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Introduction.

The subject we treat in the present paper is the problem of global rigidity
of compact classical Lie groups as Riemannian manifolds imbedded
isometrically in the spaces of matrices.

Let F be one of the fields R, C and @, where we mean by R, C and @ the
field of real numbers, the field of complex numbers and the field of
quaternions. We denote by G(», F) the compact classical Lie group SO(#),
Un) or Sp(n) according as F=R, C or Q. Let M (n, F) be the space of
all » X #n matrices over F. Then there can be defined a euclidean inner
product in M (»n, F) invariant under left and right multiplications of matrices
contained in G(n, F). With this euclidean inner product M (n, F) may be
regarded as a real euclidean space of dimension #?sdimgF. Then the
induced metric on the submanifold G=G(n F) in M (n, F) defines a
Riemannian metric on G invariant under left and right actions of G on itself.
The focus of this paper is the problem of global rigidity of the inclusion map
of the Riemannian manifold G=G(n, F) into M (n,F), which is an
isometric imbedding.

Lef £ be an isometric immersion of a Riemannain manifold M into the
N -dimensional euclidean space RY. In his paper [9], N. Tanaka showed
that there is a linear differential operator L associated with £ whose kernel
is naturally isomorphic with the space of infinitesimal isometric deformations
of f£. He introduced the notion of elliptic isometric immersions and then
established the global rigidity theorem for elliptic isometric immersions :
Assume that an isometric immersion £: M—R" satisfies the following
conditions: i) M is compact; ii) f is elliptic; iii) £ is globally infinitesi-

mally rigid, i. e., dim Ker L:%N (N+1). Then if two immersions f; and
f, of M into R" lie both near to f with respect to the C3-topology, and if they
induce the same Riemannian metric, then there exists a unique euclidean

transformation a of RY such that f,=af\.
In the present paper we prove the following fact: Assume that G is one
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of the compact classical Lie groups SO(n) (#=5), U(n)(n=3) and Sp(n)
(n=1). Then the inclusion map f: G—>M (n,F) is elliptic and globally

infinitesimally rigid, i. e.,, dim Ker LzéN (N +1), where N =#n?dim,F

(see § 1 and §§ 3—4). Consequently by applying the global rigidity theorem
stated above, we obtain actual global rigidity theorems for f in the sense of
Tanaka.

Now we explain the contents of this paper. In §1 we consider the
second fundamental forms of £ and prove that f is elliptic if G is one of SO
(n)(n=b), Un)(n=3) and Sp(n)(n=1). In §2 we review some facts on
the theory of representations of G that are needed in the subsequent sections.
In §§ 3—4, we investigate the space Ker L. In its nature L is compatible
with the left and right actions of G on itself. We determine the space Ker
L by carrying out the following two steps: 1) Decompose the space of
1-forms on G under the left and right actions of G; 2) Determine all
irreducible components of this decomposition that are contained in Ker L.

The first step has been treated in [5]. An actual decomposition can be
given by utilizing the decomposition of the representative ring on G. The
second step is carried out by using some facts on the theory of (finite
dimensinal) representations of G. We note that there is an important and
remarkable symmetry between the left and right actions of G on the space
Ker L. After carrying out the above two steps, we obtain the following

result : For each G such that f is elliptic, it holds that dim Ker L:%N (N +

D.

Finally in §4. 5 we discuss the cases G=S0O(4) and U(2). In both
cases we know that the space Ker L are of infinte dimension.

Throughout this paper we assume the differentiability of class C*.

§1. The canonical isometric imbeddings of SO(n), U(n) and Sp(n).

1.1. The field @ of quaternions. In this paragraph we briefly review
the field @ of quaternions. The field @ is an associative division algebra of
dimension 4 over the field R of real numbers with a basis composed of 4
elements 1, ¢, ¢, e¢; whose multiplication table is given by

1’8,-‘—‘81"1:8;', ei2:_1 (izly 27 3);
€r(1)*Co(2) = —€5(2)*Cs(1) = €5(3)»

where ¢ is an even permutation of the set {1, 2, 3}. Any quaternion ¢ may

3
be written in the form g=a,+ _Ela,-ei with @, a1, @, as<=R. Addition and
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multiplication are defined by the usual distributivity laws and the above
tables.

Let q:aﬂ+i§1aiei Q. We define the conjugate g of ¢ and the real part
Re(g) of g as follows: cf:ao~i2illa,-ei, Re(q)=a,. Then we have geqg=¢-
ng‘,oa% and Re(q) :%(q+q_). Hence if g=+0 then the inverse g~* of ¢ is
given by q“:(gaﬂ g.

The following formulas can be easily verified :

Wt b= ag+bd, a0'=4q, =4;
Re(ag+bq") =a Re(q)+b Re(q),

Re(gq)=Re(q'q), Re(9)=Re(q),

where ¢, bER and ¢, ¢'<Q.

The field R of real numbers may be regarded as a subfield of @ in a
natural way. Moreover the field C of complex numbers may be regarded as
a subfield of Q. Let C, be the set of all quaternions of the form a+ae with
g, @ ER. It is easy to see that C, is a subfield of Q. Then if we assign to
each complex number go+a;y/ —1 with @, & €R the quaternion a,+ aex eC,,
we obtain an isomorphism of the field C to the subfield C, in Q. We identify
the fields C and C, by this isomorphism. Then the conjugate g and the real
part Re(q) of ¢&C as a quaternion are just equal to the conjugate and the
real part of ¢ in the usual sense.

1.2. The space of matrices. Let F be one of the fields R, C and Q.
As we have remarked in the previous paragraph, F may be regarded as a
subfield of Q. The conjugate and real part of an element g€ F imply those
of g considered as an element of Q.

Let M (n,F) be the space of nx n matrices over F. In the usual way,
addition, multiplication and scalar multiplication are defined in M (n, F).
Thus M (n, F) is an associative algebra of dimension »® over F and is
regarded as a Lie algebra by the usual bracket operation: [X, V]=XY -
YX (X, YeMn F)).

Now let us set G(n, R)=SO(n), G(n, C)=U(n) and G(n, @ =Sp(n).
Actually G=G (n, F) is the subset of M (n, F) composed of all matrices
X eM(n, F) satisfying ‘XX = X ‘X=1I,, where I, denotes the unit matrix in
M(n F). (If F=R, we have to add further the equation det X=1.) Asis
well known, G=G(n, F) is a connected and compact Lie group.

Let X, YEM(n F). We define their product (X, Y)ER by setting



368 E. Kaneda

(X, Y)=Re(trace(*XY)).

Then we have:

ProprosITION 1.1.  The product () is a euclidean inner product in M (n,
F) invariant under the left and vight multiplication of elements of G=G(n,
F), i. e

(1D X, Y=Y, X), (X,aY+bZ)=a(X, Y)+b(X, Z);
2y (X, X)>0if X=+0;
(3) (X g Y)=(Xeg, Yeg)=(X, Y),
where X, Y, ZeMn, F), a, bER and g<=G.
We first prove :
LemMA 1.2. Let X, YEMn, F). Then:
(D XY)='7'X.
(2) Re(trace(XY))=Re(trace(YX)).
Proor. Write X =(x;;) and Y =(y;;). Then the ij-component #;; of the
product XY is represented by u;;= }"_, x:xYe;. Hence the ij-component of the

left hand side of (1) is given by #;;= }_‘_. XisVri= 2 Vui%;x, Which is nothing but

the ij-component of the right hand Slde of (1). The equality (2) is proved
by : Re(trace(XY)) =2 Re(x;y;:) = 2 Re(y;mi) = Re(trace(YX)).
[ 7

Q. E. D.

ProoF of Proposition 1.1. (19 From (1) of Lemma 1. 2, we can
deduce that: (X, Y)=Re(trace(*:XY))=Re(trace(’ (X {(tXY)))=Re(trace(*
YX)=(Y, X). The R-linearity of (,) can be easily verified.

(2) Since (X, X)=2%x;;, we know that if X #0, then it holds that
7

(X, X)>0.
(3) By (1) and (2) of Lemma 1. 2, we have :

(geX, ge Y)= Re(trace(%gs X +g+ Y)) =Re(trace("X+'geg- Y ))

—Re(trace(*XY)) =(X, Y);
(X +g, Y+g)=Re(trace(*X +g)+ Y +g)) =Re(trace(g tXeYeg))
—Re(trace(g+'g-X-Y)) =Re(trace(*XY)) =(X, V).

