On *j*-algebras and homogeneous Kähler manifolds

Kazufumi NAKAJIMA (Received June 4, 1984)

Introduction.

The notion of *j*-algebras introduced by Pyatetskii-Shapiro played an important role in the theory of realization of homogeneous bounded domains as homogeneous Siegel domains. Vinberg, Gindikin and Pyatetskii-Shapiro [16] stated that the Lie algebra of a transitive holomorphic transformation group of a homogeneous bounded domain admits a structure of an effective proper *j*-algebra and that every effective proper *j*-algebra can be regarded as the Lie algebra of a transitive holomorphic transformation group of a homogeneous Siegel domain of the second kind. In this paper, we remove the properness and study the structure of homogeneous complex manifolds corresponding to effective *j*-algebras.

By an effective *j*-algebra $(\mathfrak{g}, \mathfrak{k}, j, \omega)$ we mean a system of a Lie algebra \mathfrak{g} , a subalgebra \mathfrak{k} , an endomorphism *j*, and a linear form ω satisfying certain conditions. (For a precise definition, see § 3.) Let *G* be a connected Lie group with \mathfrak{g} as its Lie algebra and let *K* be the connected subgroup corresponding to \mathfrak{k} . Then *K* is closed and *G/K* admits a *G*-invariant Kähler structure. The homogeneous space *G/K* is said to be the homogeneous complex manifold associated with the effective *j*-algebra $(\mathfrak{g}, \mathfrak{k}, j, \omega)$. We shall prove the following theorems.

THEOREM A. Let G/K be the homogeneous complex manifold associated with an effective j-algebra $(\mathfrak{g}, \mathfrak{k}, j, \omega)$. Then G/K is biholomorphic to a product of a homogeneous bounded domain M_1 and a compact simply connected homogeneous complex manifold M_2 .

THEOREM B. Conversely, let M_1 be a homogeneous bounded domain and let M_2 be a compact simply connected homogeneous complex manifold. Let G be a connected Lie group acting on $M_1 \times M_2$ transitively, effectively and holomorphically. Assume further that $M_1 \times M_2$ admits a G-invariant Kähler metric. Then the Lie algebra of G admits a structure of an effective j-algebra so that the associated homogeneous complex manifold coincides with $M_1 \times M_2$.

Gindikin, Pyatetskii-Shapiro and Vinberg [17] stated that Theorem A was essentially proved in [16]. But it seems to the author that there is no

description in [16] which enables us to obtain our Proposition 8.

We can prove Theorem B by a simple consideration of the canonical hermitian form due to Koszul [8]. In order to prove Theorem A, we use the decomposition theorem of an effective *j*-algebra which was obtained in [16] by using an algebraic technique, i. e., by considering the algebraic hull of an effective *j*-algebra. In view of [11], we can show this decomposition theorem without taking the algebraic hull. This enables us to obtain a structure theorem similar to Theorem A for a certain class of homogeneous Kähler manifolds. Vinberg and Gindikin [15] conjectured: Every homogeneous Kähler manifold admits a holomorphic fibering whose base space is a homogeneous bounded domain and whose fiber is, equipped with the induced metric, a product of a locally flat homogeneous Kähler manifold and a compact simply connected homogeneous Kähler manifold. By a result of Borel [1], this conjecture is true for a homogeneous Kähler manifold of a semi-simple Lie group. We say that a homogeneous Kähler manifold satisfies the condition (C) if it does not contain any locally flat homogeneous Kähler submanifold. Recently, Shima [13] showed that under an "algebraic " assumption on G, if a homogeneous Kähler manifold G/K satisfies the condition (C), then G/K admits a fibering whose base space M_1 is diffeomorphic to a homogeneous bounded domain and whose fiber M_2 is a compact simply connected homogeneous Kähler submanifold. But it has not been proved in [13] that the projection: $G/K \rightarrow M_1$ is holomorphic. In this paper, we also prove the following

THEOREM C. Let G/K be a homogeneous Kähler manifold satisfying the condition (C). Then G/K is, as a complex manifold, biholomorphic to a product of a homogeneous bounded domain and a compact simply connected homogeneous Kähler manifold.

In the special case where *G* is solvable, Theorem C is obtained by Kodama and Shima [7] by using the main result of [16]. To prove Theorems A and C, we shall find a connected closed subgroup *U* containing *K* so that G/U is a homogeneous bounded domain and U/K is a compact simply connected homogeneous Kähler submanifold of G/K (Theorem 11). We can see that the fibering: $G/K \rightarrow G/U$ is holomorphic. Therefore the conjecture of Vinberg and Gindikin is true for a homogeneous Kähler manifold satisfying (C) and for a homogeneous Kähler manifold associated with an effective *j*-algebra.

From our Theorem 11, we can reprove the main result of [16]. We can also show by our method the following unpublished result of Koszul [10]: Every homogeneous complex manifold with a positive definite canonical hermitian form is biholomorphic to a homogeneous bounded domain.

§1. Preliminaries.

Let G/K be a homogeneous manifold of a connected Lie group G by a closed subgroup K. Denote by g and t the Lie algebras of G and K respectively. Assume that G/K admits a G-invariant complex structure J. Then there corresponds an endomorphism j of g satisfying the followings:

- (1.1) $j \notin \subset \ell, j^2 x \equiv -x \pmod{\ell},$
- (1.2) Ad $k \circ jx \equiv j \circ \text{Ad } k x \pmod{\mathfrak{k}}$,
- (1.3) $[jx, jy] \equiv [x, y] + j[jx, y] + j[x, jy] \pmod{\mathfrak{k}},$

where $x, y \in \mathfrak{g}$ and $k \in K$. The operator j induces an endomorphism \overline{j} of $\mathfrak{g}/\mathfrak{k}$ in a natural manner. Then under the identification of $\mathfrak{g}/\mathfrak{k}$ with the tangent space $T_o(G/K)$ at the origin o of G/K,

(1.4)
$$\tilde{j}v = J_o v$$
 for any $v \in T_o(G/K)$.

Conversely, if an endomorphism j satisfies $(1, 1) \sim (1, 3)$, then there corresponds a unique G-invariant complex structure J satisfying (1, 4). Another endomorphism j' is called equivalent to j if it satisfies $j'x \equiv jx \pmod{t}$ for any $x \in \mathfrak{g}$. Then j' also satisfies $(1, 1) \sim (1, 3)$ and determines the same G-invariant complex structure. If the group K is connected, then (1, 2) is equivalent to

(1.5)
$$[h, jx] \equiv j[h, x] \pmod{\mathfrak{k}} \text{ for } h \in \mathfrak{k}, x \in \mathfrak{g}.$$

We remark that the following conditions for a homogeneous complex manifold G/K are mutually equivalent:

(a) G/K is biholomorphic to a homogeneous Siegel domain of the second kind.

(b) G/K is biholomorphic to a homogeneous bounded domain in C^n .

(c) The universal covering space of G/K is biholomorphic to a homogeneous bounded domain in \mathbb{C}^n .

This fact is proved in [11] by using the Kobayashi hyperbolicity. Of course, if we admit the results of [16], then it is obtained from [5], [6] and [16].

