \in \pi^{-1}(\widetilde{M} - O_1)$, then

$$\begin{split} |f_n^{(m)}(y)|/|f_n^{(m)}(x)| &\leq (e^{-mK_1\rho(y)} + Cm^{n+2}A^m)/(e^{-mK_2\rho(x)} - Cm^{n+2}A^m) \\ &\leq (e^{-mK_1b} + Cm^{n+2}A^m)/(e^{-mK_2b} - Cm^{n+2}A^m) \\ &= (B_2^m + Cm^{n+2}B_1^m)/(1 - Cm^{n+2}B_1^m) , \end{split}$$

(provided $C m^{n+2} B_1^m < 1$), where $B_1 = A e^{K_2 \delta} = e^{-(K_1 a - K_2 \delta)}$ and $B_2 = e^{-(K_1 b - K_2 \delta)}$. Therefore if we again choose a sufficiently large μ , we know that $|f_n^{(m)}(y)| / |f_n^{(m)}(x)| < 1/2$ for all $x \in \pi^{-1}(O_2)$, $y \in \pi^{-1}(\widetilde{M} - O_1)$ and $m \ge \mu$. We have thus proved Lemma 5.

7. The functions $f_j^{(m)}$, the neighborhoods O_1 , O_2 , and the integer μ in Lemma 5 are all dependent on the arbitrarily given point $p=p_0$. Thus we write these things respectively as follows: $f_{j,p}^{(m)}$, $O_1(p)$, $O_2(p)$, and $\mu(p)$. Since \widetilde{M} is compact, we can find a finite number of points p_1, \dots, p_k of \widetilde{M} such that $\widetilde{M} = \bigcup O_2(p_i)$. Let $\mu_0 = \max_{\lambda} \mu(p_{\lambda})$. Then for every $m \ge \mu_0$ we define a map $f: \widetilde{M} \to C^{nk}$ by

$$\boldsymbol{f} = (f_{1,p_1}^{(m)}, \cdots, f_{n,p_1}^{(m)}, \cdots, f_{1,p_k}^{(m)}, \cdots, f_{n,p_k}^{(m)}).$$

We have $R_a^* f = a^m f$, $a \in U(1)$, and by Lemma 5 we have $f(x) \neq 0$ for all

 $x \in M$. Hence we see that f induces a map \tilde{f} of \tilde{M} into the (nk-1)-dimensional complex projective space $P^{nk-1}(C)$. By virtue of Lemma 5 we can easily show that \tilde{f} is a holomorphic embedding.

As is well known, a compact complex manifold is a Hodge manifold if and only if it admits a negative line bundle (cf. [5]). Therefore we have shown that every Hodge manifold \widetilde{M} of dimension ≥ 2 can be holomorphically embedded in a complex projective space. Finally we note that a compact Riemann surface R, being a Hodge manifold, can be holomorphically embedded in a complex projective space, because the product $R \times R$ is a 2-dimensional Hodge manifold.

Bibliography

- Boutet de MONVEL: Intégration des équations de Cauchy-Riemann induites formelles, Seminaire Goulaouic-Lions-Schwartz, 1974-1975.
- [2] G. B. FOLLAND and J. J. KOHN: The Neumann problem for the Cauchy-Riemann complex, Ann. of Math. Studies, 75, Princeton University Press, New Jersey, 1972.
- [3] J. J. KOHN: Boundaries of complex manifolds, Proc. Conference on Complex Manifolds (Minneapolis), Springer-Verlag, New York, 1965.
- [4] K. KODAIRA: On Kähler varieties of restricted type (An Intrinsic characterization of algebraic varieties), Ann. Math., 60 (1954), 28-48.
- [5] J. MORROW and K. KODAIRA: Complex manifolds, Holt, Rinehart and Winston, New York, 1971.
- [6] N. TANAKA: A differential geometric study on strongly pseudo-convex manifolds, Lectures in Math., Dept. Math., Kyoto Univ., 9, Kinokuniya, Tokyo, 1975.

Department of Mathematics Hokkaido University