Q. E. D.
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The space M (n, F) endowed with the euclidean inner product (,) can
be considered as the »?-dim , F-dimensional real euclidean space. Since the
group G=G(n, F) is a submanifold of M(n, F), there is induced a
Riemannian metric v on G. With this induced metric v, G is considered as
a Riemannian manifold. Let f be the inclusion map of G into M (n, F).
Then f is an isometric imbedding of the Riemannian manifold {G, v} into
the euclidean space M (n, F).

Let g&G. We define R-linear endomorphisms /; and 7, of M (n, F) by
setting [ X =g+ X, 7 X=X-+g; XEM(n, F). By Proposition 1. 1, we know
that both [, and 7, are isometries of M (», F) with respect to (,). If we set
Ad(g) =lg+7Z", then Ad(g) is also anisometry of M (n, F). Since l;G=G, 7,
G=G and Ad(g)G=G, they induce isometric diffeomorphisms of G with
respect to v, which are also denoted by /, 7, and Ad(g).

1.3. Elliptic immersions (see [6], [9]). In this paragraph we recall
the definition of elliptic immersions.

Let M be a Riemannian manifold. We denote by T=T(M) the
tangent bundle of M and by T*=T*(M) thedual of T. Letf: M—R™be
an isometric immersion of M into R™. We denote by N =N (M) the normal
bundle of f, which is regarded as a subbundle of the trivial bundle M X R™
Let V7 be the covariant differentiation associated with the Riemannian metric
of M. Then it is known that for any x, y €7,, the second derivative 7 ,p,
f of f takes its value in the normal space N,. Let vEN,. We define a
symmetric bilinear form 6(v) on 7, by :

), )=, PxVsF), x, VET,.

6(v) is usually called the second fundamental form of £ corresponding to v.
By definition an isometric immersion £ is said to be non-degenerate if and only
if the bundle homomorphism 8 : N €v—0(v)&S?*T* is injective.

Let f: M—R™ be a non-degenerate isometric immersion. Then the
image n=60(N) forms a subbundle of S?T *, which is called the bundle of
second fundamental forms of f. By definition a non-degenerate isometric
immersion f is said to be elliptic if for each p&M, every non-zero element
0 (v) en, has at least two eigenvalues of the same sign.

1.4. The second fundamental forms of f: G—>M(n,F). We assert
now some facts concerning second fundamental forms of the inclusion map f
G->Mn F).

Let g denote the tangent vector space of G at the identity ¢, i. e., 3=T,
(G). Asusual g may be considered as a subspace of M (n, F). Let b denote
the orthogonal complement of 9 in M (n, F') with respect to (,). Explicitly
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they are expressed as follows:
g={XeMnF)|'X=—X},
p={XeMnF)|'X=X}.

It can be easily observed that:
Ad(g) =9, Ad(@)P=p for g€G;
[9, 8]C8, [g, p]Cp,[p, p]C8.

Let g&G. Since [, and 7, are both isometries of M(n, F), we have:
Te=1s8=7¢9, Ng= lgh=7gh.

LemMma 1.3. Let g€G and X, YE8. Then:

1) Vo Py f =g (XY + YX).

@) 7 Vo F =g XY + YXO.

ProoF. Let Z be an arbitrary element of 9. We denote by 7 the left
invariant vector field on G such that Z,=Z It is well known that 7 is
autoparallel, i. e, 4 ZZ: 0 and the l-parameter transformation Exp(tZ2)(te
R) of G generated by 7 is given by Exp(tZ)(g) =g-exp(tZ), where exp
(12)= 5~

07 !
Viz Vngf: VZEVZ,f: VZ,,<VZf>— V(Vz'Z)gf
-~ d?
=(Z2*F)g= IW (g+exp(tZ)) ] =0
:ngZ.

Z" (€G). Hence we have:

Therefore putting Z=X, Y and X +Y into the above equality, we get
Viux Vi + 7y 7 ixf=1(XY + YX).

Since ¥ x V ,vf=V vV xf, we obtain the equality (1.
We next show the equality (2). Note that 7,X =/;Ad(¢g"HX and 7, Y =
I[Ad(g") Y. Then from the equality (1) we get:

7 Vo = le(Ad(gD X -Ad(g™) Y +Ad(g™ Y +Ad(g D X)

:%rgcxy +YX).

Q. E. D.
Let g, h&G and AEN,. Then by Lemma 1. 3, we can show that /Z6
(A)=6(I1A), r(0(A)=60(r,A). Consequently we have the following
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PrOPOSITION 1.4.  The image nw=60(N) forms a subbundle of S*T*
invariant under the left and right actions of G, i. e., IZn=nand rin=n for
all geG. Therefore

(1) £ is non-degenerate if and only if the map 8 : p—S*g* is injective.

(2) Assume that f is non-degenerate. Then f is elliptic if and only if
every non-zero element §(A)En, (AEP) has at least two eigenvalues of the
same Sign.

We now state the main theorem of this section.

THeOREM 1.5.  Let f: G>M (n, F) be the inclusion map of G=G(n, F)
into M(n, F). Then :
(A fis non-degenerate if G is either SO(n)(n=3), Un)(n=1) or
Sp(n)(n=1).
(2 fis elliptic if G is either SO(n)(n=5), Un)(n=3) or Sp(n)
(n=1).

Let Aep. We define a symmetric endomorphism 9(/1) of g with
respect to (,) by setting

BAX, V)=—0(A)(X, Y) for X, Yeg.

Then we have
LemMa L. 6. @(A)X:—Zl—(AX-}—XA), X eq.

Proor.  First note that AX + XAeg. By Lemma 1. 2, we obtain:
(A, XY +YX)=Re(traceCAXY + YX)))
=Re(trace(AXY +AYX))
=Re(trace((AX+XA)Y)
= —Re(trace(m Y))
=—(AX+XA, V).

Therefore we have the desired equality.

Q. E. D.

Let £ and / be integers such that 1<k<#x and 1</<#xn. We denote by
E. the matrix in M (n, R) (C M (n,F)) whose ij-component is given by 8;.
0, where ¢ means the Kronecker’s delta. We then set Xy=FE,—E,. (1<
k<l=n) and Yu=E,+E,; (1<k<I<n).

LEemMma 1.7. Let A, be a real diagonal matrix in M(n, F), i. e., A=
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Ela,El-,- with a;€R. Then the eigenvalues of the symmetric endomorphism 6

(Ay) of g is given as follows :

G eigenvalues multiplicity
SO(n) Sata) ASk<ISn) 1
Un) ar(1£k<n) 1
Aata) ASk<ISn) 2
Sp(n) w(lsk<n) 3
ata) ASk<ISw 4

Proor. We choose a basis of g composed of the following matrices:

G basis

SO(n) Xu(1£k<qg<n)

U(n) Xu(1£k<I<n)
e Yu(1Sk<I<n)

Sp(n) Xu(1£k<IEn)

esYkl<1§k§l§n, 1§S§3)

Then by a direct calculation, we have

A 1
0(A0)Xu:7(dk+dl>sz (1§k<[<n> ;

6CAD (6. Yo :%<ak+al>esym (l<k<i<n 1=s=3).

Hence we obtain the lemma.

Q. E. D.

Proor of THEOREM 1.5. Owing to Proposition 1. 4, we have only to
discuss at the identity eG. We first note that for each A€y, there are an
element g€G and a real diagonal matrix A, such that A=Ad(g)A,. In the
case where G=SO(»n) or U(n), this assertion is a well known fact.
Similarly in the case Where G= Sp(n), we can show the assertion by
applying the general theory of orthogonal symmetric Lie algebras. The
details are left to the reader.

(1) Suppose that there is a non-zero Aep such that §(A)=0. Let Ao
be a real diagonal matrix conjugate to A under Ad(G). Then we have 6
(A,) =0 and hence 6(A,)=0. It cannot happen for a non-zero A, except the
case where G=S0(2)(see Lemma 1. 7). This proves the assertion (1°).

(2) We prove that for a non-zero A €, 6(A) has at least two eigen-
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values of the same sign. Let A, be a real dlagonal matrix con]ugate to A
under Ad(G). Then both the eigenvalues of 0(A) and 6(A,) coincide.

Therefore we may assume that A=A0=_Z}a,-E,~,-. We can further assume

i=1

that @, +0, because A #0.

(i) G=Sp(n)(m=z1). By Lemma 1.7, we know that (A,) has at
least three non-zero eigenvalues a;, @, a. This proves the assertion.

(i) G=Um)(n=3). If a+a;#0 for some (D), then by Lemma 1.

