A generalization of monodiffric Volterra integral equations

By Shih Tong Tu
(Received November 17, 1983)

1. Introduction

Various different types of discrete Volterra integral equations have been discussed by Deeter [2], Duffin and Duris [3], Fenyes and Kosik [4], and Tu [6, 7]. In [4], Fenyes and Kosik have solved discrete Volterra equations of the type

$$
n f_{n}+\sum_{k=0}^{\mathrm{n}} f_{k} g_{n-k}=h_{n}
$$

by the method of operational calculus. By using the convolution product for discrete function theory, Duffin and Duris [3] discussed a solution of the discrete Volterra type

$$
\begin{equation*}
u(z)=f(z)+\lambda \int_{0}^{z} k(z-t): u(t) \mathrm{dt} \text {, where } \lambda \text { is a constant. } \tag{1.1}
\end{equation*}
$$

On the other hand, Deeter [2] gave a different approach to the equation (1.1) by using some further results of operational calculus. Our aim in this paper is to define the convolution product of p-monodiffric functions and to prove some properties of p-monodiffric functions. We then find the general solutions of the generalized monodiffric Volterra type integral equations (1.1). When $p=1$, our results reduce to the classical results of p-monodiffric functions which have been developed by Berzsenyi [1] and Tu [6].

2. Definitions and Notations

Most of the definitions and notations given here are taken from reference [7]. Let \boldsymbol{C} be the complex plane,
$D=\{z \in \boldsymbol{C} \mid z=x+i y\}$ where $x, y \in\{p j \mid j=0,1,2, \cdots, 0<p \leqq 1\}$ and $f: D \rightarrow C$.
Definition 1. The p monodiffric residue of f at z is the value

$$
\begin{equation*}
M_{p} f(z)=(i-1) f(z)+f(z+i p)-i f(z+p) . \tag{2.1}
\end{equation*}
$$

Definition 2. The function f is said to be p monodiffric at z if $M_{p} f(z)=0$. The function f is said to be p monodiffric in D if it is p monodiffric at any point in D (denoted by $f \in M_{p}(D)$).
Definition 3. The p monodiffric derivative f^{\prime} of f is defined by

$$
\begin{equation*}
f^{\prime}(z)=\frac{1}{2 p}[(i-1) f(z)+f(z+p)-i f(z+i p)] \tag{2.2}
\end{equation*}
$$

We also use the symbols $\frac{d f}{d z}$ or $D_{z} f$ to represent f^{\prime}. It is easy to see that $f^{\prime}(z)$ can be formulated in the following forms:

$$
\begin{equation*}
f^{\prime}(z)=\frac{f(z+p)-f(z)}{p} \text { or } f^{\prime}(z)=\frac{1}{i p}[f(z+i p)-f(z)] \tag{2.3}
\end{equation*}
$$

if $f \in M_{p}(D)$ at z.
Definition 4. The line integral of f from z to $z+$ hp is defined by

$$
\begin{align*}
\int_{z}^{Z+h p} f(t) d t & =h p f(z) \quad \text { if } h=1 \text { or } i \\
& =-\int_{Z+h p}^{Z} f(t) d t \quad \text { if } h=-1 \text { or }-i . \tag{2.4}
\end{align*}
$$

More generally, if $\Omega=\left\{a=z_{0}, z_{1}, \ldots, z_{n}=b\right\}$ is a discrete curve in D, then the line integral of f from a to b along Ω is defined by

$$
\begin{equation*}
\int_{\Omega} f(t) \mathrm{dt}=\int_{a}^{b} f(t) \mathrm{dt}=\sum_{k=1}^{n} \int_{Z_{k-1}}^{Z_{k}} f(t) \mathrm{dt} \tag{2.5}
\end{equation*}
$$

For the properties of the line integral, the reader may refer to reference [7].

3. The Convolution Product

In order to involve two monodiffric functions, Berzsenyi [1] defined the "double dot" convolution line integral and *-convolution product. We now extend them to p-monodiffric functions.
Definition 5. The convolution line integral of f and g from z to $z+h p$ is defined by

$$
\begin{align*}
\int_{Z}^{Z+h p} f(t): g(t) \mathrm{dt} & =f(z+h p)[g(z+h p)-g(z)] \text { if } h=1 \text { or } i \\
& =-\int_{Z+h p}^{Z} f(t): g(t) \mathrm{dt} \text { if } h=-1 \text { or }-i \tag{3.1}
\end{align*}
$$

More generally, the convolution line integral of f and g from a to b along Ω is defined by

$$
\begin{equation*}
\int_{\Omega} f(t): g(t) \mathrm{dt}=\int_{a}^{b} f(t): g(t) \mathrm{dt}=\sum_{k=1}^{n} \int_{Z_{k-1}}^{Z_{k}} f(t): g(t) \mathrm{dt} \tag{3.2}
\end{equation*}
$$

