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1. The Second main theorem of R. Brauer iS one of the moSt important
reSultS in the theory of modular repreSentationS of finite groupS and there
have been Several proofS given to it. Among them Nagao’S proof [4] SeemS

to be moSt popular. Moreover he obtained aS a by-product that the Green
correSpondence iS, roughly Speaking, compatible with the Brauer one. ThiS
reSult waS Strengthened later by Green [2]. In thiS paper we would like to
Show unified proofS to both the Brauer’S Second main theorem and the
NagaO-Green theorem.

Throughout thiS paper, p will denote a prime number and G a finite
group. We pick up and fix a complete diScrete valuation ring R (of rank
one) Such that it haS the reSidue claSS field, Say k , of characteriStic p and itS
quotient field iS a Splitting field for every Subgroup of G. Z(RG) denoteS the
center of the group ring RG and the image of a\in RG by the natural map RG
arrow kG iS denoted by a^{*} All moduleS conSidered here are operated from the
right and aSSumed to be finitely generated. For an RG-module M and a
Subgroup H of G, W denoteS the Set of H-invariant elementS of M and if
m\in M^{H} then Tr_{H}^{G}( m)=\sum_{\sigma}m\sigma , where \sigma runS through a Set of coSet rep-

reSentativeS of H in G. If M iS R-free, then M iS called an RG-lattice and
we denote by \chi_{M} the character of it. Finally for a block B of RG, we denote
by \delta(B) itS defect group.

LEMMA 1 (Green). Let M be an RG-lattice and H a subgroup of G.
Let X be an indecomposable component of M_{H} and assume that there exists
v= \sum_{\sigma}a_{\sigma}\sigma^{H}\in(RG)^{H} such that Xv=X, where a_{\sigma}\in R, \sigma^{H}=Tr_{c_{H}^{(\sigma)}}^{H}(\sigma) and \sigma

runs through a set of representatives of H-conjugacy classes of G. Then there
exists \sigma\in G such that a_{\sigma}^{*}\neq 0 and X is C_{H}(\sigma) -projective.
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PROOF. It follows from the assumption that v actually induces an
RH-automorphism of X , since X is R-free (more generally since X is a
neotherian module). Let u be the inverse map of v in EndH (X). Put C_{\sigma}=

C_{H}(\sigma) for brevity and let e be the projection from M_{H} to X . Noting that
\sigma eu\in End_{c_{\sigma}}(X) , we have \sum_{\sigma}a_{\sigma}Tr_{c_{\sigma}}^{H}(\sigma eu)=\sum_{\sigma}a_{\sigma}Tr_{c_{\sigma}}^{H}(\sigma)eu=veu, which is
the identity on X. This implies that some a_{\sigma}Tr_{C_{\sigma}}^{H}(\sigma eu) is invertible in (the
local ring) End_{H}(X) . Our assertion now follows by Higran’s criterion on
the relative projectivity.

As an immediate corollary of the above Lemma, we have

COROLLARY (Green). Let B be a block of RG with defect group D. If
M is an indecomposable RG-lattice belonging to B, then M is D-projective.

PROOF. We let H=G and v=the block idempotent of B in the above
Lemma. Then M is C_{G}(\sigma) -projective for some \sigma\in G such that a \frac{*}{\sigma}\neq 0 and
hence Q-projective if Q is a Sylow p subgroup of C_{G}(\sigma) . From the
definition of defect group, it follows that Q\subset DG and therefore M is D-projec-
tive.

The next result is an easy consequence of the Theorem 1 of Watanabe
[5]. However we give here a direct proof to it for the simplicity of our
argument.

LEMMA 2 (Watanabe). Let H be a subgroup of G and let B (resp. b)
be a block of RG (resp. RH) with the block idempotent E (resp. e). If b^{G}

is defined and equal to B, then there exists w\in R [ G|H]^{H} such that eE=e+
(1-E)w, where G|H denotes the set theoretic complement of H in G.

PROOF. Let g be the map from RG to RH defined by:

g(\sigma)=\{
\sigma if\sigma\in H

0 otherwise
Note that g(Z(RG))\subset Z(RH) , so we have E=g(E)+u for some u\in R [ G|

H]^{H} and eE=eg(E)+eu. We claim that eg(E) is a unit in Z(RH)e. In
fact if \omega_{b} denotes the central k-character associated with b, then \omega_{b}(e^{*})=1=

\omega_{B}(E^{*})=\omega_{b}(g(E)^{*})=\omega_{b}(e^{*}g(E)^{*}) , which means that eg(E) must be a unit
in Z(RH)e since Z(RH)e is a local ring. Therefore there exists r\in Z(RH)
such that reg(E)=e and hence we have reE=e+w for w=reu\in R [ G\backslash H]^{H}-
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Multiplying both sides by E, we get reE=eE+wE=e+w and thus eE=e+
(1-E)w, as required.

