Characterization of Stieltjes transforms of vector measures and an application to spectral theory

By Werner RICKER (Received June 4, 1983)

Abstract

The classical result of D. V. Widder characterizing those complex-valued functions on $(0, \infty)$ which are the Stieltjes transform of a complex measure on $[0, \infty)$, is generalized to functions with values in a quasi-complete locally convex space. This result is then used to establish a criterion for operators with spectrum in $[0, \infty)$ to be scalar-type spectral operators.

Introduction

Let M and D respectively denote the formal operators of multiplication $M: f(t) \mapsto tf(t)$ and differentiation $D: f \rightarrow f'$. The (formal) Widder differential operators L_k are given by

$$L_k = c_k M^{k-1} D^{2k-1} M^k, \qquad k = 1, 2, \dots,$$
 (1)

where $c_1=1$ and $c_k=(-1)^k[k!(k-2)!]^{-1}$ for $k \ge 2$.

It is known that a complex-valued function f on $(0, \infty)$ can be characterized as a Stieltjes transform in terms of the maps $L_k(f)$, $k=1, 2, \cdots$. Namely, there exists a (unique) regular complex Borel measure m on $[0, \infty)$ such that

$$f(t) = \hat{m}(t) = \int_0^\infty (s+t)^{-1} dm(s), \qquad t \in (0, \infty),$$
 (2)

if and only if f has derivatives of all orders in $(0, \infty)$ and there exists a constant K such that

$$\int_0^\infty |L_k(f)(t)| dt \le K, \qquad k = 1, 2, \cdots, \tag{3}$$

(see [8], VIII Theorem 16 or [4], p. 165).

Let C_0 denote the space of all continuous complex-valued functions on $[0, \infty)$ which vanish at infinity, equipped with the uniform norm. Then condition (3) means that the maps $\Phi_k(f)$, $k=1, 2, \cdots$, defined by

$$\Phi_{k}(f)(\phi) = \int_{0}^{\infty} \phi(t) L_{k}(f)(t) dt, \quad \phi \in C_{0}, \quad (4)$$

are equibounded linear functionals on C_0 , that is, they map the closed unit ball of C_0 into a bounded set not depending on k.

In this note the above characterization of Stieltjes transforms is extended to functions f on $(0, \infty)$ with values in a quasi-complete locally convex space X. Defining $L_k(f)$ and $\Phi_k(f)$ as in (1) and (4) respectively, but with values now in X, it is shown that f is the Stieltjes transform of a vector measure on $[0, \infty)$, if and only if, f has weak derivatives of all orders in $(0, \infty)$, in the sense of [3; Definition 3. 2. 3], and the maps $\Phi_k(f)$ take the closed unit ball of C_0 into a weakly compact subset of X, not depending on k.

A problem of fundamental importance in Spectral Theory consists of finding criteria for an operator to be of scalar-type in the sense of N. Dunford [2]. In the final section of this note, the result characterizing the Stieltjes transforms of vector measures is used to establish a criterion for an operator on X with spectrum in $[0, \infty)$ to be a scalar-type spectral operator. This is an extension to locally convex spaces of a result proved by S. Kantorovitz [3] in the case where X is a reflexive Banach space.

Preliminaries

Let X be a quasi-complete locally convex Hausdorff space. The space of continuous linear functionals on X is denoted by X'. Let C denote the complex number field and \mathcal{B} the σ -algebra of all Borel subsets of $[0, \infty)$.

By a vector measure $m: \mathcal{B} \to X$ is meant a function on \mathcal{B} which is σ -additive. For each $x' \in X'$, the C-valued measure $E \mapsto \langle m(E), x' \rangle$, $E \in \mathcal{B}$, is denoted by $\langle m, x' \rangle$. The measure m is said to be regular if, for every $x' \in X'$, the complex measure $\langle m, x' \rangle$ is regular (i. e., its variation is regular).

A complex-valued, \mathscr{B} -measurable function f on $[0, \infty)$ is said to be m-integrable if it is integrable with respect to every measure $\langle m, x' \rangle$, $x' \in X'$, and if, for every $E \in \mathscr{B}$, there exists an element $\int_E f dm$ of X such that

$$\left\langle \int_{E} f dm, x' \right\rangle = \int_{E} f d\langle m, x' \rangle,$$

for each $x' \in X'$. Bounded measurable functions are always m-integrable ([6], Lemma II 3. 1). Hence, the Stieltjes transform, \hat{m} , of any vector measure $m: \mathcal{B} \to X$ can be defined by (2).

