On almost Blaschke manifolds II

by Jin-ichi Itoh
(Received January 7, 1985 ; Revised July 25, 1985)

§ 0. Introduction

In a previous paper [5] the auther studied the topology of a compact riemannian manifold (M, g) whose injectivity radius $i(M)$ is close to its diameter $d(M)$ and got the following results.

Theorem A. Let (M, g) be a 2-dimensional riemannian manifold and K denote its Gaussian curvature. Assume that one of the following holds;
(i) There is a positive number δ such that

$$
K \geq-\delta^{2} \text { and } \sinh (\delta i(M))>(\sqrt{3} / 2) \sinh (\delta d(M))
$$

(ii) $K \geq 0$ and $i(M)>(\sqrt{3} / 2) d(M)$ hold.

Then M is diffeomorphic to the sphere S^{2} or projective plane P^{2}.
THEOREM B. Let (M, g) be a 3-dimensional riemannian manifold and K denote its sectional curvature. If there is a positive number δ such that

$$
K \geq \delta^{2} \text { and } \sin (\delta i(M))>(\sqrt{3} / 2) \sin (\delta d(M))
$$

then M is diffeomorphic to the sphere S^{3} or projective space P^{3}.
These results are best possible.
On the other hand recently O. Durumeric has shown in [4] that in arbitrary dimension any manifold whose injectivity radius is sufficiently close to its diameter has either the trivial fundamental group or the homotopy type of the real projective space.

In this paper we prove the following theorem.
THEOREM. Let (M, g) be a 3-dimensional compact riemannian manifold and K denote its sectional curvature. Assume that one of the following holds;
(i) There is a positive number δ such that we have

$$
K \geq-\delta^{2} \text { and } \sinh (\delta i(M))>a(\delta d(M)) \cdot \sinh (\delta d(M))
$$

where

$$
a(\delta d(M)):=\sin \left[\frac{\pi}{2}-\frac{1}{10} \sin ^{-1}\left\{\frac{\sin h\left(\frac{1}{10} \delta d(M)\right)}{\sin h(2 \delta d(M))}\right\}\right]
$$

(ii) $\quad K \geq 0$ and $i(M)>a \cdot d(M)$ hold
where

$$
a:=\sin \left(\frac{\pi}{2}-\frac{1}{10} \sin ^{-1} \frac{1}{20}\right)=0.99998 \cdots \cdots
$$

Then M is diffeomorphic to 3-dimensional sphere S^{3} or real projective space P^{3}.
Remark 1. The inequalities of Theorem are invariant under homotheties.

To prove Theorem we use the stable cut locus whose local structure is well understood by M. Buchner in [2]. In a previous paper [5] the auther showed that the stable cut locus collapses on one point or a subcomplex which consists of some S^{2} 's, P^{2} 's and trees. We will show that the subcomplex is PL-homeomorphic to P^{2} by Toponogov's comparison theorem.

The auther would like to express my sincere thanks to Prof. T. Sakai for his kind advices.

§ 1. Preliminaries

To begin with we state the following theorems which play important roles in our arguments. We denote the distance from p to q by $d(p, q)$.

TOPONOGOV'S COMPARISON THEOREM (T.C. T.) [3] Let M be a complete manifold with sectional curvature $K \geq c$. Let γ_{1}, γ_{2} be geodesic segments of length l_{1}, l_{2} in M such that $\gamma_{1}\left(l_{1}\right)=\gamma_{2}(0)$ and $\Varangle\left(-\dot{\gamma}_{1}\left(l_{1}\right), \dot{\gamma}_{2}(0)\right)$ $=\theta$. We call such a configuration a hinge and denote it by $\left(\gamma_{1}, \gamma_{2}, \theta\right)$. Assume that γ_{1} is minimal and $l_{2} \leq \pi / \sqrt{c}$, if $c>0$. Let $\gamma_{1}^{*}, \gamma_{2}^{*}$ be geodesic segments of length l_{1}, l_{2} in the simply connected 2-dimensional space of constant curvature c such that $\gamma_{1}\left(l_{1}\right)=\gamma_{2}(0)$ and $\Varangle\left(-\dot{\gamma}_{1}^{*}\left(l_{1}\right), \dot{\gamma}_{2}^{*}(0)\right)=\theta$. Then $d\left(\gamma_{1}(0), \gamma_{2}\left(l_{2}\right)\right) \leq d\left(\gamma_{1}^{*}(0), \gamma_{2}^{*}\left(l_{2}\right)\right)$.

Remark 2. By checking the proof of T. C. T. carefully, in the above we may choose a geodesic segment γ_{3} from $\gamma_{1}(0)$ to $\gamma_{2}\left(l_{2}\right)$ in M which is homotopic to $\gamma_{2}{ }^{\circ} \gamma_{1}$ and whose length is less than or equal to $d\left(\gamma_{1}^{*}(0), \gamma_{2}^{*}\left(l_{2}\right)\right)$.

Theorem (Buchner). If dem $M=3$ and $p \in M$ then the picture near a point q on stable cut locus $C(p)$ of p is (i) a plane through q or (ii) three planes meeting along a line through q, any two of the planes having regular intersection or (iii) the picture of 6 planes meeting along 4 lines all meeting
at q obtained by viewing q as the barycenter of a tetrahedron and joining it to the 4 vertices or (iv) a half plane with q in the boundary or (v) a quarter plane glued onto a surface. See Figure 1.

Remark 3. By checking the proof of the above theorem, we have the following. There are n minimal geodesic segments from p to $q \in C(p)$ where $n=2$ in the case (i) of the above theorem, $n=3$ in the case (ii), $n=4$ in the case (iii) and $n=2$ is the case (v). There is one geodesic segment from p to q in the case (iv). Namely for any $q \in C(p)$ there are at most 4 minimal geodesic segments from p to q.

