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Systems of equations of hyperbolic-parabolic type
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\S 1. Introduction

In this paper we continue the study of linear symmetric systems of the
form

(1. 1) A^{0}w_{t}+ \sum_{j=1}^{n}A^{j}w_{x_{j}}-\sum_{j,k=1}^{n}B^{jk}w_{x_{j}x_{k}}+Lw=0 ,

where t\geq 0 , x= (x_{1} \ldots\prime x_{n})\in R^{n} and w is a function of the variables t and x,

valued in R^{m}. A^{0} , A^{j}(j=1, \cdots. n) , B^{jk}=B^{kj}(j, k=1, \cdots n) and L are m\cross m

constant matrices. For notational convenience, we set

(1. 2)
A( \omega)=\sum_{j=1,n}^{n},A^{j}\omega_{j},

B( \omega)=\sum_{j,k=1}B^{jk}\omega_{j}\omega_{k} ,

where \omega= (\omega_{1}, \cdots , \omega_{n}) is a unit vector in R^{n}. The first assumptions on the
coefficient matrices can be stated as follows.

CONDITION 1. 1. ( i) A^{j}(j=1, \cdots. n) and B^{jk}(j, k=1, \cdots\wedge n) are real
symmetric matrices and for each \omega\in S^{n-1} , B(\omega) is nonnegative definite.

(ii) A^{0} and L are real symmetric matrices. Furthermore, A^{0} is positive
definite and L is nonnegative definite.

The above condition gives a stable nature to the system (1. 1) but it is
not strong enough to guarantee the decay of solutions. We look for
nontrivial solutions of the linear homogeneous equation

(1. 3) \lambda A^{0}\phi+\{L+\zeta A(\omega)-\zeta^{2}B(\omega)\}\phi=0 ,

for \zeta\in iR and \omega\in S^{n-1} . The admissible values of \lambda are the zeros of
det (\lambda A^{0}+L+\zeta A(\omega)-\zeta^{2}B(\omega)) . We write \lambda=\lambda(\zeta, \omega) and define what we
call the strict dissipativity.

DEFINITION 1. 1. The system (1. 1) is said to be strictly dissipative, if
the real part of \lambda(\zeta, \omega) is negative for each \zeta\in iR|\{0\} and \omega\in S^{n-1} .

The main purpose of the present paper is to prove that the strict
dissipativity brings about the decay of solutions. The result seems to be
new, because the rotational invariance is not assumed to hold for (1. 1).

We note that, in the previous works ([8], [6]), the decay estimates were
obtained under CONDITION 1. 1 and an additional condition which is as
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follows.
CONDITION 1. 2. \tilde{T}here exists a set of m\cross m real matrices K^{j}(j=1, \cdots

n) satisfying the following properties:
(i) K^{j}A^{0}(j=1, \cdots n) is a real skew-symmetric matrix.
(ii) Let [K^{j}A^{k}]’ be the symmetric part of K^{j}A^{k} , namely, [K^{j}A^{k}]’=

\{K^{j}A^{k}+{}^{t}(K^{j}A^{k})\}/2 . Then, for each \omega\in S^{n-1} ,

\sum_{j,k=1}^{n}([K^{j}A^{k}]’+B^{jk})\omega_{j}\omega_{k}+L

is a positive definite matrix.
The meaning of the above condition does not seem to be intuitively clear,

because it comes from computational necessities. We remined the reader
that CONDITION 1. 2, together with CONDITION 1. 1, enabled us to use an
energy method and establish the desired decay estimates. The existence of
such matrices was shown each time for concrete problems C[8] , [6] ) . It
seems quite plausible that the matrices K^{j}(j=1, \cdots-n) exist for any system
(1. 1) whose solutions obey the decay estimates. Unfortunately we are
unable to prove this conjecture. So we are led to introduce the notion of
what we call the compensating function. Let K(\omega) be a m\cross m real matrix
for each \omega\in S^{n-1} .

DEFINITION 1. 2. K(\omega) is called a compensating function for the system
(1. 1), if the following properties are satisfied:
(i) K(\omega) is a C^{\infty} function on S^{n-1} and K(-\omega)=-K(\omega) for each \omega\in

S^{n-1} .
(ii) K(\omega)A^{0} is a skew-symmetric matrix for each \omega\in S^{n-1} .
(iii) [K(\omega)A(\omega)]’+B(\omega)+L is a positive definite matrix for each \omega\in

S^{n-1} .
It is easily seen that we can get a compensating function by putting

K( \omega)=\sum_{j=1}^{n}K^{j}\omega_{j} , if CONDITION 1. 2 is assumed to hold. Hence the existence

of a compensating function follows from CONDITION 1. 2. The computations
needed for obtaining the decay estimates in [8], [6] remain valid provided
that a compensating function exists for (1. 1). We note that a compensat-
ing function can be regarded as a symbol of a singular integral operator of

homogeneous degree zero. See, for example, [7]. Observe also that \sum_{j=1}^{n}K^{j}\xi_{j}

corresponds to a certain differential operator. Now our aim is to prove
the equivalence of the existence of a compensating function and the strict
dissipativity of the system.

THEOREM 1. 1. Assume CONDITION 1. 1. Let A(\omega) and B(\omega) be as in
(1. 2) and let \lambda(\zeta, \omega) be the value of \lambda corresponding to a nontrivial
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solution of (1. 3). Then each of the following four conditions implies the
other three:

(1) There exists a compensating function K(\omega) for (1. 1).
(2) (1. 1) is strictly dissipative.
(3) Let \psi\in R^{m}|\{0\} and let B(\omega)\psi=L\psi=0 for some \omega\in S^{n-1} . Then

we have \mu A^{0}\psi+A(\omega)\psi\neq 0 for any \mu\in R .
(4) Let \rho(r)=r^{2}/(1+r^{2}) for r\geq 0 . Then, there exists a positive constant

\delta such that for any \zeta\in iR and \omega\in S^{n-1} , we have Re \lambda(\zeta, \omega)\leq-\delta\rho(|\zeta|) .
REMARK 1. 1. CONDITION (3) will turn out to be a quite useful criterion

for some concrete problems. The decay estimates are established on the
basis of CONDITION (4).

REMARK 1. 2. The explicit forms (1. 2) for A(\omega) and B(\omega) are not
employed in the proof. The properties we use are:

(i) A(\omega) and B(\omega) are m\cross m matrices for each \omega\in S^{n-1} . A(\omega) and
B(\omega) are C^{\infty} functions on S^{n-1} and we have A(-\omega)=-A(\omega) , B (-\omega)=B
(\omega) .

(ii) For each \omega\in S^{n-1} , A(\omega) and B(\omega) are real symmetric matrices.
Moreover, B(\omega) is nonnegative definite.

(iii) A^{0} and L are real symmetric matrices. Furthermore, A^{0} is positive
definite and L is nonnegative definite.
These conditions ( i ) , ( ii) and (iii) can replace CONDITION 1. 1 in
THEOREM 1. 1.

THEOREM 2. 1 in [8] and THEOREM 3. A. 2 in [6] can be improved by
THEOREM 1. 1 as follows.

THEOREM 1. 2. Suppose CONDITION 1. 1 and one of the four conditions
stated in THEOREM 1. 1. Write w(0, x)=w_{0}(x) for the initial condition to
(1. 1) and let w_{0}\in H^{s}(R^{n})\cap L^{p}(R^{n}) , where s is nonnegative integer and p\in

[1, 2] . Then, there exist positive constants \delta’ and C such that the solution
w=w(t, x) of the initial value problem for (1. 1) satisfifies

(1. 4) ||D_{x}{}^{t}w(t)||\leq C\{ e^{-8’t}||D_{X}^{l}w_{0}||+(1+t)^{-(\gamma+l/2)}||w_{0}||_{L^{\rho}}\}

for any integer l with 0\leq l\leq s, where D_{X}^{t}=\{(\partial/\partial x)^{a} ; |\alpha|=l\} , \gamma=n(1/2p-

1/4) and ||\cdot|| denotes the L^{2}(R^{n}) -norm.
We give in \S 2 some preliminary lemmas in linear algebra which will be

needed in the next section. THEOREM 1. 1 is proved in \S 3. In \S 4, we discuss
the global solutions to the initial value problem of a certain quasilinear
symmetric system of hyperbolic-parabolic type. The results in [6] are
reformulated by using THEOREM 1. 1. The equations for the three dimensional
al viscous compressible fluid are mentioned as an example. In \S 5, discrete
velocity models for the Boltzmann equation are studied and the results of
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[5], namely, the existence of solutions in the large are obtained again. See
THEOREM 5. 1. We deal with the two dimensional 8-velocity model in \S 6,

which was considered in [5]. The three dimensional 14-velocity model by

Cabannes is treated in \S 7. It is shown that CONDITION (3) in THEOREM 1. 1
holds true for these models. Hence THEOREM 5. 1 can be applied.

\S 2. Lemmas from linear algebra

In this section, we give several lemmas needed in the proof of THEOREM
1. 1. Most of the materials are found in [2], but here we give the proofs
from a different viewpoint.

We work in the space \mathscr{H} of m\cross m matrices with complex entries. \mathscr{H} is
a Hilbert space under the inner product
(2. 1) \{ X, Y\}=tr(XY^{*}) ,

where Y^{*} denotes the conjugate transpose of Y and tr(XY^{*}) denotes the
trace of XY^{*} . For given A\in \mathscr{H}, we define a linear transformation \Phi_{A}

acting in \mathscr{H} by
(2.2) \Phi_{A}(X)=[A, X]\equiv AX-XA , X\in \mathscr{H}.

LEMMA 2. 1. Let A\in \mathscr{H} be a normal (resp. hermitian) matrix. Suppose

that A has the complete set of linearly independent eigenvectors \psi_{j}\in C^{m}(j=1 ,

\ldots m) corresponding to eigenvalues \mu_{j}\in C (resp. \mu_{j}\in R ) (j=1, \cdots. m) ,

respectively {not necessarily distinct). Suppose in addition that (\psi_{j}, \psi_{k})=

\delta_{jk} , where ( ) denotes the Euclidean innerproduct in C^{m}. Then we have:
(i) \Phi_{A} is a normal (resp. hermitian) transformation in \mathscr{H}r

(ii) The eigenvalues of \Phi_{A} are the m^{2} numbers \mu_{j}-\mu_{k}(j, k=1, \cdots. m) .

The corresponding eigenvectors are X_{jk}\equiv\psi_{j}\psi_{k}^{*} (j, k=1, \cdots m) , respectively.
PROOF. We have

\{\Phi_{A}(X), Y\}=tr((AX-XA)Y^{*})--tr(X ( Y^{*}A-AY^{*}))

=tr(X(A^{*}Y-YA^{*})^{*})=\{X, \Phi_{A}.(Y)\} ,

for X, Y\in \mathscr{H}. Let A be a hermitian matrix. Then the above equality gives
\{\Phi_{A}(X), Y\}=\{X, \Phi_{A}(Y)\} , which implies that \Phi_{A} is a hermitian transfor-

mation in \mathscr{H} . If A is a normal matrix, we have
\Phi_{A}.(\Phi_{A}(X))=[A^{*}. \Phi_{A}(X)]=A^{*}(AX-XA)-(AX-XA)A^{*}

=A(A^{*}X-XA^{*})-(A^{*}X-XA^{*})A

=[A, \Phi_{A^{*}}(X)]=\Phi_{A}(\Phi_{A}.(X)) ,

for X\in \mathscr{H}. These two equalities show that \Phi_{A} is a normal transformation
in \mathscr{H} . This completes the proof of ( i ) . Secondly,

\Phi_{A}(X_{jk})=AX_{jk}-X_{jk}A=A\psi_{j}\psi_{k}^{*}-\psi_{j}\psi_{k}^{*}A

=(\mu_{j}-\mu_{k})\psi_{j}\psi_{k}^{*}=(\mu_{j}-\mu_{k})X_{jk} .
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where \psi_{k}^{*}A=\mu_{k}\psi_{k}^{*} was used. This proves ( ii) .
We set

\mathscr{C}(A)=\{X\in \mathscr{H};[A, X]=0\} ,(2.3)
\mathscr{C}(A)=\{[A, X] : X\in \mathscr{H}\} .

These subspaces of \mathscr{H} are the kernel and the range of \Phi_{A} respectively.
Define \Pi_{A} to be the orthogonal projection onto \mathscr{C}(A) . Then the next lemma
gives a recipe for computing \Pi_{A} .

