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Introduction

Let (M, g0 be an #n-dimensional Riemannian manifold which is
isometrically immersed into the #n+ k-dimensional Euclidean space R™*
Then the curvature transformation R of (M, g) satisfies the condition
(%) rank R(X, Y)<2k
for any tangent vectors X, Y &T,M, where we consider R(X, Y) as a
linear endomorphism of T,M. Using this condition, Agaoka and Kaneda
gave in some estimates on the dimension of the Euclidean space into
which Riemannian symmetric spaces can be locally isometrically immersed.
For example they proved that the complex projective space P*(C) cannot be
locally isometrically immersed in codimension n—1. But if k=(n—1)/2,
the condition (*) does not impose any restrictions on the curvature of
n-dimensional Riemannian submanifolds of R™**

Our first purpose of this paper is, using the representation theory of GL
(n, R), to determine the polynomial relations of the curvature tensor of M”"
CR™* up to degree 3 explicitly (Theorem 1.4) and to find a new condition
on the curvature tensor which serves as the obstruction in the cases M*‘C R°
and MS5CR". (See §1 and §2. Note that in these cases, the inequality (*)
reduces to a trivial condition.) Our second purpose is to express this new
relation appeared in degree 3 in a simple form which is easy to calculate
(Proposition 3. 3, [Theorem 3.4). As applications of this curvature relation,
we prove that Riemannian symmetric spaces P*(C), SU (3)/SO(3) and their
non-compact dual spaces cannot be isometrically immersed in codimension 2
even locally (Corollary 3.5). As for P%(C) and its dual space, this result
can be proved, using the theorems in Otsuki and Weinstein (see
Remark (1) after [Corollary 3.5). But, as for SU(3)/SO(3) and its dual
space, this is a new result, which cannot be obtained by a previously known
method.

Now we explain our method briefly. Let V be an x-dimensional real
vector space and let K be the space of curvature like tensors on V' (see §1).
We define a quadratic map y.: S2V*® R*——K by
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(@) (X, Y, ZW)=<a(X,Z), a(Y,W))—<a(X, W), a(Y,2)>
foraeS*V*®R*and X, Y, Z, W &V, where we consider a €S2V *® R* as
an R*-valued symmetric bilinear map on V and ¢, is a positive definite
inner product of R* If an »-dimensional Riemannian manifold (M, g) is
isometrically immersed into R”"*, then the Gauss equation of this immersion
at x&M is expressed in the form y,(a) =R where R and « are the curvature
tensor and the second fundamental form at «x, respectively, i. e., the
curvature R must be contained in the image of y,. (We identify T.M with V
and the normal space TM with R*%) Therefore, we call that the Gauss
equation for R has a solution if and only if R€Im y,. Our main purpose is
to look for non-trivial homogeneous polynomials on K which vanish
identically on Im y,. If a polynomial ¢ satisfies such a condition and if R
K satisfies ¢ (R)#0, then it follows that R&Im y. and hence any
Riemannian manifolds (M, ¢) whose curvature at one point of M is R
cannot be isometrically immersed into R”* Thus the polynomials on K
which vanish on Im y, serve as the obstructions to the existence of local
isometric immersions of #-dimensional Riemannian manifolds into R ™*.

In order to state our first result in detail we reformulate this problem in
the following form. Let

yi* SPK*——S?(S2V*@R%)*

be the dual map of y,, i. e.,, y4* is a linear map defined by y%*(¢)(a)=¢ (v,
(a)) for =S?K* and a €S2V *®R* where we regard S?K * as a space of
homogeneous polynomials on K with degree p. Then our problem is to
determine the kernel of y4* for each £ and p. The group GL(V) acts on K
and S?V*®R* by (¢g-R)(X,Y,Z W)=R(g'X, 'Y, ¢g7'Z g 'W) and
(@ea)(X, Y)=a(g'X, g7'Y), respectively, for g=GL(V), REK and «
€S*V*®R* Since y, is GL(V)-equivariant with respect to these actions,
the linear map y%* is also GL(V)-equivariant. In particular Ker yi¥isa GL
(V)-invariant subspace of S?K*. Our first purpose is to determine the
character and the generator of each GL(V)-irreducible component of SPK*
for p=1, 2,3 completely and decide whether these generators belong to Ker
y%* or not (§1 and §2). The results may be stated as follows
1. 2, ['heorem 1. 4) : The spaces K*, S2K* and S*K * are sum of 1, 4and 17
GL(V)-irreducible components (for sufficiently large »), the subspaces Ker
y1*, Ker y3* and Ker y3* consist of 1, 10 and 2 irreducible components,
respectively, and other subspaces Ker y#* for p<3 are all trivial. The
polynomials belonging to Ker y3* and the one component of Ker y3*
correspond to the condition () stated before and another component of Ker
y3* is a new type of condition, which serves as the obstructions in the case
M*CR™?*for n=4. The subspace Ker y%* is not a new condition because it
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is contained in the ideal generated by Ker y?*. In summary the essential
polynomial relations of the curvature tensor up to degree 3 are exhausted by
Ker y%2* and Ker y3*. To obtain these results, many computations will be
required and in some cases it is almost impossible to calculate by hand
because the generators of the irreducible components of S?K * are lengthy in
general. Hence we use the algebraic programming system REDUCE 2 at
Kyoto University in many places of this paper.

Next we state the second main result in detail. Using the fact that the
new relation contained in Ker y3* is an invariant of GL( V) in the case n=
4, we prove that this obstruction is essentially equivalent to the equality Tr
(#oR)3*=0, where we consider R as a symmetric endomorphism of A2V
(V=R*") and *: A2V——> A%V is the star operator with respect to some
orientation of V(see §3). Moreover we prove that the condition Tr (xo
R)*=0 also holds if R is contained in the image of v, (Theorem 3.4). Inthe
case n =5, we restrict the curvature operator to a 4-dimensional subspace of
V. Then the
same conclusions hold if REIm y, (see Remark (1) after [Theorem 3.4).

Theoretically our method is well applied to higher degree and
codimensional case. But in practice it is hard to carry out even if we use the
system REDUCE 2 because the number of irreducible components and the
length of the generators of S?K* increase rapidly as p becomes large.

§1. The Gauss equation and the representations of GL(n, R).

In this section we fix our notations and state the first main results of this
paper (Theorem 1.4). For this purpose we review some known results on
the character of GL(n, R). For details, see and [6].

Let V be an n-dimensional real vector space and K be the vector space
of curvature like tensors on V, i. e.,

K={RENV*O AN2V*| © RIX, Y, ZW)=0,X.Y.ZWEV},

XYz

where V * is the dual space of V and XC;/ , implies the cyclic sum with respect

to X, Y and Z. Let R* by the k-dimensional Euclidean vector space with
the inner product <, > and we put E,=S?V*® R*for each positive integer .
Then the general linear group GL(V) acts on both spaces K and E,
naturally. We first define a GL('V')-equivariant quadratic map y,: E,——K
by

ve(la) (X, Y, Z W)=<{a(X, Z), a(Y, W))—<a(X, W), a(Y, 2))
for acE, and X, Y, Z, W& V. Then our problem is, as stated in Intro-
duction, to determine the kernel of the dual linear map y%* : SPK*—— S?*?E }
(p=1, 2, 3) defined by y%*(d)(a)=¢ (y.(a)) for  ESPK* and a EE,.
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Before stating the results, we review the general theory of the character
of an irreducible representation of GL(V), according to Iwahori [9]. (In
all theorems are stated over the field of complex numbers C, but the
same results hold if we use the field of real numbers instead of C. See the
exercise 9, p. 121 in [9].)

