On H -separable extensions of primitive rings

In memory of Professor Akira Hattori

Kozo Sugano
(Received December 17, 1986, Revised February 4, 1987)

Introduction. Throughout this paper every ring will have the identity, and every subring of it will contain the identity of it. A ring is said to be strongly primitive if it has a faithful minimal left ideal. The structure of strongly primitive ring was researched in [1] and [2] by Nakayama and Azumaya. The aim of this paper is to give a necessary and sufficient condition for an H-separable extension ring A of a strongly primitive ring B to be strongly primitive. We will show that, if B is a strongly primitive ring with the socle 3 , and if A is an H-separable extension of B such that A is left (or right) B-finitely generated projective, then the necessary and sufficient condition for A to be strongly primitive is that $A_{j} A \cap B=\jmath$ holds Theorem 1). This condition is a sufficient condition, if we assume that A is an H-separable extension of a strongly primitive ring B such that B is a left (or right) B-direct summand of A. Finally, we will consider the case where A is a left full linear ring with the center C, D is a simple C-subalgebra of A with $[D: C]<\infty$ and $B=V_{A}(D)$, the centralizer of D in A. In the above situation Nakayama and Azumaya obtained much more interesting results in [1] and [2]. In particular, they showed that B is also a left full linear ring, $V_{A}(B)=D$ and that the same inner Galois theory as in simple artinian ring holds in this case, too. In this paper we will show that $S=A_{\jmath} A, A_{\jmath} A \cap B=$ z and $\left.S=\operatorname{Soc}\left({ }_{B} A\right)=\operatorname{Soc}\left(A_{B}\right)=A_{\mathfrak{\gamma}}=\right\} A$ hold if A and B are in the above situation, where S and z are the socles of A and B, respectively (Theorem $2)$.

Preliminaries. First we recall some definitions. Let A be a ring. Hereafter we will call each two sided ideal of A, simply, an ideal of A. The socle of a left (resp. right) A-module M is the sum of all minimal A-submodules of M, and denoted by $\operatorname{Soc}\left({ }_{A} M\right.$) (resp. $\operatorname{Soc}\left(M_{A}\right)$). A is said to be a left primitive ring if A has a faithful simple left A-module. A right primitive ring is similarly defined, and a both left and right primitive ring is called simply primitive ring. Now we put a stronger condition on $A . A$ is said to be strongly primitive if A has a faithful minimal left ideal. In this case A has also a faithful minimal right ideal. Thus strong primitivity is left
and right equivalent．Now let A be a strongly primitive ring．Then we have the following assertions；
（1）Every non zero left（or right）ideal of A is faithful
（2）All minimal left（or right）ideals of A are mutually isomorphic， and their sum is the smallest non zero ideal of A ．Consequently we have Soc $\left({ }_{A} A\right)=\operatorname{Soc}\left(A_{A}\right)$ ．
（3）A left（or right）ideal of A is minimal if and only if it is generated by a primitive idempotent．
（4）Every left（or right）faithful A－module has a minimal submodule isomorphic to a minimal left（or right）ideal of A ．Consequently all faithful simple left（or right）A－modules are mutually isomorphic

All of the above results are proved in［1］Theorems 1 and 2 without the assumption of the existance of the identity．In this paper we will use the above results freely．

H－separable extensions of strongly primitive rings．

The following proposition has already been shown in［6］
Proposition 1．Let B be a strongly primitive ring，and A an H－separable extension of B such that B is a left（or right）B－direct summand of A ．Then，A is a primitive ring，and $A_{子} A$ is the smallest ideal of A ， where 3 is the socle of B ．

Proof．The former assertion is Proposition 3 ［6］，and the latter is shown in the proof of it．

Now we will show that the same assertion holds under the condition that A is left（or right）finitely generated projective over B in stead of the one that B is a left（or right）B－direct summand of A ．

Proposition 2．Let B be a strongly primitive ring with its socle 子，and A an H－separable extension of B such that A is right B－finitely generated projective．Then，we have
（1）A is a primitive ring，and $A_{子} A$ is the smallest ideal of A ．
（2）Every simple right B－submodule of A is faithful，and $A_{\mathfrak{z}}$ coincides with $\operatorname{Soc}\left(A_{B}\right)$ ，the right B－socle of A ．
（3）If furthermore A is strongly primitive，then $A_{\boldsymbol{j}} A$ coincides with the socle of A ．