(i)

(iii)

(iv)

We can take a cut stable metric g_{0} which satisfies the hypotheses of Theorem by an approximation ([1]). Moreover we can take some triangulation of M which is compatible with the local structure of stable cut locus $C(p)$. Take a subcomplex $\tilde{C}(p)$ on which $C(p)$ collapses and which can not collapse further. Let $\left\{F_{i}\right\}$ be the family of connected components of the union of all 2 -simplexes in $\tilde{C}(p)$ and let $\left\{E_{j}\right\}$ be the family of connected components of $\left(\tilde{C}(p) \backslash\left(\bigcup_{i} F_{i}\right)\right)$, when $\tilde{C}(p)$ is not one point. Each F_{i} is a 2-complex and the closure of E_{j} is a 1-complex. Now we state the results which are shown in [5].
(1) Under the hypotheses of Theorem each F_{i} is a 2-dimensional PLmanifold (without boundary), which follows from Lemma 1] in [5]. In fact the hypotheses of the lemma is weaker than those of Theorem.
(2) $\quad F_{i}$ is PL-homeomorphic to S^{2} or P^{2} and the closure of E_{j} is a tree (Lemma 3 in [5]), Moreover if F_{i} is homeomorphic to P^{2}, then for ecch \bar{E}_{j} there is at most one end point which is contained in F_{i} (See the proof of Lemma 3 in [5]).
(3) If $\bar{C}(p)$ is PL-homeomorphic to one point or P^{2}, then Theorem follows immediately. See $\S 2$ and $\S 3$ in [5]. In the next section we will show that the hypothesis of the above result (3) holds.

We now define some function $l(b, \theta)$ as follows; Take a geodesic right triangle $\left(\tilde{\gamma}_{1}, \tilde{\gamma}_{2}, \tilde{\gamma}_{3}\right)$ in the simply connected 2-dimensional space of constant curvature $-\delta^{2}$ such that $\tilde{\phi}_{1}=\pi / 2, \tilde{\phi}_{3}=\theta, \tilde{l}_{1}=b$ where \tilde{l}_{i} is the length of $\tilde{\gamma}_{i}$ and

$$
\tilde{\phi}_{i}=\Varangle\left(-\dot{\tilde{\gamma}}_{i+1}\left(\tilde{l}_{i+1}\right), \dot{\tilde{\gamma}}_{i+2}(\mathrm{O})\right) .
$$

Put $l(b, \theta):=\tilde{l}_{2}$. We can represent $l(b, \theta)$ explicitly from sine and cosine rules.

§ 2. The proof of Theorem

In this section under the hypotheses of Theorem we show that $\tilde{C}(p)$ is homeomorphic to one point or P^{2}. Now it is known that $\tilde{C}(p)$ consists of $\left\{F_{i}\right\}$ and $\left\{E_{j}\right\}$ where $F_{i} \simeq S^{2}$ or P^{2} and \bar{E}_{j} is a tree, if $\tilde{C}(p)$ is not one point ([5]). To begin with we prepare the following Lemmas 1 and 2. Put

$$
\Theta:=\frac{\pi}{2}-\frac{1}{10} \sin ^{-1}\left\{\sinh \left(\frac{1}{10} \cdot \delta d(M)\right) / \sinh (2 \cdot \delta d(M))\right\}
$$

then $a(\delta d(M))=\sin \Theta$.
Lemma 1. Under the hypotheses of Theorem let q be a cut point of p and $\gamma_{v}, \gamma_{v^{\prime}}$ be geodesic segments from p to q with initial vectors v, v^{\prime} such
that $\gamma_{v^{\circ}}\left(\gamma_{v^{\prime}}\right)^{-1}$ is a homotopically non trivial closed curve. Then $\Varangle\left(v, v^{\prime}\right)>$ 2Θ.

Proof. Let b be the distance from p to q and γ_{2} be the geodesic from p with the unit initial direction $\left(v+v^{\prime}\right) /\left|v+v^{\prime}\right|$. In this section we simply denote $l(b, \Theta)$ by l_{b}, Put $x:=\gamma_{2}\left(l_{b}\right)$. Assume that $\Varangle\left(v, v^{\prime}\right) \leq 2 \Theta$ (i.e. $\left.\Varangle\left(\dot{\gamma}_{v}(0), \dot{\gamma}_{2}(0)\right) \leq \Theta, \Varangle\left(\dot{\gamma}_{v^{\prime}}(0), \dot{\gamma}_{2}(0)\right) \leq \Theta\right)$. We apply Remark 2 after T. C. T. in § 1 to two hinges $\left(\left(\gamma_{v}\right)^{-1}, \gamma_{2} \mid\left[0, l_{b}\right], \Varangle\left(\dot{\gamma}_{v}(0), \dot{\gamma}_{2}(0)\right)\right)$ and $\left(\left(\gamma_{v^{\prime}}\right)^{-1}\right.$, $\left.\gamma_{2} \mid\left[0, l_{b}\right], \underset{\chi}{ }\left(\dot{\gamma}_{v^{\prime}}(0), \dot{\gamma}_{2}(0)\right)\right)$. Then there are geodesic segments $\gamma_{3}^{1}, \gamma_{3}^{2}$ from q to x whose lengths are less than $i(M)$ such that γ_{3}^{1} is homotopic to $\left(\gamma_{2} \mid\left[0, l_{b}\right]\right) \circ\left(\gamma_{v}\right)^{-1}$ and γ_{3}^{2} is homotopic to $\left(\gamma_{2} \mid\left[0, l_{b}\right]\right) \circ\left(\gamma_{v^{\prime}}\right)^{-1}$. Hence $\left(\gamma_{3}^{1}\right)^{-1} \circ \gamma_{3}^{2}$ is a homotopically non trivial closed curve whose length is less than $2 i(M)$. This is a contradiction.
Q. E. D.

Put $\Psi:=\pi-2 \Theta$, then

$$
\Psi=\frac{1}{5} \sin ^{-1}\left\{\sinh \left(\frac{1}{10} \cdot \delta d(M)\right) / \sinh (2 \delta d(M))\right\}
$$

From

$$
\sin 5 \psi=\left\{\sinh \left(\frac{1}{10} \cdot \delta d(M)\right) / \sinh (2 \delta d(M))\right\}
$$

it follows that

$$
\sin \left(\frac{1}{2} \psi\right)=\sin \left(\frac{1}{2}(\pi-2 \Theta)\right)<\left\{\sinh \left(\frac{1}{10} \cdot \delta d(M)\right) / \sinh (\delta d(M))\right\}
$$

From $\sinh (\delta i(M))>a(\delta d(M)) \cdot \sinh (\delta d(M))$ and the definition of $a(\delta d(M))$, we have $d(M)-i(M)<(1 / 100) d(M)$.