Let [=({, -, ) EZ" We define a rational function &(l)EZ[e,, -,
En, €14 0, €x'] by

eqr efrrefn

1 L2 in

E2" €27 €2

=1 " ..

eht ghrehn
For example if §=(n—1, n—2,---, 2,1,0), then we have &(8) =1 (e;—¢;)

i<Jj

(Vandermonde’s determinant). For an element A=(&,, -, 1, €Z" we
define a rational function S,(e)=S,, ,, (e, =+, €) EL[ey, -+, &5 7', -,

ex'] by
S (e)=&A+8)/&(),

where A+d8=,+n—1, A,+n—2,---, A,.1+1, 2,,). S;(e) is called a
Schur function corresponding to A =(A,, -+, 1,). It is known that if A €Z”
satisfies the condition A,=21,=---=1,20, S,(e) is a homogeneous
polynomial of {e, -+, &,}. There is a one-to-one correspondence between
the set of real irreducible polynomial representations of GL( V) and the set
of Schur functions S, (¢) satisfying A,=21,=---=1,=0. The correspondence
is given as follows: Let p : GL(V)——>GL(m, R) be an irreducible polyno-
- mial representation of GL(V) and let a,, -+, a, be the eigenvalues of an
element g&GL(V). Then there exists uniquely a Schur function S, (&)
(A, 2A,=---=21,20) such that the character Tr p(g) is equal to S, (a, -,
a,). Inthe following we identify S, (¢) with the character of the irreducible
representation or the representation space itself. We often abbreviate S, (¢)
as S, and omit zeroes appeared in A =(A,, -+, 1,). For example we write
Ssr0--0(e) as S,;. The polynomial S, +S, implies a sum of irreducible
representations (or spaces) with characters S, and S,. The degree of §, is
given by the dimension formula D(l, -, ,)/D(n—1, n—2,--, 2,1,0)
where /=1 +¢ and D(a,, -+, an) =[[(a;—a;) ([9, p. 115]). In particular
S, 1s an invariant of GL(V) (. e, ll?(Jiimensional representation of GL(V))
ifand only if A,=---=21,. Wesaythat S,(e) isof depth7if A =(4,, -+, 1,)

and 1,+0.
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Now we define subspaces K, K,CA?V*® A*V* by
K={ReEN*V*® N*V*|R(X, Y, Z W)=—R(Z W, X, Y);

and K,=N*V*
Each of these spaces is GL(V)-invariant by the natural action.

LemMma 1.1 (¢f. [7, p. 882])). GL(V)-irreducible decomposition of N*
V*® N2V * is given by

N V*ONV*=KaK® K,.

In particular K is a GL(V)-irreducible subspace of N*V*® N2V*,

Proor. We consider the dual space A2V ® A2V. The character of A?
V is given by S., and using the Littlewood-Richardson rule (cf. [7, p. 879],
[11], [15]), we have S,,°S.:=S:2+S211+S111. Hence A?V*®@ A2V*
splits into 3 irreducible components. We can easily verify that A2V *® A?
V* is a direct sum of 3 spaces K, Ky and K, and each space is non-trivial.
Therefore this gives the irreducible decomposition of A2V*® A2V *. q.e.d.

ReMARkK. Using the dimension formula, we have dim S z,zzl—lznz(nz—l),
dim SZ,I,IZ-—é—n(n—Z)(n—l)(n—H) and dim Sl,l,l,lz—zlznm-—l)(n—z)(n—

3). On the other hand it is already known that dim K :%nz(nz—l) (cf.

[13, p. 63]) and hence the character of K* is given by S,..

Next we calculate the characters of SPK* for p=2 and 3. In general let
x(g) be the character of an irreducible representation p of GL(V) and let
xs(g) be the character of the symmetric s-product of p. Then xs(g) is
given by the following (see [9, p. 121]):

x(g -1 0
x(g» x(@ -2

xs(g)=—81!— 2(g x(gD x(g) oo

............... —(s—=1)
x99 x(g*H x(g*D-x(g9
For example we have

1.1 xz(g)=%x<g)z+%x(gz>

and

L2 al9=g2(D+5x(D (e +5x(a.

Next if we put p,=S, and o,=&"+--+&% we have the following formulas
([9, p. 137, p. 120]):
(1.3 Sa :det<pli+j_,.)1§i, jsn
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and

(1. 4) Ont Onapr+ "+ O1Pm1 = WPy,

In particular p,, (resp. ¢,) can be expressed as a polynomial of{ay, -**, On}
(resp. {p,, -+, pm}). Using these formulas, we determine the character of

S2K * in the following way. First, if we put x (g) =S,,, we have from (1. 3)
and (1.4)

x (g =pi— by
:1—12(0“}—!— 305—40.0s).
It is easy to see that x (¢%) is equal to
TIZ—(O'H 305—40.05)

and we substitute these equalities into (1.1). Then x,(g) is expressed as a
polynomial of {oy, -, 0s). Next using the formula (1.4) once again, we
rewrite x.(g) as a polynomial of {p, -, ps} and finally using (1.3)
repeatedly, we express this polynomial as a sum of Schur functions. But in
practice this procedure requires many calculations and hence we use the
algebraic programming system REDUCE 2 to obtain the final expression.
For the character of S K *, it can be calculated in the same way by using the
formula (1.2) in this case. Thus we obtain the following proposition.
ProposITION 1.2. The characters of S K* and S K* arve given by the

following -

SEK*: S4,4 + S4.2.2 + Ss,3.1,1 + Sz,z.z.z ,

SSK* : SG,S + 56,4,2 + SG,Z.Z.Z + SS,S,l,l _+_ 55,4,2,1 + SS,3,3,1

yyyyy

yyyyyyyyyy

REMARK. In the case #=4, S®K* is a sum of 10 irreducible components
because Sss21.1, Saa1,1,1,1, etc, reduce to trivial spaces. The character
of S?2K* is already determined in [21, p. 383] by a different method.

Next we calculate the characters of S??E'} for p<3 and k=1, 2. The
character and the generator of each irreducible component of S?E} (E,=
S?2V*) is already known and in the case n=p, the number of irreducible
components of SPE} is equal to the partition number of p (cf. [1], [21, 2.

378]). See also and [8]). As a representation space E} is isomorphic

— h——

to Efe®---® E} and hence we have

S’Ei= S SME1®-®S™E}-

P1+..+DPr=p
Thus the character of SPE% can be calculated by using the Littlewood-
Richardson rule. As a result, we havé the following lemma.
LeMMA 1.3.  The characters of S?*?E} (p=1, 2, 3 and k=1, 2) are given
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by the following :
S2E¥: S.+ S,
SEY: S+ Se,z + S4,4 + S4,2,2 + 52,2,2,2 ’
SGET: SIZ + SIOZ + SB4 _*_ 866 + 5822 + SG,4.2 + S4,4,4 + SG,Z,Z,Z
S:E} . 3S, + 3822 + S31 ,
SEf: 5Ss +9S62 +6Sss +9S422 + 582222 + 3571 + 3553
+ 4\9521 + 35431 + 3S3221 + 83311 ’
SSE¥: 7S1,+ 5SS + 15S102 + 9Ses + 8Ses1 + 18Sss + 9543
+ 19S5, + 6S75 + 12574, + 12575, + 3S7310 + 957221
+ 1056,6 + 886,5,1 + 2786,4,2 + 56,4,1,1 + 36,3,3 + 1256,3,2,1
+ 19\96,2,2,2 + SS,S,Z + 3‘SS,S,I,I + 855,4,3 + 12*95,4,2,1
+ 355.3,3,1 + 985,3,2,2 + 4'SS,3,2,1,1 _+_ 855,2,2,2,1 + 1054,4,4
+ 684431 + 18‘84422 + 3843311 + 9843221 + 1584,2,2,2.2
Now we state the first main results of this paper. Its proof will be done
in §2.
TueoreM 1. 4. The characters of the invariant subspaces Ker y%* (p=1,
2, 3) are given by the following :
(1) The case of k=1.
Ker y1*={0}, Ker y{*=S:51.1,
Ker y3* 55511+Ss4z1+85331+553211+s4422

yyyyyyyyyy

;;;;;

3 The case of k>3

Ker yi*=Ker y2*=Ker y3*=1{0}.

REMARK. (1) As stated in Introduction the spaces S;;.,CS°K* and
T.M (k=1, 2, respectively) and the space S;335C Ker y3* is a new
condition. For details, see §2 and §3. We remark that the inequality rank
R(X, Y)=<4isuseful only in the range » =6 while the condition S;;33 serves
as the actual obstruction in the case M"CR™? for n=4.

