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On j -algebras and homogeneous K\"ahler manifolds
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Introduction.

The notion of j-algebras introduced by Pyatetskii-Shapiro played an
important role in the theory of realization of homogeneous bounded domains
as homogeneous Siegel domains. Vinberg, Gindikin and Pyatetskii-Shapiro
[16] stated that the Lie algebra of a transitive holomorphic transformation
group of a homogeneous bounded domain admits a structure of an effective
proper j-algebra and that every effective proper j-algebra can be regarded as
the Lie algebra of a transitive holomorphic transformation group of a
homogeneous Siegel domain of the second kind. In this paper, we remove
the properness and study the structure of homogeneous complex manifolds
corresponding to effective /-algebras.

By an effective j algebra (\mathfrak{g}, f, j, \omega) we mean a system of a Lie algebra
\mathfrak{g} , a subalgebra t , an endomorphism j, and a linear form \omega satisfying certain
conditions. (For a precise definition, see \S 3.) Let G be a connected Lie
group with \mathfrak{g} as its Lie algebra and let K be the connected subgroup
corresponding to f . Then K is closed and G/K admits a G-invariant K\"ahler
structure. The homogeneous space G/K is said to be the homogeneous
complex manifold associated with the effective j algebra (\mathfrak{g}, f, j, \omega) . We
shall prove the following theorems.

THEOREM A. Let G/K be the homogeneous complex manifold associated
with an effective j algebra (\mathfrak{g}, f, j, \omega) . Then G/K is biholomorphic to a
product of a homogeneous bounded domain M_{1} and a compact simply
connected homogeneous complex manifold M_{2} .

THEOREM B. Conversely, let M_{1} be a homogeneous bounded domain and
let M_{2} be a compact simply connected homogeneous complex manifold. Let G
be a connected Lie group acting on M_{1}\cross M_{2} transitively, effectively and
holomorphically. Assume further that M_{1}\cross M_{2} admits a G-invariant K\"ahler
metric. Then the Lie algebra of G admits a structure of an effective j-algebra
so that the associated homogeneous complex manifold coincides with M_{1}\cross M_{2} .

Gindikin, Pyatetskii-Shapiro and Vinberg [17] stated that Theorem A
was essentially proved in [16]. But it seems to the author that there is no
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description in [16] which enables us to obtain our Proposition 8.
We can prove Theorem B by a simple consideration of the canonical

hermitian form due to Koszul [8]. In order to prove Theorem A, we use the
decomposition theorem of an effective j-algebra which was obtained in [16]
by using an algebraic technique, i . e. , by considering the algebraic hull of an
effective j-algebra. In view of [11], we can show this decomposition
theorem without taking the algebraic hull. This enables us to obtain a
structure theorem similar to Theorem A for a certain class of homogeneous
K\"ahler manifolds. Vinberg and Gindikin [15] conjectured: Every homoge-
neous K\"ahler manifold admits a holomorphic fifibering whose base space is a
homogeneous bounded domain and whose fifiber is, equipped with the induced
metric, a product of a locally flat homogeneous K\"ahler manifold and a
compact simply connected homogeneous K\"ahler manifold. By a result of
Borel [1], this conjecture is true for a homogeneous K\"ahler manifold of a
semi-simple Lie group. We say that a homogeneous K\"ahler manifold
satisfies the condition (C) if it does not contain any locally flat homogeneous
K\"ahler submanifold. Recently, Shima [13] showed that under an “ alge-
braic ” assumption on G, if a homogeneous K\"ahler manifold G/K satisfies
the condition (C), then G/K admits a fibering whose base space M_{1} is
diffeomorphic to a homogeneous bounded domain and whose fiber M_{2} is a
compact simply connected homogeneous K\"ahler submanifold. But it has not
been proved in [13] that the projection: G/Karrow M_{1} is holomorphic. In this
paper, we also prove the following

THEOREM C. Let G/K be a homogeneous K\"ahler manifold satisfying the
condition (C). Then G/K is, as a complex manifold, biholomorphic to a
product of a homogeneous bounded domain and a compact simply connected
homogeneous K\"ahler manifold.

In the special case where G is solvable, Theorem C is obtained by
Kodama and Shima [7] by using the main result of [16]. To prove
Theorems A and C, we shall find a connected closed subgroup U containing
K so that G/U is a homogeneous bounded domain and U/K is a compact
simply connected homogeneous K\"ahler submanifold of G/K (Theorem 11).

We can see that the fibering: G/Karrow G/U is holomorphic. Therefore the
conjecture of Vinberg and Gindikin is true for a homogeneous K\"ahler

manifold satisfying (C) and for a homogeneous K\"ahler manifold associated
with an effective /-algebra.

From our Theorem 11, we can reprove the ma\overline{l}n result of [16]. We can
also show by our method the following unpublished result of Koszul [10] :
Every homogeneous complex manifold with a positive definite canonical
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hermitian form is biholomorphic to a homogeneous bounded domain.

\S 1. Preliminaries.

Let G/K be a homogeneous manifold of a connected Lie group G by a
closed subgroup K. Denote by \mathfrak{g} and f the Lie algebras of G and K
respectively. Assume that G/K admits a G-invariant complex structure J.
Then there corresponds an endomorphism j of \mathfrak{g} satisfying the followings:

(1. 1) jf\subset f , j^{2}x\equiv-x(mod f) ,
(1.2) Ad k\circ jx\equiv j\circ Adkx (mod f ),
(1.3) [jx, jy]\equiv[x, y]+j[jx, y]+j[x, jy] (mod f),

where x, y\in \mathfrak{g} and k\in K. The operator j induces an endomorphism \tilde{j} of \mathfrak{g}/f

in a natural manner. Then under the identification of \mathfrak{g}/f with the tangent
space T_{o}(G/K) at the origin 0 of G/K,

(1.4) \tilde{j}v=J_{0}v for any v\in T_{o}(G/K) .

Conversely, if an endomorphism j satisfies ( 1. 1)-(1.3) , then there cor-
responds a unique G-invariant complex structure J satisfying (1. 4).
Another endomorphism j’ is called equivalent to j if it satisfies j’x\equiv jx (mod
t.) for any x\in \mathfrak{g} . Then j’ also satisfies ( 1. 1)-(1.3) and determines the
same G-invariant complex structure. If the group K is connected, then (1.
2) is equ\overline{l}valent to

(1.5) [ h, jx]\equiv j[h, x] (mod t) for h\in f , x\in \mathfrak{g} .

We remark that the following conditions for a homogeneous complex
manifold G/K are mutually equivalent:

(a) G/K is biholomorphic to a homogeneous Siegel domain of the
second kind.

(b) G/K is biholomorphic to a homogeneous bounded domain in C^{n} .
(c) The universal covering space of G/K is biholomorphic to a

homogeneous bounded domain in C^{n} .

This fact is proved in [11] by using the Kobayashi hyperbolicity. Of
course, if we admit the results of [16], then it is obtained from [5], [6] and
[16].