7, we know that 6(A,) has at least two non-zero eigenvalues —;—(a,+ai), ——%

(a;+a;) of the same sign. On the contrary if a,+a;=0for all i(#1), thenit
holds that ;= —a,#0. Thus A(A,) has at least two eigenvalues a,, ..., ax
of the same sign. (We are assuming that »=3.)

(i) G=SO(n)(n=5). Let us set k=#{ila+a;=0}. First assume
that £=3. Without loss of generality we can assume that a1+a2—a1+as—
a;+a,=0. Then we have a2+a3—a2+a4—a3+a4—- —ZaI;tO Hence 6(A,)

has at least three non-zero eigenvalues ——2—(a2+a3), 7(a2+a4), 7(a3+a4) of

the same sign. Next assume that k=2 and a; + .= a + & =0. Then we have
a1+al:/:0(4< i<n) and a+a;+0. Since n=5, we have rank 8(A,) =3.
Hence 6(A,) has at least two non-zero eigenvalues of the same sign.
Finally we assume that k<1 and a,+a;#0(3=i<#n). Since n=5 it holds
that rank 6(A4,)=3. Hence A(A,) has at least two non-zero eigenvalues of
the same sign.

Q. E. D.

REMARK. In each case where G=S0(3), SO(4) or U(2), we can prove
that f is not elliptic. In fact, let us choose a real diagonal matrix A,=2la;
E,; as follows: (i) G=S0®3), ai=ay=—a=—a (¥0); (ii) G=S0(4),
a=m=—m=—a (#0); (i) G=UQ@), ai=—a (#0). Then we have
rank 8(A,) =2 and the non-zero eigenvalues of B(A,) are of the form +a (€
R). In the case where G=U (1), f is not elliptic, because dim G=1.

§2. Results from the representation theory.

In this section we review some facts from the representation theory. We

denote by 7 the rank of G. Then we have r:[—zn—] if G=SO(n) and r=n
if G=Um) or Sp(n).

2. 1. Root(systems. Let {1;/1<i<7} be the vectors in g defined by :
(i) G=S0(m: =g (Barai—Buizr)  (1SiST.
(i) G=Um) or Sp(n) : Li=akE;; Asis7).
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Then it is easily verified that the vectors {A;|1<i<7} are linearly
independent and that [A;,1,]=0, (1;,1;)=cd;;, where c-——% if G=SO(n)

and c=1if G=U(n) or Sp(n). We can also verify that the subspace t of
9 generated by the vectors {1;/1<i/<r} is a maximal abelian subalgebra,
i. e, tis a Cartan subalgebra of 4. Let us introduce and fix a linear order
“< 7 in t satisfying A, >21,> ... >1,>0.

Let M (n,F )¢ be the complexification of M (n, F). (In what follows for
a real vector space W, we denote by W¢° the complexification of W, i. e.,
We=W+,—1 W.) Addition and multiplication and the bracket operation
are naturally defined in M (n F)¢. The inner product (,) is naturally
extended to a non-degenerate symmetric complex bilinear form of M (%, F)©.

By definition, a vector @ &€t is called a oot if there is a non-zero vector
Ze9° satisfying [H, Z1=,—1 (a, H)Z for each H &t. Let A be the set of
non-zero roots and II the set of simple roots. (A positive root is said to be
stmple if it cannot be written as a sum of any two positive roots.)

For each a €A, we denote by g, the root subspace of §¢ corresponding
to a, 1. e.,

8.={Z2€9¢|[H, Z1=y —1(a,H)Z for each H &t}.
Then it is well known that dim. g,=1 and g°=t°+ X g, (direct sum).

a €A
We exhibit in the following table the set of non-zero roots A and a system
of vectors {Z,(€8,)|a €A} satisfying (Z,,Z_)=1;[2,Z_,]=v/ —1a

and the set of simple roots I1={a, ..., as}:
G a Z, II
1 el
SO2r) A=) o U™+ Vi == A (1<i<r—1)
(I=i<j<r)
1 .
i(l;‘{"lJ) 57—2:<Uij Vij ) a:lr_1+lr
(I=i<j<r)
1 + +
SO2r+1) QA=) 5 (U Vi) = A A (lSi<r—1)
AZi<Er)
1 . o
+(A:+A4;) W(Uij Vi®) a=1,
(A=i<yEr)
vy = Uern

(1<i<7)
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i(li—lﬁ "%"(Xij$v —Te Yij)
(A<i<jsn)

U(”) aﬂ:ll_l,+1<1§i§n—1)

Q) XF/TTaYs)
(Agi<j=n)
Tt paF/ I Y,
(Agi<jsn)
+21, T/ e Vs

2/ 2
(1<i<n)

Sp(n)

ai:li—lm(léié n——l)

an=22A,

In the above table we put:
Ui*=Xpir 25ty —1 Xainj
Viit=X2i0; F v — 1 Xpiz1,2;.

Now let us set
6(X, V)= (XY +YX) for X, Y.

Then it is clear that 6 is a p-valued symmetric bilinear form on g§. In a
natural way we extend 6 to a p¢-valued symmetric bilinear form on 8¢, which
is also denoted by 6. Then for each X, Y, Z&4a°, we have

[Z 6(X, Y)]=6(Z X], Y)+0(X, [Z YD

Let H €t¢. We denote by S(H) the set given by S(H)=1{:|(H, 1,)#0}
and put s(H)=#S(H). Then we have

ProposiTiON 2. 1.
(1) 6A,A,)=01f i+].
2 60, Z,)=01f 1&ES(a).
3 0(a,Z,)=01if s(a)=2.
#) 62 o Z)= 2 ba @) if s()=2
5 64, Z,)=01if s(a)=2.
6D 6(Z, Z)=01if a+BEAU{0}, S(@)*S(B).

Proor. (1% Obvious.
(2) Choose j such that j&S(a). Then 7#; and hence from (1°) we
get
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0: [Za) 0<Ai, A’J)] :0<[Zay Avi]) A'J)+0<A-n [Za’ A'j])-
Since (a,1,)=0, we have [Z,,1;]=—y —1(a,A,)Z,=0. Hence:
0=6(1,, [Zm /"j]>: - \/Tl (a, A;)60(A;, Za)-

This implies that 6(2,, Z,)=0.
(3°) Assume that S(a)={¢, j}(i#j). Thenitisthecase of a=+(1;,—
A;) ora==+(A;+21;). Since i#j, we have

O: [Za,, 0(1{, /‘.1)] = — /tT 0((&‘, A.J/lj‘{‘(d, Aj)/li, Za>.

On the other hand since (a,1)A;+(a,A)A,=+c a, it follows that 6(ea,
Z,)=0.
(4°) Since s(a)=2, we obtain by (3"

0=[Z_,,0(a,Z))1=60Z_,,al, Z)+6(a, [Z_,, Z.])

=/ =1(a,a)6(Z_,,Z)—/ —16(a,a).

Hence we have 6(Z_,, Z,) = (a—1a>0(a, a).

(5 Since s(a) =2, we obtain by (3"
0=(2,,6(a,Z)]=012,,al,Z,)+6(a,|Z, Z,])

=/ —1(a,a)0(Z,,Z).

Hence we have 6(Z,, Z,)=0.
(6> Assume that ;&S(a), iS(B). Then since (B,1;)=0, we get
from (2°)

0=[Z,, 0(As, Z)1=6([Z,, A:), Z) + 60 (A4, [ Z,, Z5])
=—V—=1(a,1)0(Z, Z).

Hence we have 6(Z,, Z;) =0.
Q. E. D.

2.2. Dominant integral forms. LetI’'(G) be the subset of t defined by
I'(G)={H &t|exp(2zH)=¢}.

By definition a vector A €t is said to be an integral form if (A, H)EZ
for each H €I'(G). An integral form A is said to be dominant if (A, a;) =
0 for each «;<I1.

Let D(G) be the set of all dominant integral forms. Then D(G) is
composed of all A=2Ym,A; (m;EZ) satisfying :

(1) G=S0Qr): mzmy= ... Zmr = | m,|;
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(i) G=U): mZm= ... ZMp1ZMn;
(iv) G=Sp(n): mZm= ... ZMy 1 Zmy20.

Let p: G—>GL(V,) be an irreducible representation of G. (A repre-
sentation 7: G—GL(U) always means a “complex continuous ” repre-
sentation, i. e., U is a finite dimensional complex vector space, GL(U) is
the group of complex linear automorphisms of U and 7 is a continuous
homomorphism of G into GL(U). We denote by the same letter 7 the
derivative of 7.)

By definition a vector A €t is said to be a weight of p (or V,) if there is
a non-zero vector v& V, satisfying p(H)v= J/—1(1,H)v for each H€&t.
For each weight 1 of p, we denote by (V,), the subspace of V, defined by

(Vor={veV,|p(H)v=y —1 (1, H)v for each H €t}.