(2) The inclusions Ker y? 35‘3311, Ker y#*DOS855..+ +5‘332211 and

,,,,,

yyyyy

lLemma 1.3 In fact, since y&*:SPK*——S*E% is a GL(V)- equlvarlant
map, the irreducible component of S?’K* is mapped by y%* to {0} or the
non-trivial irreducible space with the same character. The space S?K*
contains the irreducible component S;,,;, but the space S*E} does not
contain S;;,, and hence we have y#*(S;3.1)=1{0}, i.e., Ss;s5..CKer yi*.




114 Y. Agaoka

Other inclusions can be verified in the same way. To prove the “equality ”
in this theorem, we have to look for a generator of each irreducible
component of SPK* (p=1, 2, 3), to substitute « €F, into these generators
and to decide whether they are zero or not as polynomials on E,. We
achieve this procedure in §2.

§ 2. Irreducible components of S?’K*(p<3).

In this section we give a method to obtain the generators of the
irreducible components of S?K* for p=1, 2, 3 and prove [Theorem 1.4. For
this purpose we first review some facts on the Young tableaux and the GL
(V)-irreducible subspaces of the tensor space V®---® V (cf. [6], [9]).

By a Young diagram of signature A =(4,, A, -+, ds) (A, =1,=--=1,>
0) we mean an array of boxes such that the number of boxes in the i-th row
s A; (z=1,---, s):

T

\/1/

S

We call s the depth of this Young diagram. By a Young tableau we mean the
Young diagram whose boxes are filled with the integers 1, ---, g, where ¢ is

the number of boxes of this diagram (. e, q:ili). For example the
i=1

following is the Young tableau of signature (3,3,2,1):

41173
915 |7
2|8
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We denote the Young tableau by the letter B and the (7, j)-component of B
by B(1, j). e

Let S, be the symmetric group of degree ¢ and we put 7,=V®--®@ V
(V=R". We define a group representation

p: S GL(Ty)

by p(2)(X,®®X)=X:11)®®X.1q. We denote by R[S,] the
group algebra of &, i. e, R['@q]:{gairilaiER, 7,€ S, equipped with
the natural sum and product. ‘The group homomorphism p induces the ring
homomorphism from R[ &,] to End(T,), which we denote by the same letter
p.

Let B be a Young tableau of depth< # such that the number of boxes is
equal to g. Then using this tableau, a GL(V)-invariant irreducible
subspace of 7, can be constructed in the following way. We define
subgroups $, and By CS, by Hz={0ES,| o interchanges the numbers of
each row} and B,={0cES,|c interchanges the numbers of each columnj.
Note that if the signature of B is A =(4,, .-+, As), then 9 is isomorphic to
S XX Gi4. Now we define a Young symmetrizer ¢z ER[S,] by

Ce= 2 > (—1)60'2',

TEHE OEVp
where (—1)° implies the signature of 6. Then the space p(¢z) T, is a GL
(V)-invariant irreducible subspace of T, and in addition, the character of
p(¢y) T, is given by S;, where 1 is the signature of B. We remark that if the
depth of B exceeds the dimension of V, then p (&) T, reduces automatically
to a trivial space.

Using this theory, we give a method to obtain irreducible subspaces of S”
K*. By definition K is a GL(V)-invariant subspace of A2V*® A2V * and
A2V *® A2V * can be considered as a subspace of Tf=V*® V*® V*® I'*
in a natural way. Henge_wgw a surjective linear map 7,— K * and this
induces a map T,,——K*®--® K*. Combining this map with the canonical
projection K*® ' .® K*—>SPK*, we obtain z : T,,/——SPK*, whichisa GL
(V)-equivariant surjective map. Explicitly = is given by

7I<X1® - ® X4p) (R> :R(Xl, T, X4>"'R<X4p—3, T, X4p>
for X;€V and REK. Let B be a Young tableau of signature A =(4,, -*-,
1) (s<n) such that 3'1,=4p. Then the space n(p(g) T,p) is either an
irreducible subspace of SPK* with the character S, or a trivial space {0}
because 7 is GL(V)-equivariant.

ProrOSITION 2.1. Let B be a Young tableau of signature (A, -+, As)
(s<n and DX;,=4p) and let u; be the number of boxes appeared in the i-th
column of B. (Hence uy=s.) For each element X,, ---, X;€V we define Iy
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(X, -, Xo)ESPK* by
(X1, Xs)(R)= 20 (=17 (=1)%R(Yy, -, Ya)R(Yip-s, -, Yap),

PESSHR,
-, Y, e
wheve Y, -, Y,,€V are given by Yo = Xewy ASI<s, 1£k<Z2).
Then the subspace m(p (Cp) Tip) is generated by the element I,(X,, ---, X), i.
e, 7(p(Ce) Tip) ={Xaids(X s, -, Xi)la. ER, X, E V.
ExaMmPLE. Conéider the following tableau B of signature (3,3,1,1):

1137
214 |8
o
6

Then the space z(p(ég) T3)C S?K* is generated by
(X1, XO)(R)=Z(= D)= 1) (— 1) R(X 6,1, X2, Xoy1), Xoyz))
XR(Xo‘l(a), Xoy(), Xoy1), Xos(2)).
By direct calculations we have
(%) %IB(XI o, XOR)=R(X,, X, X\, X0 R(X,, X, , Xs, X)—R
(X, X, Xi , XOR(X,, Xp, Xo, XO+R(X,, Xz, Xi, XOR(X,, X, ,
Xz, X3).
In the case n=4, this polynomial represents a non-trivial element of S2K *
and hence the invariant irreducible subspace S,;,, of S2K* (cf.
1.2) is generated by the polynomial (xx). If we use the following tableau B:

71114
2156
8
3

then we have
Is( X1, XO)(R)=2(—1)"(—1)(—1)R( X sx1), Xow2), Xoi(0), Xog1))
X R( X 6,02), Xo32), Xow(1), Xou(3))
:O,
and hence 7z (p () T3) ={0} in this case.
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Proor of ProprosiTiON 2.1. For elements Z,, -+, Z,€V we put A(Z,,
» Lap) = 2 2 (=D% (o) (Z,®--® Z,)ET,p. Then we have p(lp)
YI;;,-{A(Z1 , Z4,,)|Z eV} and A(Z. ), ", Zeap) =A(Z, -, Zyp) for
each r& @B. Therefore by putting Zg, v="=Zgq1,=X1, ", Zpi 1=
=Zp 1,=Xs, we know that the space p(éz)T,, is generated by the

element > (—1D%(0)(Z,®:--® Z,,). Next we consider the first altern-

oy
ative sum 3! (the first column of B). Since Z,®---® Z,, is equal to
01ES 1
: B,  B@D B(g, 1)

X ® - X,® - ®X, ®

b

we have

> (_1)619(01)(Zl®"'®24p)

01604,
s BAD B(2,1) B(m,1)
:d 2 (-1) 1{""g))(a;‘u) @ ® Xoiiz) @ ® X o7 (en ®-}
1€9u,
B(1,1) B(2,1) B(m,1)
= 2 (=D~ 8 Xty B @ Xaw 88 Ky O,
1€8p,

Hence by putting Yz, ,= Xy, we have
B(1,1) B(m,1)
N (=101 (Z1® @ Zsp)= 2 (_1)0‘1{...® Ve 1,® " ® Ysus 1) ®}

01€8yu, 01€Su,

Repeating the same procedure to the other columns of B, we have
GE%‘.B(—l)"p(o)(Zl®---®Z4p):6 27 (—1)%(—1)%MY,®+® Y,

.....

where Yy, ,,=X;.. Then mapping this element by z,

we obtain the desired result. qg.e.d
Next using [Proposition 2. 1, we obtain the generators of the irreducible

components of SPK* for p=1, 2, 3. In the following we list up the

characters S, , the tableaux B and the generators I(X,, ---, X,) of the

spaces 7 (p (&) Tip) C SPK*. (We divide Iy by a non-zero constant such that

I is expressed in a simple form) For the spaces Siszz1, Sazzz2, Ssszzii

yyyyy

to write down here and hence we omit them. Except the case 2S,,,,C S®K *,

the generators may be obtained by using a different tableau B of the same

signature unless I, =0, but we list up here only one of them. In some cases,

in order to calculate the generators I, , we use the algebraic programming

system REDUCE 2. For simplicity we write R(X;, X;, X», X)) as Ry, etc.
(1°) The case p=1.