Let dt denote Lebesgue measure on $(0, \infty)$. A function $F: (0, \infty) \to X$ is said to be (Pettis) integrable if for every Borel subset E of $(0, \infty)$, there exists an element $\int_E F(t) dt$ of X such that

$$\left\langle \int_{E} F(t) dt, x' \right\rangle = \int_{E} \left\langle F(t), x' \right\rangle dt, \quad x' \in X'.$$

Let L(X) denote the space of all continuous linear operators on X, equipped with the topology of pointwise convergence. The identity operator on X is denoted by I.

A map $P: \mathcal{B} \to L(X)$ is called a spectral measure if it is σ -additive, multiplicative and $P([0,\infty)) = I$. Of course, the multiplicativity of P means that $P(E \cap F) = P(E) P(F)$, for every $E \in \mathcal{B}$ and $F \in \mathcal{B}$. Since L(X) is itself a locally convex space it is clear that spectral measures are vector measures.

A spectral measure $P: \mathcal{B} \to L(X)$ is said to be equicontinuous if its range, $\{P(E): E \in \mathcal{B}\}$, is an equicontinuous part of L(X). For such spectral measures every P-essentially bounded, measurable function is P-integrable (see § 1 of [7] for example). If the space X barrelled, then P is necessarily equicontinuous.

Let $T \in L(X)$. If $\lambda \in C$ is such that $R(\lambda; T) = (\lambda I - T)^{-1}$ exists in L(X), then $R(\lambda; T)$ is called the resolvent operator of T at λ . Define $R(\infty; T)$ to be the zero operator. If it is clear which operator T is being considered, then $R(\lambda; T)$ is denoted simply by $R(\lambda)$. The resolvent set of T, which is denoted by $\rho(T)$, consists of those points λ in the extended complex plane, C^* , for which the resolvent map $R(\cdot) = R(\cdot; T)$ is defined and holomorphic in a neighbourhood of λ . The complement of $\rho(T)$ in C^* is denoted by $\sigma(T)$ and is called the spectrum of T.

The resolvent equations,

$$R(\lambda) - R(\mu) = (\mu - \lambda) R(\lambda) R(\mu) = (\mu - \lambda) R(\mu) R(\lambda)$$
,

are valid for all points $\lambda \in \rho(T)$ and $\mu \in \rho(T)$. Also, for each $x \in X$, the X-valued function $R(\cdot; T)(x)$ has weak derivatives of all orders in $\rho(T)$.

A characterization of Stieltjes transforms of vector measures

In the following two lemmas, f is a complex-valued function with derivatives of all orders in $(0, \infty)$.

1. Lemma. Let f satisfy (3). Then the limit

$$A = \lim_{t \to 0+} t f(t)$$

exists, and

$$f(t) = \lim_{k \to \infty} \int_0^\infty (s+t)^{-1} L_k(f)(s) ds + At^{-1}, \qquad t \in (0, \infty).$$
 (5)

Proof: See [8], VIII 15.

2. Lemma. If there exists a constant K such that (3) holds, then $\lim_{k\to\infty} \Phi_k(f)(\phi)$ exists, for every $\phi\in C_0$.

PROOF: By Lemma 1, it follows that (5) holds. Therefore, if \mathscr{A} denotes the linear subspace of C_0 consisting of all functions of the form

$$\phi: s \mapsto \sum_{i=1}^{n} \alpha_i (s+t_i)^{-1}, \quad s \geq 0,$$

where $\alpha_i \in \mathbb{C}$ and $t_i > 0$ are arbitrary, then it is clear that $\lim_{k \to \infty} \Phi_k(f)(\phi)$ exists, for all $\phi \in \mathscr{A}$.