LEMMA 2. 2. (Ellis-Pinsky [2]) Let A\in \mathscr{H} be diagonable, namely, let A
be similar to a diagonal matrix. Suppose that A=\lambda_{1}P_{1}+\cdots+\lambda {}_{rr}P is the
spectral resolution of A, where \lambda_{1} . \cdots . \lambda_{r} arc the distinct eigenvalues of A
corresponding to the eigenprojections P_{1} \ldots.P_{r} , respectively (not necessarily
orthogonal . Defifine a linear transformation \tilde{\Pi}_{A} in \mathscr{H} by

(2.4) \tilde{\Pi}_{A}(X)=\sum_{j=1}^{r}P_{j}XP_{j} , X\in \mathscr{H}.

Then we have:
(i) \tilde{\Pi}_{A} is a projection onto \mathscr{C}(A) .
(ii) If A is a normal matrix, then \tilde{\Pi}_{A} is the orthogonal projection onto

\mathscr{C}(A) . Hence \tilde{\Pi}_{A}=\Pi_{A} \mathscr{C}(A) and \mathscr{C}(A) arc the orthogonal complemcnts
of each other. The kernel of \tilde{\Pi}_{A} coincides with \mathscr{C}(A) .

PROOF. For X\in \mathscr{H}, we have

\Pi_{A}^{2}(X)=\sum_{j=1}^{r}P_{j}\tilde{\Pi}_{A}(X)P_{j}=\sum_{j,k=1}^{r}P_{j}P_{k}XP_{k}P_{j}=\sum_{j=1}^{r}P_{j}XP_{j}=\tilde{\Pi}_{A}(X)\sim .

Hence \tilde{\Pi}_{A} is a projection. Since AP_{j}=P_{j}A=\lambda_{j}P_{j}(j=1, \cdots. r) , we obtain
A\tilde{\Pi}_{A}(X)=\Sigma AP_{j}XP_{j}=r\Sigma\lambda_{j}P_{j}XP_{j}=r\Sigma P_{j}XP_{j}A=\tilde{\Pi}_{A}(X)Ar .

j=1 j=1 j=1

It follows that [A,\tilde{\Pi}_{A}(X)]=0 , namely, the range of \tilde{\Pi}_{A} is contained in
\mathscr{C}(A) . But, if X\in \mathscr{C}(A) , then X commutes with P_{j}(j=1, \cdots r) .
Therefore,

\tilde{\Pi}_{A}(X)=\sum_{j=1}^{r}P_{j}XP_{j}--X\sum_{j=1}^{r}P_{j}^{2}=X\sum_{j=1}^{r}P_{j}=X,

which implies that \mathscr{C}(A) is contained in the range of \tilde{\Pi}_{A} . This completes
the proof of ( i ) . Next we prove ( ii) . Since P_{j}^{*}=P_{j}(j=1, \cdots. r) , we
have

\{\tilde{\Pi}_{A}(X), Y\}=tr(\sum_{j=1}^{r}P_{j}XP_{j}\cdot Y^{*})=tr(X\cdot\sum_{j=1}^{r}P_{j}Y^{*}P_{j})

=tr(X\tilde{\Pi}_{A}(Y)^{*})=\{X,\tilde{\Pi}_{A}(Y)\} ,

for X, Y\in \mathscr{H}. Hence \tilde{\Pi}_{A} is a hermitian transformation in \mathscr{H}. Combining
this with ( i ) , we conclude that \tilde{\Pi}_{A} is the orthogonal projection onto \mathscr{C}(A) .
The fact that \tilde{\Pi}_{A}=\Pi_{A} is a consequence of the uniqueness of the orthogonal
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projection onto a subspace. In order to prove the last statement of ( ii) , we
note that \Phi_{A} is a normal transformation in \mathscr{H} (see ( i ) of LEMMA 2. 1).

Since \mathscr{C}(A) and \mathscr{C}(A) are the kernel and the range of a normal transforma-
tion \Phi_{A} respectively, these subspaces are the orthogonal complements of
each other. The proof of LEMMA 2. 2 is completed.

LEMMA 2. 3. \subset\backslash Ellis-Pinsky [2] ) Let A be a normal matrix. If B is
hermitian, then \Pi_{A}(B) is also hermitian. Furthermore, if B is nonnegative
defifinite, then \Pi_{A}(B) is nonnegative defifinite also.

PROOF. Since A is normal, \Pi_{A}=\tilde{\Pi}_{A} by ( ii) of Lemma 2. 2. Hence we
have

\Pi_{A}(B)^{*}=(\sum_{j=1}^{r}P_{j}BP_{j})^{*}=\sum_{j=1}^{r}P_{j}BP_{j}=\Pi_{A}(B) .

For x\in C^{m},

( \Pi_{A}(B)x, x)=\sum_{j=1}^{r}(P_{j}BP_{j}x, x)=\sum_{j=1}^{r}(BP_{j}x, P_{j}x)\geq 0 .

This completes the proof of LEMMA 2. 3.
LEMMA 2. 4. Suppose that A and B are hermitian matrices. Then there

exists a skew-hermitian matrix K such that
(2. 5) B=\Pi_{A}(B)+[A, K] .

If in addition, A and B arc real matrices, then K can be chosen so as to be
a real skew-symmetric matrix.

PROOF. We see that the kernel of \Pi_{A} coincides with \mathscr{C}(A) by ( ii) of
LEMMA 2. 2. The existence of K satisfying (2. 5) then follows at once.
Since both A and B are hermitian, \Pi_{A}(B) is hermitian by LEMMA 2. 3.
Hence [A, K] is also a hermitian matrix. We obtain, therefore,

[A, K]=[A, K]^{*}=[K^{*} A] .
Setting K_{1}=(K+K^{*})/2 and K_{2}=(K-K^{*})/2 , we have K–K_{1}+K_{2} . The
above equality then reduces to [A, K_{1}]--0 . Hence,

[A, K]=[A, K_{1}]+[A, K_{2}]=[A, K_{2}] .
This means that the skew-symmetric matrix K_{2} also satisfies (2. 5). Now
we assume that both A and B are real matrices. Then \Pi_{A}(B) is a real
matrix and hence [A, K] is real also. Denoting by bar the complex
conjugate of a matrix, we get

[A, K]=[\overline{A,K}]=[A,\overline{K}] .
Set K’=(K+\overline{K})/2 , K\prime\prime=(K-\overline{K})/2 . Then K=K’+K’ Taking into
account of the above equality which implies [A, K’]=0, we have

[A, K]=[A, K’]+[A, K’]=[A, K’] .
Therefore, the real matrix K’ satisfies (2. 5). The proof of LEMMA 2. 4 is
complete.
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The following theorem is a prototype of THEOREM 1. 1.
THEOREM 2. 5. Suppose that A and B are real hermitian matrices.

Suppose furthermore that B is nonnegative defifinite. Then each of the
following two conditions implies the other.

(1) There exists a real skew-symmetric matrix K such that B+[K, A] is
positive definite.

(2) Let \psi\in R^{m}|\{0\} and let B\psi=0 . Then, for any \mu\in R , We have \mu\psi+

A\psi\neq 0 .
PROOF. We prove first that (1) implies (2). Suppose for a moment

that \psi\neq 0 , B\psi=0 and \mu\psi+A\psi=0 for some \mu\in R . Then for any real
skew-symmetric matrix K, we have

((B+[K, A])\psi, \psi)=(KA\psi, \psi)-(AK\psi, \psi)=2(KA\psi, \psi)

=-2\mu(K\psi, \psi)=0 .
This implies that (1) is not true.

Conversely, assume that (2) holds true. By LEMMA 2. 4, we have the
decomposition (2. 5) for B with a real skew-symmetric matrix K. As a
consequence of LEMMA 2. 3, \Pi_{A}(B) is real symmetric and nonnegative
definite. To prove further the positive definiteness of \Pi_{A}(B) , it suffices to
show that x=0 follows from (\Pi_{A}(B)x, x)=0 . We recall that A=\lambda_{1}P_{1}+\cdots+

\lambda {}_{rr}P . where \lambda_{j}\in R are the distinct eigenvalues of A and P_{j} are the
corresponding eigenprojections. Let

( \Pi_{A}(B)x, x)=\sum_{j=1}^{r}(BP_{j}x, P_{j}x)=0 .

Setting x_{j}=P_{j}x, we have Bx_{j}=0 and -\lambda_{j}x_{j}+Ax_{j}=0 for j=1 , \cdots-r. Hence,

x_{j}=0 (j=1, \cdots r) by (2). Therefore, x= \sum_{j=1}^{r}x_{j}=0 . This implies that (1)

follows from (2). The proof of the theorem is completed.

\S 3. Proof of Theorem 1. 1

First of all, we reduce the system to a standard type by suitable
transformation.

LEMMA 3. 1. It suffices to prove the theorem in the case of A^{0}=I (unit

matrix.
PROOF. Let us consider a system (1. 1) satisfying CONDITION 1. 1 where

A(\omega) and B(\omega) are defined by (1. 2). This implies that we are given a
quadruplet \{ A^{0}, A(\omega), B(\omega), L\} satisfying ( i ) , ( ii) and ( iii) in
REMARK 1. 2. Making use of the positive definiteness of A^{0} , we set

\tilde{A}(\omega)=(A^{0})^{-1/2}A(\omega)(A^{0})^{-1/2}.\tilde{B}(\omega)=(A^{0})^{-1/2}B(\omega)(A^{0})^{-1/2} ,
\tilde{L}=(A^{0})^{-1/2}L(A^{0})^{-1/2} ,
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and obtain a new system, i . e. , a quadruplet \{ I,\tilde{A}(\omega),\tilde{B}(\omega),\tilde{L}\} . We
assume first that CONDITION (1) holds for the latter. This means that there
exists a compensating function \tilde{K}(\omega) for the quadruplet \{ I,\tilde{A}(\omega),\tilde{B}(\omega) ,
\tilde{L}\} . Then, setting K(\omega)=(A^{0})^{1/2}\tilde{K}(\omega)(A^{0})^{-1/2} and noting that

K(\omega)A^{0}=(A^{0})^{1/2}\tilde{K}(\omega)(A^{0})^{1/2} ,
K(\omega)A(\omega)=(A^{0})^{1/2}\tilde{K}(\omega)\tilde{A}(\omega)(A^{0})^{1/2} ,

we get a compensating function K(\omega) for the quadruplet \{ A^{0} , A(\omega) ,

B(\omega) , L^{\iota}, . Hence we conclude that CONDITION (1) holds for the original
system if it holds for the transformed system. The converse assertion can be
shown in a similar way. Therefore, CONDITION (1) holds for the original
system if and only if it holds for the transformed system.

Next we treat CONDITION (2). We consider the linear homogeneous
equation

\lambda\tilde{\phi}+\{\tilde{L}+\zeta\tilde{A}(\omega)-\zeta^{2}\tilde{B}(\omega)\}\tilde{\phi}=0

and look for a nontrivial solution \tilde{\phi} , where \zeta\in iR , \omega\in S^{n-1} and \lambda\in C .
Namely, -\lambda and \tilde{\phi} are the eigenvalue and the eigenvector of \tilde{L}+\zeta\tilde{A}(\omega)-

\zeta^{2}\tilde{B}(\omega) , respectively. This equation is just (1. 3) with \{ A^{0} , A(\omega) , B(\omega) ,

L\} replaced by \{ I,\tilde{A}(\omega),\tilde{B}(\omega),\tilde{L}\} . Setting \phi=(A^{0})^{-1/2}\tilde{\phi} for a given
nontrivial solution \tilde{\phi} , we obtain a nontivial solution of

\lambda A^{0}\phi+\{L+\zeta A(\omega)-\zeta^{2}B(\omega)\}\phi=0 ,

which is (1. 3). Also the converse is true, because (A^{0})^{-1/2} is an isomor-
phism of C^{m} onto C^{m}. Note that the corresponding value of \lambda coincides with
each other. These observations show that CONDITION (2) for the original
system implies CONDITION (2) for the transformed system and vice versa.
The same holds for CONDITION (4). CONDITION (3) can be dealt with by
similar arguments. Therefore, the equivalence of CONDITIONS (1), (2), (3)

and (4) for the transformed system implies the same for the original system.
This means that we may assume in proving THEOREM 1. 1 that A^{0}--I.

By the above lemma we suppose in the sequel that A^{0} equals the unit
matrix.

