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Introduction. Throughout this paper every ring will have the identity,
and every subring of it will contain the identity of it. A ring is said to be
strongly primitive if it has a faithful minimal left ideal. The structure of
strongly primitive ring was researched in [1] and [2] by Nakayama and
Azumaya. The aim of this paper is to give a necessary and sufficient
condition for an H-separable extension ring A of a strongly primitive ring B
to be strongly primitive. We will show that, if B is a strongly primitive ring
with the socle \partial , and if A is an H-separable extension of B such that A is left
(or right) B-finitely generated projective, then the necessary and sufficient
condition for A to be strongly primitive is that \^A A\cap B =\partial holds (Theorem

1). This condition is a sufficient condition, if we assume that A is an
H-separable extension of a strongly primitive ring B such that B is a left (or

right) B-direct summand of A . Finally, we will consider the case where A

is a left full linear ring with the cent C, D is a simple C-subalgebra of A

with [D:C]<\infty and B=V_{A}(D) , the centralizer of D in A . In the above
situation Nakayama and Azumaya obtained much more interesting results in
[1] and [2]. In particular, they showed that B is also a left full linear ring,
V_{A}(B)=D and that the same inner Galois theory as in simple artinian ring

holds in this case, too. In this paper we will show that S=A\partial A , A\partial A\cap B=

\partial and S=Soc(AB)=Soc(AB)=A\partial=\partial A hold if A and B are in the above
situation, where S and \partial_{j} are the socles of A and B, respectively (Theorem

2).

Preliminaries. First we recall some definitions. Let A be a ring.
Hereafter we will call each two sided ideal of A, simply, an ideal of A . The
socle of a left (resp. right) A -module M is the sum of all minimal
A -submodules of M, and denoted by Soc(_{A}M) (resp. Soc(M_{A}) ). A is said
to be a left primitive ring if A has a faithful simple left A -module. A right
primitive ring is similarly defined, and a both left and right primitive ring is
called simply primitive ring. Now we put a stronger condition on A. A is
said to be strongly primitive if A has a faithful minimal left ideal. In this
case A has also a faithful minimal right ideal. Thus strong primitivity is left
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and right equivalent. Now let A be a strongly primitive ring. Then we
have the following assertions;

(1) Every non zero left (or right) ideal of A is faithful
(2) All minimal left (or right) ideals of A are mutually isomorphic,

and their sum is the smallest non zero ideal of A . Consequently we have Soc
(_{A}A)=Soc(A_{A}) .

(3) A left (or right) ideal of A is minimal if and only if it is generated
by a primitive idempotent.

(4) Every left (or right) faithful A -module has a minimal submodule
isomorphic to a minimal left (or right) ideal of A . Consequently all
faithful simple left (or right) A -modules are mutually isomorphic

All of the above results are proved in [1] Theorems 1 and 2 without the
assumption of the existance of the identity. In this paper we will use the
above results freely.

H -separable extensions of strongly primitive rings.

The following proposition has already been shown in [6]

PROPOSITION 1. Let B be a strongly primitive ring, and A an
H-separable extension of B such that B is a left (or right)B-direct summand
of A. Then, A is a primitive ring, and A\partial A is the smallest ideal of A,

where i7
? is the socle of B.

PROOF. The former assertion is Proposition 3 [6] and the latter is
shown in the proof of it.

Now we will show that the same assertion holds under the condition that
A is left (or right) finitely generated projective over B in stead of the one
that B is a left (or right) B-direct summand of A .

PROPOSITION 2. Let B be a strongly primitive ring with its socle 3, and
A an H-separable extension of B such that A is right B-finitety generated
projective. Then, we have

(1) A is a primitive ring, and A\partial A is the smallcst ideal of A .
(2) Every simple right B-submodulc of A is faithful, and A\S coincides

with Soc(AB), the right B socle of A .
(3) If furthermore A is strongly primitive, then A%A coincides with the

socle of A .

PROOF. For any ideal \mathfrak{A} of A, we have \mathfrak{A}=A(\mathfrak{A}\cap B) by Theorem 3. 1
[5], since A is right B-finitely generated projective. Therefore if \mathfrak{A}\neq\overline{0} we
have 0\neq \mathfrak{A}\cap B\subset\partial by Theorem 1 [1]. Then we have \mathfrak{A}\supset A\partial A . Thus we see
that A%A is the smallest ideal of A . Let J be the radical of A, and suppose
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that J \neq 0 . Then the above argument shows that J \supset I\cap B\supset\partial , which
contradicts to the fact that J does not contain any non zero idempotents.
Thus we have J=0 . Then there exists a maximal left ideal L of A such that
\not\supset A\partial A . Put \iota\iota\iota=A/L . If the annihilater Ann(_{A}\iota\iota\iota) of \iota\iota\iota is not zero, it
must contain A\partial_{J}A , and we have A\partial A=(A\partial A)A\subset L, a contradiction. Thus
we see that Ann(_{A}\iota\iota\iota)=0 , and that \iota\iota\iota is a faithful simple left A-module.
Similarly, we can find a maximal right idght ideal I of A such that A/I is a
faithful simple right A -module. Thus we have proved (1). Put M=\{a\in A

|a\partial=0\} . M is an A- V_{A}(B) -submodule of A, and we have M=A(M\cap B)

by Theorem 3. 1 [5]. But M\cap B=0 , since \partial is left B-faithful. Hence we
have M=0. Now suppose that there exists a simple right B-submodule \iota

. of
A which is not faithful. Then \iota\cdot\partial=0 , and we have \iota\cdot\subset M\neq 0 , a contradiction.
Let \iota \mathfrak{n} be a simple right B-submodule of A . Then \mathfrak{j}\mathfrak{j}\mathfrak{j} is B faithful by the
above argument, and consequently, there exists a primitive idempotent e of
B such that eB\cong t\mathfrak{n} . Then we have imnlediately 1) 1=\iota\iota\iota eB\subset A\partial . and hence
Soc(AB)A\partial . The converse inclusion is obvious, and we have Soc(A_{B})=

A3. Thus we have proved (2). (3) is clear by (1), because the socle of a
strongly primitive ring is the smallest non zero ideal of it. Thus we have
finished the proof of the theorem.