Proof．For any ideal \mathfrak{A} of A ，we have $\mathfrak{A}=A(\mathfrak{H} \cap B)$ by Theorem 3.1 ［5］，since A is right B－finitely generated projective．Therefore if $\mathfrak{A} \neq \overline{0}$ we have $0 \neq \mathfrak{A} \cap B \subset \mathfrak{z}$ by Theorem 1 ［1］．Then we have $\mathfrak{A} \supset A_{z} A$ ．Thus we see that $A_{z} A$ is the smallest ideal of A ．Let J be the radical of A ，and suppose
that $J \neq 0$. Then the above argument shows that $J \supset J \cap B \supset z$, which contradicts to the fact that J does not contain any non zero idempotents. Thus we have $J=0$. Then there exists a maximal left ideal L of A such that $\not \supset A_{\mathfrak{z}} A$. Put $m=A / L$. If the annihilater $A n n\left({ }_{A} m\right)$ of m is not zero, it must contain $A_{z} A$, and we have $A_{z} A=\left(A_{z} A\right) A \subset L$, a contradiction. Thus we see that $\operatorname{Ann}\left({ }_{A} \mathrm{mI}\right)=0$, and that m is a faithful simple left A-module. Similarly, we can find a maximal right idght ideal I of A such that A / I is a faithful simple right A-module. Thus we have proved (1). Put $M=\{a \in A$ $\left.\mid a_{z}=0\right\} . \quad M$ is an $A-V_{A}(B)$-submodule of A, and we have $M=A(M \cap B)$ by Theorem 3.1 [5]. But $M \cap B=0$, since z is left B-faithful. Hence we have $M=0$. Now suppose that there exists a simple right B-submodule ${ }^{r}$ of A which is not faithful. Then $\mathfrak{r} z=0$, and we have $\mathfrak{r} \subset M \neq 0$, a contradiction. Let m be a simple right B-submodule of A. Then m is B-faithful by the above argument, and consequently, there exists a primitive idempotent e of B such that $e B \cong \mathfrak{m}$. Then we have immediately $m=m e B \subset A_{\mathfrak{b}}$. and hence $\operatorname{Soc}\left(A_{B}\right) \subseteq A_{\mathfrak{z}}$. The converse inclusion is obvious, and we have $\operatorname{Soc}\left(A_{B}\right)=$ A_{3}. Thus we have proved (2). (3) is clear by (1), because the socle of a strongly primitive ring is the smallest non zero ideal of it. Thus we have finished the proof of the theorem.

Furthermore, we can give a necessary and sufficient condition for an H-separable extension ring of a strongly primitive ring to be strongly primitive, as follows ;

Theorem 1. Let B be a strongly primitive ring with the socle z, and A an H-separable extension of B. Suppose furthermore that A is left B-finitely generated projective. Then, A is also a strongly primitive ring, if and only if $A_{\mathfrak{z}} A \cap B=\mathfrak{z}$.

Proof. First suppose that $A_{\mathfrak{z}} A \cap B=子$. Since A is left B-finitely generated projective, we have $A_{z} A=\left(A_{z} A \cap B\right) A={ }_{z} A$ by Theorem 3.1 [5]. Hence we have $A_{\mathfrak{z}} \subset_{z} A$. On the other hand, there exists a faithful simple left A-module \mathfrak{m}, and we have $\mathfrak{m}=A_{\mathfrak{z}} \mathfrak{m} \subset z_{z} \mathfrak{m}=\mathfrak{z m} \subset \mathfrak{m}$, and consequently, $\mathfrak{m}=\mathfrak{m}$. But $\mathfrak{z m}$ is a sum, and consequently, a direct sum of faithful simple B-submodules which are isomorphic to some $B e$, where e is a primitive idempotent of B. Hence $\mathrm{m}=\mathrm{zm}$ is B-projective. Then m is A-projective, since A is a separable extension of B. Therefore, there exists an A-split exact sequence $A \longrightarrow \mathfrak{m} \longrightarrow 0$, and we see that A has a faithful minimal left ideal isomorphic to m. Thus we have proved the 'if' part. Conversely suppose that A is strongly primitive, and let $b \in A_{\mathfrak{\jmath}} A \cap B$. Assume that $B b$ $\not A_{\mathfrak{z}} b$, and let p be the natural map of $A b$ to $A / A_{\mathfrak{z}} b . \quad B b \not A_{\mathfrak{z}} b$ implies that
$p(B b) \neq 0$, while $z p(B b)=p(z b)=0$. On the other hand, $A b$ is completely reducible by Proposition 2 (3). Hence we can write $A b=\oplus_{i=1}^{r} A e_{i}$, where e_{i} 's are primitive idempotents of A, and $0 \neq A b / A_{\mathfrak{\gamma}} b \cong \oplus A e_{i_{k}}\left(1 \leqq i_{k} \leqq r\right)$. Then $A b / A_{\mathfrak{z}} b$ is B-projective, since A is left B-projective by assumption. Therefore, there exists a non zere B-homomorphism q of $p(B b)$ to B such that $q p(B b)$ is annihilated by ${ }_{子}$. This is a contradiction, because every left ideal of B is faithful. Therefore, we have $B b \subset A_{z} b$, and $b \in A_{z} \cap B \subset S o c$ $\left(A_{B}\right) \cap B={ }_{3}$. Thus we have $A_{\mathfrak{\gamma}} A \cap B \subset \mathfrak{z}$. The converse inclusion is obvious. Hence we have proved the 'only if' part, too.