Let $\varepsilon > 0$ and $\phi \in C_0$ be given. Since $\mathscr A$ is dense in C_0 , there exists an element φ in $\mathscr A$ such that $||\varphi - \psi||_{\infty} < \varepsilon/3K$. Then

$$\begin{split} \left| \boldsymbol{\varPhi}_{k}(f) \left(\boldsymbol{\psi} \right) - \boldsymbol{\varPhi}_{j}(f) \left(\boldsymbol{\psi} \right) \right| &\leq \left| \boldsymbol{\varPhi}_{k}(f) \left(\boldsymbol{\psi} - \boldsymbol{\varphi} \right) \right| + \left| \boldsymbol{\varPhi}_{k}(f) \left(\boldsymbol{\varphi} \right) - \boldsymbol{\varPhi}_{j}(f) \left(\boldsymbol{\varphi} \right) \right| + \\ &+ \left| \boldsymbol{\varPhi}_{j}(f) \left(\boldsymbol{\varphi} - \boldsymbol{\psi} \right) \right| &\leq ||\boldsymbol{\varphi} - \boldsymbol{\psi}||_{\infty} K + \varepsilon/3 + ||\boldsymbol{\psi} - \boldsymbol{\varphi}||_{\infty} K \leq \varepsilon \,, \end{split}$$

for k, j sufficiently large.

Let $f:(0,\infty)\to X$ have weak derivatives of all orders. Then it is clear that the Widder differential operators (1) can be applied to f giving a family of X-valued functions

$$t \mapsto L_k(f)(t), t \in (0, \infty), \qquad k = 1, 2, \cdots.$$
 (6)

The collection of linear maps (4) is said to be weakly equicompact if the subset,

$$\{\Phi_k(f)(\phi); \ \phi \in C_0, \ ||\phi||_{\infty} \le 1, \quad k = 1, 2, \dots\},$$
 (7)

of X, is relatively weakly compact; (see [4]).

Let $C_{00}((0,\infty))$ denote the space of continuous functions on $(0,\infty)$ having compact support, equipped with the uniform norm. The symbol $B(\cdot, \cdot)$ denotes the Beta function.

1. Theorem. A function $f:(0,\infty)\to X$ is the Stieltjes transform of a (unique) regular, X-valued measure on \mathcal{B} , if and only if, it has weak derivatives of all orders, each of the functions (6) is integrable and the collection of maps (4) is weakly equicompact.

PROOF: Let $m: \mathcal{B} \to X$ be a regular vector measure. It is a consequence of the Dominated Convergence Theorem ([6], Theorem II. 2) that \hat{m} has derivatives of all orders (in the given topology of X) and that

$$D^{k}(\hat{m})(t) = (-1)^{k} k! \int_{0}^{\infty} (s+t)^{-k-1} dm(s), \qquad t \in (0, \infty), \qquad (8)$$

for every $k=1, 2, \cdots$. The Leibnitz formula and (8) imply that

$$L_k(\hat{m})(t) = c_k' \int_0^\infty t^{k-1} s^k (s+t)^{-2k} dm(s), \qquad t \in (0, \infty),$$
 (9)

for each $k=1,2,\cdots$, where $c_1'=1$ and $c_k'=B(k-1,k+1)^{-1}$ for $k\geq 2$. It is clear from (9) that the functions $t\mapsto L_k(\hat{m})(t)$, $t\in (0,\infty)$, are continuous for each $k=1,2,\cdots$.

Fix $k \ge 1$. Let $\phi \in C_{00}((0, \infty))$. For every $\varphi \in C_{00}((0, \infty))$ there exists $x_{\varphi} \in X$ such that

$$\left\langle x_{_{arphi}},x'
ight
angle =\int_{0}^{\infty}arphi(t)\,\phi(t)\,\left\langle L_{k}(\hat{m})\,(t),x'
ight
angle\,dt\;,\qquad x'\in X'\;,$$

(see [1] III Proposition 3.2); moreover if $||\varphi||_{\infty} \leq 1$, then x_{φ} belongs to the closed convex hull of the range of $\psi L_k(\hat{m})$ which is a compact set. Accordingly $\psi L_k(\hat{m})$ is integrable ([5], Lemma 3).

It follows from (9) and the Fubini theorem that

$$\int_{0}^{\infty} \psi(t) L_{k}(\hat{m})(t) dt = \int_{0}^{\infty} \left(c'_{k} \int_{0}^{\infty} \psi(t) t^{k-1} s^{k} (s+t)^{-2k} dt \right) dm(s). \quad (10)$$