We close this section with the following well-known result due to Green
for later convenience.

THEOREM A (Green). Let M be an RG-lattice which is Q-projective for
some p-subgroup Q and \sigma\in G. Then \chi_{M}(\sigma)=0 unless the p-tnrt of \sigma is
contained in some conjugate of Q.

2. By making use of the results in the preceeding section, we first prove

THEOREM B Brauer’s second main theorem Let \sigma be a p-element of G

and H a subgroup of G such that H\supset C_{G}(\sigma) . Let M be an RG-lattice
belonging to a block B of RG and \{ b_{i} ; 1\leqq i\leqq r\} the set of blocks of RH such
that b_{i}^{G} is defined and equal to B. Then for any p-regular element \tau of C_{G}

(\sigma) , we have
\chi_{M}(\sigma\tau)=\sum_{i=1}^{r}\chi_{Me_{i}}(\sigma\tau) , where e_{i} is the block idempotent of b_{i}(1\leqq i\leqq r) .

PROOF. Let b_{1} , \cdots-b_{n} be all the blocks of RH with block idempotents e_{1} ,

\ldots-e_{n} respectively. Then \chi_{M}(\sigma\tau)=.\sum_{\iota=1}^{r}\chi_{Me_{i}}(\sigma\tau) , We have to show \chi_{Me_{J}}

(\sigma\tau)=0 for j\geqq r+1 . Let E be the block idempotent of B. If \sigma is contained
in some defect group \delta(b_{j}) of b_{j}, then C_{G}(\delta(b_{j}))\subset C_{G}(\sigma)\subset H, whence it

follows that b_{j}^{G} is defined. Therefore if b_{j}^{G} is not defined, \sigma is not contained
in any conjugate of \delta(b_{j}) and so \chi_{Me_{j}}(\sigma\tau)=0 by Theorem A, since every
indecomposable component of Me_{j} is \delta(b_{j}) -projective. We next assume that
b_{j}^{G} is defined. Let E_{j} be the block idempotent of b_{j-}^{G} Then by Lemma 2, we
have E_{j}e_{j}=e_{j}+(1-E_{j})w_{j} for some w_{j}\in R[G\backslash H]^{H}- Multiplying both sides
by E , we get Ee_{j}=E(-w_{j}) . Hence by Lemma 1 any indecomposable
component V of Me_{j} is C_{H}(\gamma) -projective for some \gamma\in G\backslash H. If Q is a sylow
p-subgroup of C_{G}(\gamma) , then V is Q-projective. We claim that \sigma is not
contained in any conjugate of Q. In fact if \sigma\in QH ’ then \sigma\in C_{G}(\gamma)H and \gamma\in C_{G}H

(\sigma)\subset H , which is a contradiction. Therefore \chi_{V}(\sigma\tau)=0 by Theorem A and

\chi_{Me_{j}}(\sigma\tau)=0 if b_{j}^{G}\neq B . This completes the proof of Theorem B.

By the same argument we can prove the following

THEOREM C (NagaO-Green). Let M be an indecomposable RG-lattice
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belonging to a block B of RG. Let V be an indecomposable component of
M_{H} with vertex P and b a block of RH to which V belongs. If H\supset C_{G}(P) ,

then b^{G} is defined and equal to B.
PROOF. Let E and e be the block idempotents of B and b respectively.

Since \delta(b)\supset P , we have C_{G}(\delta(b))\subset C_{G}(P)\subset H and so b^{G} is defined. Let E’
be the block idempotent of b^{G} and suppose that E’\neq E. By Lemma 2 we
have eE’=e+(1-E’)w for some w\in R[G\backslash H]^{H}- As in the proof of
Theorem B, Vw=Ve=V. Therefore V is C_{H}(\sigma) -projective for some \sigma\in G

\backslash H. This means that P\subset C_{H}(\sigma)H and hence \sigma\in C_{G}(P)\subset H, which is a
contradiction. Therefore E’=E and we complete the proof of Theorem C.