Let \mathfrak{g} be a Lie algebra and t
. be a subalgebra equipped with an

endomorphism j satisfying (1. 1), (1. 3) and (1. 5). For every x\in 9c , ad
jx-j\circ adx induces an endomorphism of \mathfrak{g}/f . Assume that Tr_{q/f} ad h=0 for
any h\in f . According to Koszul [8], we define the Koszul form \psi of (9, f, j)
by
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(1.6) \psi(x)=Tr_{\mathfrak{g}/f} (ad jx-j\circ adx) for x\in_{t}1t .

We then have ([8])

(1.7) \psi([jx, jy])=\psi([x, y]) , \psi([h, x])=0 for x, y\in \mathfrak{g} , h\in f .

Let G/K be a homogeneous complex manifold with a G-invariant
volume element V. If V is expressed as

V=V^{*}dz^{1}\wedge\ldots\wedge dz^{n}\wedge d\overline{z}^{1}\wedge\ldots\wedge d\overline{z}^{n}

in terms of local coordinate system (z^{1}, \ldots z^{n}) , then we get a G-invariant
hermitian form \eta on G/K, called the canonical hermitian form, by

Let us denote by \pi the projection of G onto G/K. Then \pi^{*}\eta is a left
invariant symmetric bilinear form on G. Therefore it is regarded as a
symmetric bilinear form on Qt . Under this identification, Koszul [8] showed

\pi^{*}\eta(x, y)=\frac{1}{2}\psi([jx, y]) for any x, y\in \mathfrak{g} .

The following facts are well known:

(i) If G/K is a homogeneous bounded domain, then \eta coincides with
the Bergman mctric. Therefore \psi([jx, x])\geqq 0 for any x\in \mathfrak{g} and \psi([jx, x])

=0 if and only if x\in f .
(ii) Let G/K be a compact simply connected homogeneous complex

manifold with a G-invariant K\"ahle metric. Then the group of all holO-
morphic
isometries of G/K is a compact semi-simple group. Therefore by [8],

\eta is negative defifinite. Consequently, \psi([jx, x])\leqq 0 for any x\in \mathfrak{g} and \psi([jx,
x])=0 if and only if x\in f .

(iii) Let G/K be a homogeneous K\"ahler manifold of a semi-simple Lie
group G. Then the canonical hermitian form \eta is non-degenerate ([1], [8]).

By a symplectic space ( W, j, \rho) , we mean a real vector space W
endowed with an endomorphism j and a skew-symmetric bilinear form \rho

satisfying

j^{2}w=-w, \rho(jw, jw’)=\rho(w, w0 ,

\rho(jw, w)>0 for any w\neq 0 .

A linear endomorphism f of W is called symplectic if
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\rho(fw, w\gamma+\rho(w, fw’)=0 for any w, w’\in W.
Let us denote by \mathfrak{s}\mathfrak{p}(W) the Lie aqgebra of all symplectic endomorphisms.
Then

(1.8) \mathfrak{s}\mathfrak{p}(W)=f(W)+r\mathfrak{n}(W) ,

where f ( W)=\{f\in \mathfrak{s}\mathfrak{p}( W) ; f\circ j=J^{\circ}- f\} and m(W)=\{f\in \mathfrak{s}\mathfrak{p}(W) ; f\circ j+j\circ f

=0\} . It is well known that f ( W) is a maximal compact subalgebra of the
semi-simple L_{\dot{1}}e algebra \mathfrak{s}\mathfrak{p}(W) and the decomposition (1. 8) is a Cartan
decomposition. Let Sp(W) and K ( W) denote the connected subgroup of
GL ( W) corresponding to \mathfrak{s}\mathfrak{p}(W) and k( W) respectively. The homoge-
neous space Sp(W)/K(W) is a hermitian symmetric space of the non
compact type and the complex structure of sp(W)/K ( W) corresponds to
the endomorphism I of \mathfrak{s}\mathfrak{p}(W) given by

I(f)= \frac{1}{2}[j, f] for f\in \mathfrak{s}\mathfrak{p}( W) .

\S 2. A submanifold of a homogeneous K\"ahler manifold.

Let G/K be a homogeneous K\"ahler manifold of a connected Lie group G
by a closed subgroup K. Let r be an abel\dot{l}an ideal of \mathfrak{g} and put

\mathfrak{l}=f+jr+r , \mathfrak{l}_{0}=f+j\tau; .

One can easily see that both \mathfrak{l} and 1_{0} are subalgebras of \mathfrak{g} . Let L be the
connected subgroup of G corresponding to \mathfrak{l} . Being a complex submanifold
of G/K, L/L\cap K is a homogeneous K\"ahler submanifold of G/K. Let \tilde{L} be
the universal covering group of L and let \tilde{K} be the connected subgroup of \tilde{L}

generated by f . Then \tilde{L}/\tilde{K} is the universal covering space of L/L\cap K and
it admits an \tilde{L}-invariant K\"ahler structure so that the canonical projection of
\tilde{L}/\tilde{K} onto L/L\cap K is holomorphic and isometric.

We now assume that the sum \mathfrak{l}=f+jt+\subset is direct. According to [16],
we define an affine representation: uarrow C_{u} of {1-n t^{C}(=the complexification
of r) by

C_{u}(z)=[u, z]+\sqrt{-1}x+y for z\in t_{r}^{C}

where u=h+jx+y(h\in f, x, y\in r) . This representation induces a hom0-
morphism \phi of \tilde{L} to the group of affine transformations of r^{C} . Clearly
C_{u}(0)=0 if and only if u\in f Therefore the orbite D^{*} of \phi(\tilde{L}) through the
origin 0 is a domain in t^{C} and \tilde{L}/\tilde{K} is the universal covering space of D^{*} .
Since C_{j\mathcal{U}}(0)=\sqrt{-1}C_{u}(0) for any u\in \mathfrak{l} , the natural projection \Phi of \tilde{L}/\tilde{K}

onto D^{*} is holomorphic. Let \tilde{L}_{0} and \tilde{R} be the connected subgroups of \tilde{L}
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corresponding to 1_{0} and \iota

. respectively. We then have

(2. 1) \tilde{L}=\tilde{R}\cdot\tilde{L}_{0},\tilde{R}\cap\tilde{L}_{0}=\{e^{1}, .

In fact, the first equality is obvious. Let a\in\tilde{R}\cap\tilde{L}_{0} . There exists x\in r such
that a=\exp x . Then \phi(a)0=x. On the other hand, \phi(\tilde{L}_{0}) leaves the
subspece -,1 r invariant. Hence we get x=0, proving (2. 1). For any a
\in\tilde{L}_{0} , ’ we denote by \phi_{0}(a) the affine transformation of r given by

\phi_{0}(a)v=\frac{1}{\sqrt{-1}}\phi(a)\sqrt{-1}v(v\in r) .

Clearly, the assignment: aarrow\phi_{0}(a) is a homomorphism and it corresponds to
the affine representation: uarrow C_{\acute{u}} of \mathfrak{l}_{0} given by

C_{\acute{u}}(r)=[u, r]+x for r\in r .

where u=h+jx(x\in r, h\in f) . Let \Omega^{*} be the orbite of \phi_{0}(\tilde{L}_{0}) through 0.
Then \Omega^{*} is a domain in r and \phi_{0} induces a covering projection \Phi_{0} of \tilde{L}_{0}/\tilde{K}

onto \Omega^{*} . Using (2. 1), we obtain

D^{*}= { Z\in 1i^{C} ; Im z\in\Omega^{*} }.