LEMMA3.2. CONDITION(2)implies CONDITION(3).

PROOF. Let \psi\in R^{m}|\{0\} , \omega\in S^{n-1} and B(\omega)\psi=L\psi=0 . If (3) is false,
there exists a number \mu\in R such that \mu\psi+A(\omega)\psi=0 . Then, for any \zeta\in iR|

{ 0^{(},, we have
\{L+\zeta A(\omega)-\zeta^{2}B(\omega)\}\psi=-\zeta\mu\psi .

This shows that (1. 3) has a nontrivial solution \psi for \lambda=\zeta\mu . But, since
Re \lambda={\rm Re}(\zeta\mu)=0 , we have a contradiction if (2) is assumed. Thus
CONDITION (3) follows from CONDITION (2).

LEMMA3.3. CONDITION(1)implies CONDITION(4).

PROOF. This lemma is proved by an energy method. We refer the
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reader to PROPOSITION 2. 10 of [8] for the proof.
If (4) holds, then (2) holds a fortiori. So we have proved that (1)\#

(4)\subset\rangle(2)\subset\neq(3) . To show that (3) implies (1), we proceed as follows.
Let \omega_{0}\in S^{n-1} . Let \lambda_{1-\wedge}\ldots\lambda_{r} be the distinct eigenvalues of A(\omega_{0}) . We

denote by W(\omega_{0}) a sufficiently small neighborhood of \omega_{0} and look at the
eigenvalues of A(\omega) for \omega\in W(\omega_{0}) . Let \Gamma_{j}(j=1, \cdots r) be a small
positively-0riented circle centered at \lambda_{j} . respectively. We assume that, for
any j, \Gamma_{j} excludes \Gamma_{i} if i\neq j. We assume furthermore that each \Gamma_{j} contains
all the eigenvalues of A(\omega) belonging to the \lambda_{j}-group and excludes other
eigenvalues. The \lambda_{j}-group eigenvalues are the totality of the eigenvalues of
A(\omega) generated by splitting from the common eigenvalue \lambda_{j} of A(\omega_{0}) . See
Kato [4] for details. We set

(3. 1) P_{j}( \omega)=\frac{1}{2\pi i}\int_{\Gamma_{j}}(\zeta-A(\omega))^{-1}d\zeta,

for \omega\in W(\omega_{0}) and 1\leq j\leq r. Then P_{j}(\omega) is the total projection for the \lambda_{j}

-group eigenvalues. We define \hat{A}(\omega) for \omega\in W(\omega_{0}) by

(3. 2) \hat{A}(\omega)=\sum_{j=1}^{r}\lambda_{j}P_{j}(\omega) .

The following lemma shows that CONDITION (3) holds in a neighborhood of
\omega_{0} for the quadruplet \{ I,\hat{A}(\omega), B(\omega), L\} .

LEMMA 3. 4. Suppose CONDITION (3) holds for the system \{ I, A(\omega) ,

B(\omega) , L\} . Let \omega_{0}\in S^{n-1} . Then there exists a neighborhood V(\omega_{0})\subset W

(\omega_{0}) which has the following properties: Let \psi\in R^{m} {{0} and let B(\omega)\psi--

L\psi=0 for some \omega\in V(\omega_{0}) . Then \mu\psi+\hat{A}(\omega)\psi\neq 0 for any \mu\in R .

PROOF. Suppose the conclusion is false. We choose a sequence of
neighborhoods V_{j}(\omega_{0}) of \omega_{0} , j=1,2 , \cdots which converges to { \omega_{0r}^{\backslash } . Then
there exist \omega_{j}\in V_{j}(\omega_{0}) , \psi_{j}\in R^{m} with ||\psi_{j}||=1 and \mu_{j}\in R for j–1,2 , \cdots such
that
(3.3) B(\omega_{j})\psi_{j}=L\psi_{j}=0 , \mu_{j}\psi_{j}+\hat{A}(\omega_{j})\psi_{j}=0 .
By (3. 2), -\mu_{j}\in\{\lambda_{1}, \cdots. \lambda_{r}\} for any j. Hence we may assume without loss
of generality that \mu_{j}=-\lambda_{k} for some k(1\leq k\leq r) not depending on j and j=
1,2 , \cdots We get also \psi_{j}arrow\psi_{0} for some \psi_{0}\in R^{m} with ||\psi_{0}||--1 as jarrow\infty , by
taking a subsequence if necessary. It follows then from (3. 3) that

B(\omega_{0})\psi_{0}=L\psi_{0}=0 , -\lambda_{k}\psi_{0}+A(\omega_{0})\psi_{0}=0 .
Here we used \hat{A}(\omega_{0})=A(\omega_{0}) . Since ||\psi_{0}||=1 , this is a contradiction. The
proof is complete.

We set A=\hat{A}(\omega) and recall the orthogonal decomposition \mathscr{H}=\mathscr{C}(A)\oplus

\mathscr{C}(A) given in ( _{ii}) of LEMMA 2. 2. We shall use the abbreviation \hat{\Pi}(\omega)

for \Pi_{A}--\Pi_{\hat{A}(\omega)} .
LEMMA 3. 5. Suppose CONDITION (3) holds. Then there exists a neighbor-
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hood U(\omega_{0})\subset V(\omega_{0}) satisfying the follwoing properties : Let \hat{\Pi}(\omega) be the
orthogonal projection onto \mathscr{C}(\hat{A}(\omega)) . Let
(3. 4) B(\omega)+L=F(\omega)+G(\omega) , \omega\in U(\omega_{0}) ,

where
F(\omega)=\hat{\Pi}(\omega)(B(\omega)+L) ,
G(\omega)=(1-\hat{\Pi}(\omega))(B(\omega)+L) .

Then F(\omega) is real symmetric and positive for \omega\in U(\omega_{0}) . Furthermore,
there exists a C^{\infty}-function K(\omega\grave{)} defifined on U(\omega_{0}) and taking values in \mathscr{H}

such that G(\omega)=[A(\omega), K(\omega)] for \omega\in U(\omega_{0}) .
PROOF. It is easily seen that P_{j}(\omega) defined by (3. 1) is a C^{\infty} -function on

W(\omega_{0}) with values in \mathscr{H} . Hence, by (2. 4), \hat{\Pi}(\omega) is a C^{\infty}-mapping from
W(\omega_{0}) into the space of linear transformations in \mathscr{H} . Combining these
observations, we conclude that F(\omega) and G(\omega) are C^{\infty}-functions on W
(\omega_{0}) with values in \mathscr{H} . That F(\omega) is real symmetric and positive for \omega\in

V(\omega_{0}) is a consequence of THEOREM 2. 5 in conjunction with LEMMA 3. 4.
We write \Phi(\omega) for \Phi_{A(\omega)} which is defined by (2. 2), namely,

\Phi(\omega)(X)=[A(\omega), X] , X\in \mathscr{H}.
Now we consider the following linear inhomogeneous equation
(3. 5) \Phi(\omega)(X)=G(\omega) ,

and want to find a smooth solution X=X(\omega) defined on a neighborhood of
\omega_{0} Let \mu_{1}(\omega) , \cdots , \mu_{m}(\omega) be the repeated eigenvalues of A(\omega) . Let
\psi_{1}(\omega) , \cdots . \psi_{m}(\omega) be the corresponding eigenvectors, respectively. By
LEMMA 2. 1, the eigenvalues of \Phi(\omega) are \mu_{j}(\omega)-\mu_{k}(\omega)(1\leq j, k\leq m) and
the corresponding eigenvectors are given by \psi_{j}(\omega)\psi_{k}(\omega)^{*} . respectively.
We assume that \{\psi_{1}(\omega), \cdots \psi_{m}(\omega)\} forms an orthonormal system in C^{m}.

Let us define an equivalence relation in the set \{1, \cdots. m\} as follows: j
-k if and only if both \mu_{j}(\omega) and \mu_{k}(\omega) belong to one and the same \lambda_{i}-group,
viz. , there exists an integer i\in\{1 , \cdots r^{1}, such that both \mu_{j}(\omega) and \mu_{k}(\omega)

are enclosed by \Gamma_{i} if and only if j-k. Thus we get a partition of the integers
/|1 , \cdots m_{J}^{\mathfrak{l}} . Let

\Lambda(\omega)=_{I}^{j}(j, k) : 1\leq j, k\leq m, j-k }
and let

\sigma_{0}(\Phi(\omega))=\{\mu_{j}(\omega)-\mu_{k}(\omega) ; (j, k)\in\Lambda(\omega)\} .
It is easily seen that \sigma_{0}(\Phi(\omega_{0}))=\{0, \cdots, 0\} . More precisely, the number of
zeros in the bracket are m_{1}^{2}+\cdots+m_{r}^{2} , where m_{1} . \cdots . m_{r} denote the
multiplicities of the eigenvalues \lambda_{1} . \cdots . \lambda_{r} , respectively. Also we see that
\sigma_{0}(\Phi(\omega)) gives an enumeration of the eigenvalues of \Phi(\omega) belonging to the
0-group, repeated according to the multiplicities. We define \mathscr{V}_{0}(\Phi(\omega)) to
be the direct sum of the eigenspaces corresponding to the eigenvalues
contained in \sigma_{0}(\Phi(\omega)) . Hence \mathscr{V}_{0}(\Phi(\omega)) is spanned by the orthonomal
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system { \psi_{j}(\omega)\psi_{k}(\omega)^{*};(j, k)\in\Lambda(\omega)(,. We note that \sigma_{0}(\Phi(\omega)) and \mathscr{V}_{0}(\Phi(\omega))

depend neither on the particular numebering { \mu_{1}(\omega) , \cdots , \mu_{m}(\omega)
( of

eigenvalues nor on the particular choice of the orthonormal system \{\psi_{1}(\omega) ,
\ldots.\psi_{m}(\omega)/ of eigenvectors.

Let us consider now \hat{A}(\omega) instead of A(\omega) . We write \hat{\Phi}(\omega) for \Phi_{\hat{A}(\omega)}

namely,
\hat{\Phi}(\omega)(X)=[\hat{A}(\omega), X] , X=arrow \mathscr{H}.

The totality of the repeated eigenvalues of \hat{\Phi}(\omega) are given by \backslash \mu_{j}(/\omega_{0})-

\mu_{k}(\omega_{0}),\cdot 1\leq j, k\leq m ’ and the corresponding eigenvectors are (\psi_{j}(\omega)

\psi_{k}(\omega)^{*}: 1\leq j, k\leq m ;. We define \sigma_{0}(\hat{\Phi}(\omega)) and \mathscr{V}_{0}(\hat{\Phi}(\omega)) in the same
way as for \Phi(\omega) . Then we have

\sigma_{0}(\hat{\Phi}(\omega))=\sigma_{0}(\Phi(\omega_{0}))=_{1^{r}}0 , \cdots , 0(,
\mathscr{V}_{0}(\hat{\Phi}(\omega))=\mathscr{V}_{0}(\Phi(\omega)) ,

for \omega\in V(\omega_{0}) . It follows that
(3.6) \mathscr{V}_{0}(\Phi(\omega))=kernel of \hat{\Phi}(\omega)=\mathscr{C}(\hat{A}(\omega)) ,

for \omega\in V(\omega_{0}) . Let \Gamma be a small positively-0riented circle centered at 0.
We choose a sufficiently small neighborhood U(\omega_{0})\subset V(\omega_{0}) such that \Gamma

encloses all the eigenvalues of \Phi(\omega) contained in \sigma_{0}(\Phi(\omega)) , namely, the
0-group eigenvalues of \Phi(\omega) for \omega\in U(\omega_{0}) but excludes other eigenvalues
of \Phi(\omega) for \omega\in U(\omega_{0}) . Then, by (3. 6), the orthogonal projection \hat{\Pi}(\omega)

onto \mathscr{C}(\hat{A}(\omega)) is expressed as

(3. 7) \hat{\Pi}(\omega)=\frac{1}{2\pi i}\int_{\Gamma}(\zeta-\Phi(\omega))^{-1}d\zeta,

for \omega\in U(\omega_{0}) . Set

(3.8) \Psi(\omega)=-\frac{1}{2\pi i}\int_{\Gamma}\zeta^{-1}(\zeta-\Phi(\omega))^{-1}d\zeta

for \omega\in U(\omega_{0}) . We obtain
\Phi(\omega)\Psi(\omega)=\Psi(\omega)\Phi(\omega)--1-\hat{\Pi}(\omega) .