As is well known, each weight of p is an integral form and the highest weight
A(p) of p is a dominant integral form. Let & (G) be the set of all
equivalence classes of all irreducible representations of G. It is well known
that the map which assigns the highest weight A([p]) to each equivalence
class [p]€2(G) gives a one-to-one correspondence between the sets 2 (G)
and D(G).

PROPOSITION 2.2.  There exists an isometric linear automorphism x of t
such that :

(i) x preserves the set of simple roots, i. e., »¥I1=IL

(ii) For each [p1€2(G), x sends the highest weight A([p]) onto the
highest weight A([p*]) of [p*], i e, xA([pD=A[p*]D, where p*: G—
GL(V*) stands for the dual vepresentation of p defined by p*(g)="p(g ) (g
eG).

Explicitly x is represented as follows :

G x
U kA)=—=Apinn (1=1=m)
SOQ2r) (r: odd) x(A)=21; (AZigr—1; x(A)=—2,
otherwise x(A)=21; (1=i<r)

Proor. Such x having the properties (i) and (ii) is given by the —1
multiple of the unique element x, in the Weyl group W (G) such that »,ll=—
I (see [4]). Hence in order to show the proposition it suffices to prove that
xII=I and —x W (G). Here the fact ¥II=II can be easily observed. Let
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W be the group of permutations of the set Q={24,,..., A,, —244,..., —A,}
composed of all ¢ such that 6(—21,)=—c(QA,)(A<i<r). It is well known
that by restricting the action of W (G) ont to the set Q, W (G) may be
regarded as a subgroup of W. Letc&eW. Wedenote by /(¢) the number
of A/s(1=i<7r) suchthat 6(1,)<0. Then the Weyl group can be character-
ized as follows:

(1) G=Um): W(G)={ceW |I(c)=0}.
(ii) G=8S0Qr): W(G)={ceW |I(c): even}.
(i) G=S0C2r+1) or Sp(n): W(G)=W.

Hence we know that —x €W (G).
Q. E. D.

2.3. The tensor product V,® g Let r: G—>GL(U) be a representa-
tion of G and let 0 : G—GL(V,) be an irreducible representation of G. We
denote by Hom,(V,, U) the vector space of all complex linear maps f of V,
into U satisfying f(c(g)v)=7(g)f (v) for g€G, vEV,. Then the integer
dim. Hom (V,, U) indicates the maximum number of linearly independent
7(G)-invariant irreducible submodules in U that are isomorphic to V, as
G-modules.

Let p : G—GL(V,) be an irreducible representation of G. We define a
representation p® Ad: G—>GL(V, ®3°) by grop(g)® Ad(g). Now let us
define an integer a([p], [o]) by setting a([p], [¢]) =dim. Hom,(V,, V,®
g¢*). [If the highest weights of [p] and [¢] are respectively given by A and
M, we also denote by a(A,M) the integer a([p], [c]).

ProrosiTioON 2.3. (see [5]). Let A, MeD(G). Then the integer a(A,
M) s given as follows :

(1) The case M=A: a(A, A)=n—H#{a;| (A, a;,)=0}.

(2) The case M=A+a for some a €A :
0 if the pair {A, a} is contained in the following

alA, A+ a)= { table ;

1 otherwise.

(3) The case M*+A, A+a for any a €A : a(A, M)=0.

G o A
SO2r+1) +A,(1<igr—1) (A, 2,)=0
SP(”) i</‘vi+li+l><1§i§n_l) (A, Ai—Ai) =0

Proor. Let X €8¢ We define an element X *€4°* by setting X*(Y)=
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(X, Y) for Yegc. Then we can easily observe that (Ad(g) X)*=Ad*(g)
X* for gG, X €g¢. Since (,) is non-degenerate, the map g°€X—->X*e
g¢* gives an isomorphism between g°¢ and g**. Hence we know that the
representations Ad and Ad* are equivalent. Therefore except the case
where G= U (n), we obtain the proposition by Theorem 2.1 in [5]. In the
case where G=U (n), 9 is a direct sum of its center § composed of all
constant multiples of the identity matrix and the simple ideal ¢ composed of
all X ¢ such that trace X =0. As is well known, 3 is the Lie algebra of SU
(n), the subgroup of U(n) composed of all g €U (n) such that det g=1.
Since 9=3+3 (direct sum), we have

V,® 8*=V,®3*+ V,®:*(direct sum).

Further we know that both V, ®3* and V, ®2°* are invariant under the
action p® Ad of G, and V,®3°* is irreducible and isomorphic to V,. Thus
we have dim. Hom;(V,, V,® 3*) =6\, (s +dim. Hom;(V,, V,®&*). The
integer dim. Hom,(V,, V,®3*) can be determined by a method similar to

that used in the proof of Theoren 2.1 in [5]. The details are left to the
reader.

Q. E. D.
§3. Tensor fields on G and the differential operator L.

In this section we recall the definition of the differential operator L
associated with the inclusion map f and investigate the kernel of L.

3. 1. The differential operator L. For a positive integer £ we denote
by ® *T* the k-th tensor product of 7*=T*(G) and denote by S*T* the
k-th symmetric tensor product of 7*.

We first define a differential operator D : T'(T*)—»I'(S*T*) by setting

(D) (X, YI=(P xd) (YD) +(F yé)(X),

where ¢ €I'(T*), g€G and X, Y ET,.

Let S?2T*/n denote the quotient bundle of S?T* by the bundle n of
second fundamental forms associated with £ and let = denote the natural
projection z : S?T*—S?T*/un. The differential operator L is then defined
as the composite z+D, i. e, L=n+D : T(T*)->T(S*T*/n).

Let Ker L denote the kernel of the differential operator L, i. e., the
subspace of T'(T*) composed of all ¢ such that Lé =0. Evidently we have

Ker L={¢E(T*)|Dp &l (n)}.
Let us define the actions L and R of G onT'(®*T*) by L(g)¢=
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U;D*¢; R(@dp=(r)*¢ (¢ET(®*T*), gG). Then we can easily show
that L(g)*R(h)=R(h)+L(g) for g, heG.

ProrosITION 3.1.  The space Ker L is invariant under the actions L and
R of G, 1. e,

L(g)(Ker LYCKer L; R(g)(Ker L)YCKer L for g=G.

Proor. We first note that L(g) T(m)CT'(n) and R(g) T(m)CI'(n).
These facts follow from Proposition 1. 4. Further note that since /- and r,
are isometries of G, we have L(¢g)+D=D+L(g) and R(g)eD=D+R(g).

We now assume that ¢ €Ker L. Then we have D¢ T'(n). Hence we
get DL (@¢d=L(@ DT (n) and DR(g)¢p=R(g)D¢pI'(n). Therefore
we have L(g)¢ and R(g)¢ €Ker L, proving the prposition.

Q. E. D.

3.2. Tensor fields on ¢. In what follows all the objects are considered
in the complex category. All the real vector spaces are complexified and R-
linear maps are extended to C-linear maps in a natural way.

Let C=(G) be the algebra of complex valued C= functions on G. We
define a norm | | in C*(G) by

I71=max|f )|, FECHE).

We introduce a topology in C*(G) determined by this norm. Two actions
L and R of G on C*(G) aredefined by L(g)f =, )*f; R(@f=D)*f, fE
C=(3), gG. We note that by the action L (or R), G acts continuously
on each finite dimensional invariant subspace of C*((G).

Let 0(G) be the subspace of C=(G) composed of all f €C=(G) such that
the L(G)-orbit passing through f is contained in a finite dimensional
subspace of C*(G). Clearly we know that 0(G) is R(G)-invariant.

Let p : G=GL(V,) be an irreducible representation of G. We denote
by 0,1(G) the sum of irreducible L(G)-submodules of C*(G) isomorphic to
V, as G-modules. Then we can easily see that o;,;(G) is an L(G)
-submodule of 0(G) and is also R(G)-invariant.

ProproSITION 3.2 (Theorem of Peter-Weyl).
(1) The L(G)-submodule 0(G) is dense in C*(G) w. 7. t. the topology
determined by the norm | | and

D(G)=[ D 0,(G) (direct sum).

lea(a)

(2) For each [p1€2(G), define a C-linecar map ¢,: V,® V;—C”
(G) by
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®,(v®&)(P=E(P@Hv), veV,, §€V ] and g=G6.
Then @, gives an isomorphism between V,® V, and 0,1(G) and

L(@®,(v®&)=2,(p(gv® &),

R(@2,(v®E=2,(v®p*(g)&).