Furthermore, we can give a necessary and sufficient condition for an
H-separable extension ring of a strongly primitive ring to be strongly
primitive, as follows;

THEOREM 1. Let B be a strongly primitive ring with the socle \partial , and A

an H-scparable extension of B. Suppose furthermore that A is left B-finitety
generated projective. Then, A is also a strongly primitive ring, if and only

if A_{\partial}A\cap B=\partial .

PROOF. First suppose that A\partial A\cap B =\partial . Since A is left B-finitely
generated projective, we have A\partial A=(A\partial A\cap B)A=8A by Theorem 3. 1 [5].

Hence we have A\partial\subset\partial A . On the other hand, there exists a faithful simple
left A- module\uparrow \mathfrak{n} , and we have \iota \mathfrak{n}=A\partial\iota \mathfrak{n}\subset\partial A\mathfrak{j}\mathfrak{n}=\partial\iota\iota\tau\subset tt1 , and consequently,
\mathfrak{m}=\partial|\mathfrak{n}t But \partial\iota \mathfrak{n} is a sum, and consequently, a direct sum of faithful simple
B-submodules which are isomorphic to some Be, where e is a primitive
idempotent of B. Hence \iota \mathfrak{n}=\partial\iota \mathfrak{n} is B projective. Then 1\mathfrak{n} is -projective,
since A is a separable extension of B. Therefore, there exists an A-split
exact sequence Aarrow\iota \mathfrak{n}arrow 0 , and we see that A has a faithful minimal left
ideal isomorphic to \iota \mathfrak{n} . Thus we have proved the if’ part. Conversely
suppose that A is strongly primitive, and let b\in A\partial A\cap B. Assume that Bb
aA\partial b, and let p be the natural map of Ab to A/A\partial b . Bbq_{A}\partial b implies that
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p(Bb)\neq 0 , while \partial p(Bb)=p(’\partial b)=0 . On the other hand, Ab is completely
reducible by Proposition 2 (3). Hence we can write Ab=\oplus_{i=l}^{r}Ae_{i} , where
e_{i} ’s are primitive idempotents of A, and 0Ab/\^A b \cong\oplus Ae_{i_{k}}(1\leqq i_{k}\leqq r) .
Then Ab/\^Ab b is B-projective, since A is left B-projective by assumption.
Therefore, there exists a non zere B-homomorphism q of p(Bb) to B such
that qp(Bb) is annihilated by \partial . This is a contradiction, because every left
ideal of B is faithful. Therefore, we have Bbd\^A b, and b\in A\partial\cap B\subset Soc

(A_{B})\cap B=\partial . Thus we have A\partial A\cap B\subset\partial . The converse inclusion is
obvious. Hence we have proved the only if ’ part, too.

By the same proof as Theorem 1 we can obtain the following two
propositions:

PROPOSITION 3. Let B be a strongly primitive ring with the socle \partial , and
A an H-separable extension of B such that B is a right B-direct summand of
A. Then if A\partial A\cap B =\partial , A is also a strongly primitive ring.

PROOF. We have A A=(A\partial A\cap B)A by our assumption and Proposi-
tion 4. 1 [5]. Then we can follow the same lines as the proof of the. if
part of Theorem 1.

PROPOSITION 4. Let A and B be strongly primitive rings with the socles
S and \partial , respectively. If B is a subring of A such that A is left B-projective,
then we have S\cap B\subset\partial .

PROOF. For any b\in S\cap B, Ab is again completely reducible.
Therefore, we can follow the same lines as the proof of the ‘ only if. part of
Theorem 1.

A typical example of strongly primitive ring is a left full linear ring, that
is, the ring of linear transformations of a left vector space over a division
ring. In [1] Nakayama and Azumaya showed that, if A is a left full linear
ring with its center C, and if D is a simple C-subalgebra of A such that
[D:C] <\infty , then V_{A}(D) is also a left full linear ring and D=
V_{A}(V_{A}(D)) (Theorem 10 [1]). Now let A, D and C be as above, and put
B=V_{A}(D) . Theorem 36. 2 [2] shows that A has a right B -free basis
consisting of [D:C] elements of A . On the other hand, the author proved
in [6] that A is an H-separable extension of B and has also a left free basis
consisting of [D:C] elements. Therefore we can apply Proposition 2 and
Theorem 1, and have

THEOREM 2. Let A be a left full linear ring with its center C, and D
a simple C-subalgebra of A such that [D:C]<\infty . Let B=V_{A}(D) , and
denote the socles of A and B by S and \partial , respectively. Then we have S=
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A\partial A and A\partial A\cap B=\partial , S=Soc(_{B}A)=Soc(A_{B})=A\partial=\partial A .
Theorem 3 together with Proposition 2 (2) yields

COROLLARY. Let A and B be as in Theorem 3. Then, every simple
left (resp. right) ideal of A is a direct sum of mutually isomorphic faithful
simple left (resp. right) B-submodules.

REMARK. In Theorem 36. 2 [2] it is shown that, under the same
conidtion as Theorem 2, every simple right ideal of A is a direct sum of
faithful simple right B-submodules.
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