Let g be a Lie algebra and t be a subalgebra equipped with an endomorphism j satisfying (1.1), (1.3) and (1.5). For every $x \in g$, ad $jx-j \circ ad x$ induces an endomorphism of g/t. Assume that $\operatorname{Tr}_{g/t} ad h=0$ for any $h \in t$. According to Koszul [8], we define *the Koszul form* ψ of (g, t, j) by

K. Nakajima

(1.6)
$$\psi(x) = \operatorname{Tr}_{\mathfrak{g}/\mathfrak{k}}(\operatorname{ad} jx - j \circ \operatorname{ad} x) \text{ for } x \in \mathfrak{g}.$$

We then have ([8])

(1.7)
$$\boldsymbol{\psi}([jx, jy]) = \boldsymbol{\psi}([x, y]), \ \boldsymbol{\psi}([h, x]) = 0 \text{ for } x, \ y \in \mathfrak{g}, \ h \in \mathfrak{k}.$$

Let G/K be a homogeneous complex manifold with a G-invariant volume element V. If V is expressed as

$$V = V^* \ dz^1 \wedge \ldots \wedge \ dz^n \wedge \ d\bar{z}^1 \wedge \ldots \wedge \ d\bar{z}^n$$

in terms of local coordinate system (z^1, \ldots, z^n) , then we get a G-invariant hermitian form η on G/K, called *the canonical hermitian form*, by

$$\eta = \sum_{i,j} \frac{\partial^2 \log V^*}{\partial z^i \partial \bar{z}^j} dz^i \otimes d\bar{z}^j.$$

Let us denote by π the projection of G onto G/K. Then $\pi^*\eta$ is a left invariant symmetric bilinear form on G. Therefore it is regarded as a symmetric bilinear form on g. Under this identification, Koszul [8] showed

$$\pi^*\eta(x, y) = \frac{1}{2} \psi([jx, y]) \text{ for any } x, y \in \mathfrak{g}.$$

The following facts are well known :

(i) If G/K is a homogeneous bounded domain, then η coincides with the Bergman metric. Therefore $\psi([jx, x]) \ge 0$ for any $x \in \mathfrak{g}$ and $\psi([jx, x]) = 0$ if and only if $x \in \mathfrak{k}$.

(ii) Let G/K be a compact simply connected homogeneous complex manifold with a G-invariant Kähle metric. Then the group of all holomorphic

isometries of G/K is a compact semi-simple group. Therefore by [8], η is negative definite. Consequently, $\psi([jx, x]) \leq 0$ for any $x \in \mathfrak{g}$ and $\psi([jx, x]) = 0$ if and only if $x \in \mathfrak{k}$.

(iii) Let G/K be a homogeneous Kähler manifold of a semi-simple Lie group G. Then the canonical hermitian form η is non-degenerate ([1], [8]).

By a symplectic space (W, j, ρ) , we mean a real vector space W endowed with an endomorphism j and a skew-symmetric bilinear form ρ satisfying

$$j^2w = -w$$
, $\rho(jw, jw') = \rho(w, w')$,
 $\rho(jw, w) > 0$ for any $w \neq 0$.

A linear endomorphism f of W is called *symplectic* if

$$\rho(fw, w') + \rho(w, fw') = 0$$
 for any $w, w' \in W$.

Let us denote by $\mathfrak{sp}(W)$ the Lie aqgebra of all symplectic endomorphisms. Then

(1.8)
$$\mathfrak{sp}(W) = \mathfrak{k}(W) + \mathfrak{m}(W),$$

where $\mathfrak{t}(W) = \{f \in \mathfrak{sp}(W); f \circ j = j \circ f\}$ and $\mathfrak{m}(W) = \{f \in \mathfrak{sp}(W); f \circ j + j \circ f = 0\}$. It is well known that $\mathfrak{t}(W)$ is a maximal compact subalgebra of the semi-simple Lie algebra $\mathfrak{sp}(W)$ and the decomposition (1.8) is a Cartan decomposition. Let Sp(W) and K(W) denote the connected subgroup of GL(W) corresponding to $\mathfrak{sp}(W)$ and k(W) respectively. The homogeneous space Sp(W)/K(W) is a hermitian symmetric space of the non compact type and the complex structure of Sp(W)/K(W) corresponds to the endomorphism I of $\mathfrak{sp}(W)$ given by

$$I(f) = \frac{1}{2}[j, f] \text{ for } f \in \mathfrak{sp}(W).$$

§2. A submanifold of a homogeneous Kähler manifold.

Let G/K be a homogeneous Kähler manifold of a connected Lie group G by a closed subgroup K. Let \mathfrak{r} be an abelian ideal of \mathfrak{g} and put

$$l = l + jr + r$$
, $l_0 = l + jr$.

One can easily see that both l and l_0 are subalgebras of \mathfrak{g} . Let L be the connected subgroup of G corresponding to l. Being a complex submanifold of G/K, $L/L \cap K$ is a homogeneous Kähler submanifold of G/K. Let \tilde{L} be the universal covering group of L and let \tilde{K} be the connected subgroup of \tilde{L} generated by \mathfrak{k} . Then \tilde{L}/\tilde{K} is the universal covering space of $L/L \cap K$ and it admits an \tilde{L} -invariant Kähler structure so that the canonical projection of \tilde{L}/\tilde{K} onto $L/L \cap K$ is holomorphic and isometric.

We now assume that the sum l = l + jr + r is direct. According to [16], we define an affine representation: $u \rightarrow C_u$ of l in r^c (=the complexification of r) by

$$C_u(z) = [u, z] + \sqrt{-1} x + y$$
 for $z \in \mathfrak{r}^C$,

where u = h + jx + y $(h \in \mathfrak{k}, x, y \in \mathfrak{r})$. This representation induces a homomorphism ϕ of \tilde{L} to the group of affine transformations of \mathfrak{r}^{C} . Clearly $C_{u}(0) = 0$ if and only if $u \in \mathfrak{k}$. Therefore the orbite D^{*} of $\phi(\tilde{L})$ through the origin 0 is a domain in \mathfrak{r}^{C} and \tilde{L}/\tilde{K} is the universal covering space of D^{*} . Since $C_{ju}(0) = \sqrt{-1} C_{u}(0)$ for any $u \in \mathfrak{l}$, the natural projection Φ of \tilde{L}/\tilde{K} onto D^{*} is holomorphic. Let \tilde{L}_{0} and \tilde{R} be the connected subgroups of \tilde{L} K. Nakajima

corresponding to l_0 and r respectively. We then have

(2.1)
$$\tilde{L} = \tilde{R} \cdot \tilde{L}_0, \quad \tilde{R} \cap \tilde{L}_0 = \{e\}$$

In fact, the first equality is obvious. Let $a \in \tilde{R} \cap \tilde{L}_0$. There exists $x \in r$ such that $a = \exp x$. Then $\phi(a)0 = x$. On the other hand, $\phi(\tilde{L}_0)$ leaves the subspace $\sqrt{-1}r$ invariant. Hence we get x=0, proving (2.1). For any $a \in \tilde{L}_0$, we denote by $\phi_0(a)$ the affine transformation of r given by

$$\boldsymbol{\phi}_0(a)v = \frac{1}{\sqrt{-1}}\boldsymbol{\phi}(a)\sqrt{-1}v \quad (v \in \mathfrak{r}).$$

Clearly, the assignment: $a \rightarrow \phi_0(a)$ is a homomorphism and it corresponds to the affine representation: $u \rightarrow C'_u$ of l_0 given by

$$C'_u(r) = [u, r] + x \text{ for } r \in \mathfrak{r}$$
,

where u = h + jx ($x \in \mathfrak{r}$, $h \in \mathfrak{t}$). Let Ω^* be the orbite of $\phi_0(\tilde{L_0})$ through 0. Then Ω^* is a domain in \mathfrak{r} and ϕ_0 induces a covering projection Φ_0 of $\tilde{L_0}/\tilde{K}$ onto Ω^* . Using (2.1), we obtain

$$D^* = \{ z \in \mathfrak{r}^C ; \text{ Im } z \in \Omega^* \}.$$

As is mentioned in Shima [13], the following holds:

LEMMA 1. Ω^* is a convex domain and ϕ_0 is a diffeomorphism of \tilde{L}_0/\tilde{K} onto Ω^* .

In fact, we can obtain this lemma from a result of Shima [12], noting that \tilde{L}_0/\tilde{K} is a homogeneous Hessian manifold in the sence of [12]. But for the convenience of the readers, we state an outline of the proof by modifying the arguments in [9] and [12].