This means that \Psi(\omega) may be regarded as a pseud0-inverse of \Phi(\omega) . See
Kato [4]. Setting
(3.9) X=X(\omega)=\Psi(\omega)G(\omega) , \omega\in U(\omega_{0}) ,

we get a solution of (3. 5). It is seen from (3. 8) that \Psi(\omega) is a C^{\infty}

-mapping from U(\omega_{0}) into the space of linear transformations in \mathscr{H} . Hence
X(\omega) defined by (3. 9) is a C^{\infty}-function on U(\omega_{0}) with values in \mathscr{H} .
X(\omega) can be chosen as K(\omega) stated in the lemma. Thus the proof of
LEMMA 3. 5 is completed.

We shall show how the global result is obtained from LEMMA 3. 5.
LEMMA 3. 6. Suppose CONDITION (3) holds. Then there exist F(\omega) and

K(\omega) satisfying the following properties :
(i) F(\omega) and K(\omega) are C^{\infty} -functions on S^{n-1} with values in \mathscr{H} .
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(ii) F(\omega) is real symmetric and positive for \omega\in S^{n-1} .
(iii) We have [K(\omega), A(\omega)]+B(\omega)+L=F(\omega) for \omega\in S^{n-1} .
PROOF. For each \omega\in S^{n-1} , we assign an open neighborhood U(\omega) such

that LEMMA 3. 5 holds. Then { U(\omega)_{1_{\omega\in S^{n1}}}^{(} is an open cover of S^{n-1} . Since
S^{n- 1} is compact, there is a finite set of points \omega_{1}\ldots \omega_{N}\in S^{n-1} such that
{ U(\omega_{j})(/_{1\leq j\leq N} is a cover of S^{n-1} . We have the representation for each
j(1\leq j\leq N) ,

(3. 10) [K_{j}(\omega), A(\omega)]+B(\omega)+L=F_{j}(\omega) , \omega\in U(\omega_{j}) ,

where K_{j}(\omega) and F_{j}(\omega) are C^{\infty}-functions on U(\omega_{j}) with values in \mathscr{H}

Moreover, F_{j}(\omega) is real symmetric and positive for each j(1\leq j\leq N) and \omega

\in U(\omega_{j}) . Let \{\alpha_{j}(\omega)\}_{1\leq j\leq N} be a partition of unity on S^{n-1} , subordinate to
the cover { U(\omega_{j})_{1\leq j\leq N}^{(}, More precisely, \alpha_{j}(\omega)\in C^{\infty}(S^{n-1}) , supp \alpha_{j}(\omega)\subset

U(a)_{j}) , 0\leq\alpha_{j}(\omega)\leq 1 for 1\leq j\leq N and \sum_{j=1}^{N}\alpha_{j}(\omega)=1 for \omega\in S^{n-1} . Multiplying

(3. 10) by \alpha_{j}(\omega) and summing up with respect to j, we obtain
(3. 11) [K(\omega) , A(\omega)]+B(\omega)+L=F(\omega) , \omega\in S^{n-1} .
Here we set

K( \omega)=\sum_{j=1}^{N}\alpha_{j}(\omega)K_{j}(\omega) ,

F( \omega)=\sum_{j=1}^{N}\alpha_{j}(\omega)F_{j}(\omega) .

Both K(\omega) and F(\omega) can be regarded as C^{\infty}-functions on S^{n-1} . We
observe that F(\omega) is real symmetric and postive for \omega\in S^{n-1} , which
completes the proof of LEMMA 3. 6.

LEMMA 3. 7. Suppose CoND_{l^{Y}}TION(3) holds. Then there exist F(\omega) and
K(\omega) satisfying all the properties enumerated in Lemma 3. 6 and furthermore
the following: K(\omega) is real skew-symmelric and K (-\omega)=-K(\omega) for \omega\in

S^{n-1} .
PROOF. That K(\omega) is real skew-symmetric is shown in the same way as

in the proof of LEMMA 2. 4. We shall prove K (-\omega)--K(\omega) . Replacing \omega

by -\omega in (3. 11) and taking into accout of the fact that A(-\omega)---A(\omega)

and B (-\omega)=B(\omega) for \omega\in S^{n-1} . we get
(3. 12) -[K (-\omega), A(\omega)]+B(\omega)+L=F(-\omega) .
Adding (3. 12) to (3. 11) and dividing both sides by 2, we have

[ \frac{1}{2}(K(\omega)-K (-\omega)), A(\omega)]+B(\omega)+L=\frac{1}{2}(F(\omega)+F(-\omega)) .

The right hand side is again real symmetric and positive and hence we can
choose (K(\omega)-K (-\omega))/2 and (F(\omega)+F (-\omega))/2 in place of K(\omega) and
F(\omega) , respectively. The proof of LEMMA 3. 7 is complete.

Finally we note that, by LEMMA 3. 7,
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[K(\omega), A(\omega)]=K(\omega)A(\omega)-A(\omega)K(\omega)

=K(\omega)A(\omega)+{}^{t}(K(\omega)A(\omega))

=2 [K(\omega)A(\omega)]’

Therefore, in view of (3. 11), we conclude that 2K(\omega) satisfies CONDITION
(1). Denoting 2K(\omega) by K(\omega) again, we obtain the compensating
function. Thus CONDITION (1) follows from CONDITION (3). The proof of
THEOREM 1. 1 is completed.

\S 4. Quasilinear symmetric hyperbolic-parabolic systems

In this section, we give a remark on the system of partial differential
equations,

n

(4. 1) \{

A_{1}^{0}(u, v)u_{t}+ \sum_{j=1}A_{11}^{j}(u, v)u_{x_{j}}=f_{1}(u, v;^{D_{X}v)} ,

A_{2}^{0}(u, v)v_{t}- \sum_{j,k=1}^{n}B_{2}^{jk}(u, v)v_{x_{J}x_{k}}=f_{2}(u, v;^{D_{x}u} ,

which was studied in [6]. Here, t\geq 0 , x= (x_{1} \ldots, x_{n})\in R^{n}. The unknowns
u=u(t, x) and v=v(l, x) are functions valued in R^{m’} and R^{m’} respectively.
We assume that (u, v) takes the values in a open convex set \mathscr{O} contained in
R^{m}, where m=m’+m’ A_{1}^{0} and A_{11}^{j}(j=1, \cdots. n) are m’\cross m’ real matrices,
while A_{2}^{0} and B_{2}^{jk}(j, k=1, \cdots n) are m’\cross m’ real matrices. f_{1} and f_{2} are
functions taking values in R^{m’} and R^{m’} respectively. D_{X} denotes { (\partial/\partial x)^{a} ;
|\alpha|=1\} .

We say that the system (4. 1) is symmetric hyperbolic-parabolic if the
following condition holds.

c_{oNDITION}4.1 . A_{1}0(\cdot, \cdot) , A_{2}0(\cdot, \cdot) , A_{11}^{j}(\cdot, \cdot)(j=1, \cdots n) , B_{2}jk(\cdot’.)(j,

k=1 , \cdots . n) are C^{\infty}-functions defined on \mathscr{O}\subset R^{m} which satisfy the following
properties:

(i) A_{1}^{0}(u, v) , A_{1}^{j}(u, v) are real symmetric matrices for (u, v)\in \mathscr{O}

and j=1 , \cdots n. A_{1}^{0}(u, v) is positive for (u, v)\in \mathscr{O}

(ii) A_{1}^{0}(u, v) , B_{2}^{jk}(u, v) are real symmetric matrices for (u, v)\in \mathscr{O}

and j, k=1 , \cdots\sim n . A_{2}^{0}(u, v) is positive for (u, v)\in \mathscr{O}B_{2}^{jk}(u, v)=B_{2}^{kj}(u, v)

for (u, v)\in \mathscr{O} and j, k–1 , \cdots n. Furthermore, \sum_{j,k}B_{2}^{jk}(u, v)\omega_{j}\omega_{k} is positive
for (u, v)\in \mathscr{O} and \omega=(\omega_{1} \ldots \omega_{n})\in S^{n-1} .

We assume the above condtion and in addition the existence of a
constant stationary solution which is as follows.

CONDITION 4. 2. f_{1} is a C^{\infty}-function on \mathscr{O}\cross R^{nm’} and f_{2} is a C^{\infty}-funciton
on \mathscr{O}\cross R^{nm} Moreover, there exists a constant state (\overline{u},\overline{v})\in \mathscr{O} such that f_{1}

(\overline{u},\overline{v};0)=0 and f_{2}(\overline{u},\overline{v};0, 0)=0 .
It is shown that the initial value problem for (4. 1) is well-posed in
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Sobolev-spaces if CONDITION 4. 1 and 4. 2 hold. (See THEOREM 2. 9 of [6].)
In order to study the global existence of solutions, we linearize (4. 1) around
the constant stationary solution (u, v)(t, x)=(\overline{u}, \overline{v}) whose existence is
guaranteed by CONDITION 4. 2. Then we examine the decay of solutions to
the resulting equation. We shall use \eta and \zeta as variables corresponding to
D_{X}u= (u_{x_{1}},\cdots , u_{x_{n}}) and D_{X}v=(v_{x_{1}},\cdots, v_{x_{n}}) , respectively. Hence \eta=(\eta_{1},\cdots, \eta_{n})

\in R^{nm} where \eta_{i}\in R^{m} for 1\leq i\leq n . Similarly \zeta= (\zeta_{1}. \cdots , \zeta_{n})\in R^{nm’} where
\zeta_{i}\in R^{m} for 1\leq i\leq n . We write therefore f_{1}=f_{1} (u, v ; \zeta) , f_{2}=f_{2}(u, v;\eta, \zeta) .
Note that u and v are used as independent variables here. The linearized
equation of (4. 1) is given by

(4. 2) A^{0}( \overline{u},\overline{v})w_{t}+\sum_{j}A^{j}(\overline{u},\overline{v})w_{X_{J}}-\sum_{j,k}B^{jk}(\overline{u},\overline{v})w_{x_{J}x_{k}}+L(\overline{u},\overline{v})w=0 .

Here
A^{0}(\overline{u},\overline{v})=(\begin{array}{llll}A_{1}^{0}(\overline{u}, \overline{v}) 0 0 A_{2}^{0}(\overline{u}, \overline{v})\end{array}\}

A^{j}(\overline{u}, \overline{v})=(\begin{array}{llll}A_{11}^{j}(\overline{u},\overline{v}) -D_{\zeta_{J}}f_{1}(\overline{u}, \overline{v}\cdot,0)-D_{\eta_{J}}f_{2}(\overline{u}, \overline{v}.\cdot 0,0) -D_{\zeta_{J}}f_{2}(\overline{u}_{\prime} \overline{v},\cdot 0,0)\end{array}\}

B^{jk}(_{\overline{\mathcal{U}}}, ^{\overline{v}})=(\begin{array}{lll}0 0 0 B_{2}^{jk}(\overline{u}, \overline{v})\end{array}\}

L(\overline{u},\overline{v})=- (\begin{array}{llll}D_{u}f_{1}(\overline{u}, \overline{v},\cdot 0) D_{v}f_{1}(\overline{u}, \overline{v},\cdot 0)D_{u}f_{2}(\overline{u}_{\prime} \overline{v},\cdot 0,0) D_{v}f_{2}(\overline{u}, \overline{v},\cdot 0,0)\end{array}\}

Besides CONDITION 4. 1 and 4. 2, CONDITION 1. 1 and 1. 2 were assumed to hold
for (4. 2) in [6]. The result obtained is the existence of global solutions
near (\overline{u},\overline{v}) , which approach (\overline{u}, \overline{v}) ultimately as tarrow\infty . But we can
employ the same arguments without modification even if CONDITION 1. 2 is
replaced by the existence of compensating function. Hence, by applying
THEOREM 1. 1, we obtain an improved version of THEOREM 3. 6 of [6].