Let ¢ ' (®*T*). We define an element $EC=(G)® (®*39)* by
setting

Xy, ..., XD(@=¢s(leXs, ..., X0,

where X, ..., X,€9¢ and g €G. Then the assignment $— gives an
isomorphism between I'(® *T*) and C*(G)® (®*39)*. We identify them
by this isomorphism. Then the following lemma is easy to see.

LEmMA 3.3. Let ¢ T (®*T*S). Then:
(L@ Xy, ..., XD@=¢X,,.... XD ;
(R@OPNX,, ..., X)(@=¢(Ad(gHX,, ..., Ad(gH X ag),
wherve X, ..., X:.€40¢ g acG.

We now define a norm | | in T(®*T*°) by
I$l®= max |$(E;,..., EDI,

where ¢ €T'(®*T*°) and {E;} denotes an orthonormal basis of g w. 7. .
the inner product (,). We introduce a topology inI'(® *T*¢) determined by
this norm. Then it can easily seen that by the action L(or ), G acts con-
tinuously on each finite dimensional invariant subspace of I'(® *T*°).

Let us set 0(®*T*9) =0 (G)® (®*89* and set for each [p]E€Z(G), v,
(®*T*)=0,,(G)® (®*3)*. Then by Lemma 3.3, we know that 0(®*
T*9 and o, (®*T*°) are invariant under the actions L and R of G.
Moreover we know that o (® *T*¢) is the set of all ¢ €I'(® *T *°) such that
the L(G)-orbit passing through ¢ is contained in a finite dimensional
subspace of I'(® *T*°) and that for each [p]l€2(G), 0, ) (®*T*°) is the
sum of irreducible L(G)-submodules of T'(® *T*¢) isomorphic to V, as
G-modules.

PrOPOSITION 3.4. (1)  The subspace o (® *T*°) is dense inT'(®*T*°) w.
. t. the topology determined by the norm | |® and

0(® "T*c):[ E(G)D[p](®kT*c)(direct sum).

rleg
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(2) For each [pl€D(G), set D=0, ® (®*Ad*). Then O gives
an isomorphism between V,® V5 ® (®*3°*) and v, (® *T*) and:

L@@ (v® &) =0 (p(g)v® &) ;
R(@®,"(v® &) =2, (v® pt()8),
where vEV,, §€V ;@ (®*4), g&G and pi=p*® (® *Ad*).

3.3. The space Ker L. Let p: G—GL(V,) be an irreducible repre-
sentation of G. We define a C-linear map E,: V;® -V >® S?3°* by
setting

EE(X, Y)=p*(X)(E(Y)+p*(Y)(&E(X)), §€V ;0 9™, X, Y E"
Then we have the following
Lemma 3.5. (1) ps(@)E,=E,pt(g) for each g&G.
(2 Let veV, and E€V 508, Then:
DO’ (v®&E) =D (v® EZ).

Proor (1) The assertion follows from a direct calculation.
(2) Let us set ¢ =0V (v®&). Let X®g be an arbitrary element.
Then for each g&G, we heve

(D™N(X, X)(g)= (D)X, 1:X)=(Dp)o(Xe Xo)
=2(p 2,6) (X
=2{Xe(¢ (X -3 (VX))
=2 X ($(X)).

On the other hand, we have
XX =8B (X (g exptX) |

:aqu(X) (p((g exptX) ™ v) | =0

=p* (XD (E(X))(p@gHv)

=10 (18 E£)(X, X)(g).
Hence we have:

(D$)™(X, X)=0” (v® E£) (X, X).
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Since X is an arbitrary element in 8, we obtain the equality (Dg)" =0,% (v
® E£)" and hence D¢ =®;> (v® E,&). This proves the assertion.

Q. E. D.

Let p : G—>GL(V,) be an irreducible representation of G. We denote
by Ly,) the restriction of the differential operator L too,,(7*% and by Ker
Ly, the kernel of L;,;. Then we have

Ker Ly ={¢ €0, ,(T*)|Dp &I (n°)}.
We now define a subspace W (p) of V5®38* by
Wp)={E€V;®3*|EgcV*ans).
Then we have
ProposiTION 3. 6.

(D (Ker L)No(T*)= 3 Ker Ly, (direct sum).

lplez(G

(2) For each [pl€Z(G), W (p) is invariant under the action pt of G
and :

Ker Li,)=®°(V,® W (p)).

Proor.  We first note that under the identification I'(® 2T *)> p—deC™
(G)® (®%9)*, T'(n°9 is identified with C*(G)®n&. Hence we have I'(1°) N
0(®*T*)=0(G)®ng; T(M) N0, (@2T*) =0, (G)®nS for each [p]EeP
(G). Consequently we have:

F(nc)ﬂn(®2T*c):[ » G)F(Ilc)ﬂo[p](@)zT*C) (direct sum).

pleg(

Next we note that since L(g)+D=D-L(g) for g&G, it follows that D (o
(T*))Co(®2T*) and D (0,1 (T*))Co,(®2T*) for each [p]e2(G).
Then the assertion (1) can be easily verified.

We now show the assertion (2). Let g&G. Then by (1°) of Lemma 3.5,
we obtain that

E,(p¥ (@ W (p))=p: (@) (E,(W (p)))CTpz (@) (Vy®12).

On the other hand since ® 2Ad*(g) (n$) =ns(see Proposition 1. 4), we have p3
@QVien)Hc Vi®ug. Hence we have E,(pt(@W (p)C Vi®ug,
proving that p¥ (@) W (p)C W (p). Let {v;} be a basis of V, and let >} v;®
&: (£;€V%5®3*) be an arbitrary element of V, ® V;®3°. Then by (2%
of Lemma 3.5, we have

DCD,E” X v:®&) :¢l§2) > v:® Ep§i>-
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Hence if ®° (2 v:® &) EKer Li,;, Then we have E,&, €V 7 ®n¢ for each &..
This implies that £&;& W (p). Consequently we know that Ker L,/ C®;"(V,
® W (p)). On the contrary it is obvious that Ker L,)D®,°(V, ® W (p)).
Thus we have Ker L,;=®"(V,® W (p)).

Q. E. D.

Let ¢: G>GL(V,) be an irreducible represntation. We define an
integer c([p], [o]) by

c([p], [¢])=dim; Homs(V,, W (p)).

If the highest weights of [p] and [o] are respectively represented by A and
M, then we also denote by c(A, M) the integer c([p], [o].

ProposITION 3.7. (19 Let [p] and [c]€2(G) Then:
(a) c(pl, leD=a(p*], [c]D. In particular if [p*]*[o], then c
([p], [eD=1

(b) Let [pl€e2(G). Then:
@)(i) dim W= 2 c(p], [¢]) dim V.
[plez (G

(ii) dim Ker L= ! c(p], [¢]) dim V,-dim V.

[p]. [el€e2(6
Proor. (1°) (a) Since W (p) is a p,(G)-submodule of V;®g“, we
have

c([p], [¢])=dim, Homs(V,, W (p))=dim, Hom(V,, Vi®g)
:d<[p], [6]>

Thus if [p*]#[c], then we have a([p*], [6])=1 (see Propsition 2.3).
This proves the assertion.

(b) Let us define an involutive diffeomorphism & of G by e(g)=g7"
Then we have: e(e)=¢; e+l =rgre, e*7e=[°e(GEG). Consequently we
have ¢ ,(X)=—X(X€98);e*L(g=R(g-e", e**R(@=L(g)+e* (geG).

Since ¢ is an isometry of G, we have e*«D=D-e* (see the definition of D).
Moreover we have

LEMMA 3.8. The bundle 1 of second fundamental forms is invariant by

e*, 1. e. g*n=n,

Proor. We have to show that it holds that e * ng=n, for eachgEG. Let
Aeb, X, Yeg. Then:

(e*0(LA) (X, 1Y) =0(LA) (e, X, €, Y)
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=0([LA) (—1eX, —1rY)=(lA, 01X, 7Y))
=LA, r0(X, Y)) =(7-A, [0(X, Y))
=0 (7,-A) ([ X, [,-Y).

Hence we have e*0(l;A)=0(r,~A)en,.. This proves the lemma.
Q. E. D.

Let W, (resp. W p) be the sum of p,(G)-submodules of W (p) (resp.
W (¢)) that are isomorphic to V,(resp. V,)as G-modules. Then W, is
isomorphic to the direct sum of c([p], [o])-copies of V, and W, is
isomorphic to the direct sum of ¢([o], [p])-copies of V.