As is mentioned in Shima [13], the following holds:

LEMMA 1. \Omega^{*} is a convex domain and \phi_{0} is a diffeomorphism of \tilde{L}_{0}/\tilde{K}

onto \Omega^{*}

In fact, we can obtain this lemma from a result of Shima [12], noting
that \tilde{L}_{0}/\tilde{K} is a homogeneous Hessian man\overline{l}fold in the sence of [12]. But for
the convenience of the readers, we state an outline of the proof by modifying
the arguments in [9] and [12].

Let (z^{1}, \ldots z^{n}) be the canonical linear coordinate system of r^{C} . We
may regard (z^{1}, \ldots.z^{n}) as a local coordinate system of \tilde{L}/\tilde{K} by the map \Phi .
As usual, we wrire z^{i}=x^{i}+\sqrt{-1}y^{i} . Then (y^{1} , .. . . y^{n}) gives a local
coordinate system of \tilde{L}_{0}/\tilde{K}. Let us denote by g the K\"ahler metric on \tilde{L}/\tilde{K}.
For any x\in r . exp x is an \overline{1}sometry and it corresponds to the translation; z

arrow z+x. Therefore if we express g in terms of the coordinate system (z^{1} , , .

z^{n}) as g= \sum_{i,j}g_{i_{J}^{-}}dz^{i}\otimes d? , then we have \frac{\partial g_{i_{\overline{J}}}}{\partial x^{k}}=0 . Since g is a K\"ahler

metric, this means that \frac{\partial g_{i_{J}}}{\partial y^{k}}=\frac{\partial g_{k_{\overline{J}}}}{\partial y^{i}}=\frac{\partial g_{i\hslash}}{\partial y^{j}} . Let g_{0} be the riemannian metric on

\tilde{L}_{0}/\tilde{K} induced from g. If we express g_{0} as g_{0}= \sum_{i,j}h_{ij}dy^{i}\otimes dy^{j} . We then have
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(2.2) \frac{\partial h_{ij}}{\partial y^{h}}=\frac{\partial h_{ik}}{\partial y^{j}} .

Let us consider the set \Omega_{0} given by

\Omega_{0}= { y\in r : ty\in\Omega^{*} for 0\leqq t\leqq 1 }.

Then \Omega_{0} is a star-shaped domain in \Omega^{*} . Therefore there exists a d\overline{l}ffffeo-

morphism \alpha of \Omega_{0} onto an open set of \tilde{L}_{0}/\tilde{K}contain\overline{l}ng the orig_{\overline{1}}no of \tilde{L}_{0}/\tilde{K}

satisfying \Phi_{0}\circ\alpha=1 . Then by the same way as [12], using (2. 2) and
Poincar\’e lemma, we can find a function \Psi on \Omega_{0} so that the induced metric

\alpha^{*}g_{0} is expressed as \alpha^{*}g_{0}=\sum_{i,j}\frac{\partial^{2}\Psi}{\partial y^{i}\partial y^{j}}dy\otimes idy^{j} . Then the function \Psi is

convex and it has the follow\overline{l}ng property ([12]) : Let y be a point of r |\Omega_{0} .

If ty\in\Omega_{0} for 0\leqq t<1 , then \lim_{tarrow 1}\Psi(ty)
-arrow\infty . From this fact, noting that \Psi is

convex and that \Omega_{0} is star-shaped, one can see that \Omega_{0}\overline{1}S convex by the
similar way as [8]. Let us denote by \overline{\Omega}_{0} the closure of \Omega_{0} in \Omega^{*} . Let y\in\overline{\Omega}_{0} .
We assert that for any t\in[0,1) , ty\in\Omega_{0} . We may assume t>0 . Let us
denote by B_{\delta}(x) the ball defined by B_{\delta}(x)=\{x’\in r ; ||x’-x||<\delta\} . Here the
norm || || is the usual euclidian norm of r . If \epsilon is small enough, B_{\epsilon}(0)\subset\Omega_{0} .

Consider the ball B_{\delta}(y) , where \delta=\frac{(1-t)}{t}\epsilon . Then there exists y’\in\Omega_{0} such

that y’\in B_{\delta}(y) . The 1\dot{1}ne through y’ and ty intersects B_{\epsilon}(0) . Therefore
from the convexity of \Omega_{0} , ty\in\Omega_{0} , proving the assertion. Consequently, y
belongs to \Omega_{0} and hence \overline{\Omega}_{0}=\Omega_{0} . This means that \Omega^{*}=\Omega_{0} and therefore we
get Lemma 1.

It follows from Lemma 1 that the domain D^{*} is simply connected.
Hence we have

Lemma 2. The universal covering space of L/L\cap K is biholomorphic to
D^{*} .

From Lemma 1, we also know that \Omega^{*} is homeomorphic to R^{n} and that
\Omega^{*} admits an \tilde{L}_{0} -invariant riemannian metric. Moreover every element of \tilde{L}_{0}

acts on \Omega^{*} as an affine transformation. Therefore by the similar arguments
as in the proof of Lemma 3. 1 in [11], we have

Lemma 3. Assume further that G acts on G/K almost effectively.
Then by a suitable change of the operator j, jr becomes a solvable subalgebra.

\S 3. j-algebras and associated homogeneous complex manifolds.

Let qc be a Lie algebra and let t’ be a subalgebra. Let j be an end0-
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morphism of q\iota satisfying (1. 1), (1. 3) and (1. 5) and let \omega be a linear form
on \mathfrak{g} . The system (\mathfrak{g}, f, j, \omega) or simply \mathfrak{g} is called a j-algebra if the following
conditions are satisfied;

(3. 1) \omega([f, \mathfrak{g}])=0

(3.2) \omega([jx, jy])=\omega([x, y]) for x, y\in \mathfrak{g} ,
(3.3) \omega([jx, x])>0 if x\not\in f .

Clearly every j-invariant subalgebra of a j-algebra is also a j-algebra. A
j-algebra (\mathfrak{g}, f, j, \omega) is called effective if t contains no non-zero ideal of \mathfrak{g} .
By (3. 3), the center of the j-algebra \mathfrak{g} is contained in t and it is trivial if \mathfrak{g}

is effective.
Let (\mathfrak{g}, f, j, \omega) be an effective j-algebra. Let G be a connected Lie

group with Q\iota as its Lie algebra and let K be the connected subgroup of G
corresponding to f . If we regard \omega as a left invariant 1-form on G, then K
is the identity component of the subgroup g_{\overline{1}}ven by \{ a\in GjR_{a}^{*}\omega=\omega\} , where
R_{a} denotes the right translation of G defined by R_{a}g=ga(g\in G) . Therefore
the group K is closed. The homogeneous space G/K admits a G-invariant
complex structure J satisfying (1. 4). We call G/K the homogeneous
complex manifold associated with the effective j-algebra (\mathfrak{g}, f, j, \omega) .
By (3. 1)-(3.3) , the symmetric bilinear form \omega([jx, y]) on \mathfrak{g} induces
a G-invariant K\"ahler metric on G/K.