Let (z^1, \ldots, z^n) be the canonical linear coordinate system of r^C . We may regard (z^1, \ldots, z^n) as a local coordinate system of \tilde{L}/\tilde{K} by the map Φ . As usual, we write $z^i = x^i + \sqrt{-1} y^i$. Then (y^1, \ldots, y^n) gives a local coordinate system of \tilde{L}_0/\tilde{K} . Let us denote by g the Kähler metric on \tilde{L}/\tilde{K} . For any $x \in r$, exp x is an isometry and it corresponds to the translation; $z \to z+x$. Therefore if we express g in terms of the coordinate system (z^1, \ldots, z^n) as $g = \sum_{i,j} g_{ij} dz^i \otimes d\bar{z}^j$, then we have $\frac{\partial g_{ij}}{\partial x^k} = 0$. Since g is a Kähler metric, this means that $\frac{\partial g_{ij}}{\partial y^k} = \frac{\partial g_{kj}}{\partial y^i} = \frac{\partial g_{ik}}{\partial y^j}$. Let g_0 be the riemannian metric on \tilde{L}_0/\tilde{K} induced from g. If we express g_0 as $g_0 = \sum_{i,j} h_{ij} dy^i \otimes dy^j$. We then have

(2.2)
$$\frac{\partial h_{ij}}{\partial y^k} = \frac{\partial h_{ik}}{\partial y^j}$$

Let us consider the set Ω_0 given by

$$\Omega_0 = \{ y \in \mathfrak{r} ; ty \in \Omega^* \text{ for } 0 \leq t \leq 1 \}.$$

Then Ω_0 is a star-shaped domain in Ω^* . Therefore there exists a diffeomorphism α of Ω_0 onto an open set of $\tilde{L_0}/\tilde{K}$ containing the origin o of $\tilde{L_0}/\tilde{K}$ satisfying $\Phi_0 \circ \alpha = 1$. Then by the same way as [12], using (2.2) and Poincaré lemma, we can find a function Ψ on Ω_0 so that the induced metric $\alpha^* g_0$ is expressed as $\alpha^* g_0 = \sum_{i,j} \frac{\partial^2 \Psi}{\partial y^i \partial y^j} dy^i \otimes dy^j$. Then the function Ψ is convex and it has the following property ([12]): Let y be a point of $\mathfrak{r} \setminus \Omega_0$. If $ty \in \Omega_0$ for $0 \le t < 1$, then $\lim_{t \to 1} \Psi(ty) \to \infty$. From this fact, noting that Ψ is convex and that Ω_0 is star-shaped, one can see that Ω_0 is convex by the similar way as [8]. Let us denote by $\overline{\Omega}_0$ the closure of Ω_0 in Ω^* . Let $y \in \overline{\Omega}_0$. We assert that for any $t \in [0, 1)$, $ty \in \Omega_0$. We may assume t > 0. Let us denote by $B_{\delta}(x)$ the ball defined by $B_{\delta}(x) = \{x' \in \mathfrak{r} ; \|x' - x\| < \delta\}$. Here the || is the usual euclidian norm of \mathfrak{r} . If $\boldsymbol{\varepsilon}$ is small enough, $B_{\boldsymbol{\varepsilon}}(0) \subset \Omega_0$. norm || Consider the ball $B_{\delta}(y)$, where $\delta = \frac{(1-t)}{t} \epsilon$. Then there exists $y' \in \Omega_0$ such that $y' \in B_{\delta}(y)$. The line through y' and ty intersects $B_{\epsilon}(0)$. Therefore from the convexity of Ω_0 , $ty \in \Omega_0$, proving the assertion. Consequently, y belongs to Ω_0 and hence $\overline{\Omega}_0 = \Omega_0$. This means that $\Omega^* = \Omega_0$ and therefore we get Lemma 1.

It follows from Lemma 1 that the domain D^* is simply connected. Hence we have

LEMMA 2. The universal covering space of $L/L \cap K$ is biholomorphic to D^* .

From Lemma 1, we also know that Ω^* is homeomorphic to \mathbb{R}^n and that Ω^* admits an \tilde{L}_0 -invariant riemannian metric. Moreover every element of \tilde{L}_0 acts on Ω^* as an affine transformation. Therefore by the similar arguments as in the proof of Lemma 3.1 in [11], we have

LEMMA 3. Assume further that G acts on G/K almost effectively. Then by a suitable change of the operator j, j^r becomes a solvable subalgebra.

\S 3. j-algebras and associated homogeneous complex manifolds.

Let g be a Lie algebra and let f be a subalgebra. Let j be an endo-

morphism of g satisfying (1.1), (1.3) and (1.5) and let ω be a linear form on g. The system (g, \mathfrak{k}, j, ω) or simply g is called *a j-algebra* if the following conditions are satisfied;

- $(3.1) \qquad \qquad \boldsymbol{\omega}([\mathfrak{k},\mathfrak{g}]) = 0,$
- (3.2) $\boldsymbol{\omega}([jx, jy]) = \boldsymbol{\omega}([x, y]) \text{ for } x, y \in \mathfrak{g},$
- (3.3) $\omega([jx, x]) > 0 \text{ if } x \in \mathfrak{k}.$

Clearly every *j*-invariant subalgebra of a *j*-algebra is also a *j*-algebra. A *j*-algebra $(g, \mathfrak{k}, j, \omega)$ is called *effective* if \mathfrak{k} contains no non-zero ideal of \mathfrak{g} . By (3.3), the center of the *j*-algebra \mathfrak{g} is contained in \mathfrak{k} and it is trivial if \mathfrak{g} is effective.

Let $(\mathfrak{g}, \mathfrak{k}, j, \omega)$ be an effective *j*-algebra. Let *G* be a connected Lie group with \mathfrak{g} as its Lie algebra and let *K* be the connected subgroup of *G* corresponding to \mathfrak{k} . If we regard ω as a left invariant 1-form on *G*, then *K* is the identity component of the subgroup given by $\{a \in G; R_a^* \omega = \omega\}$, where R_a denotes the right translation of *G* defined by $R_a g = ga(g \in G)$. Therefore the group *K* is closed. The homogeneous space G/K admits a *G*-invariant complex structure *J* satisfying (1.4). We call G/K the homogeneous complex manifold associated with the effective *j*-algebra $(\mathfrak{g}, \mathfrak{k}, j, \omega)$. By $(3.1) \sim (3.3)$, the symmetric bilinear form $\omega([jx, y])$ on \mathfrak{g} induces a *G*-invariant Kähler metric on G/K.

Let \mathfrak{r} be an abelian ideal of the effective *j*-algebra \mathfrak{g} . Using (3.1) and (3.3), one can see that the sum

$$l = l + jr + r$$

is direct. Let *L* be the connected subgroup of *G* corresponding to 1. Then *L* contains *K*. Let D^* and Ω^* be as in § 2. We already know from Lemmas 1 and 2 that Ω^* is convex and that the universal covering space of L/K is biholomorphic to D^* . Moreover using the fact stated in § 1, we have from [16]

PROPOSITION 4 ([16]). (1) Ω^* is a convex domain not containing any entire straight line and hence D^* is biholomorphic to a homogeneous bounded domain.

(2) L/K is biholomorphic to D^* .

REMARK 1. The proof of [16] contains a small gap. But it can be easily corrected by a carefull use of a result of Koszul [9] or by using the fact that Ω^* is simply connected.

An abelian ideal r of the effective *j*-algebra g is called of the first kind if

there exists $r_0 \in \mathfrak{r}$ such that $[jx, r_0] = x$ for any $x \in \mathfrak{r}$. The element r_0 is called the principal idempotent. Using Proposition 4, one can see from [16] that if there exists a non-trivial abelian ideal \mathfrak{r} , then there exists a non-trivial abelian ideal of the first kind contained in \mathfrak{r} . In what follows, \mathfrak{r} denotes an abelian ideal of the first kind with the principal idempotent r_0 . Let $\mathfrak{l} = \mathfrak{k} + j\mathfrak{r}$ $+\mathfrak{r}$ and let ψ be the Koszul form of $(\mathfrak{l}, \mathfrak{k}, j)$. By Proposition 4, the symmetric bilinear form $\psi([jx, y])(x, y \in \mathfrak{r})$ is positive definite. Therefore there exists a unique $r'_0 \in \mathfrak{r}$ such that $\psi(x) = \psi([jx, r'_0])$ for $x \in \mathfrak{r}$. On the one side, $\psi(x) = \psi([jx, r_0])$ for any $x \in \mathfrak{r}$. Therefore $r'_0 = r_0$. This means that r_0 is uniquely determined. Using the fact $\psi([\mathfrak{k}, \mathfrak{l}]) = 0$, one can easily see

$$[\mathfrak{t}, r_0] = 0.$$

Therefore the condition " $[jx, r_0] = x$ for any $x \in \mathfrak{r}$ " is independent to the choise of the operator j.