1
Sz,z, Bz,z = 2 i s IB“ =Rz .
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(This implies that the space of curvature like tensors is generated by the
element R(X,, X,, X;, X)), i. e, the curvature is determined by its
sectional curvature.)

(2°) The case p=2.

S4,4, B4.4 — ; 2 g ; , 134.4 = Rlzlzz.
1|3 6[8\ R1212 R1213
S4,2,2 » B4,2,2 - 2 4 ’ [B422 - R R
517 " 1213 1313
1137
83,3,1,1 ’ Bs,3,1,1 — ?) 418 ’
6]
1133_3‘1_l — R1212R1234 - R1213R1224 + R1214R1223 .
1|3
_12/4
82,2,2.2 ) BZ,Z,Z,Z - 5 7 ’
6|8
132'2‘2‘2‘ - R1212R3434+R1313R2424+R1414R2323 — 2R1314R2324 + 2R1214R2334

- 2R1213R2434 - 2R1224R1334 + 2R1223R1434 - 2R1323R1424 + R12342
+ R13242 + [\)14232 .
(3°) The case p=3.

113]5]7/9]11
SG.G) BG,G - 2 4 6 81012, [BG.G — R12123.
113/4[11]8]10]
Seuaz, Besz =[2[6]9]12 s

5(7
Rz Rz
Riziz Risis
1/3]6]8]1012
2|4
5(7
9111
= |Riz12 Riziz Rz
Rz Riziz Risg
Risy Rz Ria

11316711
4110812

136'4_2 = R1212

Ss,z,z,z ’ Be,z,z,z —

b4

36.2.2.2

Ss,5,1,1 , BS,S,I,I -

[35'5‘1'l — R1212° ]B

11]10)
12

[

Ss,4,2.1 s Bs,4,2,1 -
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135‘4_2'1 = Rz’ Risse — Ri20oRizi3Risas + Ri21aRiziaRizs — Ri212R1313R 224
+ RizpRiz1sRiz0s — RiziaRizisRizss + 2R1215* Rizos — 2Ry313R 214 R 225 .
1[3]7[6012
Ss,3,3,1 , Bsssi = g 140181 ’
19
135_3_3‘1 = |Riziz Rizis Rizas

RIZIS R1313 R1323
R1214 R1314 R1423

1[3]7[1012
21418
55,3,2,1,1 s Bs,3,2,1.1: 5|11 s
16
19
135'3'2‘1,1 — R1212R1313R1245 - R1214R1225R1313 + R1215R1224R1313 — R12132R1245
+ R1213R1214R1235 - R1213R1215R1234 + R1z12R1315R1234 - R1212R1314R1235
+ R1213R1314R1225 - R1213R1315R1224 + R1214R1315R1223 - R1215R1314R1223.
1/3[5]8
S4,4,4, B4,4,4 =|2/416|9],
7111112|10

IB = |Riz12 Rizis R1223
4,4,4
Rizis Risis Riss
Rizs Rizes Rass

113911 1137111

214|812

S4,4,2,2, B4,§}%,2 = g §1012, B4,§,2%,2 = 519 s
6|8 61|10

IB4_§,1%’2 - R1212 * IBZ,Z,Z.Z

_ 2 2 2 2 2
134,};’2%,2 - R1212 R3434 + 3R1212R1234 + R1213 R2424 + R1214 R2323+R1223 R1414

+ Ri224’Rizis + 2R512R 514 Ro334 — 2R1212R1213R2434 + 2R1212R 1225 R 434
- 2R1212R1224R1334 - 2R1213R1214R2324 - 2R1213R1223R1424
+ 2R1213R1224R1423 — 2R3 R 224 Ryss + 2R Ry223R 234
+ 2R1214R1223R1324 — 2R214R1204Rys2s — 2R3 R 224 Riz14
REMARK. If we use the tableau

B

314111
71812
9 »
10
then it can be directly verified that the polynomial I ¢ is expressed as a

B..=

||

linear combination of IB4g1?1 ,and Iy o and by [Proposition 2. 1| this element

also generates the irreducible subspace with the character S,,,.. Note that
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the irreducible decomposition of the subspace 2S,,,.C S*K * is not uniquely
determined because the multiplicity is 2 in this case.

311159
4121610
7
S4,4,1.1.1.1 s B4,4,1,1,1,1 - § ,
il
1_2
134’4'1'1_1‘1 - R1212R1234R1256 - R1212R1235R1246 + R1212R1236R1245 - R1213R1224R1256

+ R1213R1225R1246 - R1213R1226R1245 + R1214R1223R1256 - R1214R1225R1236
+ R1214R1226R1235 - R1215R1223R1246 + R1215R1224R1236 - R1215R1226R1234
+ R1216R1223R1245 - R1216R1224R1235 + R1216R1225R1234 .

1[3[7)12
21418

S4,3,3,1.1 s B4,3,3,1,1: 51011 »
6

9
134_3_3‘1'1 = 3R1213R 225 R334 — 3R1213R 224 R1335 + SRz Ry235 Rz + 2Ry512R 534 R335
— 2R1212 Ry 255 R334 + 2R1214 Ry 223335 — 2R1314 Ry 235 R1325 — 2R\315R 225 R 334
+ 2R1215R1234 Ry325 + 2R1223R 515 R1324 — 2Ry223 R 314 Ry305 + 2Ry 2241313 Ri525
— 2R354 Ry315R1305 — 2R1325R 513 R 324 + 2R1225 Ry 514 Ry325 + Ri212R1 324 Ry 335
— Riz12Ri505 R334 + Ri212R1513Ro345 — Ri312Ry 514 Ro335 + Ri312Ry 315 R334
— Ri212Ri523R1305 — Ri213°Roses + Ri213R1214Ro335 — Riz13R1215Ros34
+ Rizi3Ri223Rizes — Ri213R1 234 Ris25 + Ri213R1255R425 + Ri213R1 245 R 325
+ Riz13Ri5148Rp325 — Ri213R 515 Rp324 — Ri214Ry513Ro505 + Ri214R1315Rp325
+ RizisRi513Ro324 — Ri315Ry 314 Ros05 — Ri223Ri2usRiz1s — RigesRigsaRisus.

3[7]10
48
11
12

S4.3.2,2,1 s B4.3,2,2,1 -

BREENE

(The polynomial Iy, ... can be expressed as a sum of 62 monomials.)

10[12]

S4,2,2,2.2 s B4,2,2,2.2 —

(ol N =N ]

OO N~

—
—_

(The polynomial I, can be expressed as a sum of about 120 different
monomials.)

53,3,3,3 ’ Bs,3,3,3 -

7

8
117
12

DN
—
oW
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I

BS,3.3.3

— R1212R3434R1234 - R1313R2424R1324 + R1414R2323R1423 + R1212R1434R2334

- R1212R1334R2434 + R1313R1224R2434 + R1313R1424R2324 + R2424R1213R1334
+ R2424R1314R1323 + R1414R1223R2334 - R1414R1323R2324 + R2323R1214R1434
- R2323R1314R1424 _+_ R3434R1214R1223 - R3434R1213R1224 + R1213R1423R2434
- R1214R1323R2434 - R1314R1223R2434 - R1213R1424R2334 + R1214R1324R2334
- R1224R1314R2334 - R1213R1434R2324 + R1234R1314R2324 - R1214R1334R2324
+ R1223R1324R1434 - R1224R1323R1434 + R1224R1334R1423 - R1223R1334R1424
+ R1234R1323R1424 - R1234R1324R1423 .

11311

21412
53,3,2,2.1,1 s Bs,3,2,2,1,1 = g ;

19|

110]

(The polynomial I

,3,2,2,1,

_can be expressed as a sum of about 220 different

monomials.)

0|~ || w

Sz,2,2,2,2,2 B Bz,z,z,z,z,z =

11
12

can be expressed as a sum of about 700 different

—
o OO G o

(The polynomial I,

2,2,2,2,2,2

monomials.)