Let 1i be an abelian ideal of the effective j-algebra \mathfrak{g} . Using (3. 1) and
(3. 3), one can see that the sum

\mathfrak{l}=f+j\tau+r

is direct. Let L be the connected subgroup of G corresponding to \mathfrak{l} . Then
L contains K. Let D^{*} and \Omega^{*} be as in \S 2. We already know from Lemmas
1 and 2 that \Omega^{*} is convex and that the universal covering space of L/K is
biholomorphic to D^{*} Moreover using the fact stated in \S 1, we have from
[16]

PROPOSITION 4 ([16]). (1) \Omega^{*} is a convex domain not containing any
entire straight line and hence D^{*} is biholomorphic to a homogeneous bounded
domain.

(2) L/K is biholomorphic to D^{*}

REMARK 1. The proof of [16] contains a small gap. But it can be
easily corrected by a carefull use of a result of Koszul [9] or by using the
fact that \Omega^{*} is simply connected.

An abelian ideal r of the effective j-algebra \mathfrak{g} is called of the first kind if
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there exists r_{0}\in t such that [jx, r_{0}]=x for any x\in c . The element r_{0} is called
the principal idempotent. Using Proposition 4, one can see from [16] that
if there exists a non-trivial abelian ideal r , then there exists a non-trivial
abelian ideal of the first kind contained in r . In what follows, r denotes an
abelian ideal of the first kind with the principal idempotent r_{0} . Let \mathfrak{l}=f+jr

+\iota
. and let \psi be the Koszul form of (\mathfrak{l}, f, j) . By Proposition 4, the sym-

metric bilinear form \psi([jx, y])(x, y\in r) is positive definite. Therefore
there exists a unique \gamma_{\acute{0}}\in\Upsilon such that \psi(x)=\psi([jx, r_{\acute{0}}]) for x\in c . On the
one side, \psi(x)=\psi([jx, r_{0}]) for any x\in e . Therefore r_{\acute{0}}=r_{0} . This means
that r_{0} is uniquely determined. Using the fact \psi([f, \mathfrak{l}])=0 , one can easily
see

(3.4) [ f, r_{0}]=0 .

Therefore the condition “ [jx, r_{0}]=x for any x\in r
” is independent to the

choise of the operator j.
From [16], we also know the following

PROPOSITION 5 ([16]). Let 1i be an abelian ideal of the fifirst kind with
the principal idempotent r_{0} and let \mathfrak{g}^{ta\rangle} be the largest ad jr_{0}-invariant subspace
on which every eigenvalue of ad jr_{0} has real part a. Then the Lie algebra \mathfrak{g}

is decomposed into the sum of subspaces

\mathfrak{g}=8+j\tau+r+0

in the following way:

(a) \mathfrak{g}^{(0)}=\mathfrak{s}+jr , \mathfrak{g}^{\zeta\frac{1}{2})}=\mathfrak{m} and \mathfrak{g}^{(1)}=ti

(b) e_{\sim} is a j-invariant subalgebra containing f and given by

\mathfrak{s}=\{x\in \mathfrak{g}^{(0)} : [x, r_{0}]=0^{(}, .

(c) j\mathfrak{n}\}\subset \mathfrak{m}+f .
(d) Let \mathfrak{g}’=f+jt+r+\mathfrak{m} . Then \mathfrak{g}’ is a j-invariant subalgebra. Let G’

be the connected subgroup of G generated by \mathfrak{g}’ Then the homogeneous
complex submanifold G’/K is biholomorphic to a homogeneous Siegel domain
of the second kind.

It should be noted that the above decomposition of \mathfrak{g} is uniquely deter-
mined from the abelian ideal r and independent to the choise of j. More
precisely, let j’ be another endomorphism equivalent to j and let \mathfrak{g}_{r}^{(0)\prime}\mathfrak{n})’ , \mathfrak{s}’ be
the subspaces obtained from the element j’r_{0} . Then \mathfrak{g}^{(0)\prime}=\mathfrak{g}^{(0\rangle} , tu’ =\mathfrak{n}} and \mathfrak{s}^{r}=\mathfrak{s}

([11]) .
We also note
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[\mathfrak{g}(0), \mathfrak{g}^{(0)}]\subset \mathfrak{g}^{(0)} , [\mathfrak{g}^{(0)}, \mathfrak{m}]\subset \mathfrak{m} , [ \mathfrak{m}, \int v]\subset r ,

because [\mathfrak{g}^{(a)}, \mathfrak{g}^{(b)}]\subset \mathfrak{g}^{(a+b)} .
By virture of Proposition 5, the results in \S \S 3, 4 of [11] also hold for

our homogeneous complex manifold G/K. In particular, we have

PROPOSITION 6 ([11]). (1) Let S be the connected subgroup of G

corresponding to the subalgebra \mathfrak{s} . Then S is a closcd subgroup of G cone
laining K and the homogeneous space G/S is a cell.

(2) For any s\in \mathfrak{s} , Tr_{\iota} ad s=0.
(3) If r is a maximal abelian ideal of the fifirst kind, then the subalgebra

\mathfrak{s} is reductive.

The assertions (2) and (3) are first proved in [16] for an effective
algebraic /-algebra.

By Lemma 3, we may assume that j\iota
. is a solvable subalgebra. We may

also assume that \mathfrak{l}\mathfrak{l}J is invariant by j. We set

t’=jr+r+\mathfrak{m} .

Then t’ is a j-invariant solvable subalgebra and

\mathfrak{g}=t’+8 (vector space direct sum).

PROPOSITION 7. Let T’ and S be the connected subgroups of G cor-
responding lot’ and \mathfrak{s} respectively. Then G=T’\cdot S, T’\cap S=\{e\rangle .

PROOF Let us denote by T_{0} , L_{0} and G_{0} the connected subgroups of G

generated by jx , jr+f , and \mathfrak{g}^{(0)} respectively. Let \Omega^{*} be as before and put
\Omega=\Omega^{*}+r_{0} . Let \xi be the translation of r given by \xi(y)=y+r_{0} . Then we
have \Omega=\xi\circ\phi_{0}(\tilde{L}_{0})\circ\xi^{-1}(r_{0}) . Using (3. 4) and using the hypothesis that t is
of the first kind, we have \xi\circ\phi_{0}(\tilde{L}_{0})\circ\xi^{-1}=\{Ada|_{\iota} ; a\in L_{0/}^{\mathfrak{l}} . Therefore \Omega

=\{Ad a r_{0} ; a\in L_{0/}^{(}= { Ad a r_{0} : a\in T_{0} }. Since Ad(exp tjrO) r_{0}=e^{t}r_{0} , \Omega is a
convex cone not containing any entire straight line. It follows from (2) of
Proposition 6 and a result of Vinberg [14] that \Omega= {Ad a r_{0} ; a\in G_{0} } and
S= { a\in G_{0} : Ad a r_{0}=r_{0} } (cf. [11], [16]). Therefore \Omega=G_{0}/S and hence
G_{0}=T_{0}\cdot S. Let N be the connected subgroup generated by r+ru . Since 1i+\mathfrak{m}

is an ideal and since \mathfrak{g}=\mathfrak{g}^{(0)}+t+\mathfrak{m} , we have G=N\cdot G_{0} . Therefore G=N
.T_{0}\cdot S=T’. S. Since T’\cap S is discrete and since G/S is a cell, we have T’\cap S

=\{e\} .
q . e . d .