THEOREM 4. 1. (global existence and asymptotic stability for (4. 1)
Suppose CONDITION 4. 1, 4. 2 for (4. 1) and CONDITION 1. 1 for (4. 2).
Suppose furthermore the existence of compensating function for (4. 2) or any
one of the equivalent conditions given in THEOREM 1. 1. Let n\geq 3 , s\geq

[n/2]+3,1\leq p<2n/(n+1) and let (u, v)(0, x)=(u_{0}, v_{0})(x) . Suppose
(u_{0}-\overline{u}, v_{0}-\overline{v})\in H^{s}(R^{n})\cap L^{p}(R^{n}) . For l\leq s, we set

||u_{0}-\overline{u}, v_{0}-\overline{v}||_{\iota,p}=||u_{0}-\overline{u}, v_{0}-\overline{v}||_{t}+||u_{0}-\overline{u}, v_{0}-\overline{v}||_{L^{p}} ,

where ||\cdot||_{l} denotes the norm in H^{t}(R^{n}) . Then, if ||u_{0}-\overline{u}, v_{0}-\overline{v}||_{s,p} is small
enough, there exists a unique global solution (u, v)(t, x) of the initial value
problem for (4. 1) such that
u-\overline{u}\in C^{0}(0, \infty; H^{s}(R^{n}))\cap C^{1}(0, \infty; H^{s-1}(R^{n}))\cap L^{2}(0, \infty; H^{s}(R^{n})) ,
v-\overline{v}\in C^{0}(0, \infty: H^{s}(R^{n}))\cap C^{1}(0, \infty; H^{s-2}(R^{n}))\cap L^{2}(0, \infty; H^{s+1}(R^{n})) ,
Furthermore, (u, v)(t, x) satisfifies the following estimates
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(4.3) ||(u- \overline{u}, v-\overline{v})(t)||_{s}^{2}+\int_{0}^{t}||(u-\overline{u})(\tau)||_{s}^{2}+||(v-\overline{v})(\tau)||_{s+1}^{2}d\tau

\leq C||u_{0}-\overline{u}, v_{0}-\overline{v}||_{s,p}^{2}

(4.4) ||(u-\overline{u}, v-\overline{v})(t)||_{s-1}\leq C(1+t)^{-\gamma}||u_{0}-\overline{u}, v_{0}-\overline{v}||_{s-1,p}

for any t\in[0, \infty) . Here C is a positive constant and \gamma=n(1/2p-1/4) .
As an application of the above theorem, we consider the system of

equations describing the motion of three dimensional compressible viscous
fluid. Let us denote by \rho the mass density, by u=(u^{1}, u^{2}, u^{3}) the velocity,
and by \theta the absolute temperature. These notations are conventional. The
system of equations for (\rho, u, \theta) is given by

\rho_{t}+div(\rho u)=0 ,
(4. 5) \rho(u_{t}+(u\cdot\nabla)u)+\nabla p=div (2\mu P+\mu’ I div u),

\rho e_{\theta}(\theta_{t}+u\cdot\nabla\theta)+\theta p_{\theta} div u=div(\kappa\nabla\theta)+\Psi .
Here the pressure p and the internal energy e are the known functions of (\rho ,
\theta) . p_{\theta} and e_{\theta} denote \partial p/\partial\theta and \partial e/\partial\theta, respectively. P=(1/2)(u_{x_{J}}^{i}+u_{x_{1}}^{j})_{1\leq i,j\simeq’3}

is called the deformation tensor and \Psi=(\mu/2)\sum(u_{x_{J}}^{i}+u_{x_{l}}^{j})^{2}+\mu’(divu)^{2} is the
dissipation function. The viscousity coeff_{\overline{1}C1}^{i,j}ents

\mu , \mu’ and the heat
conductivity coefficient \kappa are known functions of (\rho, \theta) . We set \mathscr{D}=\{(\rho, \theta) ;
\rho>0 , \theta>0^{(}, and assume the following conditions:
(4.6) p and e are C^{\infty} functions on \mathscr{D} . p_{\rho}=ap/\partial\rho>0 and e_{\theta}=\partial e/\partial\theta>

0 on \mathscr{D} .
(4. 7) \mu , \mu’-\kappa are C^{\infty} functions on \mathscr{D} . \mu>0 , \nu=2\mu+\mu’>0 and \kappa>0

on \mathscr{D} .
We write w={}^{t}(\rho, u, \theta) . Then (4. 5) can be rewritten as follows,

(4. 8) A^{0}(w)w_{t}+ \sum_{j=1}^{3}A^{j}(w)w_{x_{j}}-\sum_{j,k=1}^{3}B^{jk}(w)w_{x_{j}x_{k}}=g(w _{;} D_{X}w) .

Here we set

A^{0}(w)=\{\begin{array}{lll}p_{\rho}/\rho 0 00 \rho I 00 0 \rho e_{\theta}/\theta\end{array}\}

\sum_{j}A^{j}(w)\xi_{j}=\{\begin{array}{lll}(p_{\rho}/\rho)(u\cdot\xi) p_{\rho}\xi 0p_{\rho}{}^{t}\xi \rho(u\cdot\xi)I p_{\theta}^{t}\xi 0 p_{\theta}\xi (\rho e_{\theta}/\theta)(u\cdot\xi)\end{array}\}

\sum_{j,k}B^{jk}(w)\xi_{j}\xi_{k}=\{\begin{array}{lll}0 0 00 \mu|\xi|^{2}I+(\mu+\mu’){}^{t}\xi\xi 00 0 (\kappa/\theta)|\xi|^{2}\end{array}\}

g(w ^{;} D_{x}w)=\{ 2(\nabla\mu)P+\nabla\mu’divu|(1/\theta)(\Psi+\nabla\kappa\cdot\nabla\theta)0\backslash



264 Y. Shizuta and S. Kawashima

with \xi=(\xi_{1}\xi_{2}\xi_{3})\in R^{3},{}^{t}\xi\xi=(\xi_{i}\xi_{j})_{1\leq i,j\leq 3} Let \mathscr{O}=\{(\rho, u, \theta);(\rho, \theta)\in \mathscr{D} ,

u\in R^{3(}, and let the constant stationary state be (\overline{\rho}, 0,\overline{\theta}) where (\overline{\rho},\overline{\theta})\in \mathscr{D} .

Then CONDITION 4. 1 and 4. 2 are verified for (4. 8) by using (4. 6),

(4. 7). Note that, for \hat{w}={}^{t}(\hat{\rho},\text{\^{u}}, \hat{\theta})\in R^{5} ,

(4.9) \sum_{j,k}<B^{jk}(w)\omega_{j}\omega_{k}\hat{w},\hat{w}>\geq\min\{\mu, \nu\}|\hat{u}|^{2}+(\kappa/\theta)|\hat{\theta}|^{2} .

Also, CONDITION 1. 1 is satisfied by A^{0}=A^{0}(\overline{w}) , A^{j}=A^{j}(\overline{w}) , B^{jk}=B^{jk}(\overline{w}) ,

L=0 . Finally we check CONDITION (3) of THEOREM 1. 1 which is equivalent
to CONDITION (1), i . e. , the existence of a compensating function. Let \psi=

{}^{t}(\hat{\rho}, \text{\^{u}}, \hat{\theta})\in R^{5}|\{0^{(}, and let \Sigma B^{jk}(\overline{w})\omega_{j}\omega_{k}\psi=0 for some \omega\in S^{2} . Then, by
j. k

(4. 9), \hat{u}=\hat{\theta}=0. Hence, \psi={}^{t}(\hat{\rho}, 0, 0) , where \hat{\rho}\neq 0. It follows that, for
any \lambda\in R ,

\lambda A^{0}(\overline{w})\psi+\sum_{j}A^{j}(\overline{w})\omega_{j}\psi=\overline{p}_{\rho}\hat{\rho}^{t}(\lambda/\overline{\rho}, \omega, 0)\neq 0 ,

where \overline{p}_{\rho}=p_{\rho}(\overline{\rho},\overline{\theta}) . This means that CONDITION (3) holds for A^{0}=A^{0}(\overline{w}) ,

A^{j}=A^{j}(\overline{w}) , B^{jk}=B^{jk}(\overline{w}) , L=0. Hence THEOREM 4. 1 can be applied to
(4. 5).

It should be remarked that CONDITION 1. 2 can be checked directly for
(4. 5). A suitable choice of K^{j}(j=1,2_{i}3) leads to

\sum_{j}K^{j}\xi_{j}=\alpha
\{\begin{array}{lll}0 \overline{p}_{\rho}\xi 0-\overline{p}_{\rho}\xi 0 00 0 0\end{array}\}

Here \alpha is a sufficiently small constant. We refer the reader to [6] for
details including the one-dimensional case.

\S 5 Discrete velocity models of the Boltzmann equation

We study the discrete velocity models of the Boltzmann equation in R^{n}

along the lines of Kawashima [5]. In these models, there exists a finite
number of velocities (constant vectors in R^{n}), say, v_{1} \ldots v_{m} . It is to be
noted that v_{i}\neq v_{j} if i\neq j. The number m and the velocities v_{1}-\cdots . v_{m} depend
on the model. The unknown F_{i} i=1 , \cdots-m, is a function of time t\geq 0 and
the space variable x\in R^{n} and represents the density distribution of particles
with the velocity v_{i} . We write F={}^{t}(F_{1} \ldots-F_{m})\in R^{m}. The system of
equations in the general form is given by
(5. 1) (F_{i})_{t}+v_{i}\cdot\nabla_{X}F_{i}=Q_{i}(F, F) , i=1 , \cdots m,

where v_{i}\cdot\nabla_{X}F_{i} denotes the Euclidean inner product in R^{n} of v_{i}=(v_{if}^{1}\ldots v_{i}^{n})

and \nabla_{x}F_{i}= (\partial F_{i}/\partial x_{1} \ldots \partial F_{i}/\partial x_{n}) . Q_{i}(F, F) , i=1 , \cdots m, is a quadratic
form in R^{m}, which comes from the binary collisions of particles. More
precisely, the polarization of Q_{i}(F, F) is expressed as
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(5.2) Q_{i}(F, G)= \frac{1}{2\alpha_{i}}\sum_{jkl}\{ A_{kl}^{ij}(F_{k}G_{l}+F_{l}G_{k})-A_{ij}^{kl}(F_{i}G_{j}+F_{j}G_{i})|, .

Here \alpha_{i} and A_{kl}^{ij} are positive and nonnegative constants, respectively.
We give a formal definition of the collision of two particles. Let (v_{i}

v_{j}) be an unordered pair of velocities and let v_{i}\neq v_{j} By definition, (v_{i}

v_{j})=(v_{j}. v_{i}) . A collision is expressed by a couple of such pairs. The first
is written before an arrow and the second is written after the same arrow, for
example, (v_{i-}v_{j})-(v_{k} v_{t}) . Here, (v_{i} v_{j}) is called the initial state while
(v_{k} v_{l}) is refered to as the final state of the collision. It is usual to assume
for each collision the following properties: ( i) (v_{i}. v_{j})\neq(v_{k} v_{l}) (exclu-

sion of the trivial collision), ( ii)v_{i}+v_{j}=v_{k}+v_{l} (conservation of the
momentum), (iii) |v_{i}|2+|v_{j}|^{2}=|v_{k}|^{2}+|v_{t}|^{2} (conservation of the energy).
Conversely, if ( i ) , ( ii) and (iii) are satisfied, then (v_{i}. v_{j})-arrow(v_{k}. v_{l})

represents a collision. Note that for some simple models, the definition of
the collision given above should be replaced by less physical one.

CONDITION 5. 1. A_{ij}^{kl} satisfies the following properties:
(i) A_{ij}^{kl} is a positive number if (v_{i}. v_{j})arrow ( v_{k} -vi) represents a collision.

A_{ij}^{kl} is zero otherwise.
(ii) For any i, j, k, l, A_{kl}^{ij}=A_{lk}^{ij}=A_{kl}^{ji} and A_{kl}^{ij}=A_{ij}^{kl} .
(iii) For some i, j, k, l, A_{ij}^{kl} is a positive number (existence of the

collision).

Briefly, A_{ij}^{kl} is related to the rate at which the collision (v_{i} v_{j})- (v_{k} v_{l})

takes place. The above condition will be assumed in the sequel.
We denote the m\cross m diagonal matrix with diagonal elements v_{1}^{j} \ldots v_{m}^{j}

by V^{j}, namely,
(5.3) V^{j}=diag(v_{1}^{j}. \cdots-v_{m}^{j}) , j=1 , \cdots-n .
We set Q(F, G)={}^{t}(Q_{1}(F, G), \cdots Q_{m}(F, G)) and rewrite (5. 1) as
(5.4) F_{t}+ \sum_{j=1}^{n}V^{j}F_{x_{J}}=Q(F, F) .