It is also easy to show that the convolution line integral of f and g is independent of path in D for every $a, b \in D$. We begin with the following lemma.
Lemma 1. Let $B_{p} f(z)=(i-1) f(z)+f(z-i p)-i f(z-p)$. Then the con. volution line integral along the discrete closed curve $C(z)=<z, z+p, z+$ $p+i p, z+i p, z>$ is given by

$$
\begin{aligned}
\int_{\mathrm{C}(z)} f(t): g(t) d t=[g(z+p)-g(z)] & B_{p} f(z+p+i p) \\
& +[f(z+p+i p)-f(z+i p)] M_{p} g(z)
\end{aligned}
$$

Proof. It follows directly from the definition 5 .
In [5], the function f is said to be p-comonodiffric at z if $B_{p} f(z)=0$.
Theorem 3.1. Suppose that f is p-comonodiffric and g is p-monodiffric in D. Let $a, b \in D$, then the integral $\int_{\mathrm{a}}^{\mathrm{b}} f(t): g(t) d t$ is independent of the discrete curve in D connecting a to b.

Proof: Apply Lemma 1.
For the properties of the convolution line integral we have Theorem 3.2.

$$
\begin{equation*}
\int_{c}(f+g)(t): h(t) d t=\int_{c} f(t): h(t) d t+\int_{c} g(t): h(t) d t \tag{1}
\end{equation*}
$$

(3) $\int_{c} k f(t): g(t) d t=k \int_{c} f(t): g(t) d t=\int_{c} f(t): k g(t) d t$
where $f, g, h \in M_{p}(D)$ and k is a constant.
Now, we define a convolution product as follows :
Definition 6. The *-product of p-monodiffric function is defined by

$$
\begin{equation*}
(f * g)(z)=\int_{0}^{z} f(z-t): g(t) d t \tag{3.3}
\end{equation*}
$$

Throughout this section, we shall confine ourselves to the function $f: Z^{+} \times$ $Z^{+} \rightarrow \boldsymbol{C}$ where $Z^{+} \times Z^{+}=\{(m, n) \mid m, n=0,1, \cdots\}$. By making obvious modification, the results of this paper may be extended to the larger domain D.

Similar to the results in [1] we have the following properties for the *-product of p-monodiffric functions.
Theorem 3.3. Let $f, g, h \in M_{p}\left(Z^{+} \times Z^{+}\right)$and suppose k is a constant. Then
(a) $f * g \in M_{p}\left(Z^{+} \times Z^{+}\right)$
(b) $(f+g) * h=(f * h)+(g * h)$
(c) $f *(g+h)=(f * g)+(f * h)$
(d) $(k f) * g=k(f * g)=f *(k g)$.

Proof. Since $M_{p}(f * g)(z)=(i-1)(f * g)(z)+(f * g)(z+i p)-i(f * g)(z+p)$

$$
=\int_{0}^{z} M_{p} f(z-t): g(t) \mathrm{dt}+f(0) M_{p} g(z)=0
$$

Thus (a) is proved.
The proofs of (b), (c) and (d) are easy.
For the commutativity and associativity of the convolution products we have
TheOrom 3.4. Let $f, g \in M_{p}\left(Z^{+} \times Z^{+}\right)$and suppose that $f(0)=g(0)=0$.

Then $f * g=g * f$.
Proof. According to the Definition 2, it is sufficient to prove that $(f * g)$ $(z)=(g * f)(z)$ for every z along the positive x-axis. Along the positive x-axis, let $C(z)=<0, p, 2 p, \cdots, k p>$ be the path of integration where k is a positive integer and $0<p \leqq 1$. Then

$$
\begin{aligned}
& (g * f)(k p)=\sum_{j=1}^{k} \int_{(j-1) p}^{j p} g(k p-t): f(t) \mathrm{dt}=\sum_{j=1}^{k} g(k p-j p)[f(j p)-f(j p-p)] \\
& (f * g)(k p)=\sum_{j=1}^{k} f(k p-j p)[g(j p)-g(j p-p)]
\end{aligned}
$$

Thus, $(g * f)(k p)-f(k p) g(0)=(f * g)(k p)-f(0) g(k p)$.
Since $f(0)=g(0)=0$, this concludes the proof.
Theorem 3.5. Suppose f, g and $h \in M_{p}\left(Z^{+} \times Z^{+}\right)$and $g(0)=0$ or $(f * h)(z)=0$, then $(f * g) * h=f *(g * h)$.