REMARK 2. As is stated before, the assertins (2) and (3) are proved
in [ 16] for an effective algebraic /-algebra. But the proof in [16] implicit-
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ly used the following fact (cf. P. 422, Proof of Lemma 1, \S 3 and P. 430,
[16] ) : Let (\backslash q, t’, j, \omega) be an effective j-algebra and let \mathfrak{h} be a /-invariant
subalgebra of qc containing t’ . Denote by \mathfrak{n} the largest ideal of \mathfrak{h} contained in
t . Then the Lie algebra \mathfrak{h}/\mathfrak{n} equipped with the subalgebra f/\iota\iota and the
endomorphism induced from j admits a structure of an effective /-algebra.
This fact is not so obvious if we do not use Lemma 1. 2 of [11]. Note that
the effectiveness assumption on q\iota is essential. In fact, one can construct a
j-algebra (tq, ^{t’}, j, \omega) so that q\llcorner/\mathfrak{n} does not adm\overline{l}ts a structure of a /-algebra,
where \mathfrak{n} is the largest ideal of q\iota contained in t .

\S 4. A fibering of the associated homogeneous complex manifold G/K.
Let G/K be the homogeneous complex manifold associated with an

effective j-algebra (tq, t., j, \omega) . We use the same notations as the previous
section. Let r be a maximal abelian ideal of the first k_{\overline{1}}nd with the principal
idempotent r_{0} . Then the subalgebra \dot{t\backslash _{arrow}\backslash \backslash } is reductive by Proposition 6 and
hence it is decomposed as
(4. 1) \dot{(\backslash \backslash }=c\backslash _{\sim}(_{\backslash _{\sim}}\dot{t\backslash \backslash }) +\dot{c\backslash _{\sim}\tau\tau}_{2} ,

where c(\dot{(\backslash \backslash })\sim denotes the center of \dot{t\sim’},\dot{\iota_{_{2}}\backslash _{\sim}} denotes the compact semi-simple ideal
and \dot{(\backslash \backslash \sim}1 is the semi-simple ideal having no compact components. Recall that
c(_{\sim}e_{t}) is contained in t. (\S 3). Being a complex submanifold of G/K, S/K is
a homogeneous K\"ahler manifold on wh_{\overline{1}}ch the semi-simple part of S acts
transitively. It follows from Borel [1] that t = c(_{\backslash _{\sim}}\dot{(\backslash \backslash })+t\bigcap_{1}^{\dot{c_{\backslash }}}\backslash _{\sim}+t\bigcap_{\sim}^{e_{\tau_{2}}} and we
can assume j_{\backslash _{\sim}}^{\dot{c\tau\tau}_{i}\subset}\dot{\subset\sim’}i(i=1,2) . Moreover let S_{1} denote the connected
subgroup of G corresponding to \dot{\iota_{\backslash \backslash _{1}}\sim} . Then there exists a closed subgroup U_{1}

of S_{1} containing K\cap S_{1} and the followings hold ([1]):

(a) The Lie algebra \iota\iota_{1} of U_{1} is a maximal compact subalgebra of \dot{t\backslash \backslash \sim}1 .
(b) jtt_{1}\subset 11_{1} and [jx, u]\equiv j[x, u] (mod \iota\iota_{1} ) for any x\in\dot{tarrow’}1 , u\in 11_{1}

‘

(c) The homogeneous space S_{1}/U_{1} admits an S_{1} -invariant complex
structure by the property (b). Equipped with this complex structure, S_{1}/U_{1} is
biholomorphic to a symmetric bounded domain and the canonical projection of
S_{1}/S_{1}\cap K onto S_{1}/U_{1} is holomorphic.

(d) The fifiber U_{1}/U_{1}\cap K is a compact simply connected homogeneous
K\"ahler manifold.

We set

11=c(_{\sim}\dot{t\backslash \backslash })+\mathfrak{U}_{1}\dagger^{\dot{\iota\tau}_{2}}\backslash _{\sim} .

Clearly \mathfrak{U} is a j-invariant subalgebra containing f . Let U denote the con-
nected subgroup of G with \mathfrak{U} as its Lie algebra. Then U is a closed subgroup
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of S and hence it is also closed in G because of Proposition 6. Clearly U/

K is compact. Since U/K admits a U invariant K\"ahler structure and since
the semi-simple part of U acts on U/K transitively, U/K is simply con-
nected by a result of [1]. We shall prove the following

PROPOSITION 8. The homogeneous space G/U admits naturally a G-
invarianot complex structure with respect to which the projection of G/K onto
G/U is holomorphic.

We can assume that jr is a solvable subalgebra and that j\mathfrak{l}\mathfrak{l}J=\mathfrak{s}v . We
need the following result.

Lemma 9 ([11]). There exists r_{a}\in 1(\alpha=1, \ldots, m) and the decomposi-

tions 1= \sum_{a\leqq\beta}t_{a\beta}

. , \downarrow v=\sum_{a}1U_{a} satisfying the fallowings :

(a) [jr_{a} , jr_{\beta}]=0 , [jr_{a} , r_{\beta}]=\delta_{a\beta}r_{\beta} and r_{0}= \sum_{a}r_{a} .

(b) \iota_{aa}.=Rr_{a} and j\downarrow\uparrow 3_{a}=\{\iota J_{a} .
(c) r_{a\beta} , \downarrow t)_{a} , and j\iota_{a\beta}

. are invariant by ad jr_{\gamma} and the real parts of the

eigenvalues of ad jr_{\gamma} on \iota_{a\beta}

. , \mathfrak{l}0_{a2} and jr_{a\beta} are equal to \frac{1}{2}(\delta_{a\gamma}+\delta_{\beta\gamma}) , \frac{1}{2}\delta_{a\gamma} ,

and \frac{1}{2}(\delta_{a\gamma}-\delta_{\beta\gamma}) .

Using this lemma, we prove

LEMMA 10. Let \psi be the Koszul form of (\downarrow, t, j) . Then
(1) \psi([jw, w])>0 for every non-zero w of ru .
(2) \psi([s, x])=0 for any s\in\dot{t\backslash \backslash \sim} and x\in r .

PROOF. Let w\in\downarrow v . We can write as w= \sum_{a}w_{a} , where w_{a}\in\downarrow v_{a} . We

then have [ w_{a}, w_{\beta}]\in\iota_{a\beta}. . Therefore there exists c_{a}\in R such that [jw_{a} ,

w_{a}]=c_{a}r_{a} . We can see c_{a}\geqq 0 . In fact, let \psi’ be the Koszul form of (\backslash q’- ^{t’} , j) .
By Proposition 5, \psi’([jx, x])\geqq 0 for any x\in_{\iota}q’ and \psi’([jx, x])=0 if and
only if x\in t’ . Therefore \psi’(r_{a})=\psi’([jr_{a}, r_{a}])>0 and \psi’([jw_{a}, w_{a}])\geqq 0 .
Hence c_{a}\geqq 0 . Similarly, we have \psi(r_{a})>0 . By a direct computation, we
have

(4.2) \psi(x)=2Tr_{\iota} ad jx for x\in r .