Now using these generators, we give the proof of [Theorem 1.4 For
this purpose, we have only to substitute an element &« €E, into the generators
of the irreducible components of S?’K* for k=1, 2,---, i. e, we put R=1v,
(@) and determine whether they are trivial or not as polynomials on E, .

We first consider the case £=1 (codimension=1). In this case a €F, is
a symmetric bilinear form on V. We substitute « into the generators of S?
K* listed up above. Then it is directly verified that the polynomials I

’IB

3, 3 ,3,2,2,1,

2 > s

B4,3,3.1,1 B4.3,2.2,1

to zero and the rest of the generators are not trivial polynomialson £, . (In
some cases, we use the system REDUCE 2 for complicated calculations once
again.) The following is the list of non-trivial polynomials I, after putting

Bssi1? TBsapi’ “Bsssi? Bssan By

R=vy,(a). For simplicity we write the determinant of the symmetric matrix
a(X,, X)) alX,, Xp)—al(X,, Xp
a(X,, X a(X,, X)) al(X,, Xp)
a(X,, X)) a(X,, Xo)alX,, Xp)

as ai.r12..r. For example, a,,=a(X,, X)).
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B,, — %212 .
— 2
I, =a )
By 12,12
— 3
134,2,2 ay,1°q123,123 -
Byoss 31234,1234 -
By — %1212
]Beu = a,1° dy2,12° A123,123 -
Iy = 1,17 Ai234,1234 -
6,2,2,2 , ,
I, = 93,123° .
B4.4,4 ’
] 1 = 3 . .
B3, Q12,12° A1234,1234
] 2, = ° .
B, B, — %i2,12° Q12341234
] = .
By 5222 661/1'1 12345,12345 -
Bya2222 15a123456,123456 -

(It is already known that the generators of the invariant irreducible
subspaces of SPE'f are expressed as products of the determinant of the form
@5.712.r. See [1].) The intersection of the subspace 2S,,,.C S?K* and
Ker y31* is a non-trivial irreducible subspace or 2S,,,, itself because one
component of 2S,,,, is contained in Ker y3*. (See Remark (2) after
Theorem 1.4.) But, as we have already seen, 134'&1%‘2 is not an element of Ker

3%

y3* and hence we have 2S,,.,.NKer y3*=S,,.., which is generated by the
element Iy o —3ly ¢ . Summarizing these results, we obtain (1) of

['heorem 1. 4.

Next we consider the case £=2 (codimension=2). In this case, using
the system REDUCE 2, we substitute R=v,(a«) (a €E,) into 11 polynomials
I and Iy o —3[p @ , which are the generators of Ker y{*.

33.3.2.2.1.1

Bsgi,? ’

Then we know that the polynomials I and Ip  reduce to zero and the

rest are non-trivial polynomials on £,. (We omit these explicit expressions
because they are lengthy.) Hence we have Ker yi*=Ker y%*={0} and

IRER IR

Finally we substitute R=y;(a) (a €E;) into the polynomials I,

and Iy . Then in this case, these 2 polynomials are non-trivial on F; and
therefore we have Ker y2*={0} for £=3 and p<3. Thus we complete the
proof of [Theorem 1. 4.

REMARkK. (1) Using the metric (,) on V, we consider R(X, V) (X,
Y V) as a skew symmetric linear endomorphism of V, i. e, R(X, Y)Z
&V is defined by (R(X, Y)Z W)=—R(X, Y, Z W). Let {X,, -,
X, be an orthonormal base of V and we write R(X,;, X;, X, , X)) =Rijun,
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as before. Then the linear endomorphism R(X,, X,) is expressed in a
matrix form:
0 R1212 R1213 Rl21n
_R1212 0 R1223 R122n
—R121n _R122n _Rlzzn"‘ 0.
If rank R(X,, X,) <2, then the first (4,4) principal minor of this matrix is
zero, which is equal to the square of the Pfafhian (R;:Riz: — Ri213R224 +
R....Ri5)?% and hence we have 133_3'1,1 (Xi, X, Xs, Xo)(R)=0. (Note that

the rank of the skew symmetric matrix is always even.) Conversely if 133_3',,,

(X,, -, XO(R)=0for any X;, X,€V, then we have rank R(X,, X;)<2.
Therefore the obstruction S;;.:CKer y%* is essentially equivalent to the
condition rank R(X, Y ) <2 stated in Introduction. In the same way, in the
equivalent to rank R(X, Y)<4for X, Y&V.

(2) Considering the results in Vilms [22], it is probable that in the case

of codimension 1 the ideal % Ker y?* of the polynomial ring 2;‘. SPK* is

generated by the elements of S;;,,C S?K*. By direct calculations, we can
prove that the subspace Ker y3$* of S®K* is contained in the ideal generated
by Sss11, but for the spaces Ker y* (p=4) we do not know whether it is
true or not at present.

§3 The case of 4-dimensional Riemannian manifolds.

In this section we rewrite the remaining obstruction S;;5:C Ker y3* in a
simple form, which is easy to calculate for a given Riemannian manifold. In
the case n=4 the polynomial Ip is an invariant of K with respect to the

canonical action of GL(4, R), i. e., p(g)+I;

3,3.3,3

=(det g)3.1 for any g&
B3.3,3.3

GL(4, R) and hence we first investigate the structure and the generators of
the ring of GL(4, R)-invariants of K for later use.

First, we prepare several lemmas. In the following we denote by F ¢
the ring of G-invariants of F, where F is the representation space of the
group G.

LemMma 3.1. Let Sym(n, C) be the complex vector space of symmetric
linear endomorphisms of C", i. e., Sym(n, C)={A:C—C" |['A=A}.
Then the ring of SO(n, C)-invariants of Sym(n, C) with rvespect to the
natuval action is a polynomial ring gemevated by {Tr A, Tr A% ---, Tr A"}
(AeSym(n, C)).

Proor. Let W be a subspace of Sym(n, C) consisting of diagonal
matrices and we put
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H={geS0(n, C)|g(W)C W }.
Then a generic element of Sym(#n, C) is transformed into the element of W
by the action of SO(%n, C). (More precisely, if the eigenvalues of A ESym
(n, C) are all distinct, gAg™" is a diagonal matrix for suitable ¢g&SO(#,
C).) Using this fact, it is easy to see that the natural map
]-: Sym(n, C>SO(n, C)—) W H

is injective. We investigate the structure of H-invariants of W. We put H=
{h€H|h-w=w for all w&W }. Then the quotient group H/H acts on W

effectively and W ¥ is isomorphic to W #/Z 1t is directly checked that the
orders of H and H are 2" 'en! and 2", respectively, and H/H acts on W

as a permutation of the diagonal elements. Since H/H contains the
permutation of i-th and j-th diagonal components, any H /H-invariant of W

is a symmetric polynomial of » diagonal elements and hence W #/% is
isomorphic to a polynomial ring C[Tr B, Tr B? ---, Tr B"] (BEW).
Since Sym(n, €)™ contains elements of the form Tr A’ (AsSym(n,

C)) and j(Tr AD=Tr B, it follows that j is surjective and hence Sym(#,

C)* ™ is a polynomial ring generated by {Tr A4, -, Tr A%.  q.e.d.

Next we consider the SO°(p, ¢)-invariants of Sym(p+gq, R), where SO°
(p, @) is the identity _component of the group {¢=GL(p+q, R)|'9/g=]}
(J/ =diag(, 1,---, 1,—1, —1,---, —1)) and Sym(p+gq, R)={A:R»"—>
R*|'AJ=JA}.

LEMMA 3.2. The ring of SO°(p, q)-invariants of Sym(p+gq, R) is
isomorphic to the polynomial ring generated by {Tr A, Tr A2, ---, Tr A9}
(AeSym(p+q, R)). . ‘

Proor. We put Q=diag(1, 1,--1, v =1, ,/—1,---, / —1) and define a
real Lie group homomorphism % : SO°(p, ¢)——SO(p+gq, C) by h(g)=Qyg
@' and a real linear map c¢:Sym(p+¢q, R)——Sym(p+gq, C) by c(A) =
QAQ™'. We construct a real homogeneous linear map % : Sym(p+q, R)°7"”

")—~—>Sym(p+q, C)??** 9 in the following way. First, since the map ¢
defined above is conjugate to a complexification of the real vector space Sym
(p+gq, R), c induces an injective real linear map ¢: {polynomial on Sym(p+
q, R)}——{polynomial on Sym(p+gq, C)} naturally. Next we consider the

following commutative diagram :

Sym(p+q, R) >Sym(p+q, C)
g | (o gES0°(p, @)
Sym(p+q, R —Sym(p+gq, C).