Lemma 2. Under the hypotheses of Theorem if there are $q_{i}(i=1,2)$ which are cut points of p and minimal geodesic segments $\gamma_{v_{i}}, \gamma_{v_{i}^{\prime}}(i=1,2)$ from p to q_{i} with initial vectors v_{i}, v_{i}^{\prime} such that $\gamma_{v_{i}}{ }^{\circ}\left(\gamma_{v_{i}^{\prime}}\right)^{-1}$ is homotopically non
trivial and $\gamma_{v_{i}} \circ\left(\gamma_{v_{i}^{\prime}}\right)^{-1}$ is not homotopic to $\gamma_{v_{2}} \circ\left(\gamma_{v_{2}^{\prime}}\right)^{-1}$, then $\Varangle\left(v_{1}, v_{2}\right)>10 \cdot \psi$ $=10(\pi-2 \Theta)$.

Proof. Let \tilde{M} be the universal covering space of M, Π be its covering map. Take a point $\tilde{p}_{0} \in \Pi^{-1}(p)$. Denote by \tilde{v}_{i}, the lift of v_{i} to $T_{\hbar_{n}} \tilde{M}$ and by $\tilde{\gamma}_{\tilde{v}_{i}}$, the geodesic from \tilde{p}_{0} with initial direction \tilde{v}_{i}. Let \tilde{q}_{i} be the first point along $\tilde{\gamma}_{\tilde{v}_{i}}$ such that $\Pi\left(\tilde{q}_{i}\right)=q_{i}$. We denote the distance from p to q_{i} by b_{i}. Take a geodesic α_{i} from \tilde{q}_{i} with $\Pi\left(\alpha_{i} \mid\left[0, b_{i}\right]\right)=\left(\gamma_{v_{i}^{\prime}}\right)^{-1}$. Put $\tilde{p}_{i}:=\alpha_{i}\left(b_{i}\right)$, then $\Pi\left(\tilde{p}_{i}\right)=p$. Thus we have $i(M)<d\left(\tilde{q}_{i}, \tilde{p}_{i}\right)=d\left(\tilde{q}_{i}, \tilde{p}_{0}\right)=d\left(q_{i}, p\right)=b_{i}<d(M)$.

Define $y_{i}:=\tilde{\gamma}_{v_{i}}(2 d(M))$. Now we will show that $d\left(y_{i}, \tilde{p}_{i}\right)<\frac{3}{10} d(M)(i=1,2)$.
Put $w_{0, i}:=-\left.\dot{\tilde{\gamma}}_{0,1}\right|_{q_{i}}, w_{i}:=\left.\dot{\alpha}_{i}\right|_{\tilde{q}}$. From Lemma 1 1 it follows that $\Varangle\left(w_{0, i}, w_{i}\right)$ $>2 \Theta$. Put $w_{y_{i}}:=\dot{\tilde{\gamma}}_{0_{i} \mid \tilde{q}_{i}}\left(=-w_{0, i}\right)$. We take the geodesic segment β_{i} from \tilde{q}_{i} to y_{i} with initial vector $w_{y_{i}}\left(\beta_{i} \subset{\tilde{\gamma_{i}},}\right)$. Put $y_{i}^{\prime}:=\beta_{i}(d(M))\left(=\tilde{\gamma}_{\tilde{v}_{i}}\left(d(M)+b_{i}\right)\right)$ and $\tilde{p}_{i}:=\alpha_{i}(d(M))$. Then $d\left(y_{i}^{\prime}, 7_{i}\right)=d\left(\tilde{p}_{i}, \tilde{q}_{i}\right)=d(M)$ and $\Varangle\left(w_{i}, w_{y_{i}}\right)<\psi$ $=\pi-2 \Theta$ hold. From T. C. T. it follows that $d\left(y_{i}^{\prime}, \tilde{p}_{i}^{\prime}\right)<(2 / 10) d(M)$, $d\left(y_{i}, y_{i}^{\prime}\right)<(d(M)-i(M))<(1 / 100) d(M)$ and $d\left(\tilde{p}_{i}, \tilde{p}_{i}^{\prime}\right)<(d(M)-i(M))$ $<(1 / 100) d(M)$ (See Figure 2). Hence $d\left(y_{i}, \tilde{p}_{i}\right)<(3 / 10) d(M)$.

Put $\xi:=\Varangle\left(\tilde{v}_{i}, \tilde{v}_{2}\right)$. We consider the hinge $\left(\left(\tilde{\gamma}_{\tilde{v}_{1}} \mid[0,2 d(M)]\right)^{-1}\right.$, $\left.\tilde{\gamma}_{\tilde{v}_{2}} \mid[0,2 d(M)], \boldsymbol{\xi}\right)$ at p_{0}. From T. C. T. it follows that

$$
d\left(y_{1}, y_{2}\right)<\frac{2}{\delta} \sinh ^{-1}\left\{\sin \left(\frac{\boldsymbol{\xi}}{2}\right) \cdot \sinh (2 \delta d(M))\right\} .
$$

We will show that $\xi>10 \bullet \psi=10(\pi-2 \Theta)$. If $\xi \leq 10 \bullet \psi$ holds, we have $d\left(y_{1}, y_{2}\right)<(2 / 10) d(M)$. Then

$$
\begin{aligned}
d\left(p_{1}, p_{2}\right) \leq & d\left(p_{1}, y_{1}\right)+d\left(y_{1}, y_{2}\right)+d\left(y_{2}, p_{2}\right) \\
& <(8 / 10) d(M) .
\end{aligned}
$$

On the other hand for $\Pi\left(\tilde{p}_{1}\right)=\Pi\left(\tilde{p}_{2}\right)$ and $\tilde{p}_{1} \neq \tilde{p}_{2}, d\left(\tilde{p}_{1}, \tilde{p}_{2}\right)<2 i(M)$ holds. Hence an inequality $2 i(M)<(8 / 10) d(M)$ contradicts the hypotheses.
Q. E. D.

Figure 2.