Since

$$\left| \int_0^\infty \! \phi(t) \ t^{k-1} s^k (s+t)^{-2k} \, dt \right| \leq ||\phi||_\infty \int_0^\infty \! s^k t^{k-1} (s+t)^{-2k} dt = ||\phi||_\infty B(\mathbf{k}, \mathbf{k}) \ ,$$

for each $s \ge 0$, and $c'_k B(k, k) \le 1$ for $k \ge 2$, it follows from (10) that

where $\overline{coR}(m)$ denotes the closed balanced convex hull of the range of m. Hence, the set

$$\left\{ \int_{0}^{\infty} \! \phi(t) \; L_{k}(\hat{m})(t) \; dt \; ; \; \psi \in C_{00}((0, \infty)), ||\psi||_{\infty} \leq 1 \right\},$$

being a subset of $\overline{coR}(m)$, is relatively weakly compact ([5], Lemma 1). Lemma 3 of [5] implies that $L_k(\hat{m})$ is integrable,

If $\phi \in C_0$, then the restriction of $\phi L_k(\hat{m})$ to $(0, \infty)$ is continuous. A similar argument as that used for $L_k(\hat{m})$, applied to the function $\phi L_k(\hat{m})$, $k=1,2,\cdots$, shows that $\phi L_k(\hat{m})$ is integrable and that (7) is contained in $\overline{coR}(m)$. Hence, the maps (4) are weakly equicompact.

Conversely, suppose that $f:(0,\infty)\to X$ is a function having weak deri-

vatives of all orders such that the functions (6) are integrable and such that the maps (4) are weakly equicompact.

If $x' \in X'$, define the function $g_{x'}: (0, \infty) \rightarrow C$ by

$$g_{x'}(t) = \langle f(t), x' \rangle, \quad t \in (0, \infty).$$

Then $g_{x'}$ has derivatives of all orders and

$$L_k(g_{x'})(t) = \langle L_k(f)(t), x' \rangle, t \in (0, \infty), \qquad k = 1, 2, \cdots.$$
 (11)

Fix $x' \in X'$. Since the set (7) is weakly bounded there is a constant $K_{x'}$ such that

$$\left|\left\langle \Phi_{k}(f)\left(\phi\right), x'\right\rangle\right| \leq K_{x'}, \ \phi \in C_{0}, \ ||\phi||_{\infty} \leq 1, \qquad k=1, 2, \cdots.$$

Accordingly for each $k=1, 2, \dots$, it follows that

$$\begin{split} \int_0^\infty & \left| L_k(g_{x'})\left(t\right) \right| dt \leq \sup \left\{ \left| \int_0^\infty \phi(t) \; L_k(g_{x'})\left(t\right) \; dt \right|; \; \phi \in C_0, \; ||\phi||_\infty \leq 1 \right\} \\ &= \sup \left\{ \left| \left\langle \varPhi_k(f)\left(\phi\right), \; x' \right\rangle \right|; \; \phi \in C_0, \; ||\phi||_\infty \leq 1 \right\} \leq K_{x'}. \end{split}$$

Hence, Lemma 2 implies the existence of

$$\lim_{k\to\infty} \Phi_k(g_{x'})(\phi) = \lim_{k\to\infty} \left\langle \Phi_k(f)(\phi), x' \right\rangle, \qquad \phi \in C_0.$$

Since $x' \in X'$ was arbitrary, it follows that for fixed $\phi \in C_0$ the sequence $(\Phi_k(f)(\phi))_{k=1}^{\infty}$ is weakly Cauchy. The relative weak compactness of (7) implies that this sequence is weakly convergent. Thus, for each $\phi \in C_0$, there is a unique $\Phi(f)(\phi) \in X$ such that the weak limit,

$$\Phi(f)(\phi) = \lim_{k \to \infty} \Phi_k(f)(\phi), \qquad (12)$$

exists. This defines a weakly compact linear map $\Phi(f): C_0 \to X$. Accordingly, there exists a regular measure $m: \mathcal{B} \to X$ such that

$$\Phi(f)(\phi) = \int_0^\infty \phi(t) \, dm(t) \,, \qquad \phi \in C_0 \,; \tag{13}$$

(see [5], Proposition 1).

Fix $\alpha > 0$ and $x' \in X'$. Let $t \in (0, \alpha)$. It follows from (11) and the definition of $L_1(g_{x'})$ that

$$\left\langle \int_{t}^{\alpha} L_{1}(f)(s) ds, x' \right\rangle = \alpha g_{x'}(\alpha) - t g_{x'}(t).$$

This identity and Lemma 1 imply that $\lim_{t\to 0+}\langle \int_t^a L_i(f)(s)ds, x'\rangle$ exists, for

each $x' \in X'$. Since $\langle \int_E L_1(f)(s) ds$; $E \subseteq (0, \infty)$, E Borel is contained in the closure of the relatively weakly compact set (7), it follows that the weak limit,

$$A = \lim_{t \to 0+} t f(t) , \qquad (14)$$

exists.