Proof. Let $C(z)=<0, p, 2 p, \cdots, j p>$ be the path of integration, where j is a positive integer and $0<p \leqq 1$.

$$
\begin{aligned}
{[(f * g) * h](j p) } & =\int_{0}^{j p}(f * g)(j p-t): h(t) \mathrm{dt} \\
& =\sum_{k=1}^{j}(f * g)(j p-k p)[h(k p)-h(k p-p)] \\
& =\sum_{k=1}^{j-1}(f * g)(j p-k p)[h(k p)-h(k p-p)]
\end{aligned}
$$

Since $(f * g)(j p-k p)=\sum_{m=1}^{j-k} f(j p-k p-m p)[g(m p)-g(m p-p)]$,
take $k+m=n+1$, then we have

$$
\begin{aligned}
{[(f * g) * h](j p)=} & \sum_{k=1}^{j-1} \sum_{n=k}^{j-1} f(j p-n p-p)[g(n p-k p+p)-g(n p-k p)] \\
& {[h(k p)-h(k p-p)] . }
\end{aligned}
$$

On the other hand, we find that

$$
\begin{aligned}
{[f *(g * h)](j p)=} & \sum_{k=1}^{j} f(j p-k p) \sum_{m=1}^{k-1}[g(k p-m p)-g(k p-m p-p)] \\
& {[h(m p)-h(m p-p)]+g(0) \sum_{k=1}^{j} \mathrm{f}(\mathrm{jp}-\mathrm{kp})[\mathrm{h}(\mathrm{kp})-\mathrm{h}(\mathrm{kp}-\mathrm{p})] } \\
= & \sum_{k=1}^{j-1} \sum_{n=k}^{j-1} f(j p-n p-p)[g(n p-k p+p)-g(n p-k p)] \\
& \quad[h(k p)-h(k p-p)]+g(0)(f * h)(j p) .
\end{aligned}
$$

Therefore, it yields

$$
[(f * g) * h](z)=[f *(g * h)](z)-g(0)(f * h)(z)
$$

4. Generalized Monodiffric Volterra Integral Equations

In this section we shall extend an earlier result [6] about the general solutions to the monodiffric Volterra integral equations

$$
\begin{equation*}
u(z)=f(z)+\lambda \int_{0}^{z} k(z-t): u(t) \mathrm{dt} \tag{4.1}
\end{equation*}
$$

If $f(z)$ and $K(z)$ are p monodiffric in $Z^{+} \times Z^{+}$the integral equation (4.1) is called a generalized monodiffric Volterra integral equation.
Lemma 2. Let $f(z)$ and $K(z)$ be p monodiffric in $Z^{+} \times Z^{+}$. Suppose there exist a solution $u(z)$ such that $u(z)=f(z)+\lambda \int_{0}^{z} K(z-t): u(t) d t$ and $1-$ $\lambda K(0) \neq 0$, then $u(z)$ is p monodiffric in $Z^{+} \times Z^{+}$.

Proof. Since $M_{p} u(z)=(i-1) u(z)+u(z+i p)-i u(z+p)$

$$
\begin{aligned}
&= M_{p} f(z)+\lambda\left[\int_{0}^{z} M_{p} K(z-t): u(t) \mathrm{dt}+\int_{z}^{z+i p} K(z+i p-t): u(t) \mathrm{dt}\right. \\
&\left.\quad-i \int_{z}^{z+p} K(z+p-t): u(t) \mathrm{dt}\right] \\
&=\lambda K(0)[u(z+i p)-u(z)-i u(z+p)+i u(z)]=\lambda K(0) M_{p} u(z)
\end{aligned}
$$

we have $M_{p} u(z)[1-\lambda K(0)]=0$.
Thus, the Lemma is proved.
THEOREM 4.1. Let $f(z)$ and $K(z)$ be p monodiffric in $Z^{+} \times Z^{+}$. If $1-\lambda K$ $(0) \neq 0$ then there exists a unique p monodiffric function $u(z)$ in $Z^{+} \times Z^{+}$such that

$$
\begin{equation*}
u(z)=f(z)+\lambda \int_{0}^{z} K(z-t): u(t) d t \text { with } u(0)=f(0) \tag{4.2}
\end{equation*}
$$