Hence using Lemma 9, we have \psi(r_{a\beta})=0 for \alpha<\beta . It follows that \psi([jw,

w])= \sum_{a}c_{a}\psi(r_{a})\geqq 0 . Evidently, c_{a}=0 if and only if w_{a}=0 , proving (1).
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Let x\in r and s\in \mathfrak{s} . Then [s, jx]-j[s, x]\in \mathfrak{g}^{(0)} . By a simple calculation,
[[s, jx]-j[s, x] , r_{0}]=0 . This means
(4.3) [s, jx]-j[s, x]\in \mathfrak{s} for s\in \mathfrak{s} , x\in t .

Using (4. 2), (4. 3) and (2) of Proposition 6, we have

\psi([s, x])=2Tr_{\iota} ad j[s, x]=2Tr_{\iota} ad [s, jx]=0.
q . e . d .

We now prove Proposition 8. Define a skew-symmetric bilinear form \rho

on \mathfrak{l}U by

\rho(w, w’)=\psi([w, w’]) for w, w’\in \mathfrak{m} ,

where \psi is the Koszul form of (t, f, j) . By Lemma 10, (\{v, j, \rho) is a sym-
plectic space and for every s\in \mathfrak{s} , ad s is a symplectic endomorphism of \mathfrak{m} . It
is easily checked that ad js\equiv I (ad s ) (mod f (\mathfrak{m}) ), where I denotes the
endomorphism of \mathfrak{s}\mathfrak{p}(\mathfrak{m}) as in \S 1. For each k\in K, Ad k is an element of
K (to). Then the natural mapping \zeta of S/K to Sp(lU)/K(tv) is holomorphic.
Since Sp(\mathfrak{m})/K(\mathfrak{m}) is biholomorphic to a bounded domain, \zeta(U/K) must
be a point. This implies

(4.4) [ u, jw]=j[u, w] for u\in\iota\iota , w\in \mathfrak{m} .

Let us set

\mathfrak{s}_{0}=\{s\in \mathfrak{g}^{(0)} ; [s, r]=0_{/}^{\iota} .

Then \mathfrak{s}_{0} is an ideal of \mathfrak{g}^{(0)} contained in \mathfrak{s} . Since \mathfrak{s} is reductive, so is \mathfrak{s}_{0} . Let
\Omega be the convex cone as in the proof of Proposition 7. Then \mathfrak{s}/\mathfrak{s}_{0} is identified
with the isotropy subalgebra of a transitive isometric transformation group
of \Omega . In part\overline{l}cular , \mathfrak{s}/\mathfrak{s}_{0} is reductive and its semi-simple part is compact.
Consequently, 8_{\sim 1} is an ideal of \mathfrak{s}_{0} . It follows that for any x\in r , \mathfrak{s}_{1} is
invariant by ad jx. Hence there corresponds s(x)\in \mathfrak{s}_{1} satisfying

(4.5) [s(x), s’]=[jx, s’] for any s’\in \mathfrak{s}_{1}t

We then have

(4.6) [s(x), js’]\equiv j[jx, s’]\equiv j[s(x), s’] (mod f\cap \mathfrak{s}_{1} ) for x\in r , s’\in \mathfrak{s}_{1} .

Since S_{1}/S_{1}\cap K is a homogeneous K\"ahler manifold of the semi-simple L\overline{1}e

group S_{1} , its canonical hermitian form is non-degenerate (see, \S 1). As a
result, (4.6) comb\overline{l}ned with a result of Hano [4] means that s(x) is an
element of f n\mathfrak{s}_{1} . Let u\in\iota\iota and x\in r . By (4. 3), [ u, jx]-j[u, x]\in \mathfrak{s} . We
can see for any s’\in \mathfrak{s}_{1} ,
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[[u, jx]-j[u, x] , s’]=[[u, s(x)]-s([u, x]), s’] .

Therefore the \mathfrak{s}_{1} -component of [ u, jx]-j[u, x] with respect to the decom-
position (4. 1) is equal to [ u, s(x)]-s([u, x]) . Hence we have

(4.7) [ u, jx]\equiv j[u, x] (mod \iota\iota ) for u\in\iota\iota , x\in r

It follows from (4. 4), (4. 7) and the propertiy (b) of the group U_{1}

(4.8) [ u, jx]\equiv j[u, x] (mod \iota\iota ) for u\in\iota\iota , x\in \mathfrak{g} .

Since U is connected, (4. 8) means that there corresponds a G-invariant
complex structure on G/U. Clearly the projection: G/Karrow G/U is holo-
morphic. Thus we have proved Proposition 8.

\S 5. Proof of Theorem A.

Let G/K be the homogeneous complex manifold associated with the
effective j-algebra (\mathfrak{g}, f, j, \omega) . We use the same notations as before. Let
s(x) be the element of f\cap \mathfrak{s}_{1} given by (4. 5) for an element x\in r . If x\in r_{a\beta}

(\alpha<\beta) , then ad jx is a nilpotent endomorphism of \mathfrak{g} . Indeed, let us denote
by q_{\iota a}^{(a)} the largest ad jr_{a} -invariant subspace on which every eigenvalue of ad
jr_{a} has real part a. Then [\mathfrak{g}_{a}^{(a)} \mathfrak{g}a](b)\subset \mathfrak{g}(aa+b) and j r_{a\beta}\subset \mathfrak{g}a(\frac{1}{2}) for \alpha<\beta .

Hence if x\in r_{a\beta}(\alpha<\beta) , then ad s(x) is a nilpotent endomorphism of \mathfrak{s}_{1} .
On the other hand, since s(x)\in f n\mathfrak{s}_{1} , ad s(x)\overline{1}S semi-simple. Therefore
s(x)=0 and we get

[jr_{a\beta}, \mathfrak{s}_{1}]=0 for \alpha<\beta .

We now put

j’r_{a}=jr_{a}-s(r_{a}) , j’x=jx for x\in\iota_{a\beta}.(\alpha<\beta)-

One can easily see that j\acute{r} is also a solvable subalgebra. Therefore taking
j\acute{r} instead of jx , we may assume
(5. 1) [jc \mathfrak{s}_{1}]=0 .

Since 11_{1} is a maximal compact subalgebra of \mathfrak{s}_{1} , there exist a solvable
subalgebra t_{1} and an endomorphism j_{1} of t_{1} satisfying

\mathfrak{s}_{1}=11_{1}+t_{1} (vector space direct sum),
j_{1}x\equiv jx (mod tt_{1} ) for x\in t_{1} .

Let us set

t=t_{1}+t’(t’=jr+\tau+\mathfrak{m}) .
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Using (5. 1), we know that t is a solvable subalgebra. Clearly

qc =t+\iota\iota (vector space direct sum).

We define an endomorphism \hat{j} of t by

(5.2) \hat{j}x=j_{1}x if x\in t_{1} and \hat{j}x=jx if x\in t’

We then have

(5.3) \hat{j}x\equiv jx (mod 11) for any x\in t .

Let T_{1} and T be the connected subgroup of G corresponding to t_{1} and t

respectively. Then S_{1}=T_{1}\cdot U_{1} and hence S=T_{1}\cdot U. Recall that G=T’\cdot S by
Proposition 7. Therefore G=T\cdot U. This means that the group T acts on
G/U transitively. Since T\cap U is discrete, T is a covering space of G/U.
As a result, T admits a left invariant complex structure so that the
projection of T onto G/U is holomorphic. By (5.3), the corresponding
endomorphism of t is nothing but the operator \hat{j} given by (5. 2).