From [16], we also know the following

PROPOSITION 5 ([16]). Let \mathfrak{r} be an abelian ideal of the first kind with the principal idempotent r_0 and let $\mathfrak{g}^{(a)}$ be the largest ad jr_0 -invariant subspace on which every eigenvalue of ad jr_0 has real part a. Then the Lie algebra \mathfrak{g} is decomposed into the sum of subspaces

$$\mathfrak{g} = \mathfrak{s} + j\mathfrak{r} + \mathfrak{r} + \mathfrak{w}$$

in the following way:

(a) $\mathfrak{g}^{(0)} = \mathfrak{F} + j\mathfrak{r}$, $\mathfrak{g}^{(\frac{1}{2})} = \mathfrak{w}$ and $\mathfrak{g}^{(1)} = \mathfrak{r}$. (b) \mathfrak{F} is a j-invariant subalgebra containing \mathfrak{f} and given by

$$\mathfrak{S} = \{ x \in \mathfrak{g}^{(0)}; [x, r_0] = 0 \}.$$

 $(\mathbf{c}) \quad j \in \mathbb{W} + \mathfrak{k}.$

(d) Let g' = t + jt + t + w. Then g' is a j-invariant subalgebra. Let G' be the connected subgroup of G generated by g'. Then the homogeneous complex submanifold G'/K is biholomorphic to a homogeneous Siegel domain of the second kind.

It should be noted that the above decomposition of g is uniquely determined from the abelian ideal \mathfrak{r} and independent to the choise of *j*. More precisely, let *j*' be another endomorphism equivalent to *j* and let $\mathfrak{g}^{(0)'}$, \mathfrak{w}' , \mathfrak{F}' be the subspaces obtained from the element $j'r_0$. Then $\mathfrak{g}^{(0)'} = \mathfrak{g}^{(0)}$, $\mathfrak{w}' = \mathfrak{w}$ and $\mathfrak{F}' = \mathfrak{F}$ ([11]).

We also note

$$[\mathfrak{g}^{(0)},\mathfrak{g}^{(0)}] \subset \mathfrak{g}^{(0)}, \ [\mathfrak{g}^{(0)},\mathfrak{w}] \subset \mathfrak{w}, \ [\mathfrak{w},\mathfrak{w}] \subset \mathfrak{r},$$

because $[\mathfrak{g}^{(a)},\mathfrak{g}^{(b)}] \subset \mathfrak{g}^{(a+b)}$.

By virture of Proposition 5, the results in §§ 3, 4 of [11] also hold for our homogeneous complex manifold G/K. In particular, we have

PROPOSITION 6 ([11]). (1) Let S be the connected subgroup of G corresponding to the subalgebra \mathfrak{F} . Then S is a closed subgroup of G containing K and the homogeneous space G/S is a cell.

(2) For any $s \in \mathfrak{s}$, $\operatorname{Tr}_{\mathfrak{r}} \operatorname{ad} s = 0$.

(3) If r is a maximal abelian ideal of the first kind, then the subalgebra \mathfrak{s} is reductive.

The assertions (2) and (3) are first proved in [16] for an effective algebraic j-algebra.

By Lemma 3, we may assume that $j^{\mathfrak{r}}$ is a solvable subalgebra. We may also assume that \mathfrak{w} is invariant by j. We set

$$t' = jr + r + w$$

Then t' is a j-invariant solvable subalgebra and

 $g=t'+\mathfrak{g}$ (vector space direct sum).

PROPOSITION 7. Let T' and S be the connected subgroups of G corresponding to t' and \mathfrak{F} respectively. Then $G = T' \cdot S$, $T' \cap S = \{e\}$.

PROOF Let us denote by T_0 , L_0 and G_0 the connected subgroups of G generated by $j\mathfrak{r}$, $j\mathfrak{r} + \mathfrak{k}$, and $\mathfrak{g}^{(0)}$ respectively. Let Ω^* be as before and put $\Omega = \Omega^* + r_0$. Let ξ be the translation of \mathfrak{r} given by $\xi(y) = y + r_0$. Then we have $\Omega = \xi \circ \phi_0(\tilde{L}_0) \circ \xi^{-1}(r_0)$. Using (3.4) and using the hypothesis that \mathfrak{r} is of the first kind, we have $\xi \circ \phi_0(\tilde{L}_0) \circ \xi^{-1} = \{\operatorname{Ad} a | \mathfrak{r}; a \in L_0\}$. Therefore $\Omega = \{\operatorname{Ad} a r_0; a \in L_0\} = \{\operatorname{Ad} a r_0; a \in T_0\}$. Since $\operatorname{Ad}(\exp tjr_0) r_0 = e^t r_0$, Ω is a convex cone not containing any entire straight line. It follows from (2) of Proposition 6 and a result of Vinberg [14] that $\Omega = \{\operatorname{Ad} a r_0; a \in G_0\}$ and $S = \{a \in G_0; \operatorname{Ad} a r_0 = r_0\}(\operatorname{cf.} [11], [16])$. Therefore $\Omega = G_0/S$ and hence $G_0 = T_0 \cdot S$. Let N be the connected subgroup generated by $\mathfrak{r} + \mathfrak{w}$. Since $\mathfrak{r} + \mathfrak{w}$ is an ideal and since $\mathfrak{g} = \mathfrak{g}^{(0)} + \mathfrak{r} + \mathfrak{w}$, we have $G = N \cdot G_0$. Therefore $G = N \cdot T_0 \cdot S = T' \cdot S$. Since $T' \cap S$ is discrete and since G/S is a cell, we have $T' \cap S = \{e\}$.

q. e. d.

REMARK 2. As is stated before, the assertins (2) and (3) are proved in [16] for an effective algebraic *j*-algebra. But the proof in [16] implicitly used the following fact (cf. P. 422, Proof of Lemma 1, § 3 and P. 430, [16]): Let $(\mathfrak{g}, \mathfrak{k}, j, \omega)$ be an effective *j*-algebra and let \mathfrak{h} be a *j*-invariant subalgebra of \mathfrak{g} containing \mathfrak{k} . Denote by \mathfrak{n} the largest ideal of \mathfrak{h} contained in \mathfrak{k} . Then the Lie algebra $\mathfrak{h}/\mathfrak{n}$ equipped with the subalgebra $\mathfrak{k}/\mathfrak{n}$ and the endomorphism induced from *j* admits a structure of an effective *j*-algebra. This fact is not so obvious if we do not use Lemma 1.2 of [11]. Note that the effectiveness assumption on \mathfrak{g} is essential. In fact, one can construct a *j*-algebra $(\mathfrak{g}, \mathfrak{k}, j, \omega)$ so that $\mathfrak{g}/\mathfrak{n}$ does not admits a structure of a *j*-algebra, where \mathfrak{n} is the largest ideal of \mathfrak{g} contained in \mathfrak{k} .

§4. A fibering of the associated homogeneous complex manifold G/K.