We show that $\tilde{C}(p)$ consists of just one F_{i} which is homeomorphic to P^{2}, if $\tilde{C}(p)$ is not one point. From (2) in $\S 1$ if there is only one F_{i} which is homeomorphic to P^{2} or $\left\{F_{i}\right\}$ is empty, then $\left\{E_{j}\right\}$ is empty. From now on we will derive a contradiction under one of the following assumptions; (i) There are at least two 2-complexes F_{i} and F_{j} which are homeomorphic to P^{2}. (ii) There is at least one 2-complex F_{i} which is homeomorphic to S^{2}. Firstly we consider the case (i). There are homotopically non trivial closed curves c_{1} on F_{i} and c_{2} on F_{j} which are transverse to all 1-simplexes and do not contain any 0 -simplex of F_{i}, F_{j}. Let Φ be a map from $U_{p} M$ to $C(p)$ such that for any $x \in U_{p} M \quad \Phi(x)$ is the cut point of gecodesic from p with initial direction x. For any $q \in C(p)$ we have $\#\left\{\Phi^{-1}(q)\right\} \leq 4$ from Remark 3 . Moreover for any $q \in c_{1}$ or c_{2} we have $\#\left\{\Phi^{-1}(q)\right\} \leq 3$. In the following a minimal geodesic segment on $U_{p} M$, which is S^{2} with the cannonical metric, is called a great arc.

Lemma 3. Under the above situation $\Varangle\left(\Phi^{-1}\left(c_{1}\right), \Phi^{-1}\left(c_{2}\right)\right):=\min \left\{\Varangle\left(x_{1}\right.\right.$, $\left.\left.x_{2}\right) \mid x_{1} \in \Phi^{-1}\left(c_{1}\right), x_{2} \in \Phi^{-1}\left(c_{2}\right)\right\}<4 \psi$.

Proof. We note that for any $x \in \Phi^{-1}\left(c_{k}\right)$ there is $x^{*} \in \Phi^{-1}\left(c_{k}\right)$ such that $\Phi(x)=\Phi\left(x^{*}\right)$ and $\gamma_{x}^{\circ}\left(\gamma_{x^{*}}\right)^{-1}$ is htmotopically non trivial closed curve where $k=1$ or 2 and $\gamma_{x}, \gamma_{x^{*}}$ are geodesic segments from p to their cut points with initial directions x, x^{*}. Moreover it follows that $\Varangle\left(x, x^{*}\right)>2 \Theta$ from Lemma 1. We denote by $\left\{c_{k}^{l}\right\}$, the family of connected components of $\Phi^{-1}\left(c_{k}\right)$. Note that c_{k}^{l} is a curve on $U_{p} M$. For any end point x of c_{k}^{l} there is only one end point y of $c_{k}^{l^{\prime}}$ such that $\Phi(x)=\Phi(y)$ and $\gamma_{x} \circ\left(\gamma_{y}\right)^{-1}$ is homotopically trivial closed curve. For any above pair (x, y) we have $\Varangle(x, y)<2 \psi$. In fact since we have $\Varangle\left(x, x^{*}\right)>2 \Theta$ and $\Varangle\left(y, x^{*}\right)>2 \Theta$, it follows that $\Varangle\left(x,-x^{*}\right)$ $<\pi-2 \Theta=\psi$ and $\Varangle\left(y,-x^{*}\right)<\psi$. Take the closed curve $s_{k}(k=1,2)$ which consists of $\left\{c_{k}^{l}\right\}$ and great arcs connecting all of the above pairs of end points of c_{k}^{l} 's. Fix two points $x_{1} \in \Phi^{-1}\left(c_{1}\right)$ and $x_{2} \in \Phi^{-1}\left(c_{2}\right)$. Let s_{k}^{\prime} be a curve which is a part of s_{k} connecting x_{k} and x_{k}^{*}. We denote by \tilde{c}_{k}, the closed curve on $U_{p} M$ which consists of s_{k}^{\prime}, the antipodal curve $s_{k}^{\prime \prime}$ of s_{k}^{\prime}, and two great arcs connecting end points of $s_{k}^{\prime}, s_{k}^{\prime \prime}$ whose lengths are less than 2ψ. For any $z \in \tilde{c_{k}}$ it holds that $\Varangle\left(z, \Phi^{-1}\left(c_{k}\right)\right)<2 \psi$ from the construction. Moreover for any $z \in \tilde{c}_{k}$ the antipodal point of z is contained in \tilde{c}_{k}. Thus evidently $\tilde{c_{1}}$ and $\tilde{c_{2}}$ have intersections. Then $\Varangle\left(\Phi^{-1}\left(c_{1}\right), \Phi^{-1}\left(c_{2}\right)\right)<4 \psi$. Q. E. D.

Now we can take vectors $v_{1}, v_{2} \in U_{p} M$ with $\Varangle\left(v_{1}, v_{2}\right)<4 \psi$ such that the cut point of p along $\gamma_{v_{1}}$ (resp. $\gamma_{v_{2}}$) is contained in $F_{i} \simeq P^{2}$ (resp. $F_{j^{\prime}} \simeq P^{2}$). This contradicts the conclusion of Lemma 2. Thus in $\tilde{C}(p)$ there is at most one surface F_{i} which is homeomorphic to P^{2}.

Next we consider the case (ii). In this case $F_{i}\left(\simeq S^{2}\right)$ is two-sided in M. We simply denote F_{i} by F. Put $D:=\Phi^{-1}(F)\left(\subset U_{p} M\right)$. The set D coincides with the union of of D_{+}and D_{-}such that all geodesics from p with initial vectors in D_{+}(resp. D_{-}) strike on $F\left(\simeq S^{2}\right)$ at their cut points from the fixed one (resp. the other) side of $F\left(\simeq S^{2}\right)$ and $\left(D_{+} \cap D_{-}\right)=\Phi$.

Lemma 4. Under the above situation we have $\Varangle\left(v_{1}, v_{2}\right)<\pi-9 \psi$ for any $v_{1}, v_{2} \in D_{+}$(resp. D_{-}).

Proof. For any $v_{1} \in D_{+}$there is $v_{1}^{\prime} \in D_{\text {- }}$ such that $\Varangle\left(v_{1}, v_{1}^{\prime}\right)>2 \Theta$ from Lemma 1. Then $\Varangle\left(-v_{1}, v_{1}^{\prime}\right)<\psi$ for $\psi=\pi-2 \Theta$. Since $v_{1}^{\prime} \in D_{-}$we have \Varangle $\left(v_{1}^{\prime}, v_{2}\right)>10 \bullet \psi$ for any $v_{2} \in D_{+}$from Lemma 2. Hence $\Varangle\left(-v_{1}, v_{2}\right)>9 \psi$, namely $\Varangle\left(v_{1}, v_{2}\right)<\pi-9 \psi$.
Q. E. D.