From this diagram it follows that the SO°(p, ¢)-invariants of Sym(p+g¢, R)
is mapped by ¢ to the SO(p+q, C)-invariants of Sym(p+¢, C). In fact,
since SO(p+gq, C) is connected, we have only to check the invariance by the
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action of the Lie algebra 0(p+¢q, C) and this follows immediately from the
fact that the differential of the group homomorphism #%:S0°(p, ¢)—>SO
(p+gq, C) is conjugate to a complexification of the real Lie algebra o(p, q).
Hence by restricting the map & we obtain a real homogeneous linear map k
:Sym(p+q, R)*? P—Sym(p+q, €)*°P . We have already known
the generators of Sym(p+q, €)*°?**“ (Lemma 3.1) and it is easy to see
that Tr A’€Sym(p+q, R)*”” ¥ (A€Sym(p+q, R)) is mapped by % to
Tr c(A)". Now let ¢ be an element of Sym(p+q, R)**” ©. Then k(¢) is
expressed as a polynomial of {Tr B, -+, Tr B?? with the complex
coeflicients. We write this polynomial in the following form :

k(¢)(B)=2af(Tr B, -+, Tr B*)+,/ =13 b,9;,(Tr B, ---, Tr B9,
where BESym(p+q, C), a;, bR and f;, g, are real polynomials. If B=
c(A), then k(¢)(B) is real valued, and hence we have

k() (c(A))=2afi(Tr c(A), -+, Tr c(A)*).
This implies that ¢ is expressed as a real polynomial of {Tr A4, ---, Tr A*)
because £ is injective. Therefore Sym(p+q, R)5*"* © is generated by {Tr
A,--, Tr A9 . Since these elements are independent, Sym(p+gq, R)5%'® @

is a polynomial ring generated by {Tr A4, ---, Tr A**9}. q.e.d.
Now we prove the following proposition. In the rest of this section V
always means the real 4-dimensional vector space, unless otherwise stated.
PROPOSITION 3.3. In the case n=4, the ving of invariants of K is
isomorphic to the polynomial ring R[x,, %, %, , %, %] (deg x,=i). The
genevator x; (1=2,---, 6) corvesponds to the trace of the i-th power of the (6,
6)-matrix
R1234 R1334 Rl434 R2334 R2434 R3434
_R1224 _R1324 _Rl424 _R2324 _R2424 _R3424
> R1223 R1323 R1423 R2323 R2423 R3423
R1214 R1314 R1414 R2314 R2414 R3414
_R1213 _RISIS _R1413 —R2313 —R2413 _R3413
R1212 R1312 R1412 R2312 R2412 R3412 >
where R =R(X;, X;, X, X)) and {X,, X,, X5, X,} is a base of V.
Proor. We have only to determine the structure of the ring of SL(V)
-invariants because the SL(V')-invariants of the tensor space V®---® V are
automatically GL(V)-invariants. We first construct a group homomor-
phism f:SL(4, R)——S0°(3, 3) in the following way. We fix a linear
isomorphism ¥ : A?V—— R® once for all and define a symmetric bilinear map
{,) on R% by
(w, w)XiNXoNXN X = v (w) A w,),
for w,, w,€R®. Then (, ) is a non-degenerate inner product of type (3, 3).
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In fact, by putting Wi=¢(X,AX,), Wo=yv(XiAXs), Wi=¢(XiNXD,
W= (XoAX), W=y (XoAX), We=y(XAXY), it is directly checked
that (W, , W)= —(W,, Woy=(W,, W,)=1 and other (W;, W;)=0.
Next we define a group homomorphism f : SL(4, R)—>GL (6, R) by
f@ew=9@gy¥ " (w),
for g=SL(4, R) and wER®, where g+y'(w) implies the canonical action
of gSL(4, R) on ¢y '(w)EAN?V. Then it is easy to see that the equality
F(@w, fl@w)=(wi, wy)

holds for g&SL(4, R) and w,, w,ERS, i. e., f(g) is an element of 0@,3).
Since SL(4, R) is connected, we obtain a group homomorphism f : SL(4, R)
—5S50°(3, 3). (Actually, f is a double covering map onto SO°(3, 3).)
From the decomposition in [Lemma 1.1, there is a surjective linear map S*
(A2V*)——>K, which induces an SL(V)-equivariant inclusion 7 : K*——S§?
(A%V). Composing this inclusion with v, we obtain the following commut-
ative diagram :

i

K* S*(A2V)—=—S’R®
gl flg) 9g&SL(4, R).
K*_l__,SZ(/\Z V) t/;:’ SZR6

Therefore the invariants of K is contained in the ring of SO°(3, 3)-invariants
of S2RS, via the map yoi. (We identify S?R°® and its dual space by the
metric induced from {,).) Next using the metric {,) on R® we consider
an element A<= S2R¢ as a linear endomorphism of R®, which is symmetric with
respect to (,). Then, by putting p=¢=3 in Lemma 3.2, the SO°(, 3)
-invariants of S?2R®is a polynomial ring generated by the elements {Tr A, Tr
A2 .-, Tr A% . (Remark that Tr A is unchanged by the action A——
PAP'.)) Now we express these invariants in terms of the components of the
curvature tensor. First, we express A= S?R® in a matrix form, using the
base { W,, ---, Ws} of R® defined above. If we put A;=A(W,, W,), then
A : R>——>RS is expressed in the form:
Alﬁ AZG A36 A46 ASG AGG
_AIS —AZS _A35 —A45 _A55 _AGS
Al4 A24 A34 A44 A54 A64
A13 A23 A33 A43 ASS AGS
——A12 —AZZ _ASZ _A42 ——ASZ _A62
All A21 A31 A41 AS] AGl .
Since A, A5, etc., correspond to Ri;., Rz, etc., the matrix form of
the element of K* is the (6, 6)-matrix R stated in this proposition. Hence
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the ring of invariants of K is generated by the elements {Tr B, Tr R?, ---,
Tr R®}. But we have Tr B=0 because Tr E:Z(R1234—R1324+R1423) =0 by
Bianchi’s identity. Thus to complete the proof of [Proposition 3. 3, we have
only to show that {Tr R? ---, Tr R®} are independent as polynomials on K.
For this purpose we consider the case where {R,,,} is expressed as a
polynomial of {a,, -, a5} in the following way : Ris.= (a1 +a5)/2, Riss=
(as+ay)/2, Rz = (a1+az+as+a4)/2, Rz =(a —a;)?/4, Rizis= {(ei+a,+
as+tay/2+ast? Ruu= (as—a.)?/4, R332 = Ry424= Rs45,=1 and other R are
all zero. Then the eigenvalues of the matrix R is given by {a, , a,, as, a,,
as, —(m+a,+as+a,+as)} and it can be easily proved that the 5

polynomials jZla?+{—(a1+---+a5)}k (k=2,---, 6) are independent as

polynomials of {a , -, as}. Hence {Tr R? .-, Tr R® are independent
as polynomials on K and we complete the proof of Proposition 3.3 q.e. d.

REMARK. (1) We complexify both the vector space K and the group
SL(V). Then the structure of the ring of invariants of K ¢is already known.
In fact the Lie algebra s((4, C) is isomorphic to D,=0(6, ¢) and it is known
that the ring of invariants of the complex irreducible representation of D,
(n=3) with highest weight 2A, (with respect to the natural numbering) is
isomorphic to the polynomial ring C[y,, ¥s, ¥4, -, ¥2.]. (See the table
3a in Schwarz [19, p. 181].)