We shall show that the Lie algebra t admits a structure of a /-algebra.

Let \psi_{1} and \psi’ be the Koszul forms of (t1,0, j_{1}) and (t’, 0, j) respectively and
define a linear form \hat{\omega} on t by

\hat{\omega}(x_{1})=\psi_{1}(x_{1}) if x_{1}\in t_{1} and \hat{\omega}(x’)=\psi’(x\gamma if x’\in t’

Since \psi’(tu)=0 and since [t_{1}, t’]\subset \mathfrak{l}1J , we have \hat{\omega}([t1, t’])=0 . Recalling
that both t_{1} and t’ are the Lie algebras corresponding to homogeneous
bounded domains, we have for x_{1} , y_{1}\in t1 and for x’. y’\in t’

\hat{\omega}([\hat{j}(x_{1}+x9,\hat{j}(y_{1}+y’)])=\psi_{1}([j_{1}x_{1}, jy_{1}])+\psi’([jx’, jy’])

=\psi_{1}([x_{1}, y_{1}])+\psi’([x’y’])=\hat{\omega}([x_{1}+x’, y_{1}+y’])

and

\hat{\omega}([\hat{j}(x_{1}+x\gamma, x_{1}+x’])=\psi_{1}([j_{1}x_{1}, x_{1}])+\psi’([jx’x’])>0 ,

if x_{1}+x’\neq 0 . Hence (t, 0,\hat{j,}\hat{\omega}) is a j-algebra. We apply Proposition 5 to
the j algebra t_{r} Let r_{r} be a maximal abelian ideal of the first kind. Then
we have t=\hat{jr}\mathfrak{t}+rt+\mathfrak{l}U_{f} . because t is solvable and f =0. It follows from
Proposition 5 that the group T is b_{\overline{1}}ho1omorphic to a homogeneous bounded
domain. Since the projection: Tarrow G/U \overline{1}S a holomorphic covering
mapping, G/U itself is biholomorphic to a homogeneous bounded domain.
It is now clear that T\cap U=\{e\} . Hence we have proved

THEOREM 11. Let G/K be a homogeneous complex manifold associated
with an effective j algebra (\backslash q, t’, j, \omega) . Then there exist a closed connected
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reductive subgroup U containing K and a connected solvable subgroup T and
the followings hold \cdot.

(a) G=T\cdot U, T\cap U=\{e\} .
(b) U/K is a compact simply connected homogeneous complex

submanifold of G/K.
(c) The homogeneous space G/U admits naturally a G-invariant

complex structure with respect to which the projection of G/K onto G/U is
holomorphic and G/U is biholomorphic to a homogeneous bounded domain.

We now set M_{1}=G/U and M_{2}=U/K. For the proof of Theorem A, it
remains to show that G/K is biholomorphic to M_{1}\cross M_{2} . This can be done
as follows. Consider the fibering: G/Karrow M_{1} . Then every fiber is
b\overline{l}holomorphic to the compact complex manifold M_{2} . Therefore by a result
of Fischer and Grauert [2], this fibering is a holomorphic fiber bundle. Its
structure group may be taken to be a complex Lie group. Consequently, as
is mentioned in [15], this bundle is holomorphically trivial by a theormem of
Grauert [3], because M_{1} is topologically trivial. Hence we get Theorem A.

REMARK 3. By Theormem 11, the homogeneous complex manifold
G/K assoc\overline{l}ated with an effective j-algebra (!I, t, j, \omega) is simply con-
nected. Let \tilde{G} be the simply connected Lie group with \mathfrak{g} as its Lie algebra
and let \tilde{K} be the connected subgroup of \tilde{G} corresponding to t . We
then have \tilde{G}/\tilde{K}=G/K because G/K is simply connected. Therefore
the associated homogeneous complex manifold is uniquely determined
from the effective j-algebra t] and independent to the choise of the group
G.

\S 6. Some consequences obtained from Theorem 11.

An effective j-algebra (((), f, j, \omega) is called proper if every compact
semi-simple j-invariant subalgebra is conta\overline{l}ned\overline{1}n t. . Let \iota\iota be the Lie
algebra of the group U as in Theorem 11. Then the semi-simple part of \iota\iota is
a compact j-invariant subalgebra. Therefore if the effective j-algebra !t is
proper, then \iota\iota coincides with t . Hence we obtain from Theorem 11 the
following

THEOREM 12 (Vinverg, Gindikin and Pyatetskii-Shapiro [16]). Every
homogeneous complex manifold associated with an effective proper j-algebra is
biholomorphic to a homogeneous bounded domain.

By using Theorem 11, we can also prove the following theorem of
Koszul.
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THEOREM 13 (Koszul [10]). Let G/K be a homogeneous complex
manifold with a G-invariant volume element and assume that the canonical
hermitian form is positive definite. Then G/K is biholomorphic to a
homogeneous bounded domain.

PROOF. We may assume that the act\overline{l}on of G\overline{1}S effective. Let \psi be the
Koszul form of (\mathfrak{g}, f, j) . From the hypothesis, (\mathfrak{g}, f, j, \psi) is an effective
j-algebra. Let K_{0} be the ident\overline{l}ty component of K. Then G/K_{0}\overline{1}S the
homogeneous complex manifold associated with (\mathfrak{g}, f, j, \psi) . Let U be as in
Theorem 11 and let 1\mathfrak{l} be its Lie algebra. We denote by \psi_{1} (resp. by \psi_{2} ) the
Koszul form of (\mathfrak{g}, \iota\iota, j) (resp. of ( \iota\iota , f , j)) . We then have for any u\in\iota\iota ,
\psi([ju, u])=\psi_{1}([ju, u])+\psi_{2}([ju, u]) . Clearly \psi_{1}([ju, u])=0 . Since U/K
is a compact simply conneced homogeneous K\"ahler manifold, \psi_{2}([ju, u])

\leqq 0 . Therefore \psi([ju, u])=0 and hence 11=f . It follows from Theorem 11
that G/K_{0}(=G/U) is a homogeneous bounded domain. Hence we can
conclude that G/K itself is a homogeneous bounded domain.

q . e . d .
As an immediate consequence of this theorem, we have

COROLLARY 14. Every homogeneous K\"ahler manifold of negative
defifinite Ricci tensor is biholomorphic to a homogeneous bounded domain.

\S 7. Proof of Theorem B.

Let M_{1} , M_{2} and G be as Theorem B. We denote by K the isotropy
subgroup of G at a point (p_{1} , p_{2})\in M_{1}\cross M_{2} . Every element g of G can be
expressed as g(z_{1r}z_{2})=(g_{1}(z_{1}, z_{2}), g_{2}(z_{1}, z_{2})) . Then g_{1}(z_{1} , z_{2}) is independ-
ent to z_{2} , because M_{2} is compact. Let us define a closed subgroup U by

U=\{g\in G ; g_{1}(p_{1})=p_{1}\} .