For each t>0 the function $s\mapsto (s+t)^{-1}$, $s\geq 0$, belongs to C_0 . It follows from (12) and (13) that

$$\lim_{k\to\infty}\int_0^\infty (s+t)^{-1}L_k(f)(s)\,ds = \int_0^\infty (s+t)^{-1}dm(s)\,,\qquad t>0\,,\qquad (15)$$

weakly in X. If $A_{x'} = \lim_{t\to 0+} tg_{x'}(t)$ for each $x' \in X'$ (cf. Lemma 1), then it is clear from (14) that $A_{x'} = \langle A, x' \rangle$, $x' \in X'$. Since Lemma 1 implies that

$$\lim_{k\to\infty}\int_0^\infty (s+t)^{-1}L_k(g_{x'})(s)\ ds=g_{x'}(t)-A_{x'}t^{-1}=\left\langle f(t)-At^{-1},\ x'\right\rangle,$$

for each $x' \in X'$, it follows from (11) and (15) that

$$f(t)-At^{-1}=\hat{m}(t)$$
, $t\in(0,\infty)$.

Replacing m throughout by $m-m_0$, where $m_0: \mathcal{B} \to X$ is the measure taking the value A on sets containing $\{0\}$ and zero elsewhere, we obtain (2).

Scalar-type operators with spectrum in $[0, \infty)$

It is assumed throughout this section, that in addition to being quasi-complete, the space X is barrelled.

An operator $T \in L(X)$ with spectrum in $[0, \infty)$ is said to be a scalartype spectral operator if there exists a regular spectral measure $P: \mathscr{B} \to L(X)$ such that

$$T = \int_0^\infty s dP(s) . (16)$$

Let T be a continuous linear operator on X with spectrum in $[0, \infty)$. Then the resolvent operator $R(t) = (t+T)^{-1}$ of (-T) is defined for each $t \in (0, \infty)$.

Let \mathcal{M} denote the linear space of all complex Borel measures on $(0, \infty)$ which have finite support. If t>0, then ε_t will denote the Dirac point mass at t. Let $\mu=\sum_{i=1}^n \alpha_i \varepsilon_{t_i}$, $\alpha_i \in \mathbb{C}$, $t_i>0$, be a member of \mathcal{M} . Then $\hat{\mu}: [0, \infty) \to \mathbb{C}$ denotes the function

$$\hat{\mu}(s) = \sum_{i=1}^{n} \alpha_i (s+t_i)^{-1}, \quad s \ge 0.$$
 (17)

The symbol $\widehat{\mathscr{M}}$ denotes the subspace $\{\widehat{\mu} : \mu \in \mathscr{M}\}$ of C_0 .

- 2. THEOREM. Let $T \in L(X)$ have spectrum in $[0, \infty)$. The operator T is a scalar-type spectral operator, if and only if, for each $x \in X$,
- (i) the functions $t\mapsto L_k(R(\bullet)(x))(t)$, $t\in(0,\infty)$, $k=1,2,\cdots$, are integrable and,
 - (ii) the maps $\Phi_{k}(R(\cdot)(x)): C_{0} \rightarrow X$, $k=1, 2, \dots, given by$ $\Phi_{k}(R(\cdot)(x))(\phi) = \int_{0}^{\infty} \phi(t) L_{k}(R(\cdot)(x))(t) dt, \quad \phi \in C_{0}, \quad (18)$

are weakly equicompact.

PROOF: Suppose that there exists a regular spectral measure $P: \mathcal{B} \to L(X)$ such that (16) holds. Since for each t>0, the function $s\mapsto (s+t)^{-1}$, $s\geq 0$, is bounded and measurable, it follows from the functional calculus for P that

$$R(t) = (t+T)^{-1} = \int_0^\infty (s+t)^{-1} dP(s), \quad t \in (0, \infty).$$

Hence, if $x \in X$, then the identity

$$R(t)(x) = \int_0^\infty (t+s)^{-1} dP(s)(x), \quad t \in (0, \infty),$$

shows that $R(\cdot)(x)$ is the Steltjes transform of the vector measure $P(\cdot)(x)$. Theorem 1 implies that (i) and (ii) hold.