Now we give the definitions of some basic concepts concerning the above
equation. One is summational invariant and the other is Maxwellian. Let
(5. 5) \mathscr{M}=\{\phi={}^{t}(\phi_{1} ... \phi_{m})\in R^{m} ; A_{kl}^{ij}(\phi_{i}/\alpha_{i}+\phi_{j}/\alpha_{j}-\phi_{k}/\alpha_{k}-

\phi_{l}/\alpha_{t})=0 for any i, j, k, l }.
By CONDITION 5. 1, \mathscr{M}\neq R^{m}. Since {}^{t}(\alpha_{1}. \cdots-\alpha_{m})\in \mathscr{M}, it follows that 0<
dim \mathscr{M}

<m . Any \phi\in \mathscr{M} will be called a summational invariant. It is known that,
if CONDITION 5. 1 holds, \phi\in \mathscr{M} is equivalent to the follwoing property:
(5.6) <\phi , Q(F, F)>=0 for any F\in R^{m},

where \langle \rangle denotes the Euclidean inner product in R^{m}. See [3], [5].
Let F={}^{t}(F_{1} \ldots F_{m}) and let F_{i}>0 for 1\leq i\leq m . Let, furthermore,
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(5.7) A_{kl}^{ij}(F_{i}F_{j}-F_{k}F_{t})=0 for any i, j, k, l.
Then F is called a constant Maxwellian. It is known also that, if CONDITION
5. 1 holds, (5. 7) is equivalent to the following property:
(5.8) Q(F, F)=0.

Let M={}^{t}(M_{1} \ldots.M_{m}) be a constant Maxwellian and set F=M. Then
F, regarded as a function of t and x, is a constant stationary solution of
(5. 4). In order to study the existence of global solutions in time near F=
M, we introduce a new unknown function f by setting
(5. 9) F=M+\Lambda^{1/2}f.
Here \Lambda=\Lambda(M)=diag(M_{1}/\alpha_{1}\wedge\cdots-M_{m}/\alpha_{m}) . Substituting (5. 9) into (5. 4),
we get

(5. 10) f_{t}+ \sum_{j=1}^{n}V^{j}f_{x_{J}}+L_{M}f=\Gamma(f, f) ,

where
L\beta=-2\Lambda^{-1/2}Q(M, \Lambda^{1/2}f) ,

(5. 11)
\Gamma(f, f)=\Lambda^{-1/2}Q(\Lambda^{1/2}f, \Lambda^{1/2}f) .

The m\cross m matrix L_{M} defined above (the linearized collision operator)
satisfies the follwoing properties (see [5]) :
(5.12) L_{M} is real symmetric and nonnegative. Furthermore, the kernel

of L_{M} equals \Lambda^{1/2}\mathscr{M}.
It is obvious from (5. 3) that V^{j}, j=1 , \cdots . n, is real symmetric. Then,
setting A^{0}=I, A^{j}=V^{j}, B^{jk}=0 , L=L_{M}- CONDITDON 1. 1 is verified at once.
In [5], the existence of global solutions and the asymptotic stability was
shown by assuming CONDITION 1. 2. But the method used there can be
applied without modification even if CONDITION 1. 2 is replaced by CONDITION
(1) of THEOREM 1. 1. We reformulate here CONDITION (3), which is equi-
valent to CONDITION (1). For \omega=(\omega_{1}. \cdots. \omega_{n})\in S^{n-1} , we set

(5. 13) V( \omega)=\sum_{j=1}^{n}V^{j}\omega_{j}=diag(v_{1}\cdot\omega, \cdots v_{m}\cdot\omega) ,

where v_{i} \cdot\omega=\sum_{j=1}^{n}v_{i}^{j}\omega_{j} for i=1 , \cdots . m. CONDITION (3) in the present case
reads as follows:

Let \psi\in R^{m}|\{0\} and let L_{M}\psi=0 . Then we have \mu\psi+V(\omega)\psi\neq 0 for
any \mu\in R and \omega\in S^{n-1} .
Observe that L_{M}\psi=0 is equivalent to \psi=\Lambda^{1/2}\phi for some \phi\in \mathscr{M}. Since
V(\omega) and \Lambda^{1/2} are diagonal matrices, we have \Lambda^{-1/2}V(\omega)\Lambda^{1/2}=V(\omega) .
Hence, the above mentioned condition is rewritten as

CONDITION (5). Let \phi\in \mathscr{M} and let \phi\neq 0 . Then \mu\phi+V(\omega)\phi\neq 0 for any
\mu\in R and \omega\in S^{n-1} .
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THEOREM 5. 2 and 5. 3 of [5] are improved as follows.
THEOREM 5. 1. Suppose CONDITION 5. 1. Let M be a constant

Maxwellian and defifine L_{M} by (5. 12). Suppose one of the four condtions in
THEOREM 1. 1 for A^{0}=I, A^{j}=V^{j}, B^{jk}=0 , L=L_{M} or CONDITION (5) stated
above. Let F(0, x)=F_{0}(x) . Then we have:
(i) Let n\geq 1 , s\geq[n/2]+1 and let F_{0}-M\in H^{s}(R^{n}) . If ||F_{0}-M||_{s} is

small enough, the initial value problem for (5. 4) has a unieque global
solution F(t, x) such that

F-M\in C^{0}(0, \infty;H^{s}(R^{n}))\cap C^{1}(0, \infty;H^{s-1}(R^{n})) .
Furthermore,

(5. 14) ||F(t)-M||_{s}^{2}+ \int_{0}^{t}||D_{X}F(\tau)||_{s-1}^{2}d\tau\leq C||F_{0}-M||_{s}^{2} ,

for any t\in[0, \infty) , where C is a constant not depending on t. F(t, x)
converges to the Mmwellian M uniformly in x\in R^{n} as tarrow\infty .

(ii) Let n, s be as in ( i ) . Let p=1 if n=1 and let p\in[1,2) if n\geq

2 . Let furthermore F_{0}-M\in H^{s}(R^{n})\cap L^{p}(R^{n}) . It ||F_{0}-M||_{s,p} is small
enough (see, for the defifinition of the norm, THEOREM 4. 1), the solution
obtained in ( i) satisfifies
(5. 15) ||F(t)-M||_{s}\leq C(1+t)^{-\gamma}||F_{0}-M||_{s.p} ,

where C is a constant not depending on t, and \gamma=n(1/2p-1/4) .

\S 6. Two-dimensional 8-velocity model

We teat the 8-velocity model introduced in [5]. The velocities v_{1} \ldots

v_{8} are given as follows.
v_{1}=(v, 0) , v_{2}=(0, v) , v_{3}=-v_{1} , v_{4}=-v_{2} .

v_{5}=(v, v) , v_{6}=(-v, v) , v_{7}=-v_{5} v_{8}=-v_{6}

Here v is a positive constant. Note that |v_{i}|=v for i=1 , \cdots 7 4 while |v_{i}|=

\sqrt{2}v for i=5, \cdots , 8 (See Figure 6. 1). There exist 12 collisions in this model
which are classified into three types.

type 1: (v_{1} v_{3})arrowarrow(v_{2} v_{4}) .
type 2: (v_{5} v_{7})arrowarrow(v_{6}. v_{8}) .
type 3: (v_{1} v_{6})arrowarrow(v_{3} v_{5}) , (v_{1}. v_{7})arrowarrow(v_{3} v_{8}) ,

(v_{2}. v_{7})arrowarrow(v_{4-}v_{6}) , (v_{2} v_{8})arrowarrow(v_{4} v_{5}) .
Note that two collisions of the same type can be obtained from each other by
permutation of the indices corresponding to a transformation of the square
(the convex hull of v_{1} . \cdots-v_{8}) onto itself. This is not the case if the types
of two collisions are different. The restitution of a collision, which is
obtained by interchanging the initial and the final states with each other, and
the original collision are of the same type. Let 1\leq s\leq 3 . We set

A_{ij}^{kl}=\sigma_{s}/2 , if (v_{i} v_{j})- (v_{k} v_{t}) is a collision of type s,
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A_{ij}^{kl}=0 , otherwise.
Here, \sigma_{1} \ldots , \sigma_{3} are positive constants. It is easily seen that CONDITION 5. 1
holds for this model. We set \alpha_{i}=1 for i=1 , \cdots , 8. The equation studied is
(5. 1) or (5. 4) where

V^{1}=v diag (1, 0, -1, 0, 1, -1, -1, 1) ,
(6. 1)

V^{2}=v diag (0, 1, 0, -1, 1, 1, -1, -1) .
The components of the quadratic term Q(F, F) are, for example,

Q_{1}(F, F)=\sigma_{1}(F_{2}F_{4}-F_{1}F_{3})+\sigma_{3}\{(F_{3}F_{5}-F_{1}F_{6})+(F_{3}F_{8}-F_{1}F_{7})\} ,
Q_{5}(F, F)=\sigma_{2}(F_{6}F_{8}-F_{5}F_{7})+\sigma_{3}\{(F_{1}F_{6}-F_{3}F_{5})+(F_{2}F_{8}-F_{4}F_{5})\} ,

et cetera. Now we want to verify CONDITION (5). For this purpose, we
determine the space of summational invariants \mathscr{M}. Let \phi={}^{t}(\phi_{1}. \cdots. \phi_{8})\in \mathscr{M}.
Then \phi satisfies the following system of linear homogeneous equations.

\phi_{2}+\phi_{4}-(\phi_{1}+\phi_{3})=0 , \phi_{6}+\phi_{8}-(\phi_{5}+\phi_{7})=0 ,
\phi_{3}+\phi_{5}-(\phi_{1}+\phi_{6})=0 , \phi_{4}+\phi_{6}-(\phi_{2}+\phi_{7})=0 .

The converse is true also. It follows that a basis of \mathscr{M} is given by
\phi^{(1)}={}^{t}(1,1,1,1,1,1,1,1) ,
\phi^{(2)}={}^{t}(1,0, -1,0,1, -1, -1,1) ,

(6. 2)
\phi^{(3\rangle}={}^{t}(0,1,0, -1,1,1, -1, -1) ,
\phi^{(4)}={}^{t}(1,1,1,1,2,2,2,2) .

In particular, dim \mathscr{M}=4 . Note that \phi^{(1)} , \cdots . \phi^{(4)} correspond to the conserva-
tion of the number of particles, x_{1} and&components of the momentum and
the energy, respectively. Any \phi\in \mathscr{M} is expressed as
(6. 3) \phi=\sum_{j=1}^{4}\alpha_{j}\phi^{(j)} , \alpha_{j}\in R .

Let \omega=(\omega_{1} _{?} \omega_{2})\in S^{1} . By (6. 1),
V(\omega)=diag(v_{1}\cdot\omega, \cdots-v_{8}\cdot\omega)

=v diag (\omega_{1}.
\omega_{2} . -\omega_{1} . -\omega_{2} . \omega_{1}+\omega_{2} . -\omega_{1}+\omega_{2}-\omega_{1}-\omega_{2}

\omega_{1}-\omega_{2}) .
Let e^{(1\rangle} , \cdots e^{(8)} be the standard basis of R^{8} . Let \phi\neq 0 and let \mu\phi+V(\omega)\phi

=0. This implies that \mu---v_{j}\cdot\omega for some j\in\{1, \cdots , 8\} and hence
J(\mu, \omega)=\{k:k\in\{1, \cdots, 8\}, \mu=-v_{k}\cdot\omega\}\neq\phi .

Furthermore, we have
(6.5)

\phi=\sum_{k\in f(\mu,\omega)}\beta_{k}e^{(k\rangle} , \beta_{k}\in R .

We set
\mathscr{P}=\{J(\mu, \omega)’. \mu\in R, \omega\in S^{1}\} .