(2) Inthe case n=2, K is a 1-dimensional vector space and the ring of
invariants of K is isomorphic to the polynomial ring R[x,]. In the case n=
3, K* is equal to S*(A*V) and since dimA?V =dim V =3, the ring of
invariants of K is isomorphic to the ring of invariants of the space S?V,
which is isomorphic to R[x,]. But, for =5, we do not know the structure
of the ring of GL(V)-invariants of K.

By [Proposition 3.3, the generator of the space S;;;;CKer y3* is
expressed in a simple form Tr R?, but we can express this obstruction in a
more geometrical form. First, using the metric on V, we consider R K as
a symmetric linear endomorphism of A%V and let *: A2V—> A2V be the
star operator defined by the metric and a fixed orientation of V. If {X,, -
, Xi4} is an oriented base of V, the matrix form of the endomorphism *°R :
N*V—>A?V with respect to the base {X;AX,, X\AX,, XinX,, X,AX,
, XoNX,, XsAX,} isjust equal to B. Hence if R<Im v2, We have Tr (xo
R)*=0. We extend this result in the following form.

THEOREM 3. 4. The notations being as above, Tr (xoR)3=Tr (xoR)5=0
if REIm v,

ProoF. Assume R&Im y,. Then we have R=LAL+ M A M for some
symmetric endomorphisms L, M of V (cf. [10, p. 102]). We have only to
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prove the theorem in the case RE€Im v, is generic. Hence we may assume
that L and M are non-singular endomorphisms. We denote by (,) the
metric on A2V induced from the metric on V. Then we have
(Rox)(XAY), ZAW)=((XNY), RLZANW))
=(«(XAY), LILOANLWH+XAY), M(Z)NM(W)).
Since (x(X ANY), ZAW)=det(X, Y, Z W) for X, Y, Z We&V we
have
((XANY), LIZOANLW))=det(X, Y, L(Z), L(W))
=det Ledet(LY(X), L7(Y), Z, W)
=det L-(+x(L"(X)ANLW(Y)), ZANW).
Therefore we have
Rox=xo(det Lo L *ANL'+det MeM*AM™).
Using this formula, the following two equalities are directly proved.

(Ro*)3=(det L+det M)+(Reox)+(det L-M ANM +det M-LAL
+det LeML*MAML*M +det Me LM *LALML)cx,

(Ro»)5=(det L+det M)2(Rox)+2(det L+det M)+(det L-M N M +det
MeLANL+det L-ML*M AML*M +det M«LMLANLM™L)ox+ (2det
LM+R+(det L) ML*M N ML*M + (det M)? LML N LML+ (det
L)2e ML"'"ML*"M AML*ML*M+ (det M)?« LM LM 'LANLM'LM™
L)ox.

From Bianchi’s identity we have Tr (Rox)=Tr (»oR)=Tr R=0 (see the
proof of [Proposition 3. 3). Since LAL, MAM, ML*M NML™M, etc., are
all curvature type operators, we have Tr (LAL)ox=Tr (M AM)o+=Tr
(ML*M ANML*M)ox=0, etc., from the same reason. (Remark that ML™
M, ML*MLM, etc., are symmetric endomorphisms of V.) Therefore we
have Tr (#oR)i=Tr (Ro*)i=0 for =3, 5. qg.e.d.

ReEMARK. (1) In the case n=5, we consider a 4-dimensional subspace
V, of V and fix an orientation of V,. Using the metric on V, we regard R
as a symmetric linear endomorphism of A2V, . Then the same conclusions
as in [Theorem 3. 4 hold if REIm y,. Hence the obstructions Tr (x°R)?, Tr
(xoR)% are useful in the case n=4.

(2) We consider the differential of the complexified quadratic map y5:
E$—— K¢ in the case #=4. Then the rank of y5. at a generic point of E¥§is
18. (See [5], or [7, p. 891].) Since dim K°=20 and the polynomials Tr
(»oR)3, Tr (xoR)% are independent as functions on K¢, the image Im y§ (C
K© is almost equal to the variety {REK®|Tr (xoR)*=Tr (x°R)*=0}.
But we do not know whether this variety is just equal to the closure Im y§or
not.

COROLLARY 3.5. The Riemannian symmetric spaces P*(C), SU(3)/SO
(3) and their non-compact dual spaces cannot be isometrically immersed into
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the Euclidean spaces in codimension 2 even locally.
RroOF. Let R be the curvature of P%(C) or the curvature of SU (3)/S0O
(3) restricted to some 4-dimensional subspace. Then the curvature of their
non-compact dual spaces are given by —R. In particular Tr (—+*°R)3=—
Tr (x»oR)3. Hence we have only to prove Tr (xoR)%*+0 for the spaces P?
(C) and SU (3)/S0(3).
(i) The case of P2(C). The curvature R: A2V——> A2V (V is the
tangent space of P2(C) at the origin) is given by
R(XiNY)=4X ANY,+2X,N Y,
RX\ ANX,) =X NX,+ Y \Y,
R<X1/\ Y2>:X1/\ Yz_ YINX,
RIYI'NX) =Y NX,— XiNY,
RYWANY)=XINX;+YINY,
RX,NY)=2X ANY +4X, N\ Y,,
where {X,, Y., X,, Y.} is a suitable oriented orthonormal base of V (see
§4). Then by direct calculations the eigenvalues of o R are given by {6, —
2, —2,—2,0,0} and hence we have Tr (x°R)3=192+0.
(ii) The case of SU(3)/SO(3). Let 3u(3)=0(3)+ m be the canonical
decomposition of the symmetric pair (8u(3), 0(3)). Then m={X&2u(3)|
tX=X}. We use the following orthonormal base of m :

Xlz/‘—T(l 0_1), Xzz—%(l —2 1), X3:J——1(l : O)’

X4:/:T(1 0 l), st/_—T(O 1 1).

Then the curvature R : A2m——> A2 m is given by (up to a positive constant)

R(X\NX,)=0

RXINX) =XiNXs+ VIXoNAN X+ XN X5

RXINX)=4X AN X, +2X; N\ X5

RXINX) =X NX;— /3X;AXs+ XN X,

R(XNANX)=/3XINXs+3XNA X+ VIX N X,

R(X,ANX,)=0

RXNAXs)=—/3XiNXs+3XAX— V3IXNA X,

R(XNANX) =X NXs— /IX,AXs+ XN X,

R(XAX)=2X AN X, + X, A X

R(X,NX)=XiNXs+ V3XoNA X+ XN X
We restrict R to the 4-dimensional subspace V spanned by the oriented base
{X,, X5, X,, Xs}. Then the restricted curvature R : A2V—> A%V is given
by

RX.NX)=XiNX;+ X, N X5
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RX\ANX)=4X N X, +2X; N X,

RXINX)=XINXs+ XA X,

R(XsANX)=XINXs+ XN X,

R(XsAX:) =2 X AN X, + XA X5

R(XNX) =X NXs+ X N X,.
It is easy to see that the eigenvalues of =R are given by {2,2,0,0,0, —4}
and hence we have Tr (xocR)3*= —48=+0.

Thus by [lheorem 3.4 P?(C), SU(3)/SO(3) and its non-compact dual
spaces do not admit a solution of the Gauss equation in codimension 2.

q.e.d.

REMARK. (1) Inthe case of P%(C) and its dual space, these results can
be proved by another method. First, since the dual space of P2(C) is a
space of negative curvature, the corollary is obtained from the result in
Otsuki [18, p. 233]. As for the space P?(C), Weinstein proved in the
following : Let M be an n-dimensional Riemannian manifold which is
isometrically immersed into R”2. Then M has positive sectional curvature
if and only if the eigenvalues of R: A2V—— A2V are all positive. In our
case, the space P?(C) has positive sectional curvature, but R : A2V —>A?
V' is not positive definite and hence it follows that P?(C) cannot be locally
isometrically immersed into RS.

(2) It is known that P™C) and SU(n)/SO(%n) can be globally
isometrically imbedded into the Euclidean space of codimension #?and (n?+
n+2)/2, respectively (Kobayashi [14]) and it can be proved that P*(C)
admits a solution of the Gauss equation in codimension #?—1 (see §4 (4)).
But we do not know the least dimensional Euclidean space into which P*((C)
(n=2) or SU(n)/SO(n) (n=3) can be (locally or globally) isometrically
immersed.