Conversely, suppose that for each $x \in X$ the conditions (i) and (ii) are satisfied. It follows from Theorem 1 that for each $x \in X$, there exists a (unique) regular Borel measure $m_x \colon \mathscr{B} \to X$ such that

$$R(t)(x) = \int_0^\infty (s+t)^{-1} dm_x(s) , \quad t \in (0, \infty) .$$
 (19)

For $E \in \mathcal{B}$, define a linear operator $P(E): X \rightarrow X$ by

$$P(E)(x) = m_x(E)$$
, $E \in \mathcal{B}$.

Firstly it is shown that P(E) is continuous. For $\hat{\mu} \in \widehat{\mathcal{M}}$ define a linear operator $T_{\hat{\mu}} \colon X \to X$ by

$$T_{\hat{\mu}}(x) = \int_0^\infty \hat{\mu}(s) \, dm_x(s) \,, \qquad x \in X \,. \tag{20}$$

If $\mu = \sum_{i=1}^{n} \alpha_i \varepsilon_{t_i}$, $\alpha_i \in \mathbb{C}$, $t_i > 0$, then it follows from (17) and (19) that

$$T_{\hat{\mu}}(x) = \sum_{i=1}^{n} \alpha_i R(t_i)(x), \quad x \in X.$$

Hence, it is clear that $T_{\hat{\mu}} \in L(X)$ for each $\hat{\mu} \in \hat{\mathcal{M}}$.

Let $\mathscr{A} = \{T_{\hat{\mu}}; \mu \in \mathscr{M}, ||\hat{\mu}||_{\infty} \leq 1\}$. If $x \in X$, then it follows from (20) that $T_{\hat{\mu}}(x) \in \overline{coR}(m_x)$, for each $\mu \in \mathscr{M}$ with $||\hat{\mu}||_{\infty} \leq 1$. Since $\overline{coR}(m_x)$ is bounded for each $x \in X$ and X is barrelled, it follows that \mathscr{A} is equicontinuous.

Hence, given a continuous semi-norm p on X, there exist continuous semi-norms q_1, \dots, q_l and $\alpha > 0$ such that

$$p\left(\int_0^\infty \hat{\mu}(s) \ dm_x(s)\right) = p\left(T_{\hat{\mu}}(x)\right) \leq \alpha ||\hat{\mu}||_\infty \max_{1 \leq i \leq l} q_i(x)$$
,

for each $x \in X$ and $\mu \in \mathcal{M}$. Since $\widehat{\mathcal{M}}$ is dense in C_0 , it follows that

$$p(P(E)(x)) = p(m_x(E)) \le \alpha \max_{1 \le i \le l} q_i(x), x \in X, E \in \mathcal{B}$$
,

from which the continuity of P(E), $E \in \mathcal{B}$, is clear. Hence, $P: \mathcal{B} \to L(X)$ is a σ -additive, operator-valued measure.

Since X is barrelled, the inclusion

$$tR(t)(x) = \int_0^\infty t(s+t)^{-1} dm_x(s) \in \overline{coR}(m_x), \quad t \in (0, \infty),$$

for each $x \in X$, shows that $\{tR(t); t>0\}$ is an equicontinuous part of L(X). Let t>u>0. The resolvent equations imply that

$$tR(t)\;R(u)=t(t-u)^{-1}R(u)-\left(tR(t)\right)(t-u)^{-1}\;.$$

Since $\{tR(t); t>0\}$ is equicontinuous, fixing u and letting $t\to\infty$ it follows that $tR(t)R(u)\to R(u)$, in L(X), as $t\to\infty$. Fix $x\in X$. Since $\lim_{t\to\infty}t(t+s)^{-1}=1$ for each $s\geq 0$, it follows from the Dominated Convergence Theorem that

$$\begin{split} R(u)\left(x\right) &= \lim_{t \to \infty} t R(t) \; R(u)\left(x\right) = \lim_{t \to \infty} \int_{0}^{\infty} t (t+s)^{-1} dm_{R(u)(x)}(s) = \\ &= \int_{0}^{\infty} 1 dm_{R(u)(x)}(s) = m_{R(u)(x)}\left([0, \infty)\right). \end{split}$$

That is, $R(u)(x) = P([0, \infty)) R(u)(x)$, u > 0, $x \in X$. Applying (u + T) to both sides of this identity (on the right), we conclude that $P([0, \infty)) = I$. The multiplicitivity of P can be shown as in [4], pp. 169-170. Hence, P is a (regular) spectral measure.