Let G/K be the homogeneous complex manifold associated with an effective *j*-algebra $(\mathfrak{g}, \mathfrak{t}, j, \omega)$. We use the same notations as the previous section. Let \mathfrak{r} be a maximal abelian ideal of the first kind with the principal idempotent r_0 . Then the subalgebra \mathfrak{s} is reductive by Proposition 6 and hence it is decomposed as

(4.1)
$$\mathfrak{s} = \mathfrak{c}(\mathfrak{s}) + \mathfrak{s}_1 + \mathfrak{s}_2,$$

where $\mathfrak{c}(\mathfrak{F})$ denotes the center of \mathfrak{F} , \mathfrak{F}_2 denotes the compact semi-simple ideal and \mathfrak{F}_1 is the semi-simple ideal having no compact components. Recall that $\mathfrak{c}(\mathfrak{F})$ is contained in \mathfrak{f} (§ 3). Being a complex submanifold of G/K, S/K is a homogeneous Kähler manifold on which the semi-simple part of S acts transitively. It follows from Borel [1] that $\mathfrak{t} = \mathfrak{c}(\mathfrak{F}) + \mathfrak{t} \cap \mathfrak{F}_1 + \mathfrak{t} \cap \mathfrak{F}_2$ and we can assume $j\mathfrak{F}_i \subset \mathfrak{F}_i$ (i=1,2). Moreover let S_1 denote the connected subgroup of G corresponding to \mathfrak{F}_1 . Then there exists a closed subgroup U_1 of S_1 containing $K \cap S_1$ and the followings hold ([1]):

(a) The Lie algebra \mathfrak{u}_1 of U_1 is a maximal compact subalgebra of \mathfrak{s}_1 .

(b) $j \mathfrak{u}_1 \subset \mathfrak{u}_1$ and $[jx, u] \equiv j[x, u] \pmod{\mathfrak{u}_1}$ for any $x \in \mathfrak{s}_1$, $u \in \mathfrak{u}_1$.

(c) The homogeneous space S_1/U_1 admits an S_1 -invariant complex structure by the property (b). Equipped with this complex structure, S_1/U_1 is biholomorphic to a symmetric bounded domain and the canonical projection of $S_1/S_1 \cap K$ onto S_1/U_1 is holomorphic.

(d) The fiber $U_1/U_1 \cap K$ is a compact simply connected homogeneous Kähler manifold.

We set

$$\mathfrak{u} = \mathfrak{c}(\mathfrak{S}) + \mathfrak{u}_1 + \mathfrak{S}_2.$$

Clearly \mathfrak{u} is a *j*-invariant subalgebra containing \mathfrak{t} . Let *U* denote the connected subgroup of *G* with \mathfrak{u} as its Lie algebra. Then *U* is a closed subgroup

of S and hence it is also closed in G because of Proposition 6. Clearly U/K is compact. Since U/K admits a U-invariant Kähler structure and since the semi-simple part of U acts on U/K transitively, U/K is simply connected by a result of [1]. We shall prove the following

PROPOSITION 8. The homogeneous space G/U admits naturally a Ginvarianot complex structure with respect to which the projection of G/K onto G/U is holomorphic.

We can assume that $j\mathfrak{r}$ is a solvable subalgebra and that $j\mathfrak{w}=\mathfrak{w}$. We need the following result.

LEMMA 9 ([11]). There exists $r_{\alpha} \in \mathfrak{r}$ ($\alpha = 1, ..., m$) and the decompositions $\mathfrak{r} = \sum_{\alpha \leq \beta} \mathfrak{r}_{\alpha\beta}$, $\mathfrak{w} = \sum_{\alpha} \mathfrak{w}_{\alpha}$ satisfying the followings: (a) $[jr_{\alpha}, jr_{\beta}] = 0$, $[jr_{\alpha}, r_{\beta}] = \delta_{\alpha\beta}r_{\beta}$ and $r_{0} = \sum_{\alpha} r_{\alpha}$. (b) $\mathfrak{r}_{\alpha\alpha} = \mathbf{R} r_{\alpha}$ and $j\mathfrak{w}_{\alpha} = \mathfrak{w}_{\alpha}$. (c) $\mathfrak{r}_{\alpha\beta}$, \mathfrak{w}_{α} , and $j\mathfrak{r}_{\alpha\beta}$ are invariant by ad jr_{γ} and the real parts of the eigenvalues of ad jr_{γ} on $\mathfrak{r}_{\alpha\beta}$, \mathfrak{w}_{α} , and $j\mathfrak{r}_{\alpha\beta}$ are equal to $\frac{1}{2}(\delta_{\alpha\gamma} + \delta_{\beta\gamma})$, $\frac{1}{2}\delta_{\alpha\gamma}$,

and $\frac{1}{2}(\delta_{\alpha\gamma}-\delta_{\beta\gamma})$.

Using this lemma, we prove

LEMMA 10. Let ψ be the Koszul form of ((, t, j)). Then (1) $\psi([jw, w]) > 0$ for every non-zero w of w. (2) $\psi([s, x]) = 0$ for any $s \in \mathfrak{s}$ and $x \in \mathfrak{r}$.

PROOF. Let $w \in w$. We can write as $w = \sum_{\alpha} w_{\alpha}$, where $w_{\alpha} \in w_{\alpha}$. We then have $[w_{\alpha}, w_{\beta}] \in v_{\alpha\beta}$. Therefore there exists $c_{\alpha} \in \mathbb{R}$ such that $[jw_{\alpha}, w_{\alpha}] = c_{\alpha}r_{\alpha}$. We can see $c_{\alpha} \ge 0$. In fact, let ψ' be the Koszul form of $(\mathfrak{g}', \mathfrak{t}, j)$. By Proposition 5, $\psi'([jx, x]) \ge 0$ for any $x \in \mathfrak{g}'$ and $\psi'([jx, x]) = 0$ if and only if $x \in \mathfrak{t}$. Therefore $\psi'(r_{\alpha}) = \psi'([jr_{\alpha}, r_{\alpha}]) > 0$ and $\psi'([jw_{\alpha}, w_{\alpha}]) \ge 0$. Hence $c_{\alpha} \ge 0$. Similarly, we have $\psi(r_{\alpha}) > 0$. By a direct computation, we have

(4.2)
$$\psi(x) = 2 \operatorname{Tr}_{r} \operatorname{ad} jx \text{ for } x \in r$$

Hence using Lemma 9, we have $\psi(\mathfrak{r}_{\alpha\beta})=0$ for $\alpha < \beta$. It follows that $\psi([jw, w]) = \sum_{\alpha} c_{\alpha} \psi(r_{\alpha}) \ge 0$. Evidently, $c_{\alpha} = 0$ if and only if $w_{\alpha} = 0$, proving (1).

Let $x \in \mathfrak{r}$ and $s \in \mathfrak{F}$. Then $[s, jx] - j[s, x] \in \mathfrak{g}^{(0)}$. By a simple calculation, $[[s, jx] - j[s, x], r_0] = 0$. This means

(4.3)
$$[s, jx] - j[s, x] \in \mathfrak{F}$$
 for $s \in \mathfrak{F}$, $x \in \mathfrak{r}$.

Using (4.2), (4.3) and (2) of Proposition 6, we have

$$\psi([s, x]) = 2 \operatorname{Tr}_{v} \operatorname{ad} j[s, x] = 2 \operatorname{Tr}_{v} \operatorname{ad} [s, jx] = 0.$$

q. e. d.

We now prove Proposition 8. Define a skew-symmetric bilinear form ρ on w by

$$\rho(w, w') = \psi([w, w'])$$
 for $w, w' \in \mathbb{W}$,

where ψ is the Koszul form of $(\mathfrak{l}, \mathfrak{k}, j)$. By Lemma 10, (\mathfrak{w}, j, ρ) is a symplectic space and for every $s \in \mathfrak{F}$, ad s is a symplectic endomorphism of \mathfrak{w} . It is easily checked that ad $js \equiv I(\operatorname{ad} s) \pmod{\mathfrak{k}(\mathfrak{w})}$, where I denotes the endomorphism of $\mathfrak{sp}(\mathfrak{w})$ as in § 1. For each $k \in K$, Ad k is an element of $K(\mathfrak{w})$. Then the natural mapping ζ of S/K to $Sp(\mathfrak{w})/K(\mathfrak{w})$ is holomorphic. Since $Sp(\mathfrak{w})/K(\mathfrak{w})$ is biholomorphic to a bounded domain, $\zeta(U/K)$ must be a point. This implies

$$(4.4) \qquad [u, jw] = j[u, w] \text{ for } u \in \mathfrak{n}, w \in \mathfrak{m}.$$