Let $\left\{D_{+, i}\right\}$ (resp. $\left\{D_{-, i}\right\}$) be the family of conncted components of D_{+} (resp. D_{-}). Any 1 -simplex σ_{k}^{i} in $\partial D_{+, i}$ is identified by Φ with the other 1 simplex $\sigma_{l}^{i^{\prime}}$ in $\partial D_{+, i^{\prime}}$ where D has a triangulation induced by Φ^{-1} from F. Let $\Xi_{j, k ; j^{\prime}, l}^{+}$be the union of all great arcs on $U_{p} M$ connecting points of σ_{k}^{j} and those of $\sigma_{l}^{j^{\prime}}$ which are identified by Φ. We note that the lengths of these great arcs are less than $2 \psi=2(\pi-2 \Theta)$. In fact, when v_{1} and v_{2} are the end points of a great arc, there is $v_{1}^{\prime} \in D_{\text {- such that }} \Phi\left(v_{1}^{\prime}\right)=\Phi\left(v_{1}\right)=\Phi\left(v_{2}\right)$. From Lemma 1 it follows that $\Varangle\left(v_{1}, v_{1}^{\prime}\right)>2 \Theta$ and $\Varangle\left(v_{2}, v_{1}^{\prime}\right)>2 \Theta$. Then $\Varangle\left(v_{1}, v_{2}\right)<2 \psi$. We denote by D_{+}^{\prime}, the union of D_{+}and all $\boldsymbol{\Xi}_{j, k ; j^{\prime}, l}^{+}$s. Define $\Xi_{j, k ; j^{\prime}, l}^{-}$and D_{-}^{\prime} from D_{-}in the same way as above. It is easy to show that D_{+}^{\prime} and D_{-}^{\prime} do not intersect. In fact suppose $x \in\left(D_{+}^{\prime} \cap D_{-}^{\prime}\right)$, then since D_{+}and D_{-}do not intersect there are two great arcs each of which contains x and whose lengths are less than 2ψ. Hence there are $y \in D_{+}, z \in D_{-}$ such that $\Varangle(x, y)<\psi$ and $\Varangle(x, z)<\psi$, namely $\Varangle(y, z)<2 \psi$ holds. This contradicts Lemma 2. Moreover D_{+}^{\prime} and D_{-}^{\prime} are connected from the construction. We denote by $D_{+}^{\prime \prime}$ (resp. $D_{-}^{\prime \prime}$), the simply connected domain on $U_{p} M\left(\simeq S^{2}\right)$ which contains D_{+}^{\prime} (resp. D_{-}^{\prime}), does not intersect D_{-}^{\prime} (resp. $\left.D_{+}^{\prime}\right)$ and whose boundary is contained in $\partial D_{+}^{\prime}\left(\right.$ resp. $\left.\partial D_{-}^{\prime}\right)$. The domains $D_{+}^{\prime \prime}$ and $D_{-}^{\prime \prime}$ do not intersect. From now on we only consider $D_{+}, D_{+, i}$, $D_{+}^{\prime}, D_{+}^{\prime \prime}, \Xi_{j, k ; j^{\prime}, l}^{+}$and simply denote them by $D, D_{i}, D^{\prime}, D^{\prime \prime}, \Xi_{j, k ; j^{\prime}, l}$ respectively. Take the disjoint union of $\left\{D_{i}\right\}$ and $\left\{\boldsymbol{\Xi}_{j, k ; j^{\prime}, l}\right\}$. We attach all $\Xi_{j, k ; j^{\prime}, l}$'s to $\left\{D_{i}\right\}$ by the identity maps on σ_{k}^{j}, $\sigma_{l}^{j^{\prime}}$ and get a set $D^{\prime \prime \prime}$. For any $\mathrm{y} \in \partial D$ we have $\#\left\{\left(\left.\Phi\right|_{D}\right)^{-1}(\Phi(y))\right\} \leq 3$, because we put $D=D_{+}$. Then each connected component e_{m} of $\partial D^{\prime \prime \prime}$ consists of three great arcs in $\bigcup_{j j^{\prime}, k, l} \Xi_{j, k ; j^{\prime}, l}$ whose lengths are less than 2ψ. On $U_{p} M$ we denote by E_{m}, the domain bounded by e_{m} which is contained in $(3 / 2) \psi$-disk. We attach
E_{m} to $D^{\prime \prime \prime}$ by the identity map on e_{m} for all m and get \boldsymbol{D}. We note that \boldsymbol{D} is homeomorphic to a sphere from the construction. Put $\tilde{D}:=D^{\prime} \cup\left(\cup_{m} E_{m}\right)$ on $U_{p} M$. Let $\Psi: \boldsymbol{D} \rightarrow \tilde{D} \subset U_{p} M$ be a natural projection, namely $\left.\Psi\right|_{D_{i}}$, $\left.\Psi\right|_{\Xi_{j, k ; j^{\prime},},}$ and $\left.\Psi\right|_{E_{m}}$ are the identity maps.

Now we define some property of subsets of $U_{p} M\left(\simeq S^{2}\right)$ as follows; A subset $s \subset U_{p} M$ has the property (*) with respect to $x \in U_{p} M$ if and only if for any great circle c through x on $U_{p} M$ the subset s is not contained in each open hemi-sphere with boundary c. Put $B_{x}^{\varepsilon}:=\left\{v \in U_{p} M \mid \Varangle(v, x) \leq \Theta-\boldsymbol{\varepsilon}\right\}$ $(\varepsilon>0)$.

Lemma 5. Under the above situation for (PL)-simple closed curve A $:=\partial \tilde{\mathrm{D}}$ on $\mathrm{U}_{p} \mathrm{M}$ either (I) or (II) of the following holds.
(I) There are $\varepsilon>0$ and $x \in U_{p} M$ such that $B_{x}^{\varepsilon} \supset A$.
(II) For any $\varepsilon>0$ there are $x \in U_{p} M$ and a connected component \mathscr{A} of ($B_{x}^{\varepsilon} \cap A$) such that ($\partial B_{x}^{\varepsilon} \cap \mathscr{A}$) on $U_{p} M$ has the property (*) with respect to x.