We then have G/U=M_{1} and U/K=M_{2} . It should be noted that U is
connected because M_{1}\overline{1}S simply connected. Let \mathfrak{g} and f be the Lie algebras
of G and K respectively and let j be the endomorphism of \mathfrak{g} corresponding to
the complex structure of M_{1}\cross M_{2} . We also denote by \iota\iota the Lie algebra of U.
Clearly \iota\iota is j-invariant. Let \psi , \psi_{1} and \psi_{2} be the Koszul forms of (\backslash q, f, j) ,
(\mathfrak{g}, \iota\iota, j) and (\iota\iota, f, j) given by (1. 6). For any x\in \mathfrak{g} , ad jx-j\circ adx leaves 11

and f invariant. Define a linear form \psi_{2}’ on \mathfrak{g} by

\psi_{2}’(x)=Tr_{\iota\iota/t} (ad jx-j\circ adx) for x\in \mathfrak{g} .

We then have \psi=\psi_{1}+\psi_{2}’ and \psi_{2}’=\psi_{2} on 11. Since \psi and \psi_{1} satisfy (1. 7),
we have \psi_{2}’([f, \mathfrak{g}])=0 and \psi_{2}’([jx, jy])=\psi_{2}’([x, y]) for any x, y\in \mathfrak{g} . Let us
set
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\omega=\beta\psi_{1}-\psi_{2}’ ,

where \beta is a posit\overline{l}ve number. Then \omega satisfies (3. 1) and (3. 2). Since M_{1}

is a homogeneous bounded domain, \psi_{1}([jx, x])\geqq 0 for any x\in \mathfrak{g} and the
equality holds if and only if x\in\iota\iota . On the one side, \overline{1}fx\in\iota\iota , then \psi_{2}’([jx,
x])\leqq 0 and the equality holds if and only if x\in f , because U/K is a compact
simply connected homogeneous K\"ahler manifold. Consequently, if we take
\beta large enough, then \omega satisfies (3. 3). Therefore (\mathfrak{g}, f, j, \omega) becomes an
effective j-algebra, proving Theorem B.

\S 8. Proof of Theorem C.

In this section, we study the structure of homogeneous K\"ahler manifolds
sat\overline{l}sfy\overline{l}ng(C) and prove Theorem C. The following result is essentially
proved in [7].

PROPOSITION 15 (Kodama and Shima [7]). Let G/K be a homoge-
neous K\"ahler manifold satisfying (C). Assume further that G is solvable.
Then G/K is holomorphically isomorphic to a homogeneous bounded domain.

Let G/K be a homogeneous K\"ahler manifold satisfying (C). We may
assume that G acts on G/K effectively. Let \mathfrak{g} and t be the Lie algebras of
G and K respectively and denote by j the endomorphism of \mathfrak{g} corresponding
to the complex structure of G/K. From the condition (C), we have (cf.

[7], [13] )

(8. 1) [jx, x]\neq 0 if x\not\in t .

Let t be an abelian ideal of \mathfrak{g} . Using (8. 1), one can easily see that the
sum |=f+jr+^{r} is direct. Let L be the connected subgroup corresponding to
1. Then L/L\cap K is a homogeneous K\"ahler submanifold satisfying (C). By
Lemma 3, we may assume that j^{t} is a solvable subalgebra. Then the
connected subgroup corresponding to the solvable subalgebra j^{(}+t acts on
L/L\cap K transitively. Therefore from Proposition 15, we know that the
homogeneous space L/L\cap K is biholomorphic to a homogeneous bounded
domain.

By virture of this fact, we can also see by the same method as [11] that
if 1j is a non-trivial abelian ideal, then there exists a non-trivial abelian ideal
of the first kind which is contained in r .

Next we shall show that the analogous assertion to Proposition 5 holds.
Let t be an abelian ideal of the first kind with a principal idempotent r_{0} and
let \mathfrak{g}^{(a)} be the subspace as in Proposition 5. We define a j-invariant subspace
Q by
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Q=\{x\in \mathfrak{g} : [x, r_{0}]=[jx, r_{0}]=0_{/}^{(} .

One can easily see that \mathfrak{g}=Q+\mathfrak{l} , Q\cap^{\{}=f and that Q is invariant by ad jr_{0} .

Therefore Q is decomposed as Q= \sum_{a\in R}Q^{(a)} , where Q^{(a)}=Q\cap tq^{(a)} . Using (8.

1), we can show by the same way as [11] ,

\mathfrak{g}^{(1)}=r , \mathfrak{g}^{(0)}=jt+Q^{(0)} ,

Q^{(a)}--0 for a<0 or a> \frac{1}{2} ,

jQ^{(a)}\subset Q^{(a)}+f .

Let us set \mathfrak{g}’=f+jr+1+\sum_{0<a}Q^{(a\rangle} . Then \mathfrak{g}’ is a j-invariant subalgebra.

Therefore if we denote by G’ the corresponding subgroup, then G’/G’\cap K is
a homogeneous K\"ahler manifold satisfying (C). By changing j suitably, we
may assume that jlj is a solvable subalgebra and that jQ^{(a)}\subset Q^{(a)} . Note that
[\mathfrak{g}^{(a\rangle}, \mathfrak{g}^{(b)}]\subset \mathfrak{g}^{(a+b)} and that \mathfrak{g}^{(a)}=Q^{(a)} if a\neq 0,1 . Then t’=jt+1j+\sum_{0<a}Q^{(a)} is a
j-invariant solvable subalgebra and the corresponding subgroup acts on
G’/G’\cap K transitively. Hence by Proposition 15, G’/G’\cap K is bihol0-
morphic to a homogeneous bounded domain. Let us denote by \psi’ the Koszul

form of (t’, 0, j) . Then \psi’(Q^{(a)})=0 for any a\neq 0 . If a\neq 0 , \frac{1}{2} , then [jQ^{ta)} ,

Q^{(a)}]\subset Q^{(2a)} and hence \psi’([jQ^{(a)}, Q^{(a)}])=0 . This means that Q^{(a\rangle}=0 for a\neq 0 ,

\frac{1}{2} , because \psi’([jx, x])>0 for x\neq 0 . Clearly Q^{(0)}=\{x\in \mathfrak{g}^{(0)} : [x, r_{0}]=0_{/}^{\iota} . We

now set \mathfrak{s}=Q^{(0)} and \downarrow t) =Q^{(\frac{1}{2})} . Then the decomposition of \mathfrak{g} stated in
Proposition 5 also holds.

Now from [11], we know that Proposition 6 also holds for the homoge-
neous K\"ahler manifold G/K. If we assume that r is a maximal abelian ideal
of the first kind, then the group S correspondding to \mathfrak{s} is reductive and hence
S/K is a homogeneous K\"ahler manifold on which the semi-simple part of S
acts transitively. Therefore by Borel [1], S/K is simply connected. In
particular, the group K is connected. Now Theorem C can be proved by the
same arguments as in \S \S 4 and 5.

REMARK 4. To prove Proposition 15, Kodama and Shima [7]
calculated the canonical hermitian form of G/K and showed that it is
positive definite. From this fact, combined with the result of [ 16]
(Theorem 12) they conclude that G/K is biholomorphic to a homogeneous
bounded domain. We may also apply Theorem 13 and obtain Proposition 15.
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