Let us set

$$\mathfrak{S}_0 = \{ s \in \mathfrak{g}^{(0)}; [s, \mathfrak{r}] = 0 \}.$$

Then \mathfrak{F}_0 is an ideal of $\mathfrak{g}^{(0)}$ contained in \mathfrak{F} . Since \mathfrak{F} is reductive, so is \mathfrak{F}_0 . Let Ω be the convex cone as in the proof of Proposition 7. Then $\mathfrak{F}/\mathfrak{F}_0$ is identified with the isotropy subalgebra of a transitive isometric transformation group of Ω . In particular, $\mathfrak{F}/\mathfrak{F}_0$ is reductive and its semi-simple part is compact. Consequently, \mathfrak{F}_1 is an ideal of \mathfrak{F}_0 . It follows that for any $x \in \mathfrak{r}$, \mathfrak{F}_1 is invariant by ad *jx*. Hence there corresponds $\mathfrak{s}(x) \in \mathfrak{F}_1$ satisfying

(4.5)
$$[s(x), s'] = [jx, s'] \text{ for any } s' \in \mathfrak{s}_1.$$

We then have

$$(4.6) \qquad [s(x), js'] \equiv j[jx, s'] \equiv j[s(x), s'] \pmod{\mathfrak{k} \cap \mathfrak{k}_1} \text{ for } x \in \mathfrak{r}, \ s' \in \mathfrak{k}_1.$$

Since $S_1/S_1 \cap K$ is a homogeneous Kähler manifold of the semi-simple Lie group S_1 , its canonical hermitian form is non-degenerate (see, § 1). As a result, (4.6) combined with a result of Hano [4] means that s(x) is an element of $\mathfrak{t} \cap \mathfrak{s}_1$. Let $u \in \mathfrak{u}$ and $x \in \mathfrak{r}$. By (4.3), $[u, jx] - j[u, x] \in \mathfrak{s}$. We can see for any $s' \in \mathfrak{s}_1$,

$$[[u, jx] - j[u, x], s'] = [[u, s(x)] - s([u, x]), s'].$$

Therefore the \mathfrak{F}_1 -component of [u, jx] - j[u, x] with respect to the decomposition (4.1) is equal to [u, s(x)] - s([u, x]). Hence we have

 $(4.7) \qquad [u, jx] \equiv j[u, x] \pmod{\mathfrak{u}} \text{ for } u \in \mathfrak{u}, x \in \mathfrak{r}.$

It follows from (4.4), (4.7) and the property (b) of the group U_1

$$(4.8) \qquad [u, jx] \equiv j[u, x] \pmod{\mathfrak{u}} \text{ for } u \in \mathfrak{u}, x \in \mathfrak{g}.$$

Since U is connected, (4.8) means that there corresponds a G-invariant complex structure on G/U. Clearly the projection: $G/K \rightarrow G/U$ is holomorphic. Thus we have proved Proposition 8.

§ 5. Proof of Theorem A.

Let G/K be the homogeneous complex manifold associated with the effective *j*-algebra $(\mathfrak{g}, \mathfrak{k}, j, \omega)$. We use the same notations as before. Let s(x) be the element of $\mathfrak{k} \cap \mathfrak{F}_1$ given by (4.5) for an element $x \in \mathfrak{r}$. If $x \in \mathfrak{r}_{\alpha\beta}$ $(\alpha < \beta)$, then ad *jx* is a nilpotent endomorphism of \mathfrak{g} . Indeed, let us denote by $\mathfrak{g}_{\alpha}^{(a)}$ the largest ad jr_{α} -invariant subspace on which every eigenvalue of ad $j\mathfrak{r}_{\alpha}$ has real part *a*. Then $[\mathfrak{g}_{\alpha}^{(a)}, \mathfrak{g}_{\alpha}^{(b)}] \subset \mathfrak{g}_{\alpha}^{(a+b)}$ and $j\mathfrak{r}_{\alpha\beta} \subset \mathfrak{g}_{\alpha}^{(\frac{1}{2})}$ for $\alpha < \beta$. Hence if $x \in \mathfrak{r}_{\alpha\beta}$ $(\alpha < \beta)$, then ad s(x) is a nilpotent endomorphism of \mathfrak{F}_1 . On the other hand, since $s(x) \in \mathfrak{k} \cap \mathfrak{F}_1$, ad s(x) is semi-simple. Therefore s(x) = 0 and we get

$$[j\mathfrak{r}_{\alpha\beta},\mathfrak{S}_1]=0$$
 for $\alpha < \beta$.

We now put

$$j'r_{\alpha} = jr_{\alpha} - s(r_{\alpha}), \ j'x = jx \text{ for } x \in \mathfrak{r}_{\alpha\beta} \ (\alpha < \beta).$$

One can easily see that j'r is also a solvable subalgebra. Therefore taking jr instead of jr, we may assume

$$(5.1) [j\mathfrak{r},\mathfrak{F}_1]=0.$$

Since \mathfrak{u}_1 is a maximal compact subalgebra of \mathfrak{s}_1 , there exist a solvable subalgebra \mathfrak{t}_1 and an endomorphism j_1 of \mathfrak{t}_1 satisfying

$$\mathfrak{S}_1 = \mathfrak{u}_1 + \mathfrak{t}_1$$
 (vector space direct sum),
 $j_1 x \equiv j x \pmod{\mathfrak{u}_1}$ for $x \in \mathfrak{t}_1$.

Let us set

$$t = t_1 + t' (t' = jr + r + w)$$

Using (5.1), we know that t is a solvable subalgebra. Clearly

g = t + u (vector space direct sum).

We define an endomorphism \hat{j} of t by

(5.2)
$$\hat{j}x = j_1 x$$
 if $x \in t_1$ and $\hat{j}x = j x$ if $x \in t'$.

We then have

(5.3)
$$\hat{j}x \equiv jx \pmod{\mathfrak{u}}$$
 for any $x \in \mathfrak{t}$.

Let T_1 and T be the connected subgroup of G corresponding to t_1 and t respectively. Then $S_1 = T_1 \cdot U_1$ and hence $S = T_1 \cdot U$. Recall that $G = T' \cdot S$ by Proposition 7. Therefore $G = T \cdot U$. This means that the group T acts on G/U transitively. Since $T \cap U$ is discrete, T is a covering space of G/U. As a result, T admits a left invariant complex structure so that the projection of T onto G/U is holomorphic. By (5.3), the corresponding endomorphism of t is nothing but the operator \hat{j} given by (5.2).

We shall show that the Lie algebra t admits a structure of a *j*-algebra. Let ψ_1 and ψ' be the Koszul forms of $(t_1, 0, j_1)$ and (t', 0, j) respectively and define a linear form $\hat{\omega}$ on t by

$$\hat{\boldsymbol{\omega}}(x_1) = \boldsymbol{\psi}_1(x_1)$$
 if $x_1 \in t_1$ and $\hat{\boldsymbol{\omega}}(x') = \boldsymbol{\psi}'(x')$ if $x' \in t'$.

Since $\psi'(\mathfrak{w})=0$ and since $[t_1, t']\subset \mathfrak{w}$, we have $\hat{\omega}([t_1, t'])=0$. Recalling that both t_1 and t' are the Lie algebras corresponding to homogeneous bounded domains, we have for x_1 , $y_1 \in t_1$ and for x', $y' \in t'$

$$\hat{\omega}([j(x_1+x'), j(y_1+y')]) = \psi_1([j_1x_1, jy_1]) + \psi'([jx', jy']) \\ = \psi_1([x_1, y_1]) + \psi'([x', y']) = \hat{\omega}([x_1+x', y_1+y'])$$

and

$$\hat{\omega}([j(x_1+x'), x_1+x']) = \psi_1([j_1x_1, x_1]) + \psi'([jx', x']) > 0,$$

if $x_1 + x' \neq 0$. Hence $(t, 0, \hat{j}, \hat{\omega})$ is a *j*-algebra. We apply Proposition 5 to the *j*-algebra t. Let \mathfrak{r}_t be a maximal abelian ideal of the first kind. Then we have $t = \hat{j}\mathfrak{r}_t + \mathfrak{r}_t + \mathfrak{w}_t$, because t is solvable and $\mathfrak{t} = 0$. It follows from Proposition 5 that the group T is biholomorphic to a homogeneous bounded domain. Since the projection: $T \rightarrow G/U$ is a holomorphic covering mapping, G/U itself is biholomorphic to a homogeneous bounded domain. It is now clear that $T \cap U = \{e\}$. Hence we have proved

THEOREM 11. Let G/K be a homogeneous complex manifold associated with an effective *j*-algebra (\mathfrak{g} , \mathfrak{t} , *j*, $\boldsymbol{\omega}$). Then there exist a closed connected K. Nakajima

reductive subgroup U containing K and a connected solvable subgroup T and the followings hold :

(a) $G = T \cdot U, T \cap U = \{e\}.$

(b) U/K is a compact simply connected homogeneous complex submanifold of G/K.