Proof. For any $z \in U_{p} M$ and for any $y \in A$ with $\Varangle(z, y)=\Theta-\varepsilon$, we denote by $\mathscr{A}_{z, v}$, the connected component of $\left(B_{z}^{\varepsilon} \cap A\right)$ containing y. Under the negotiation of (II), we will derive (I). If for some $\varepsilon>0, z \in U_{p} M$ and $y \in A$ with $\Varangle(z, y)=\Theta-\varepsilon$ a subset $\left(\partial B_{z}^{\varepsilon} \cap \mathscr{A} z, v\right)$ does not have the property (*) with respect to z, then there are a great circle c through z and hemisphere O with boundary c which contains ($\partial B_{z}^{\varepsilon} \cap \mathscr{A}_{z, v}$). Denote by $\left\{z_{t}\right\}$, the great arc from $z_{0}=z$ to the pole of O. For sufficiently small $t>0$ there is $y_{t} \in A$ such that $\Varangle\left(z_{t}, y_{t}\right)=\Theta-\varepsilon$ and $\mathscr{A}_{z_{t}, y_{t}} \supset \mathscr{A}_{z, y}$. Denote the maximum of such number by t_{0}. We exchange $z^{(1)}, y^{(1)}$ for $z_{t_{0}}, y_{t_{0}}$ and repeat the same procedure successively. At last there is n such that $\mathscr{A}_{z^{(n)}, y^{(n)}}$ coincides with A, then (I) holds.
Q. E. D.

Put

$$
\begin{aligned}
& l:=l(d(M), \Theta-\varepsilon) \\
& i_{\varepsilon}:=\frac{1}{\delta} \sinh ^{-1}(\sin (\Theta-\varepsilon) \cdot \sinh (\delta d(M)))<i(M)
\end{aligned}
$$

Let $\mathscr{B}_{z}^{\varepsilon}$ be a closed ball in M centered at $\operatorname{Exp}_{p} l z$ with radius i_{ε}. Under the above preparations we will show that the existence $F\left(\simeq S^{2}\right)$ derives a contradiction. If there are $\varepsilon>0$ and $x \in U_{p} M$ such that $B_{x}^{\varepsilon} \supset D$, then we get $\mathscr{B}_{x}^{\varepsilon}$ $\supset F$. In fact from T. C. T. $\mathscr{B}_{x}^{\varepsilon}$ contains the subset consisting of all geodesic segments from p whose lengths are equal to $d(M)$ and whose initial
vectors are contained in $B_{x}^{\varepsilon}\left(D \subset \tilde{D} \subset B_{x}^{\varepsilon}\right)$. Then the homotopically non trivial sphere F is contained in contractible ball $\mathscr{B}_{x}^{\varepsilon}$. This is a contradiction.

Next we consider the case that for any $\varepsilon>0$ and $z \in U_{p} M, F$ is not contained in $\mathscr{F}{ }_{2}^{\varepsilon}$. Namely for a closed curve $A=\partial \tilde{D}$, (II) of Lemma 5 holds. Take a point $z \in U_{p} M$, sufficiently small number $\varepsilon>0$ ($\left.\varepsilon 《 \psi\right)$ and a connected component \boldsymbol{G}_{0} of $\left(\boldsymbol{D} \cap \Psi^{-1}\left(B_{z}^{\varepsilon}\right)\right)$ such that ($\partial B_{2}^{\varepsilon} \cap \partial \Psi\left(\boldsymbol{G}_{0}\right)$) has the property (*) with respect to z and fix them. Put $G_{0}:=\boldsymbol{\Psi}\left(\boldsymbol{G}_{0}\right)$. Denote by $\left\{\boldsymbol{G}_{k}\right\}$, the family of closure of each connected component of ($\boldsymbol{D} \backslash \boldsymbol{G}_{0}$). Put $G_{k}:=\Psi\left(\boldsymbol{G}_{k}\right)$. We simply denote $B_{z}^{\varepsilon}, \mathscr{B}_{z}^{\varepsilon}$ by B_{z}, \mathscr{B}_{z}. We can deform \mathscr{B}_{z} to sufficiently near $\mathscr{\mathscr { G }}_{z}^{\prime}$ so that \mathscr{B}_{z}^{\prime} is transverse to F and ($\partial_{\mathscr{B}}^{\prime} \cap F$) consists of closed curves. Let R_{0} be a connected component of ($F \cap \mathscr{R}_{z}^{\prime}$) such that $\Phi\left(G_{0} \cap D\right) \subset R_{0}$. Each connected component of ($F \backslash R_{0}$) is homeomorphic to a disk. We denote by $\left\{R_{j}\right\}$, the family of closure of each connected component of $\left(F \backslash R_{0}\right)$. For any j there is $k(j)$ such that $\left(\left.\Phi\right|_{D}\right)^{-1}\left(R_{j}\right)$ intersects $G_{k(j)}$. Put $c_{j}:=R_{j} \cap R_{0}$. Now for each connected component G_{k} take a point $y_{k} \in \partial B_{z}$ such that

$$
\Varangle\left(y_{k}, \partial B_{z} \cap G_{k}\right)=\max _{y \in \partial B_{z}} \Varangle\left(y, \partial B_{z} \cap G_{k}\right) .
$$