Now let us set U=®"(V, ® W,). Then it is easy to see that U is
invariant under the actions L and R of G and U is isomorphic to the direct
sum of ¢([p], [¢]).-dim V,-copies of V, under the action R (see[Proposition]|
3.4). Thus £*U is invariant under the actions L and R of G. Under the
action L, ¢*U is isomorphic to the direct sum of c([p], [¢])+dim V,-copies
of V. (and hence &*UC0.,(T*9) and under the action R, e*U is

isomorphic to the direct sum of c([p], [¢])+dim V,-copies of V,. On the
other hand since D (U)CT'(n%, we obtain by that D(e*U)=¢*
D(U)CT(n®. Therefore we have e*UC Ker L, Hence we know that
e*UcC®P(V,® W,). Thus we have c([p], [eD=c([o], [p]. If we
permute [p] and [o], we get c([o], [p]D=c({p], [¢]). This implies
that the equality c([p], [e]D=c(c], [pD.

The assertion (2°) (i) and (ii) can be obtained by the very defini-
tions.

Q. E. D.

§4. Determination of the space Ker L.

In this section we consider the case where the inclusion map f£ is elliptic.
We assume that G is either SO(n)(n=5), U(n)(n=3) or Sp(n)(n=1).

4.1. Extreme vectors . Let p: G—>GL(V,) and o: G—GL(V,) be
two irreducible representations of G. We denote by A, M the highest
weights of [p] and [o] respectively and denote by A*, M* the highest
weights of [p*] and [o*] respectively.

Now let us assume that c([p], [¢])#0. Then we have a([p*], [c]) =
a(A*, M)+0 (see Proposition 3. 7). Therefore by Proposition 2. 3, we
know that the following two cases are possible:

(A): M=A*+a, for some a,EA.
(B): M=A*.
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Let . be the set of all pairs {A, M}eD(G)X D(G) such that c(A,
M)+0. Then the set . is divided into two subsets according as M+A* (¥
D or M=A* (%p). Further the set &, is divided into two subsets
according as M>A* (%,.) or M<A* (¥,). We remark that the set %,
can be easily obtained by the set .#,.. Infactlet {A,M}€.%,.. Then there
exists a negative root a, such that M=A*+a,. Owing to the symmetry c(A,
M)=c¢(M, A)(see Proposition 3. 7), we have {M, A} .¥,. Hence there
exists a non-zero root 8 such that A=M*+43. We now prove §>0. If we
apply x to both sides of the equality M=A*+a,, we obtain that M*=A+x
(@) (see [Proposition 2.2). Hence we have f=—x(a,). Since xII=II, x
preserves the set of negative roots. Thus we have x (a,) <0 and hence 8>
0. Therefore we have {M, A}€ ¥ ,.. Conversely we can see that if {A,
M!e.%,. then (M, A}€.%,.. Therefore we have: < , ={{M, A}|{A, M}
E L, ).

In the following we determine the sets %4 and ¥5.

Let c([p], [6]) = 0. Let W, be the sum of p,(G)-submodules of W (p)
(C V*®g°*) isomorphic to V, as G-modules. Since c([p], [c])#0, we
have W,+ 0. Further if [p*]#[co], we have c([p], [6])=1 (see Proposi-
tion 3. 7) and hence W, is irreducible.

Now let us choose and fix a non-zero extreme vector » in W,. (For a
representation 7 : G—GL(U), a vector v U is called extreme if it holds =
(Z)v=0 for each BEA, >0 and Ze&g,)) If [p*]*[c], then W, is
irreducible and hence # is uniquely determined up to a constant multiple.

We now write down 7z explicitly. Let X €g¢. We define an element X *
eg* by X*(Y)=(X,Y) (YeEg9. Wethenhave Ad*(¢) X*=(Ad(@ X)*
for g€G. Hence: Ad*(Y)X*=(Ad*(Y)X)*=[Y, X]* for X, Y &g°

Let {Z, (€g,)|a€EA} be a system of vectors in g°¢ satisfying: (Z,,
Z D=1and [Z, Z_,]=v —1a for each «<A. Let v,. be a non-zero
vector in (V*)4.. Then by a similar method used in the proof of Proposi-
tion 2.4 in [5], we have

(A" The case where (A Me 7,.:

N=0s-® ZZn+a§AvM_a® Z7 5 vm—a€(V M0
a>d’o

(B) The case where {A, M}E%;:
N=Va® H*+ D 0y_,®ZF ; vy o E(V )y w, (0£) HEL

a €A
a>0

LemMa 4.1.  Let B be a positive root.
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(i) If (A Myes,., then:
P*(Z,sr) UAs—g=NgUps+,

where ng denotes the constant determined by : [Ze: Zs)=m5Z,. 5 if ao+BE
A, nﬁ:O Zf a/0+ﬁ$A
(i) If {A,M}e5y, then:
p*(Zy) UAu,/s:\/tT (B, H) vpe.
Proor.  Applying p¥ (Zs) to n, we get:
(i) The case where {A, Mies,.:
0=0v,.®[%Z, Z,]*+ ... +p*(Z)vpe p®ZF s+ ... .
(ii) The case where {A,M}€.5,:
OZZ)A~® [Z/g, H]*+ e +p*<Zﬁ>UA*_ﬂ® Z;"‘ cee .
Hence we have (i) p*(Zy) vs-_z=ng,. if {A,M}e¥ 4. and (ii) p*(Z,)
UA'—ﬂ:‘V —‘I (ﬂ, H) UAa if {A,M}eyB.
Q. E. D.

The following lemma plays an important role in the subsequent
discussions.

LEmmA 4. 2.
(1°> Ep?](li, A,J>:0 Z:f Zi]
@) End;, 2,)=0 if i€S(a).
3 En(a, Z,)=0 if s(a)=2.
. 1 .
4 En(Z_,, Z) :m En(a, @) if s(a)=2.
(5Y En(Z, Z)=0 if s(a)=2.
(69 E,(Z, Z)=0 if a+BEAU{0}, S(a)+S(B).
Proor. Since €W (p), we have EncVi®ne Hence there exist

vectors vf €V} and A;€p° satisfying E;n(X, Y)=3(A4,, 6(X, Y)) v* for
all X, Y€g¢. Thus the lemma follows from [Proposition 2. 1.

Q. E. D.
4.2. The set &,.. We first prepare the following two lemmas.

LemmMa 4. 3. S(AY)CS(ay). Consequently s(A*)<2.
Proor. Let i&S(ay). Then by (2°) of Lemma 4.2, we have En (4,
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Z_.)=0. On the other hand a direct calculation shows that
Eni, Z_)=p* A (Z_.))+p*(Z_o)(n(A:)
=/ —1(A* 1) v,-.
Since v,-#0, it follows that (A*,1,)=0, i. e, i€ES(A*). Hence we have S

(A")C S(a,). Thus we get s(A*)<s(a) =2 (see § 2. D.
Q. E. D.

LemMa 4. 4. If s(ao) =2, then (A*, ap)=0.

ProoF. By (39 of Lemma 4.2, we have En(ao, Z_,)=0. On the other
hand we have:

En(ao, Z_n)=p*(a0)(n(Z_))+p*(Z_o)(n(an))
=V —I (A*, a’o)UAt.

Hence we have (A*, a,)=0.

Q. E. D.
By Lemma 4.3, we know that s(A*)=0, 1 or 2.

1. The case where s(A*)=2. In this case we have s(a,) =2 and S(A*) =
S(do)

LEMMA 4.5. Under the above assumptions the following three cases are
possible :
(a) A*=mA+r)(m>0); ao=A—A;.
(b)) A*=mA,—2)(m>0); a=2A—A.

(¢) A*=—mAra+2p(m>0); ao=2r1—Ar.
ProoF. Since A* is a dominant integral form with s(A™®) =2, we have

(a,> A*:m111+%lz(mlg7nz>0>, a’o:llilz.
(6" A*=mA,+ mrllr<m1>0> Mmy) 5 Qo= AitA,.
(¢) A*=Mradrr+mA0> M1 Zmy) 5 de=Ar 1t As
Since (A*, a,)=0 (see Lemma 4.4), we obtain the three cases stated in the
lemma.
Q. E. D.

Case (a). We first assume that » =3 and set §=24,— A.(eA). Thenwe
have ap+8=21,—A,EA and hence v4._,+ 0 (see[Lemma 4.1). Since s(ao+
B8)=2, we obtain by (3) of that Ez(ao+8, Z—(ars)=0. On
the other hand we have
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Epﬂ (do +ﬂ ’ Z—(ao+ﬂ)) :p*(do“"ﬂ) (”<Z——(ao+/3)>)
+p*(Z _ e p) (a0 +8))

=V —1TA*=B, a+B) Va+_pg.
Since v,-_z+0, we have

A*—=B, ao+B)=(m L, +(m—1DA+4,, ,,—1»)

=(m—1)c=0.
This implies that m=1.
We next examine the case where r < 2.