By the same proof as Theorem 1 we can obtain the following two propositions;

Proposition 3. Let B be a strongly primitive ring with the socle 3 , and A an H-separable extension of B such that B is a right B-direct summand of A. Then if $\left.A_{\mathfrak{z}} A \cap B=\right\}^{3}, A$ is also a strongly primitive ring.

Proof. We have $A_{\mathfrak{z}} A=\left(A_{\mathfrak{\jmath}} A \cap B\right) A$ by our assumption and Proposition 4.1 [5]. Then we can follow the same lines as the proof of the 'if' part of Theorem 1.

Proposition 4. Let A and B be strongly primitive rings with the socles S and ${ }^{3}$, respectively. If B is a subring of A such that A is left B-projective, then we have $S \cap B \subset 子$.

Proof. For any $b \in S \cap B, A b$ is again completely reducible. Therefore, we can follow the same lines as the proof of the 'only if ' part of Theorem 1.

A typical example of strongly primitive ring is a left full linear ring, that is, the ring of linear transformations of a left vector space over a division ring. In [1] Nakayama and Azumaya showed that, if A is a left full linear ring with its center C, and if D is a simple C-subalgebra of A such that $[D: C]<\infty$, then $V_{A}(D)$ is also a left full linear ring and $D=$ $V_{A}\left(V_{A}(D)\right.$) (Theorem 10 [1]). Now let A, D and C be as above, and put $B=V_{A}(D)$. Theorem 36.2 [2] shows that A has a right B-free basis consisting of [$D: C$] elements of A. On the other hand, the author proved in [6] that A is an H-separable extension of B and has also a left free basis consisting of [$D: C$] elements. Therefore we can apply Proposition 2 and Theorem 1, and have

Theorem 2. Let A be a left full linear ring with its center C, and D a simple C-subalgebra of A such that $[D: C]<\infty$. Let $B=V_{A}(D)$, and denote the socles of A and B by S and \mathfrak{z}, respectively. Then we have $S=$
$A_{\mathfrak{z}} A$ and $A_{z} A \cap B=z, S=\operatorname{Soc}\left({ }_{B} A\right)=\operatorname{Soc}\left(A_{B}\right)=A_{z}={ }_{z} A$.
Theorem 3 together with Proposition 2 (2) yields
Corollary. Let A and B be as in Theorem 3. Then, every simple left (resp. right) ideal of A is a direct sum of mutually isomorphic faithful simple left (resp. right) B-submodules.

Remark. In Theorem 36.2 [2] it is shown that, under the same conidtion as Theorem 2, every simple right ideal of A is a direct sum of faithful simple right B-submodules.

References

[1] G. AZUMAYA and T. NAKAYAMA: On irreducible rings, Ann. Math., 48 (1946), 949-965.
[2] G. Azumaya and T. Nakayama: Algebra II (in Japanese), Iwanami, 1954.
[3] K. Hirata : Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 107-115.
[4] K. Sugano : Separable extensions of quasi-Frobenius rings, Algebra-Berichte, 28 (1975), Munich.
[5] K. Sugano : On Projective H-separable extensions, Hokkaido Math. J., 5 (1976), 44 -54 .
[6] K. Sugano : H-separable extensions of simple rings, Proc. 16th Sympo. on Ring Theory, Okayama 1983, 13-20.
[7] K. Sugano: On flat H-separable extensions and Gabriel topology, Hokkaido Math. J., 15 (1986), 149-155.