It remains to verify that T is given by (16). It follows easily from $R(t)=\int_0^\infty (t+s)^{-1}dP(s),\ t\in(0,\infty),$ that

$$\int_{0}^{\infty} s(s+t)^{-1} dP(s) = TR(t), \qquad t \in (0, \infty).$$
 (21)

Furthermore for all n>0, $y\in X$ and t>0, it can be shown as in [4], pp. 170, that

$$\int_{0}^{\infty} s \chi_{[0,n]}(s) \ dP(s) \left(R(t) (y) \right) = \int_{0}^{\infty} s(t+s)^{-1} \chi_{[0,n]}(s) \ dP(s) (y) \ . \tag{22}$$

It follows from (21), (22) and the Dominated Convergence Theorem that

$$\lim_{n\to\infty}\int_0^\infty s\chi_{[0,n]}(s)\ dP(s)\left(R(t)(y)\right)=TR(t)(y),\ t>0,\ y\in X.$$

If $x \in X$, then y = (t + T)(x) satisfies R(t)(y) = x. Accordingly,

$$\lim_{n\to\infty}\int_{0}^{\infty}s\chi_{\text{[0,n]}}(s)\;dP(s)\left(x\right)=T(x)\;\text{,}$$

for every $x \in X$.

Since $[0, n] \uparrow [0, \infty)$ and $f_n(s) = s\chi_{[0,n]}(s)$, $s \ge 0$, is *P*-essentially bounded for each $n = 1, 2, \dots$, with the limit

$$\lim_{n\to\infty}\int_0^\infty f_n(s)\ dP(s)=T$$

existing in L(X), it follows from the multiplicativity and equicontinuity of P that the identity function on $[0, \infty)$ is P-integrable and that (16) is valid. This completes the proof of the theorem.

Let X be a reflexive Banach space. A subset of X is relatively weakly compact if and only if it is bounded. Define a map $S:(0,\infty)\to L(X)$ by

$$S(t) = TR(t) \left(I - R(t) \right), \qquad t \in (0, \infty);$$

(see [4]). For any weakly measurable function $F:(0,\infty) \rightarrow L(X)$ define

$$|||F||| = \sup \{ \|\langle F(\bullet)(x), x' \rangle \|_1 \; ; \; x \in X, \; x' \in X', \; ||x|| \le 1, \; ||x'|| \le 1 \},$$

where $||\cdot||_1$ denotes the $L^1((0,\infty),dt/t)$ -norm; (see [4]).

It follows from the Uniform Boundedness Principle that the weak equicompactness of the maps (18), for each $x \in X$, is equivalent to the existence of a constant $\alpha > 0$ such that

$$|||S^k||| \le \alpha B(k, k), \qquad k = 1, 2, \cdots$$
 (23)

Furthermore, if (23) holds, then it is a consequence of the reflexivity of X that the functions (i) in the statement of Theorem 2 are integrable for each $x \in X$.

Hence, for X a reflexive Banach space, the conditions of Theorem 2 are equivalent to the existence of $\alpha > 0$ such that (23) is satisfied. This result was proved by S. Kantorovitz [4].

References

- [1] BOURBAKI, N.: Élements de Mathématique, Livre VI, Integration. Paris: Herman. 1952.
- [2] DUNFORD, N., SCHWARTZ, J.: Linear Operators. Part III; Spectral Operators. New York: Wiley. 1971.
- [3] HILLE, E., PHILLIPS, R. S.: Functional Analysis and Semi-groups. New York: Amer. Math. Soc. Colloq. Publ. XXXI. 1957.
- [4] KANTOROVITZ, S.: Characterization of unbounded spectral operators with spectrum in a half-line. Comment. Math. Helvetici. 56, 163-178 (1981).
- [5] KLUVÁNEK, I.: Fourier transforms of vector-valued functions and measures. Studia Math. 37, 1-12 (1970).
- [6] KLUVÁNEK, I., KNOWLES, G.: Vector Measures and Control Systems. Amsterdam: North Holland. 1976.
- [7] WALSH, B.: Structure of spectral measures on locally convex spaces. Trans. Amer. Math. Soc. 120, 295-326 (1965).
- [8] WIDDER, D. V.: The Laplace Transform. Princeton: Princeton University Press. 1946.

School of Mathematical Sciences Flinders University of South Australia Bedford Park, 5042, Australia