G=S0(5) : We set =21,(€A). Then we have a,+B8=21, and hence
Va-_p#+0 (see Lemma 4.1). From (2°) of and from a direct

calculation, we get

0=Enz, Z_caip)=v =1 (A*=B, X2) vs_p-
Hence:

A*=B, A =(mA i+ (m—DA,, L)=(m—1)c=0.

This implies that m =1.

G=5p(2): Weset 8=A1,+1,(€A). Thenin an analogous way as in the
case G=S0O(5), we can prove that m=1.

G=5p(1) : This is not the case.
Thus we have obtained the following result in Case (a) :

(1) G(iSp(l)) A*:A.l‘*‘lz, M:211, a/o:A.l—A.z.
Case (b). This case can happen only if G=S0O(4) (see §2.1) and
hence it is excluded from our considerations.

Case (¢). This case can happen only if G=U(n) (n=3). By the
same manner as in Case (a), we obtain:

(2) G=Umn) n=3): A*=— QA0+, M==21;; ao=A,1— A~

II. The case where s(A*)=1. We first prove that s(a,)=1. In fact if
s(a,) =2, then it follows from Lemma 4.4 that (A* a,)=0. However it is
impossible because S(A*)C S(a,) (see Lemma 4.3). Accordingly we have
s(a,)=1. We note that a non-zero root a, with s(a,) =1 exist only if G=50
(2r+1) or Sp(r) (see §2.1). Then the following two cases are possible :

(d) A*=mAd,(m>0); a=FkA;
(e) A*=—mA,(m>0); a=kA,,

where k=1 if G=SO2r+1) and k=2 if G=5p(7).
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Case (d). We first consider the case where G=SO(2r+1). Then
since (A*, A,)=(mA,, 1,) =0, the pair {A* a,} is contained in the table in
Proposition 2. 3. Hence we have a(A*, M)=0 and hence ¢c(A,M)=0 (see
IProposition 3. 7).

We next consider the case where G=Sp(»)(r=2). We set B=21,—A,.
Then we have ay>f, av+8=31,—1,FAU{0} and S(a,)+S(B). Hence
from (6°) of and from a direct calculation, we get

0=En(Z w0, Z_9)=p*(Z_p) va-.

This implies that A*— g is not a weight of V. Therefore we have
(A*, ﬁ) =(mld,, Ai—A)=mc=0.

Hence we get m =0, contradicting the assumption s(A*)=1.

Finally we conider the case where G=S5p(1). We note that each
element of n$ is given by a constant multiple of the inner product (,) (see §
1). On the other hand, from a direct calculation we get E 7(1,, 1,)=0.
Hence we have E,=0. Thus we have

0=FEn(Z_., Z_.)=2p*(Z_,)((Z_,))
=20*(Z_,) Un-.
This implies that A*—a, is not a weight of V. Therefore we have

(A*, ap) = (mA,, 21,) =2 mc=0.
Hence we have m =0, contradiction the assumption s(A*)=1.
Case (e¢). In neither the case G=SO2r+1) nor G=Sp(n), A* is not
a dominant integral form.

HI. The case where s(A*)=0, i. e, A=A*=0. Since p is a trivial
representation, we have V) ® g*=g®* =g Hence we know that a, is equal
to the highest root of ¢. Therefore we have:

Q) G(=all): A*=0; M=a,=the highest root of g°.

4. 3. The set &;. As we have seen, each extreme vector » can be
written in the form
7=V @ H*+ 2 v A —a®Z7,

a €A
a>0

where v5._, €(V),._, and (0#) H&t®. Here we remark that z is
uniquely determined by H (see the proof of Proposition 2. 4. in [5]).
We now prepare the following three lemmas.
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LemMa 4.6. S(A*)CS(H). Consequently s(A*)<s(H).

Proor. Let (€S(H). We choose j such that j&S(H). Then by (1°)
of Lemma 4.2, we have E,#(1,, 1;)=0. On the other hand, a direct calcula-
tion shows that

EnAi,AD=v —1(A;, HY(A*, 1,) v4-.

Since (1, H)+0, we have (A* 1,)=0, i. e., 1&S(A*). This implies that
S(AHCS(H).
Q. E. D.

LemMA 4.7. If A*+0, then s(H)<2.

Proor.  Suppose that s(H)=3. Letj, %k and / be three arbitrary distinct
integers contained in S(H). Then by (1") of Lemma 4.2, we have

Epﬂ (lj’ lk) = Epﬂ (A-k; ll) = Ep” (A-L; A’J) - 0
Writing A*=>m.A; and H =2 h,A;, we get:

m,-hk+ mkhj: 0 5

mkhz+ mlhk'—‘ 0 ;

mlhj+ mjhl: 0.

Since h;#0, h,+0, h+0, we obtain by the above equalities that m,;,=m,=
m,=0. Since j, k and [ are selected arbitrarily from S(H), we have s
(A®) =0, i. e., A*=0 (see Lemma 4.6).

Q. E. D.

LEMMA 4.8. Let B satisfy 8>0 and s(B)=2. Then it holds either (B,
1
H)=0 or (A*, ﬁ):7(ﬁ, 8.
Proor. By (1°) of Lemma 4.1, we have

Ep” (Z—ﬁ’ Zﬁ> :T}’T)Ep” (18» ﬂ) .

A direct calculation shows that

/J*(Zﬁ> Vpar—p=— (ﬁ ﬁ) (ﬁ H)(A*, B) va-.

On the other hand, the left hand side of the above equality is equal to /=T

(B, H) va- (see Lemma 4.1). Hence we have the lemma. Q
. E. D.

By Lemma 4.6, we know that s(A*)=0, 1 or 2.
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.. The case where s(A*)=2. In this case we have s(H)=2 and S
(A*)=S(H). Therefore the following three cases are possible :

(Cl) A*=m1111+%/12(m1£mz>0), H:h1ll+hzlz (hlrf:O, hziO)
(b)) A'=ml+mA(m;>0>m,) ; H=mA,+hAA, (h,#+0, h,+0).

(C) A*:m,_lzlr_1+mrlr(0> mr_lgmr) , H:hr—llr—1+hrlr (hr—lzf:(),
hy+0).

Case (a). Wefirst assume that =3. Weset 8,=21,—1,(€A) and g,=
A,—A,(€A). Then since (B, H)=ch+0, (8, H)=ch,+0, we obtain by
that m,=2(A*, B)/(B:, B1)=1 and m,=2(A* B.)/ (B, B.)=1.
Hence A*=21,+2,. Now we set =1,—1, (€A). Then since (A* 8)=0,
we obtain by that (8, H)=c(h,—h)=0, i. e., hy=h,. On the
other hand by (1°) of Lemma 4.2, we have

OIEpﬂ<ll, 12)22\/ _'I CzhlvA*.

This is a contradiction.

Next we examine the case where » <2.

G=S5S0() or Sp(2): We set f,=1,+1, (€A) and B=21,—1, (EA).
First we assume that (8,, H)=0. Then we have (8, H)=c(h+h)=0, i.
e., ho=—"h,. Thus we have (8, H)=c(h—h)=2ch;+0. Therefore by

[Lemma 4.8, we get 2(A*, B.)/(B:, B) =mi—mp=1. On the other hand by
(1) of Lemma 4.2, we obtain

O:Epﬂ<ll; A)=,/—1 C2<m1_%>h101\‘

- ‘/——'TC'zhﬂ)At.
This is a contradiction. Next we assume that (B, H)+0. Then by Lemma
4.8, we obtain 2(A*, £)/(B, B)=m+m=1. Thus 2(A* B.)/(B,, Bo) =
m—m,+1, because m,+0. Hence by Lemma 4.8, we have (8,, H)=c
(m—h)=0, i. e, ly=h,. Therefore by (1) or Lemma 4. 2, we obtain
0= Epﬂ Ay, )= v =1 c*(m+m,) hivy-

=v =1 c*ho,..
This is a contradiction.
G=5p(1) : This is not the case.
Case (b). Thiscase can happenonlyif G=U ) (n=3). We set Bi=
Ai—2z, fo=A,—1,. Then we have (B H)=ch#0, (8,, H)=—ch,+0.
Hence by Lemma 4.8, we have 2(A*, 8)/(8,, 8)=m=1 and 2(A*, ,)/(Bs,

B2)=—my,=1. Hence A*=21,—1,. We then have by (1°) of
that
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0=En (A1, A=y =T (hn—h) v,

Hence we have hy=h, and hence H=h(1,+1,). Thus H is uniquely
determined up to a constant multiple and hence # is uniquely determined up
to a constant multiple. Therefore we have :

4 G=Um) (n23): A*=A—2A,; M=, —1,; H=hA,+21,).

Case (¢). Thiscase canhappen only if G=U (%) (#=3). By asimilar
discussion as in Case (a), we also arrive at a contradiction.