§4. Final remarks.

In this section we state some results and remarks on local isometric
immersions of Riemannian manifolds.
(1) The character of S*K*.
By the same method as in § 1, we can determine the character of S*K*,
using the system REDUCE 2. The result is as follows :
SS,B + 58,6,2 + SS,4,4 + SS,4,2,2 + 88,2,2,2,2 + S7,7,1.1 + S7,6,2,1 + 2\8‘7,5,3,1 + S7,5,2,1,1
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contained in Ker y4* (see Remark (2) at the end of §1). But this relation
is equivalent to the condition (*) stated in Introduction (in the case £=3).

(2) The expressions of the generators of S?K* for n<4.

The generators of the invariant irreducible subspaces of K*, S?2K* and
S®K* can be expressed in a simple form if the depth of the corresponding
Young diagram is at most 4. In fact, let R be the (6, 6)-matrix stated in
[Proposition 3.3 and let (R%);; be the (i, 7)-component of R*. Then the
generators of SPK* are expressed in the following form :

p=1 132_2:1?61-
p=2 134'4__—(1?61)2;
L |Ra R
“z2 RG] Rez s

1 -
Iy a1 :T(R2>61 ,

Iy, :—21—Tr(ﬁz) .
p=3 I =Ry,
5 }?51 Esz
[B6,4,2_R61~ EGL Rei ,
R~41 R~42 st
136‘2’2‘2— 1{51 R~52 R~53
Rea Rs; Resl,
1 ~ =~
Bs_5,1,127R61'<R2>61 s
_ R:(Sl (1‘?2%1
B sz Riez (!e2>63 ,
R R R
35,3’3'1: Rim Rsz R54

~R61~E62~E64 ’

R~31 R~32 R~34
134’4'4: R~51 Igsz R~54

Re R Ref,



132 Y. Agaoka

N ]
Iy g, = (R9a,
1 N
Baas = —g—Tr <R3> .

At present we can not express the remaining generators of S2K* in a simple
form. (Compare with the results in [1], [3], [8])

(3) Inverse formula of the Gauss equation. (The case of codimension
1.)

In [20, p. 199] Thomas obtained the inverse formula of the Gauss
equation in the case of codimension 1. (See also Kawaguchi [12, p. 43].)
Namely in the case n=3, if REK is a generic element of Im y,, then the
second fundamental form a=vy7!(R) is uniquely determined from R (up to
a sign). This formula has the following representation theoretic meaning.
In § 2 we have already proved that if R is contained in the image of y,, then

134'2‘2: R, ng =ah &y a2 A3
Rizis Risis ayz Az Q3
Q3 Q23 33
and
134'4’4: Riziz Riziz Risss| = |ann ar2 ans)?
Rizis Risis Riss Qi dy2 Qs
Rizs Rizs Rass Qi3 23 Q33

Hence if I +#0, we have
2

R1212 R1213
R1213 R1313
R1212 R1213 RIZZS
R1213 RlSlS R1323
R1223 R1323 R2323 »
which is just equal to Thomas’ inverse formula.

(4) Solutions of the Gauss equation of P*(C) (#=2) and its dual space
in codimension n?—1.

Let su(n+1) =3 (n)+u(l))+m be the canonical decomposition of the
symmetric pair (Su(xn+1), s(u(n)+u(l))) (n=2). The space

—n=~ I\
m= O v
0

2__
ay;"—

_tl;

vEC”}

1S identiﬁed with the tangent space of P*(C) at the origin. We fix an
orthonormal base {X,, -, X,, Y1, -, Y,} of m by
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Xi:( 0 1>l and Yi:¢—1<0 1>i
—110 1 |0

for =1, ---, n. Then the curvature R : A2m—— A2%m of P*(C) is given by
R(XIAXJ>:X1/\XJ+ Y,/\ Y, R

ROX.AY)=2X,A K+2§;1Xk/\ Y, ,

RXAYD=XAYA+ XY,
R(YNY)=XANX;+Y:NY;,
for 1<i, j<un (i+j). Using the metric, we consider R as an element of K
as usual. First we define a €S*m*® R"*! as follows: Let {e;, &,}i<icisn
be an orthonormal base of R”*~” and let {v;},<;<, be a base of R"! such that
lv;| =Cv;, v;)=2 for 4, j=2,---, m, i+j. Then {e;(i<)), &;(1<)), v;
(2<i<n)} is a base of R* '=R" "@®R" . We set ¢;;=—e¢,; and &;=2¢;
for i#+j. We define & : mXm—> R** by

a(X,, X)=ka(v,+--+v,),

a(Yy, YDO=kb(v,+-+0va),

a(X;, XD)=a(Y;, YOo=v;, a(X;, YD=a(X,, Y)=0,

a(X,, X)=aé,, a(Y,, Y)=0é;, a(X,, Y)=ae;,

a(Y,, Xo=—be,;, a(X:, Y;)=e;,
and a(X;, Xp=a(Y;, Y)=¢;
for 2<i, j<wu, i+j, where k=,/2/n(n—1I) and a, b are the two real
solutions of the quadratic equation x*—2knx+1=0. Then by direct calcula-
tions « satisfies the Gauss equation 7»2-1(@)=R.

Next we construct a solution of the Gauss equation of the dual space of
P*(C). Note that the curvature of the dual space is given by —R. Let {e;;
(1€i<j<n), &;(1<i<j<n), ¢;(2<i<n)} be an orthonormal base of R"**
and we set ¢;;=¢;;, &;=¢&;for i+j. We define a symmetric bilinear map a*
X m—s R* ! by

a*(X;, X)=Fk 6:(é+-+&,)+A—-dae,,

a*(Y;, Yo=—Fk 6,8+ +8&,)+ Q- be;,

a*(X;, Yo)=—Fk 6.(eizt++ein),

a*( X, Xp)=—a*(Y;, Y)=¢; and a*(X;, Y)=e;,
for 1<i j<mn, i+j, where k=,/2/(n—1) and a;, b; 2<i<mn) are real
numbers such that a;b;=—4. Then by direct calculations it is easy to see
that «* satisfies the Gauss equation 7»-1(a*) = —R.

In the case n=2 (dim P?*(C)=4), it is directly verified that the
differential of the map y;:S*m*® R>——K is of maximal rank at «
constructed above. Since dim S1*® R®*=30 and dim K =20, the image of y,
contains an open subset of K. In particular we have Ker y4*={0} for all p



134 Y. Agaoka

if n=4, i. e., there exists no polynomial relations of the curvature tensor in
the case M*CR".

(5) A remark on Im v, .

We prove that the image of the map y,: S2V*——K is not closed in a
usual topology if #=3. Let {X,, -, X,} be an orthonormal base of the
n-dimensional Euclidean vector space V and we define a symmetric linear
map R: A*V—> A2V by

R(Xl/\X2> :Xl/\XZ s

RIXANX)=XANX,
and R(X;NX,)=0
for other X;AX;. It is clear that R satisfies Bianchi’s identity and hence R
€K. We prove that R&Im vy,. In fact if R is contained in Im y,, then
there exists a symmetric linear map L: V——V such that R=LAL. Then
we have R(X,AX,) =X, A X,=L(X,)ANL(X,), which implies that {X;, X,
and {L(X,), L(X;)} coincide. In the same way, using R(X,AX,), it
follows that {X,, X;}={L(X,), L(X;)}. Hence we have

L(X,)=aX, s

1
L<X2>:—“X2 ,

a

1
L<X3>:7X3

for some a€R\{0}. But R(X,AX,)=L(X,)AL(X;) :%Xz/\ X;+0, which

is a contradiction. Therefore R is not contained in Im y,. We remark that
R satisfies the condition rank R(X, Y)<2 for any X, Y& V. Next for a
non-zero real number ¢ we define a symmetric linear map L,: V——V by

Lt<X1> — tXl ’
1
Lt<X2> :TXZ ’
1
Lt<X3> :TXS
al’ld Lt<Xl> :O

for4<:<#n. Then it is easy to see that %im LANL,=R. Clearly L,AL,is an.
element of Im y, and therefore Im y, is not a closed set. Note that in the case
n=2, Im y, is closed because y, is a surjective map.
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