Any J \in \mathscr{P} will be called a P-set in the following. The empty set is not a
P-set by definition. Let J be a P-set. If there exists a P-set which contains
J as a proper subset, J is called a P-set of the second category. All other
P-sets are of the first category. We denote by \mathscr{B} and \mathscr{B} the totality of the
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P-sets of the first and the second categories, respectively. Hence \mathscr{P}=\mathscr{B}

\cup \mathscr{B} , \mathscr{B}\cap \mathscr{B}=\phi . Let J\in \mathscr{B} . We denote by |J| the cardinality of J. We
set

\mathscr{B}_{i}=\{J ; J\in \mathscr{B}, |J|=i\} ,

for 1\leq i\leq 8 . It turns out that \mathscr{B}_{i}\neq\phi for i=2,3 , and \mathscr{B}_{i}=\phi for other i.
More precisely,

1^{o}) \mathscr{B}_{2} is classified into four classes:
\mathscr{B}_{2}(A)\ni\{1,2\} and |\mathscr{B}_{2}(A)|=4 ,
\mathscr{B}_{2}(B)\ni\{1,3\} and |\mathscr{B}_{2}(B)|=2 ,
\mathscr{B}_{2}(C)\ni\{5,7\} and |\mathscr{B}_{2}(C)|=2 ,
\mathscr{B}_{2}(D)\ni\{1,6\} and |\mathscr{B}_{2}(D)|=8 ,

2^{o}) \mathscr{B}_{3}\ni\{1,5, 8\} and |\mathscr{B}_{3}|=4 .
Let J_{1} and J_{2} be two subsets of the integers {1, \cdots , 8}. If \{ v_{j} ; j\in J_{1}\} and
\{v_{j} ; j\in J_{2}\} are obtained from each other by a two dimensional orthogonal
transformation which maps the square (the convex hull of v_{1} \ldots v_{8} ) onto
itself, we write J_{1}-J_{2} . It is clear that this is an equivalence relation in \mathscr{P}

and hence in \mathscr{B} . The classes enumerated above are equivalent classes by
this equivalence relation. Only a representative of each class is given there.
The P-sets of the second category are less important for our purpose. We
define \mathscr{B}_{i} in a similar way. Then, \mathscr{B}_{i}=\phi for 2\leq i\leq 8 and |\mathscr{B}_{1}|=8 .

Now we turn to check CONDITION (5). It is sufficient to show that, if \phi

satisfies (6. 3) and (6. 5), then \phi=0 . Observe that

\sum_{j=1}^{4}\alpha_{j}\phi^{(j)}={}^{t}((\alpha_{1}+\alpha_{4})+\alpha_{2}.
(\alpha_{1}+\alpha_{4})+\alpha_{3} . (\alpha_{1}+\alpha_{4})-\alpha_{2} , (\alpha_{1}+\alpha_{4})-\alpha_{3} .

(\alpha_{1}+2\alpha_{4})+(\alpha_{2}+\alpha_{3}) , (\alpha_{1}+2\alpha_{4})-(\alpha_{2}-\alpha_{3}) , (\alpha_{1}+2\alpha_{4})

-(\alpha_{2}+\alpha_{3}) , (\alpha_{1}+2\alpha_{4})+(\alpha_{2}-\alpha_{3})) .
It follows from

\sum_{j=1}^{4}\alpha_{j}\phi^{(J)}=\sum_{k=1}^{8}\beta_{k}e^{(k)}

that
(6.6)_{1} \alpha_{1}+\alpha_{4}=(\beta_{1}+\beta_{3})/2=(\beta_{2}+\beta_{4})/2 ,

(6.6)_{2} \alpha_{1}+2\alpha_{4}=(\beta_{5}+\beta_{7})/2=(\beta_{6}+\beta_{8})/2 ,

(6.6)_{3} \alpha_{2}=(\beta_{1}-\beta_{3})/2 , \alpha_{3}=(\beta_{2}-\beta_{4})/2 ,

( 6. 6)_{4} \alpha_{2}+\alpha_{3}=(\beta_{5}-\beta_{7})/2 , \alpha_{2}-\alpha_{3}=(-\beta_{6}+\beta_{8})/2 .
We examine all the possibilities as follows.

Case 1A. Let \phi=\beta_{1}e^{(1)}+\beta_{2}e^{(2)} . We get (6. 6)_{1}-(6.4)_{4} where \beta_{j}=0 for
j\neq 1,2 . From (6. 6)_{4} follows \alpha_{2}=\alpha_{3}=0 . Hence, by (6. 6)_{3} \beta_{1}=\beta_{2}=0 .
Therefore, \phi=0 .

Case 1B. Let \phi=\beta_{1}e^{(1\rangle}+\beta_{3}e^{(3)} . We get (6. 6)_{1}-(6.6)_{4} where \beta_{j}=0 for
j\neq 1,3 . It follows from (6. 6)_{4} that \alpha_{2}=0 . Hence, by (6. 6)_{3} . \beta_{1}-\beta_{3}=0 .
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On the other hand, \beta_{1}+\beta_{3}=0 by (6. 6)_{1} Combining these, we obtain \beta_{1}=

\beta_{3}=0 . Therefore, \phi=0 .
Case 1C. Let \phi=\beta_{5}e^{(5)}+\beta_{7}e^{(7)} . We get (6. 6)_{1}-(6.6)_{4} where \beta_{j}=0 for

j\neq 5.7 . By (6. 6)_{3} . \alpha_{2}=\alpha_{3}=0 . Substituting this into (6. 6)_{4} , we obtain
\beta_{5}-\beta_{7}=0 . On the other hand, \beta_{5}+\beta_{7}=0 by (6. 6)_{4} Hence, \beta_{5}=\beta_{7}=0 .
Therefore, \phi=0 .

Case 1D. Let \phi--\beta_{1}e^{(1)}+\beta_{6}e^{(6\rangle} . We get (6. 6)_{1}-(6.6)_{4} where \beta_{j}--0 for
j\neq 1,6 . By (6. 6)_{4} \beta_{1}=0 . Also, by (6. 6)_{2} , \beta_{6}=0 . Hence, \phi=0 .

Case 2. Let \phi=\beta_{1}e^{(1\rangle}+\beta_{5}e^{(5)}+\beta_{8}e^{(8)} . We get (6. 6)_{1}-(6.6)_{4} where \beta_{j}=0

for j\neq 1,5,8 . From (6. 6)_{1} follows \beta_{1}=0 . Then, by (6. 6)_{3} \alpha_{2}=\alpha_{3}=0 .
Substituting this into (6. 6)_{4} we obtain \beta_{5}=\beta_{8}=0 . Hence, \phi=0 .

We conclude therefore that CONDITION (5) is satisfied for this model.
Hence THEOREM 5. 1 holds for the tw0-dimensional 8-velocity model. We
remark finally that in [5] CONDITION 1. 2 was verified by constructing K^{1} and
K^{2} explicitly for some Maxwellian M.

\S 7 Three-dimensional 14-velocity model

We investigate the 14-velocity model introduced by Cabannes [1]. The
velocities are given by

v_{1}= (v, 0, 0) , v_{2}=(0, v, 0) , v_{3}=(0,0, v) , v_{j+3}=-v_{j}(j=1,2,3) ,
v_{7}=(v, v, v) , v_{8}=(-v, v, v) , v_{9}=(-v, - v, v) , v_{10}=(v, - v, v) ,

v_{k+4}=-v_{k}(k=7,8,9.10) .
Here v is a positive constant. Note that |v_{i}|=v for i=1 , \cdots , 6 while |v_{i}|=

\sqrt{3}v for i=7 , \cdots 14. There exist 54 nontrivial collisions which preserve the
momentum and the energy. These collisions are classified into four types,

type 1: (v_{1} v_{4})arrowarrow(v_{2} v_{5}) , (v_{1} v_{4})arrowarrow(v_{3} v_{6})

(v_{2r}v_{5})arrowarrow(v_{3} v_{6})

type 2: (v_{7} v_{11})arrowarrow(v_{8} v_{12}) , (v_{7} v_{11})arrowarrow(v_{9} v_{13}) ,
(v_{7} v_{11})arrowarrow(v_{10r}v_{14}) , (v_{8} v_{12})arrowarrow(v_{9-}v_{13}) ,
(v_{8}. v_{12})arrowarrow(v_{10}, v_{14}) , (v_{9} v_{13})arrowarrow(v_{10J}v_{14}) .

type 3: (v_{7} v_{9})arrowarrow(v_{8} v_{10}) , (v_{7} v_{12})arrowarrow(v_{10} v_{13}) ,
(v_{7-}v_{14})arrowarrow(v_{8}. v_{13}) , (v_{8}. v_{11})arrowarrow(v_{9} v_{14}) ,
(v_{9} v_{12})arrowarrow(v_{10} v_{11}) , (v_{11} v_{13})arrowarrow(v_{12} v_{14}) .

type 4: (v_{1-}v_{8})arrowarrow(v_{4}\wedge v_{7}) , (v_{1}. v_{9})arrowarrow(v_{4}. v_{10}) ,
(v_{1} v_{11})arrowarrow(v_{4} v_{12}) , (v_{1} v_{14})arrowarrow(v_{4} v_{13}) ,
(v_{2} v_{9})arrowarrow(v_{5} v_{8}) , (v_{2-}v_{11})arrowarrow(v_{5-}v_{14}) ,
(v_{2}. v_{12})arrowarrow(v_{5} v_{13}) , (v_{2} v_{10})arrowarrow(v_{5} v_{7}) ,
(v_{3} v_{13})arrowarrow(v_{6} v_{7}) , (v_{3} v_{14})arrowarrow(v_{6} v_{8}) ,
(v_{3}. v_{11})arrowarrow(v_{6}. v_{9}) , (v_{3-}v_{12})arrowarrow(v_{6}. v_{10}) .
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The principle for the classification is analoguous to that for the 8-vel0city
model. A modification needed is to replace the square by the cube (the

convex hull of v_{1}\wedge\cdots-v_{14} ). Let 1\leq s\leq 4 . We define
A_{ij}^{kl}=\sigma_{s}/2 , if (v_{i} v_{j})- (v_{k} v_{l}) represents a collision of type s ,
A_{ij}^{kl}=0 , otherwise.

Here \sigma_{1\neg}\cdots\neg\sigma_{4} are positive constants. It is clear that CONDITION 5. 1 is
satisfied for this model. We set \alpha_{i}=1 for 1\leq i\leq 14 . The equation to be
considered is (5. 1) or (5. 4) where the explicit forms of V^{1} . V^{2} and V^{3} are
given by

V^{1}=v diag (1, 0, 0, -1, 0, 0, 1, -1, -1, 1, -1, 1, 1, -1) ,

(7. 1) V^{2}=v diag (0, 1, 0, 0, -1, 0, 1, 1, -1, -1, -1, -1, 1, 1 ) ,
V^{3}=v diag (0, 0, 1, 0, 0, -1, 1, 1, 1, 1, -1, -1, -1, -1) .

The components of Q(F, F) are, for example,
Q_{1}(F, F)=\sigma_{1}\{(F_{2}F_{5}-F_{1}F_{4})+(F_{3}F_{6}-F_{1}F_{4})\}+\sigma_{4}\{(F_{4}F_{7}-F_{1}F_{8})

+(F_{4}F_{10}-F_{1}F_{9})+(F_{4}F_{12}-F_{1}F_{11})+(F_{4}F_{13}-F_{1}F_{14})^{\iota}, ,

Q_{7}(F, F)=\sigma_{2}\{F_{8}F_{12}-F_{7}F_{11})+(F_{9}F_{13}-F_{7}F_{11})+(F_{10}F_{14}-F_{7}F_{11})\}

+\sigma_{3}\{F_{8}F_{10}-F_{7}F_{9})+(F_{10}F_{13}-F_{7}F_{12})+(F_{8}F_{13}-F_{7}F_{14})\}

+\sigma_{4}\{(F_{1}F_{8}-F_{4}F_{7})+(F_{2}F_{10}-F_{5}F_{7})+(F_{3}F_{13}-F_{6}F_{7})\} ,

et cetera.
First we determine the subspace \mathscr{M} . By elementary computations, we

see that \phi={}^{t}(\phi_{1}. \cdots. \phi_{14})\in \mathscr{M} if and only if \phi satisfies the following system
of linear homogeneous equations.

\phi_{1}+\phi_{4}-(\phi_{2}+\phi_{5})=0 , \phi_{1}+\phi_{4}-(\phi_{3}+\phi_{6})=0 ,

\{

\phi_{7}+\phi_{11}-(\phi_{8}+\phi_{12})=0 , \phi_{7}+\phi_{11}-(\phi_{9}+\phi_{13})=0 ,
\phi_{7}+\phi_{11}-(\phi_{10}+\phi_{14})=0 ,
\phi_{7}+\phi_{9}-(\phi_{8}+\phi_{10})=0 ,

\{

\phi_{1}+\phi_{8}-(\phi_{4}+\phi_{7})=0 , \phi_{2}+\phi_{9}-(\phi_{5}+\phi_{8})=0 ,
\phi_{3}+\phi_{13}-(\phi_{6}+\phi_{7})=0 .