II. The case where s(A*)=1. In this case the following two cases are
possible :

(d) AN*=md(m>0).

(e) A*=-—md,(m>0).

Case (d). We first assume that »=2. Then for each i(1<i=7r), we
obtain by (1°) of that

OzEpﬂ(lx, li>:\/j cm(H, 1) v,-.
Hence (H, A,)=0, i. e, i{$S(H). Therefore we have H=mA,. Thus

H is uniquely determined up to a constant multiple, hence # is uniquely
determined up to a constant multiple.
Letusset B=1,—1, (€A). Thensince (B, H)=ch+0, it follows that

2(0%, )/ (B, B)=m=1.

We next consider the case where G=Sp(1). We note that each element
of n¢ is given by a constant multiple of the inner product (,). Let usset 8=
21, (€A). Then we have (8, Z_;)=(Z_4 Z_5)=0. Therefore we have

OZEpﬂ(ﬂ) Z—/S>: \/ _1 (A*-ﬂ’ ﬁ)vA'—ﬂ+<ﬁ’ H)p*(Z—ﬂ)vA‘ ’
0=En(Z _p Z_p)=2p*(Z_g)0p_g.
By the above equalities we obtain that p*(Z_g)p*(Z_s)vs-=0. This
implies that A*—28 is not a weight of V. Hence we have 2(A*, 8)/ (B,

B)=m=1. As in the case where =2, » is uniquely determined up to a
constant multiple. Thus we have:

5) G C=all); A*=1,; M=21,; H=hd, (l+0)
Case (¢). This case can happen only if G=U(n) (n=3). Inthesame
manner as in Case (d), we obtain the following :

6) G=Um) n=3): A*=—21,; M=—24,; H=hA(h,#0.
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III. The case where s(A*)=0, 1. e., A=A*=0.
Since p is a trivial representation of G, we know that V) ®g“*=g*=g°and
that W, is the sum of irreducible p,(G)-submodules with M =0 as its highest
weight. Hence this case can happen only if ¢ has a non-trivial center and

H is an element of the center. Therefore we know that G=U (n)(n=3)
and hence H =h(3}1;). Thus we have

(D G=Umn)(n=3): A*=0; M=0; H=h(Q1,)(h+0).

4.4. The set . We now exhibit the results obtained in the previous
paragraphs. We note that the set .#,. is obtained by the results (1)~ (3) in

§4.2. The set ¥4 is automatically determined by the set .¥,. (see § 4. 1).
The set .#5 is obtained by the results (4)~(7) in § 4. 3. Therefore the set
& 1is given as follows.

Table [ . G=SO(n)(n=5)

A M d(A) d(M)
Lt A, 21, Snln—1) Fn=D(n+2)
2, it s F(n—D(nt2) +nln=1)
0 Lt A, 1 +n(n—1)
A+ A, 0 %n(n—l) 1
Ay A n n

Table I : G=U(n)(nz3)

A M dA) dM)
2, Mt A %ncm D n(n—1)
~(atd) 2, (=D Sn(n+ D)
A+A, —2A5 —%—n(n—l) —%n(n%—l)
—2An A2, %n(nwtl) %n(n—l)
0 AI_An 1 n2—1
A,l—ln 0 2_1 1
A.l'_ln ll_ln 1’l2—1 1’1,2—1
ll _ln n n
_ln ll n n
0 0 1 1
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Table III : G=Sp(n) (n=1)

A M d(A) d (M)
A+, 21, 2n*—n—1 on*+n

21, A+ 2n*+n 2nt—n—1

0 21, 1 2n*+n

24, 0 2n*+n 1

A A 2n 2n

In the above tables, we mean by d(N) (NED(G)) the dimensionality
of V., where 7: G—GL(V,) is an irreducible representation of G with N as

its highest weight. The integer d (N) is calculated by the following Weyl’s
formula :

_ o (N+6,a)
d<N)—a£[A+ (é\, d) ’
where A+ means the set of positive roots and 62%( Z‘A a) Et.
aEA”

Let {A,M}!e.». We have c(A,M)=1 if (A, M}e ¥, (see §D).
Moreover if {A,M}E %5, we also have ¢(A,M)=1. In fact, as we have
remarked in § 4. 3, the extreme vector » in W, is uniquely determined up to
a constant multiple. Hence we know that W, is p,(G)-irreducible, i. e, ¢
(A,M)=1.

Now let us consider the space Ker L. Since f is elliptic we know that
dim Ker L<oo (see [6], [9]). Hence we have (Ker L)°C o(T*),
because Ker L is L(G)-invariant (see Proposition 3.1.). Therefore by
Proposition 3.7 we have

dim Ker L:’AZI:VI‘C<A’ M)ed(A)edM)=

2 dA)-dM).
iAMes

1

By a direct calculation, we obtain that

ST d(A)dMD=5N(N+D,

AMey

where we set N =dimgz M (n, F) = n?-dimg F.
Thus we have
THEOREM 4.9. Assume that G is either SO(n) (n=5), U(n) (n=3) or

Sp(n) (n=1). Then the inclusion map f: G—>M(n F) is globally
infinitesimally rigid. '

By the above theorem together with [Theorem 1.5, we know that the
inclusion map f is globally rigid.
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REMARK 1. Strictly speaking, if we denote by %’ the set of pairs {A,M}
in Table I, II or III, then we have ¥C.¥”, because (1)~ (6°) in Lemma 4.3
are necessary conditions for # to be contained in W (p). However our proof

may be justified by the fact dim Ker L=-LN (N +1) (see [6], [3]). Hence
we have =9

REMARK 2. Let G=Spin(n) (n=5) and let n: G>G= SO(n) be the
natural covering homomorphism. Then we can show that the composite f=
fex, which is an elliptic isometric immersion of G into M (%, R), is globally
rigid. First we note that there is a difference between the sets D(G) and D

(B ; D(G) contains elements A of the form Azillmil,- (m,E(%)Z),

where we set 7 = [—Zn—]. However we remark that the assumption m;€Z is

not used in the determination of the pairs {A,M} such that ¢(A,M)=0.
Therefore the discussions developed in the case where G=S0(#) (n=5) are

also applicable to this case. Then we have dim Ker E:%n(nﬁ— D (N=
dim M (n, R)). Therefore we know that f is rigid in the sense of Tanaka.

4.5. Other results. In this paragraph, we consider the case where the
inclusion map f: G—M (»n, F) is non-dogenerate and is not elliptic, i. e., G
is either SO(n) (n=3 or 4) or U(n) (n=1 or 2).

We first assume that G is either SO(3) or U(1). Then we know that
the bundle n of second fundamental forms coincides with the whole bundle S?
T*. Therefore the equation Lé =0 is trivial, i. e., every 1-form ¢ on G is
a solution of this equation.

Now let us consider the case where G=S0O(4) or U(2). We note that
in either case the number of linearly independent relations in is
equal to dim S%3*/n.. Thus the conditions (1)~ (5°) in are
necessary and sufficient for  (€V®g“) to be contained in W (p).
Therefore in the same manner developed in the previous paragraphs, we can
determine the integers ¢(A,M) for all A MeD(G). We summarize our
results in the following theorem.

THEOREM 4.10.  Assume that G is either SO(4) or U(2). LetA, MED
(G). Then the integer c(A, M) is given as follows :

1 if the pair {A, M} is contained in the following
c(A, M) = { Table IV or V.
0 otherwise.
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Table IV : G=SO4) (m=0, meZ)

A M
m(A,+2z) (m+DA,+(m—DA,
m(di—2A,) (m+DA,—(m—1DA,

(m+DA+(m—1A, m(A1+2,)
(m+DA—(m—DA, m(Ad,—A,)
A A

Table V: G=U2) (meZ)

A M
m(ld_lz) (m%()) m<ll_12>
_<m_1)ll"'mlz mll'i'(m"‘l)/lg

By the above theorem, the space (Ker L)°No(T*° is completely
determined. As a consequence we know that Ker L is of infinite dimension.
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