Moreover, the solution of (4.2) can be calculated by the following stepping formula:

$$
\begin{align*}
u(z+h p)=u(z)+\frac{1}{1-\lambda K(0)}[& f(z+h p)-f(z) \\
& \left.+\lambda h p \int_{0}^{z} K^{\prime}(z-t): u(t) d t\right] \tag{4.3}
\end{align*}
$$

for $h=1$ or i.
Proof. Since $u(z+h p)-u(z)$

$$
=f(z+h p)-f(z)+\lambda \int_{0}^{z} h p K^{\prime}(z-t): u(t) \mathrm{dt}+\lambda K(0)[u(z+h p)-u(z)]
$$

we obtain (4.3).
Now, it remains to prove that the values which we get from (4.3) satisfy the equation (4.2). It suffices to show that (4.2) has a solution for the points on the positive x-axis. From (4.3) we get

$$
u(p)=\frac{1}{1-\lambda K(0)}[f(p)-\lambda K(0) f(0)]
$$

On the other hand, $u(p)$ can be obtained from (4.2). In fact

$$
\begin{aligned}
u(p) & =f(p)+\lambda \int_{0}^{p} K(p-t): u(t) \mathrm{dt} \\
& =f(p)+\lambda K(0) u(p)-\lambda K(0) u(0) \\
u(p) & =\frac{1}{1-\lambda K(0)}[f(p)-\lambda K(0) f(0)] .
\end{aligned}
$$

Therefore, (4.2) has a solution for $z=p$. By induction, we suppose that
(4.2) has a solution for $z=(m-1) p$, i. e.,

$$
\begin{aligned}
& u[(m-1) p]=f[(m-1) p]+\lambda \int_{0}^{(m-1) p} K[(m-1) p-t]: u(t) \mathrm{dt} \\
& =f[(m-1) p]+\lambda\left\{K(0) u[(m-1) p]+p K^{\prime}(0) u[(m-2) p]+\cdots\right. \\
& \left.\quad+p K^{\prime}[(m-3) p] u(p)-K[(m-2) p] u(0)\right\} .
\end{aligned}
$$

Since $1-\lambda K(0) \neq 0$, we get

$$
\begin{align*}
& u[(m-1) p]=\frac{1}{1-\lambda K(0)}\{f[(m-1) p] \\
& \left.+\lambda p\left\{\sum_{j=0}^{m-3} K^{\prime}(j p) u[(m-j-2) p]\right\}-\lambda p K[(m-2) p] u(0)\right\} . \tag{4.4}
\end{align*}
$$

We claim that (4.2) has a solution for $z=m p$

$$
u(m p)=f(m p)+\lambda \int_{0}^{m p} K(m p-t): u(t) \mathrm{dt}
$$

i. e.,

$$
\begin{align*}
& u(m p)=\frac{1}{1-\lambda K(0)}\left\{f(m p)+\lambda p \sum_{j=0}^{m-2} K^{\prime}(j p) u[(m-j-1) p]\right. \\
&-\lambda p K[(m-1) p] u(0)\} \tag{4.5}
\end{align*}
$$

From the stepping formula, we have

$$
\begin{align*}
u(m p)=u[(m-1) p] & +\frac{1}{1-\lambda K(0)}\{f(m p)-f[(m-1) p] \\
& \left.\quad+\lambda p \int_{0}^{(m-1) p} K^{\prime}[(m-1) p-t]: u(t) \mathrm{dt}\right\} \\
=u[(m-1) p] & +\frac{1}{1-\lambda K(0)}\{f(m p)-f[(m-1) p] \\
& -\lambda p \sum_{j=0}^{m-3} K^{\prime}(j p) u[(m-j-2) p]+\lambda p K[(m-2) p] u(0) \\
& \left.+\lambda p \sum_{j=0}^{m-2} K^{\prime}(j p) u[(m-j-1) p]-\lambda p K[(m-1) p] u(0)\right\} . \tag{4.6}
\end{align*}
$$

Substituting (4.4) into (4.6), we obtain (4.5). Thus we proved that (4.2) has a solution for the points on the positive x-axis. Due to the Definition 2, a function $u(z) \in M_{p}\left(Z^{+} \times Z^{+}\right)$is uniquely determined by its values on the positive x-axis. Therefore the theorem is proved.

References

[1] G. BerzSenyi, Convolution products of monodiffric functions, J. Math. Anal. Appl. 37 (1972), 271-287.
[2] Charles R. Deeter, Further theory of operational calculus on discrete analytic functions, J. Math. Anal. Appl. 26, (1969), 92-113.
[3] R. J. Duffin and C. S. Duris, A convolution product for discrete analytic function theory, Duke Math. J. 31 (1964), 199-220.
[4] T. Fenyes and P. Kosik, The algebraic derivatives and integrals in the discrete operational calculus, Studia Scientiarum Mathematicarum Hungarica 7 (1972),

117-130.
[5] Shih Tong TU, A comonodiffric Laplace transform, Hokkaido Math. J. 10 (1981) sp. 701-708.
[6] Shih Tong TU, Monodiffric function theory and formal power series, J. Math. Anal. Appl. 84 (1981), 595-613.
[7] Shih Tong TU, A generalization of monodiffric function, Hokkaido Math. J. Vol. 12 (1983), 237-243.

Department of Mathematics Chung Yuan Christian University Chung-Li, Taiwan, Republic of China