(c) The homogeneous space G/U admits naturally a G-invariant complex structure with respect to which the projection of G/K onto G/U is holomorphic and G/U is biholomorphic to a homogeneous bounded domain.

We now set $M_1 = G/U$ and $M_2 = U/K$. For the proof of Theorem A, it remains to show that G/K is biholomorphic to $M_1 \times M_2$. This can be done as follows. Consider the fibering: $G/K \rightarrow M_1$. Then every fiber is biholomorphic to the compact complex manifold M_2 . Therefore by a result of Fischer and Grauert [2], this fibering is a holomorphic fiber bundle. Its structure group may be taken to be a complex Lie group. Consequently, as is mentioned in [15], this bundle is holomorphically trivial by a theorem of Grauert [3], because M_1 is topologically trivial. Hence we get Theorem A.

REMARK 3. By Theormem 11, the homogeneous complex manifold G/K associated with an effective *j*-algebra $(\mathfrak{g}, \mathfrak{t}, j, \omega)$ is simply connected. Let \tilde{G} be the simply connected Lie group with \mathfrak{g} as its Lie algebra and let \tilde{K} be the connected subgroup of \tilde{G} corresponding to \mathfrak{t} . We then have $\tilde{G}/\tilde{K} = G/K$ because G/K is simply connected. Therefore the associated homogeneous complex manifold is uniquely determined from the effective *j*-algebra \mathfrak{g} and independent to the choise of the group G.

§ 6. Some consequences obtained from Theorem 11.

An effective *j*-algebra $(\mathfrak{g}, \mathfrak{t}, j, \omega)$ is called *proper* if every compact semi-simple *j*-invariant subalgebra is contained in \mathfrak{t} . Let \mathfrak{u} be the Lie algebra of the group U as in Theorem 11. Then the semi-simple part of \mathfrak{u} is a compact *j*-invariant subalgebra. Therefore if the effective *j*-algebra \mathfrak{g} is proper, then \mathfrak{u} coincides with \mathfrak{t} . Hence we obtain from Theorem 11 the following

THEOREM 12 (Vinverg, Gindikin and Pyatetskii-Shapiro [16]). Every homogeneous complex manifold associated with an effective proper j-algebra is biholomorphic to a homogeneous bounded domain.

By using Theorem 11, we can also prove the following theorem of Koszul.

THEOREM 13 (Koszul [10]). Let G/K be a homogeneous complex manifold with a G-invariant volume element and assume that the canonical hermitian form is positive definite. Then G/K is biholomorphic to a homogeneous bounded domain.

PROOF. We may assume that the action of *G* is effective. Let ψ be the Koszul form of $(\mathfrak{g}, \mathfrak{k}, j)$. From the hypothesis, $(\mathfrak{g}, \mathfrak{k}, j, \psi)$ is an effective *j*-algebra. Let K_0 be the identity component of *K*. Then G/K_0 is the homogeneous complex manifold associated with $(\mathfrak{g}, \mathfrak{k}, j, \psi)$. Let *U* be as in Theorem 11 and let \mathfrak{u} be its Lie algebra. We denote by $\psi_1(\text{resp. by }\psi_2)$ the Koszul form of $(\mathfrak{g}, \mathfrak{u}, j)$ (resp. of $(\mathfrak{u}, \mathfrak{k}, j)$). We then have for any $u \in \mathfrak{u}$, $\psi([ju, u]) = \psi_1([ju, u]) + \psi_2([ju, u])$. Clearly $\psi_1([ju, u]) = 0$. Since U/K is a compact simply conneced homogeneous Kähler manifold, $\psi_2([ju, u]) \leq 0$. Therefore $\psi([ju, u]) = 0$ and hence $\mathfrak{u} = \mathfrak{k}$. It follows from Theorem 11 that $G/K_0(=G/U)$ is a homogeneous bounded domain. Hence we can conclude that G/K itself is a homogeneous bounded domain.

q. e. d.

As an immediate consequence of this theorem, we have

COROLLARY 14. Every homogeneous Kähler manifold of negative definite Ricci tensor is biholomorphic to a homogeneous bounded domain.

§7. Proof of Theorem B.

Let M_1 , M_2 and G be as Theorem B. We denote by K the isotropy subgroup of G at a point $(p_1, p_2) \in M_1 \times M_2$. Every element g of G can be expressed as $g(z_1, z_2) = (g_1(z_1, z_2), g_2(z_1, z_2))$. Then $g_1(z_1, z_2)$ is independent to z_2 , because M_2 is compact. Let us define a closed subgroup U by

$$U = \{g \in G; g_1(p_1) = p_1\}.$$

We then have $G/U = M_1$ and $U/K = M_2$. It should be noted that U is connected because M_1 is simply connected. Let \mathfrak{g} and \mathfrak{k} be the Lie algebras of G and K respectively and let j be the endomorphism of \mathfrak{g} corresponding to the complex structure of $M_1 \times M_2$. We also denote by \mathfrak{u} the Lie algebra of U. Clearly \mathfrak{u} is j-invariant. Let ψ , ψ_1 and ψ_2 be the Koszul forms of $(\mathfrak{g}, \mathfrak{k}, j)$, $(\mathfrak{g}, \mathfrak{u}, j)$ and $(\mathfrak{u}, \mathfrak{k}, j)$ given by (1.6). For any $x \in \mathfrak{g}$, ad $jx - j \circ \mathfrak{ad} x$ leaves \mathfrak{u} and \mathfrak{k} invariant. Define a linear form ψ'_2 on \mathfrak{g} by

$$\psi'_2(x) = \operatorname{Tr}_{\mathfrak{u}/\mathfrak{k}}(\operatorname{ad} jx - j \circ \operatorname{ad} x) \text{ for } x \in \mathfrak{g}.$$

We then have $\psi = \psi_1 + \psi'_2$ and $\psi'_2 = \psi_2$ on \mathfrak{u} . Since ψ and ψ_1 satisfy (1.7), we have $\psi'_2([\mathfrak{k},\mathfrak{g}]) = 0$ and $\psi'_2([jx, jy]) = \psi'_2([x, y])$ for any $x, y \in \mathfrak{g}$. Let us set

 $\boldsymbol{\omega} = \boldsymbol{\beta} \boldsymbol{\psi}_1 - \boldsymbol{\psi}_2',$

where β is a positive number. Then ω satisfies (3.1) and (3.2). Since M_1 is a homogeneous bounded domain, $\psi_1([jx, x]) \ge 0$ for any $x \in \mathfrak{g}$ and the equality holds if and only if $x \in \mathfrak{n}$. On the one side, if $x \in \mathfrak{n}$, then $\psi'_2([jx, x]) \le 0$ and the equality holds if and only if $x \in \mathfrak{k}$, because U/K is a compact simply connected homogeneous Kähler manifold. Consequently, if we take β large enough, then ω satisfies (3.3). Therefore $(\mathfrak{g}, \mathfrak{k}, j, \omega)$ becomes an effective *j*-algebra, proving Theorem B.

§8. Proof of Theorem C.

In this section, we study the structure of homogeneous Kähler manifolds satisfying (C) and prove Theorem C. The following result is essentially proved in [7].