It is shown that dim \mathscr{M}=5 . A basis of \mathscr{M} is given by
\phi^{(1)}={}^{t}(1,1,1,1,1,1,1,1,1,1,1,1,1,1) ,
\phi^{(2)}={}^{t}(1,0,0, -1,0,0,1, -1, -1,1, -1,1,1, -1) ,

(7. 2)
\phi^{(3)}={}^{t}(0, 1, 0, 0, -1, 0, 1, 1, -1, -1, -1, -1, 1, 1 ) ,
\phi^{(4\rangle}={}^{t}(0,0,1,0,0, -1,1,1,1,1, -1, -1, -1, -1) ,
\phi^{(5)}={}^{t}(1,1,1,1,1,1,3,3,3,3,3,3,3,3) .

Note that \phi^{(1)} and \phi^{(5\rangle} correspond to the conservation of the number of
particles and the energy, respectively, while \phi^{(2)} , \phi^{(3)} and \phi^{(4)} are related to
the conservation of the momentum in x_{1} h and x_{3} directions, respectively.
Any \phi\in \mathscr{M} can be expressed as
(7.3) \phi=\sum_{j=1}^{5}\alpha_{j}\phi^{(J)} , \alpha_{j}\in R .
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Let \omega= (\omega_{1}\omega_{2} , \omega_{3})\in S^{2} . By (7. 1), we have
V(\omega)=diag(v_{1}\cdot\omega, \cdots. v_{14}\cdot\omega)

(7.4) =v diag (\omega_{1-}\omega_{2}\omega_{3} -\omega_{1} -\omega_{2} . -\omega_{3} . \omega_{1}+\omega_{2}+\omega_{3} ,
-(\omega_{1}-\omega_{2}-\omega_{3}) , -(\omega_{1}+\omega_{2}-\omega_{3}) , \omega_{1}-\omega_{2}+\omega_{3} .

-(\omega_{1}+\omega_{2}+\omega_{3}) , \omega_{1}-\omega_{2}-\omega_{3-}\omega_{1}+\omega_{2}-\omega_{3} -(\omega_{1}-\omega_{2}+\omega_{3})) .
Let e^{(1)} , \cdots . e^{(14)} be the standard basis of R^{14} . Let \phi\neq 0 and let \mu\phi+V(\omega)\phi

=0 for some \mu\in R and \omega\in S^{2} . Then,
J(\mu, \omega)=\{k;k\in\{1, \cdots, 14\} , \mu=-v_{k}\cdot\omega,\neq(\phi .

We obtain
(7.5)

\phi=\sum_{k\in f(\mu,\omega)}\beta_{k}e^{(k)} , \beta_{k}\in R .
Let us set

\mathscr{P}=\{J(\mu, \omega) ; \mu\in R, \omega\in S^{2}\} .
Any J\in \mathscr{P} is called a P-set. Namely, J is a P set if J=J(\mu, \omega) for some
\mu\in R and \omega\in S^{n-1} and in addition J\neq\phi . The empty set is excluded from \mathscr{P}

by definition. We define also the first and the second categories for P-sets as
in the preceeding section. We denote by \mathscr{B} the totality of the P-sets of the
first category and set

\mathscr{B}_{i}=\{J ; J\in \mathscr{B}, |J|=i\} ,

for 1\leq i\leq 14 . It is shown that \mathscr{B}_{i}\neq\phi only for 3\leq i\leq 6 . We use the
equivalence relation introduced in the preceeding section with slight
modification: Two dimensional orthogonal transformation which maps the
square onto itself is replaced by three dimensional orthogonal transformation
mapping the cube (the convex hull of v_{1} \ldots v_{14} ) onto itself. Thus we
obtain the following result.

1^{o}) \mathscr{B}_{3} consists of two classes:
\mathscr{B}_{3}(A)\ni\{1,2, 9\} and |\mathscr{B}_{3}(A)|=24 ,
\mathscr{B}_{3}(B)\ni\{1,8, 9\} and |\mathscr{B}_{3}(B)|=24 .

2^{o}) \mathscr{B}_{4}\ni\{1,2, 4, 5\} and |\mathscr{B}_{4}|=3 .
3^{o}) \mathscr{B}_{5}\ni\{1,7,10,12, 13\} and |\mathscr{B}_{5}|=6 .
4^{o}) \mathscr{B}_{6} consists of two classes:

\mathscr{B}_{6}(A)\ni\{1,2,3,8,10, 13\} and |\mathscr{B}_{6}(A)|=8 ,
\mathscr{B}_{6}(B)\ni\{1,4,7,8,11, 12\} and |\mathscr{B}_{6}(B)|=6 .

We denote by \mathscr{B} the totality of the P-sets of the second category and define
\mathscr{B}_{i} by

\mathscr{B}_{i}=\{f ; J\in \mathscr{B}, |J|=i\}

for 1\leq i\leq 14 . Then \mathscr{B}_{i}\neq\phi only for i=1,2,3 . We note that |\mathscr{B}_{1}|=14 , |\mathscr{B}_{2}|

=55 and |\mathscr{B}_{3}|=12 .
We shall show that \phi=0 if \phi satisfies (7. 3) and (7. 5). We note that

\sum_{j=1}^{5}\alpha_{j}\phi^{(g)}={}^{t}((\alpha_{1}+\alpha_{5})+\alpha_{2}, (\alpha_{1}+\alpha_{5})+\alpha_{3\prime}(\alpha_{1}+\alpha_{5})+\alpha_{4}. (\alpha_{1}+\alpha_{5})-\alpha_{2}
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(\alpha_{1}+\alpha_{5})-\alpha_{3} . (\alpha_{1}+\alpha_{5})-\alpha_{4-}(\alpha_{1}+3\alpha_{5})+(\alpha_{2}+\alpha_{3}+\alpha_{4}) ,
(\alpha_{1}+3\alpha_{5})-(\alpha_{2}-\alpha_{3}-\alpha_{4}) , (\alpha_{1}+3\alpha_{5})-(\alpha_{2}+\alpha_{3}-\alpha_{4}) ,
(\alpha_{1}+3\alpha_{5})+(\alpha_{2}-\alpha_{3}+\alpha_{4}) , (\alpha_{1}+3\alpha_{5})-(\alpha_{2}+\alpha_{3}+\alpha_{4}) ,
(\alpha_{1}+3\alpha_{5})+(\alpha_{2}-\alpha_{3}-\alpha_{4}) , (\alpha_{1}+3\alpha_{5})+(\alpha_{2}+\alpha_{3}-\alpha_{4}) ,
(\alpha_{1}+3\alpha_{5})-(\alpha_{2}-\alpha_{3}+\alpha_{4})) .

Let
\sum_{j=1}^{5}\alpha_{j}\phi^{(J)}=\sum_{k=1}^{14}\beta_{k}e^{(k)} .

Then we get the following system of linear equations.
(7. 6)_{1} \alpha_{1}+\alpha_{5}=(\beta_{1}+\beta_{4})/2=(\beta_{2}+\beta_{5})/2=(\beta_{3}+\beta_{6})/2 ,
( 7. 6)_{2} \alpha_{1}+3\alpha_{5}=(\beta_{7}+\beta_{11})/2=(\beta_{8}+\beta_{12})/2=(\beta_{9}+\beta_{13})/2=(\beta_{10}+\beta_{14})/2 ,
( 7. 6)_{3} \alpha_{2}=(\beta_{1}-\beta_{4})/2 , \alpha_{3}--(\beta_{2}-\beta_{5})/2 , \alpha_{4}=(\beta_{3}-\beta_{6})/2 ,

\alpha_{2}+\alpha_{3}+\alpha_{4}=(\beta_{7}-\beta_{11})/2 , \alpha_{2}-\alpha_{3}-\alpha_{4}=(-\beta_{8}+\beta_{12})/2 ,
( 7. 6)_{4}

\alpha_{2}+\alpha_{3}-\alpha_{4}=(-\beta_{9}+\beta_{13})/2 , \alpha_{2}-\alpha_{3}+\alpha_{4}=(\beta_{10}-\beta_{14})/2 .
Case 1A. Let \phi=\beta_{1}e^{(1)}+\beta_{2}e^{(2)}+\beta_{9}e^{(9)} . We obtain (7. 6)_{1}-(7.6)_{4} where

\beta_{j}=0 for j\neq 1,2,9 . From (7. 6)_{1} follows \beta_{1}=\beta_{2}=0 . Hence, by (7. 6)_{3} .
\alpha_{2}=\alpha_{3}=\alpha_{4}=0 . Substituting this into (7. 6)_{4} . we get \beta_{9}=0 . Hence \phi=0 .

Case 1B. Let \phi=\beta_{1}e^{(1)}+\beta_{8}e^{(8)}+\beta_{9}e^{(9)} . We obtain (7. 6)_{1}-(7.6)_{4} where
\beta_{j}=0 for j\neq 1,8,9 . From (7. 6)_{1} follows \beta_{1}=0 . Also, by (7. 6)_{2} . \beta_{8}=\beta_{9}=

0 . Hence \phi=0 .
Case 2. Let \phi=\beta_{1}e^{(1)}+\beta_{2}e^{(2)}+\beta_{4}e^{(4)}+\beta_{5}e^{(5\rangle} . We obtain (7. 6)_{1}-(7.6)_{4}

where \beta_{j}=0 for j\neq 1,2,4,5 . It follows from (7. 6)_{4} that \alpha_{2}=\alpha_{3}=\alpha_{4}=0 .
Substituting this into (7. 6)_{3} . we get \beta_{1}-\beta_{4}=\beta_{2}-\beta_{5}=0 . On the other hand,
\beta_{1}+\beta_{4}=\beta_{2}+\beta_{5}=0 follows from (7. 6)_{1} Hence \beta_{1}=\beta_{2}=\beta_{4}=\beta_{5}=0 , which
implies \phi=0 .

Case 3. Let \phi=\beta_{1}e^{(1)}+\beta_{7}e^{(7)}+\beta_{10}e^{(10)}+\beta_{12}e^{(12\rangle}+\beta_{13}e^{(13\rangle} . We obtain
(7. 6)_{1}-(7.6)_{4} where \beta_{j}=0 for j\neq 1,7,10 , 12, 13. From (7. 6)_{1} follows \beta_{1}=0 .
Hence, by (7. 6)_{3} \alpha_{2}=\alpha_{3}=\alpha_{4}=0 . Substituting this into (7. 6)_{4} . we get
\beta_{7}=\beta_{10}=\beta_{12}=\beta_{13}=0 . Hence \phi=0 .

Case 4A . Let \phi=\beta_{1}e^{(1\rangle}+\beta_{2}e^{(2)}+\beta_{3}e^{(3)}+\beta_{8}e^{(8)}+\beta_{10}e^{(10\rangle}+\beta_{13}e^{(13)} . We obtain
(7. 6)_{1}-(7.6)_{4} where \beta_{j}=0 for j\neq 1,2,3,8,10,13 . From (7. 6)_{2} follows \beta_{8}=

\beta_{10}=\beta_{13}=0 . Substituting this into (7. 6)_{4} we get \alpha_{2}=\alpha_{3}=\alpha_{4}=0 . Hence,
by (7. 6)_{3} \beta_{1}=\beta_{2}=\beta_{3}=0 . Therefore, \phi=0 .

Case 4B. Let \phi=\beta_{1}e^{(1\rangle}+\beta_{4}e^{(4)}+\beta_{7}e^{(7)}+\beta_{8}e^{(8)}+\beta_{11}e^{(11)}+\beta_{12}e^{(12)} . We obtain
(7. 6)_{1}-(7.6)_{4} where \beta_{j}=0 for j\neq 1,4,7,8,11,12 . From (7. 6)_{3} follows \alpha_{3}=

\alpha_{4}=0 . Combining this with the third and the fourth equations of (7. 6)_{4} . we
get \alpha_{2}=0 . Substituting this into the first and the second equations of (7. 6)_{4}

gives \beta_{7}-\beta_{11}=\beta_{8}-\beta_{12}=0 . On the other hand, \beta_{7}+\beta_{11}=\beta_{8}+\beta_{12}=0 follows
from (7. 6)_{2} Hence \beta_{7}=\beta_{8}=\beta_{11}=\beta_{12}=0 . Since \alpha_{2}=0 , \beta_{1}-\beta_{4}=0 by (7. 6)_{3}

Also, \beta_{1}+\beta_{4}=0 follows from (7. 6)_{1} Hence \beta_{1}=\beta_{4}=0 . We conclude that
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\phi=0 .
Thus CONDITION (5) is verified. This means that THEOREM 5. 1 can be

applied to the three-dimensional 14-velocity model by Cabannes.
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