3. We continue our discussion to show another application of Lemma 2.
Let f be the augumentation map kGarrow k.

LEMMA 3. Suppose that H contaim C_{G}(Q) for some p-subgroup Q of H.
Then we have f(w)=0 for any w\in R[G\backslash H]^{H}

PROOF. It suffices to show that f(\sigma^{H})=0 unless \sigma\in H. However f
(\sigma^{H})=[H: C_{H}(\sigma)]^{*} . which is non-zero only if C_{H}(\sigma) contains a Sylow
p-subgroup, say P, of H. Then Q\subset P\subset C_{H}(\sigma)H and thus \sigma\in C_{G}(Q)\subset HH^{\cdot}

Let H be a subgroup of G and b a block of RH. Recall that b is called
admissible if H\supset C_{G}(\delta(b)) . The third main theorem of Brauer states that
if b is admissible, then b^{G} is principal if and only if b is so. What is charact-
eristic of the block idempotent E_{0} of the principal block of RG is that it is the
only block idempotent such that f (fi^{*})\neq 0 , as is easily seen. From this and
Lemma 3 one direction of Brauer’s third main theorem follows immediately.
In fact using the same notation as in Lemma 2, assume that b is principal
(and admissible). Then f(e^{*})\neq 0 , whence it follows that f(E^{*})\neq 0 by
Lemmas 2 and 3. This implies that b^{G} is principal. An easy proof of the
other direction which has been supposed to be rather difficult will be found in
the recent paper of the first author [3].

Finally we present a module theoretical version of Lemma 2. Before
doing so, we recall Alperin’s definition of b^{G}([1]) . Let H be a subgroup of
G and b a block of H. We set, following Alperin, b^{G}=B provided B is the
unique block of G with b|B_{H\cross H} This notion coinsides with the Brauer’s one
if for example C_{G}(\delta(b))\subset H (Green). We hope that the following observa-
tion will have some application elsewhere, especially when module theoreti-
cal treatments are emphasized.
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LEMMA 4. Let H be a subgroup of G and b a block of H such that b^{G}=

B in the seme of Alperin. Then there exists a component of U of B_{H\cross H}

which is isomorphic to b such that U=RH\^e where \^e= e+v, e the block
idempotent of b, v\in R [ G\backslash H]^{H} and ev=ve=v.

PROOF. Let B_{H\cross H}=U_{1}\oplus\cdots\oplus U_{r}\oplus U_{r+1}\oplus\cdots\oplus U_{s}, where U_{1} , \cdots , U_{r} are
all the components of B_{H\cross H} which are isomorphic to b. Let RG(1-E)_{H\cross H}=

U_{s+1}\oplus\cdots\oplus U_{n} , where E is the block idempotent of B. Then we have
RG_{H\cross H}=U_{1}\oplus\cdots\oplus U_{n} and by Alperin’s definition of b^{G}-U_{i} is isomorphic to b

if and only if 1\leq i\leq r. We also have the decomposition RG_{H\cross H}=RHe\oplus RH

(1-e)\oplus R [G\backslash H] . Hence by Krull-Schmidt-Azumaya’s theorem there is a
U=U_{i} for some i, 1\leq i\leq r, such that U\oplus RH(1-e)\oplus R [ G|H]=RG_{H\cross H} .
Clearly U=RH\overline{e} for some \overline{e}\in R [ G]^{H} with \overline{e}e=e\overline{e}=\overline{e}, Hence RG_{H\cross H}=RH\overline{e}\oplus

RH(1-e)\oplus R [ G\backslash H]=RHe\oplus RH(1-e)\oplus R [ G\backslash H] . Therefore we have
e=y_{1}\overline{e}+v_{1} and \overline{e}=y_{2}e+v_{2} where y_{1} , y_{2}\in RH and v_{1} , v_{2}\in R [ G\backslash H]^{H} From
the last equation y_{2}e=\overline{e}-v_{2} and from the first one we get y_{2}e=y_{2}y_{1}\overline{e}+y_{2}v_{1} .
Because of the unique decomposition above we have y_{2}y_{1}\overline{e}=\overline{e}. And so RH\overline{e}=

RHy_{2}y_{1}\overline{e}\subset RHy_{1}\overline{e}\subset RH\overline{e}, Hence RHy_{1}\overline{e}=RH\overline{e}. Take v=-v_{1} and \hat{e}=y_{1}\overline{e}.
Then \^e and v satisfy the required property by the first equation and the
uniqueness of the above decomposition.
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