PROPOSITION 15 (Kodama and Shima [7]). Let G/K be a homogeneous Kähler manifold satisfying (C). Assume further that G is solvable. Then G/K is holomorphically isomorphic to a homogeneous bounded domain.

Let G/K be a homogeneous Kähler manifold satisfying (C). We may assume that G acts on G/K effectively. Let \mathfrak{g} and \mathfrak{k} be the Lie algebras of G and K respectively and denote by j the endomorphism of \mathfrak{g} corresponding to the complex structure of G/K. From the condition (C), we have (cf. [7], [13])

$$[jx, x] \neq 0 \text{ if } x \in \mathfrak{t}.$$

Let \mathfrak{r} be an abelian ideal of \mathfrak{g} . Using (8.1), one can easily see that the sum $I = \mathfrak{k} + j\mathfrak{r} + \mathfrak{r}$ is direct. Let *L* be the connected subgroup corresponding to I. Then $L/L \cap K$ is a homogeneous Kähler submanifold satisfying (C). By Lemma 3, we may assume that $j\mathfrak{r}$ is a solvable subalgebra. Then the connected subgroup corresponding to the solvable subalgebra $j\mathfrak{r} + \mathfrak{r}$ acts on $L/L \cap K$ transitively. Therefore from Proposition 15, we know that the homogeneous space $L/L \cap K$ is biholomorphic to a homogeneous bounded domain.

By virture of this fact, we can also see by the same method as [11] that if r is a non-trivial abelian ideal, then there exists a non-trivial abelian ideal of the first kind which is contained in r.

Next we shall show that the analogous assertion to Proposition 5 holds. Let r be an abelian ideal of the first kind with a principal idempotent r_0 and let $g^{(a)}$ be the subspace as in Proposition 5. We define a *j*-invariant subspace Q by $Q = \{x \in g; [x, r_0] = [jx, r_0] = 0\}.$

One can easily see that g = Q + i, $Q \cap i = \mathfrak{k}$ and that Q is invariant by ad jr_0 . Therefore Q is decomposed as $Q = \sum_{a \in \mathbb{R}} Q^{(a)}$, where $Q^{(a)} = Q \cap g^{(a)}$. Using (8. 1), we can show by the same way as [11],

$$g^{(1)} = r, g^{(0)} = jr + Q^{(0)},$$

 $Q^{(a)} = 0 \text{ for } a < 0 \text{ or } a > \frac{1}{2},$
 $jQ^{(a)} \subset Q^{(a)} + \mathfrak{k}.$

Let us set $\mathfrak{g}' = \mathfrak{k} + j\mathfrak{r} + \mathfrak{r} + \sum_{0 < a} Q^{(a)}$. Then \mathfrak{g}' is a *j*-invariant subalgebra. Therefore if we denote by G' the corresponding subgroup, then $G'/G' \cap K$ is a homogeneous Kähler manifold satisfying (C). By changing *j* suitably, we may assume that $j\mathfrak{r}$ is a solvable subalgebra and that $jQ^{(a)} \subset Q^{(a)}$. Note that $[\mathfrak{g}^{(a)}, \mathfrak{g}^{(b)}] \subset \mathfrak{g}^{(a+b)}$ and that $\mathfrak{g}^{(a)} = Q^{(a)}$ if $a \neq 0, 1$. Then $\mathfrak{t}' = j\mathfrak{r} + \mathfrak{r} + \sum_{0 < a} Q^{(a)}$ is a *j*-invariant solvable subalgebra and the corresponding subgroup acts on $G'/G' \cap K$ transitively. Hence by Proposition 15, $G'/G' \cap K$ is biholomorphic to a homogeneous bounded domain. Let us denote by ψ' the Koszul form of $(\mathfrak{t}', 0, j)$. Then $\psi'(Q^{(a)}) = 0$ for any $a \neq 0$. If $a \neq 0, \frac{1}{2}$, then $[jQ^{(a)}, Q^{(a)}] \subset Q^{(2a)}$ and hence $\psi'([jQ^{(a)}, Q^{(a)}]) = 0$. This means that $Q^{(a)} = 0$ for $a \neq 0, \frac{1}{2}$, because $\psi'([j\mathfrak{x}, \mathfrak{x}]) > 0$ for $\mathfrak{x} \neq 0$. Clearly $Q^{(0)} = \{\mathfrak{x} \in \mathfrak{g}^{(0)}; [\mathfrak{x}, \mathfrak{r}_0] = 0\}$. We now set $\mathfrak{s} = Q^{(0)}$ and $\mathfrak{w} = Q^{(\frac{1}{2})}$. Then the decomposition of \mathfrak{g} stated in Proposition 5 also holds.

Now from [11], we know that Proposition 6 also holds for the homogeneous Kähler manifold G/K. If we assume that \mathfrak{r} is a maximal abelian ideal of the first kind, then the group S corresponding to \mathfrak{s} is reductive and hence S/K is a homogeneous Kähler manifold on which the semi-simple part of Sacts transitively. Therefore by Borel [1], S/K is simply connected. In particular, the group K is connected. Now Theorem C can be proved by the same arguments as in §§ 4 and 5.

REMARK 4. To prove Proposition 15, Kodama and Shima [7] calculated the canonical hermitian form of G/K and showed that it is positive definite. From this fact, combined with the result of [16] (Theorem 12) they conclude that G/K is biholomorphic to a homogeneous bounded domain. We may also apply Theorem 13 and obtain Proposition 15.

References

- [1] A. BOREL, Kählerian coset spaces of semi-simple Lie groups, Proc, Nat. Acad. Sci. U. S. A., 40 (1954) 1147-1151.
- [2] W. FISCHER and H. GRAUERT, Local-triviale Familien kompact komplexen Manigfaltigkeiten, Nachr. Acad. Wiss. Göttingen II Math-Phys. Kl., 1965, 89-94.
- [3] H. GRAUERT, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135 (1958) 263–273.
- [4] J. HANO, Equivariant projective immersion of a complex coset space with non-degenerate canonical hermitian form, Scripta Math., 29 (1971) 125–139.
- [5] S. KANEYUKI, On the automorphism groups of homogeneous bounded domains, J. Fac. Sci. Univ. Tokyo, 14 (1967) 89-130.
- [6] S. KANEYUKI, Homogeneous Bounded Domains and Siegel Domains, Lect. Notes in Math., 241, Springer, 1971.
- [7] A. KODAMA and H. SHIMA, Characterizations of homogeneous bounded domains, Tsukuba J. Math., 7 (1983) 79-86.
- [8] J. L. KOSZUL, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math., 7 (1955) 562-576.
- [9] J. L. KOSZUL, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89 (1961) 515-533.
- [10] J. L. KOSZUL, Sur les *j*-algebres properes, 1966 (unpublished).
- K. NAKAJIMA, Homogeneous hyperbolic manifolds and homogeneous Siegel domains, J. Math. Kyoto Univ., 25 (1985) 269-291.
- [12] H. SHIMA, Homogeneous Hessian manifolds, Ann. Inst. Fourier, Grenoble 30 (1980) 91 -128.
- [13] H. SHIMA, Homogeneous Kählerian manifolds, Japan J. Math., 10 (1984) 71-98.
- [14] E. B. VINBERG, The structure of the group of automorphisms of a homogeneous convex cone, Trans. Moscow Math. Soc., 13 (1965) 63-93.
- [15] E. B. VINBERG and S. G. GINDIKIN, Kaehlerian manifolds admitting a transitive solvable automorphism group, Math. Sb., 74 (116) (1967) 333-351.
- [16] E. B. VINBERG, S. G. Gindikin and I. I. Pyatetskii-Shapiro, Classification and canonical realization of complex homogeneous domains, Trans. Moscow Math. Soc., 12 (1963) 404-437.
- [17] S. G. GINDIKIN, I. I. Pyatetskii-Shapiro and E. B. Vinberg, Homogeneous Kähler manifolds, in "Geometry of Homogeneous Bounded Domains", Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3–87.

Department of Mathematics Faculty of Science Kyoto University