The 4ψ-neighborhood of y_{k} does not intersect \tilde{D} from Lemma 4. For any G_{k} there are $n, m \in\{k\}$ such that $\left(G_{k} \cap \partial B_{z}\right)$ is contained in the inferior arc $y_{n} \bullet y_{m}$ on ∂B_{z}. Define a great arc γ_{k} by $\gamma_{k}:=\left\{\right.$ the great arc connecting y_{n} and $\left.y_{m}\right\}$ $\backslash\left\{4 \psi\right.$-neighborhood of y_{n} and $\left.y_{m}\right\}$. Let N_{k} be a 2ψ-neighborhood of γ_{k} in $B_{z}^{2 \varepsilon}$ We can take a homotopy $H_{t}: S^{1} \times[0,1] \rightarrow F$ and a simple closed curve c_{j}^{1} on F such that $H_{0}=c_{j}, H_{1}=c_{j}^{1}, \quad\left(\left.\Phi\right|_{D}\right)^{-1}\left(c_{j}^{1}\right) \subset N_{k(j)},\left(\left.\Phi\right|_{D}\right)^{-1}\left(H_{t}\left(S^{1} \times[0,1]\right)\right)$ $\subset\left(B_{z} \cup G_{k(j)}\right), c_{j}^{1}$ is transverse to all 1 -simplexes of F and c_{j}^{1} does not contain any 0 -simplex of F. This is possible from the construction of \tilde{D}. For any circle c_{j}^{1} on $F \cap \mathscr{B}_{z}$ we denote by $\mathscr{\mathscr { ~ }}_{z}\left(c_{j}^{1}\right)$, the union of geodesic segments connecting $\operatorname{Exp}_{p} l z$ (the center of \mathscr{B}_{z}) and all points of c_{j}^{1}. Note that there is $\tilde{\varepsilon}>0$, which depends on ε, such that for any z^{\prime} with $\Varangle(z, z) \leq \tilde{\varepsilon}$ and for any j it holds that $\mathscr{D}_{z}\left(c_{j}^{1}\right) \subset \mathscr{g}_{z^{\prime}}$. We denote by F_{j}^{1}, the domain on F bounded by c_{j}^{1} such that F_{j}^{1} and $\left\{\bigcup_{l \neq j} c_{l}^{1}\right\}$ are disjoint. Then $\left(F_{j}^{1} \cup \mathscr{V}_{z}\left(c_{j}^{1}\right)\right)$ is homeomorphic to a sphere and moreover there is at least one $J \in\{j\}$ such that ($\left.F_{J}^{1} \cup \mathscr{D}_{z}\left(c_{J}^{1}\right)\right)$ is homotopically non trivial, for F is homotopically non trivial.

From now on we simply denote F_{J}^{1} by F^{1}. The set $\left(\left.\Phi\right|_{D}\right)^{-1}\left(c_{J}^{1}\right)$ is the union of curves. We can get the closed curve \tilde{c}_{J}^{1} in $N_{k(J)}$ by connecting the corresponding end points of $\left(\left.\Phi\right|_{D}\right)^{-1}\left(c_{J}^{1}\right)$ with great arcs. Let \boldsymbol{D}^{1} be the disk
in \boldsymbol{D} such that $\Phi\left(\Psi\left(\boldsymbol{D}^{1}\right) \cap D\right) \supset F^{1}$ and $\partial \boldsymbol{D}^{1} \subset\left(\Psi^{-1}\left(\tilde{c}_{J}^{1}\right)\right)$. Put $\tilde{D}^{1}:=\Psi\left(\boldsymbol{D}^{1}\right)$. If there is $x \in U_{p} M$ such that $\Varangle(x, z) \leq \tilde{\varepsilon}$ and $B_{x} \supset \tilde{D}^{1}$, then a homotopically non trivial sphere $\left(F^{1} \cup \mathscr{D}_{z}\left(c_{J}^{1}\right)\right)$ is contained in the contractible ball \mathscr{B}_{x}, which is a contradiction. Then for any $x \in U_{p} M$ with $\Varangle(x, z) \leq \tilde{\varepsilon}, F^{1}$ is not contained in \mathscr{B}_{x}. We will repeat the similar procedure as above. Let U be the $\tilde{\varepsilon}$-neighborhood of z in $U_{p} M$. For any $z^{\prime} \in U$ we denote by $\boldsymbol{G}_{0}^{1^{\prime}}(z)$, the connected component of ($\boldsymbol{D} \cap \Psi^{-1}\left(B_{z^{\prime}}\right)$) intersecting \boldsymbol{G}_{0}. Put $G_{0}^{1 \prime}(z):=\Psi$ $\left(\boldsymbol{G}_{0}^{1^{\prime}}\left(z^{\prime}\right)\right.$) and $G_{0}^{1}\left(z^{\prime}\right):=\tilde{D}^{1} \cap G_{0}^{1^{\prime}}\left(z^{\prime}\right)$. We note that for any $z^{\prime} \in u\left(\partial G_{0}^{1^{\prime}}\left(z^{\prime}\right) \cap\right.$ $\partial B_{z^{\prime}}$) has the property (*) with respect to z^{\prime} from Lemma 4. Take a point $z^{1} \in U\left(\subset U_{p} M\right)$ such that

$$
\text { area of } G_{0}^{1}\left(z^{1}\right)=\max _{z^{\prime} \in U} \text { area of } G_{0}^{1}\left(z^{\prime}\right) .
$$

Denote simply $G_{0}^{1}\left(z^{\prime}\right), \boldsymbol{G}_{0}^{1 \prime}\left(z^{1}\right)$ by $G_{0}^{1}, \boldsymbol{G}_{0}^{1^{\prime}}$ respectively. Denote by $\left\{\boldsymbol{G}_{k^{\prime}}^{1}\right\}$, the family of closure of each connected component of $\left(\left(\boldsymbol{D}^{1} \cup \boldsymbol{G}_{0}^{1}\right) \backslash \operatorname{int}\left(\boldsymbol{G}_{0}^{1}\right)\right)$. Put $G_{k^{\prime}}^{1}:=\Psi\left(\boldsymbol{G}_{k^{\prime}}^{1}\right)$. We can deform $\mathscr{B}_{z^{\prime}}$ to sufficiently near $\mathscr{B}^{\prime}{ }_{z^{\prime}}$ so that $\mathscr{B}^{\prime}{ }_{z^{\prime}}$ is transverse to F^{1} and ($\partial \mathscr{B}^{\prime} z^{\prime} \cap F^{1}$) consists of closed curves. Let R_{0}^{1} be a connected component of $\left(F^{1} \cap \mathscr{B}_{z^{\prime}}^{\prime}\right)$ such that $\Phi\left(G_{0}^{1} \cap D\right) \subset R_{0}^{1}$. If the set ($F^{1} \backslash R_{0}^{1}$) is in empty, we are done. Otherwise each connected component of ($F^{1} \backslash R_{0}^{1}$) is homeomorphic to a disk. Let $\left\{R_{j^{i}}^{1}\right\}$ be the family of closure of each connected component of ($F^{1} \backslash R_{0}^{1}$). For any j^{1} there is k^{1} such that $\left(\left.\Phi\right|_{D}\right)^{-1}\left(R_{j^{\prime}}^{\prime}\right)$ intersects $G_{k^{\prime}}^{1}$. Put $c_{j^{1}}^{1}:=R_{j^{\prime}}^{1} \cap R_{0}^{1}\left(\subset F^{1}\right)$. For each connected component $G_{k^{\prime}}^{1}$, take a point $y_{k^{\prime}}^{1} \in \partial B_{z^{\prime}}$ such that

$$
\Varangle\left(y_{k}, \partial B_{z^{2}} \cap G_{k^{\prime}}^{1}\right)=\max _{y \in \partial B_{3}} \Varangle\left(y, \partial B_{z^{\prime}} \cap G_{k^{\prime}}^{1}\right) .
$$

The 4ψ-neighborhood of each $y_{k^{\prime}}^{1}$ does not intersect \tilde{D}. For any $G_{k^{\prime}}^{1}$ with $G_{k^{\prime}}^{1}$ $\subset \tilde{D}^{1}$ there are $n, m \in\left\{k^{1}\right\}$ such that ($G_{k^{\prime}}^{1} \cap \partial B_{z^{\prime}}$) is contained in the inferior $\operatorname{arc} y_{n}^{1} \cdot y_{m}^{\text {i }}$ on $\partial B_{z^{\prime}}$. Next we define $\gamma_{k^{\prime}}^{\prime}$. Firstly we denote by V, the domain in $B_{z^{\prime}}$ whose boundary consists of the inferior arc $y_{n}^{1} \cdot y_{m}^{1}$ and the great arc connecting y_{n}^{1} and y_{m}^{1}. When $\gamma_{k(J)} \cap V=\phi$, we define $\gamma_{k^{\prime}}^{1}$ by $\gamma_{k^{\prime}}^{1}:=\{$ the great arc connecting y_{n}^{1} and $\left.y_{m}^{1}\right\} \backslash\left\{4 \psi\right.$-neighborhood of y_{n}^{1} and $\left.y_{m}^{1}\right\}$. Note that $\left(\gamma_{k(J)} \cap V\right)$ is a great arc, if $\gamma_{k(J)} \cap V \neq \phi$. Take a piecewise great arc which consists of the three great arcs as follows; The first great arc connects y_{n}^{1} and one end point of $\left(\gamma_{k J)} \cap V\right)$. The second one is $\left(\gamma_{k(J)} \cap V\right)$. The third one connects y_{m}^{1} and the other end point of $\left(\gamma_{k J)} \cap V\right)$. We define $\gamma_{k^{\prime}}^{1}$ by $\gamma_{k^{1}}^{1}:=\{$ the above piecewise great $\operatorname{arc}\} \backslash\left\{4 \psi\right.$-neighborhood of y_{n}^{1} and $\left.y_{m}^{1}\right\}$. Let $N_{k^{\prime}}^{1}$ be a 2ψ-neighborhood of $\gamma_{k^{\prime}}^{1}$ in $B_{z^{\prime}}^{2 \varepsilon^{\prime}}$. We can take a homotopy H_{t}^{1} :
$S^{1} \times[0,1] \rightarrow F^{1}$ and a simple closed curve $c_{j^{2}}^{2}$ on F^{1} such that $H_{0}^{1}=c_{j^{\prime}}^{1}, H_{1}^{1}=$ $c_{j^{\prime}}^{2},\left(\left.\Phi\right|_{D}\right)^{-1}\left(c_{j^{\prime}}^{2}\right) \subset N_{k^{\prime}\left(j^{\prime}\right)},\left(\left.\Phi\right|_{D}\right)^{-1}\left(H_{t}^{1}\left(S^{1} \times[0,1]\right)\right) \subset\left(B_{z^{\prime}} \psi G_{k^{\prime}\left(j^{\prime}\right.}^{1}\right), c_{i^{\prime}}^{2}$ is transverse to all 1 -simplexes of F and $c_{j^{i}}^{2}$ does not contain any 0 -simplex of F. We denote by $F_{j^{i}}^{2}$, the domain on F^{1} bounded by $c_{j^{1}}^{2}$ such that $F_{j^{1}}^{2}$ and $\left\{\bigcup_{l \neq j^{1}} c_{l}^{2}\right\}$ have no intersection. There is at least one $J^{1} \in\left\{j^{1}\right\}$ such that ($F_{J^{\prime}}^{2}$ $\left.\cup \mathscr{V}_{2^{\prime}}\left(c_{J^{\prime}}^{2}\right)\right)$ is a homotopically non trivial sphere. Denote simply $F_{J^{\prime}}^{2}$ by F^{2}. Define a closed curve $\tilde{C}_{J^{\prime}}^{2}$ in $N_{k^{\prime}\left(J^{1}\right)}^{1}$ and a domain \tilde{D}^{2} in \tilde{D}^{1} by the same way as \tilde{c}_{J}^{1} in $N_{k(J)}$ and \tilde{D}^{1} in \tilde{D}. If there is $x \in U_{p} M$ such that $\Varangle\left(x, z^{1}\right) \leq \tilde{\varepsilon}$ and B_{x} $\supset \tilde{D}^{2}$, then we get a contradiction. Then any $x \in U_{p} M$ with $\Varangle\left(x, z^{1}\right) \leq \tilde{\varepsilon}, F^{2}$ is not contained in \mathscr{B}_{x}.

After repeating the same procedure finitely many times -say n times-, we have $z^{n} \in U_{p} M$ such that $\tilde{D}^{n} \subset B_{z^{n}}$ because \tilde{D} is bounded. This contradicts the fact that $\left(F^{n} \cup \mathscr{V}_{2^{n}}\left(c_{J^{n-1}}^{n}\right)\right)$ is a homotopically non trivial sphere. Hence $\tilde{C}(p)$ is homeomorphic to one point or P^{2}, which complete the proof of Theorem.

References

[1] M. BuChner : Stability of cut locus in dimension ≤ 6. Invent. Math. 43, 199-231 (1977)
[2] M. BuChner: The structure of cut locus in dimension ≤ 6. Compositio Math. 37, 103-119 (1978)
[3] J. ChEEGER, D. EbIN : Comparison Theorem in Riemannian Geometry. Amsterdam : North-Holland 1975
[4] O. DURUMERIC : Manifolds with almost equal diameter and injectivity radius. J. Differential Geometry 19, 453-474 (1984)
[5] J. Iтон : On almost Blaschke manifolds I. Math. Z. 190, 63-72 (1985)
Department of Mathematics Hokkaido University Sapporo 060, Japan

