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Ergodic H^{1} Is Not A Dual Space
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\S 1. Introduction

Suppose that X is a standard Borel measure space with probability
measure m and that \{ T_{t}\}_{t\in R} is an ergodic, measurable action of R on X
preserving m . Via composition, \{ T_{t}\}_{t\in R} acts on functions over X ( Tf) (x)
=f(T_{t}x) , and when restricted to L^{p}(X) , p<\infty , j\backslash T_{t}\}_{t\in R} is strongly con-
tinuous; on L^{\infty}(X) , \{ T_{t}\}_{t\in R} is only weak-*continuous . \underline{Ergodic}H^{\infty}, H^{\infty}(X) ,

is defined to be the subspace of f\in L^{\infty}(X) such that, for almost all x ,
the function of t, f(T_{t}x) , lies in H^{\infty}(R) ; i.e. this function admits an
extension to a bounded analytic function in the upper half-plane. For p in
the range 0<p<\infty , \underline{ergodic}H^{p}, H^{p}(X) , is defined to be the closure of
H^{\infty}(X) in L^{p}(X) . As is shown in [10], when 1\leq p, H^{p}(X) is the subspace of
all f\in L^{p}(X) such that, with the exception of a null set of x , the function of
t, f( T_{t}x) , when divided by t+i lies in the usual Hardy space H^{p}(R) as-
sociated with the upper half-plane. Our objective is to prove the theorem
that is our title.

THEOREM. If \{ T_{t}\}_{t\in R} is not periodic, then H^{1}(X) is not a dual space.
This result was conjectured by the second author in [11] and it was

noted there that the theorem is true if \{ T_{t}\}_{t\in R} has pure point spectrum. In
this case X is a quotient of the Bohr groups and harmonic analysis on X is
the key to the proof (see [8]). In our more general setting this tool is not
at our disposal. Of course, if \{ T_{t}\}_{t\in R} is periodic, then H^{1}(X) is (isomet-

rically isomorphic to) the classical Hardy space, H^{1}(T) , on the circle T .

and this space is well-known to be a dual space by the F. and M. Riesz
theorem. Namely, H^{1}(T) is the dual of the quotient space C(T)/A_{0}(T) ,

where A_{0}(T) is the space of (boundary values of) functions which are
continuous on the closed unit disc, analytic on the interior, and vanish at the
origin. The proof is simple. The dual of C(T) is the space of measures on
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T and the F. and M. Riesz theorem asserts that a measure \mu on T annihilates
A_{0}(T) if and only if it is absolutely continuous and its derivative lies in
H^{1}(T) . In [6], Forelli proved a generalization of the F. and M. Riesz
theorem to the context of flows. To state his theorem, suppose that X is a
locally compact Hausdorff space and that \{ T_{t}\}_{t\in R} acts continuously on X .
Define A(X) to be those functions f\in C_{0}(X) such that for each x\in X , the
function of t, f ( T_{t}x) , lies in H^{\infty}(R) . Forelli showed that each Borel
measure \mu on X that annihilates A(X) must be quasi-invariant in the sense
that the class of null sets of |\mu| is invariant under \{ T_{t}\}_{t\in R} . If m is an
invariant ergodic probability measure on X , as we are assuming, and if f\in

H^{1}(X) (with \int fdm=0). then the measure fdm annihilates A(X) . On the

other hand, it is easy to construct measures on X that annihilate A(X) and
are singular with respect to m (assuming X\neq T). Thus Forelli’s theorem
does not provide a complete generalization of the F. and M. Riesz theorem.
Even though the annhilator of A(X) is quite a bit bigger than H^{1}(X) , one
can still ask if a qualitative vestige of the F. and M. Riesz theorem remains
: Is H^{1}(X) a dual space ? Our theorem shows that even this fails.

We assume that our measure space is a standard Borel space for two
reasons. First, it is essential that L^{1}(X) be separable–as will be apparent
shortly. Second, we require techniques from ergodic theory that are true
only provisionally in nonstandard spaces. It would be interesting to know if
our theorem is true in the nonseparable context.

\S 2., The Proof

The proof of our theorem makes essential use of the techniques of[ll]
and the following lemma.

LEMMA. Let E be a seqarable Banach space that is the dual of some
other Banach space. Then there is no Banach space isomorphism from
L^{1}([0,1]) onto a closed subspace of E.

This result is due to Gelfand [7], originally; for more recent proofs see
[2], [5], and [12]. Note that since two non-atomic, standard Borel,
probability measure spaces are measure theoretically isomorphic, their
corresponding L^{1} -spaces are isometrically isomorphic. Therefore, in the
lemma, we may replace L^{1}([0,1]) by L^{1} of any other non-atomic standard
Borel probability space. Our objective is to show that H^{1}(X) contains a
copy of such an L^{1} .

To this end, we need Ambrose’s theorem about flows built under func-
tions [1] and we need some calculations from [11]. Ambrose’s theorem
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says that we may assume, without loss of generality, that our flow has the
special form that we now describe. Let \mu be a probability measure on a
standard Borel space \Omega and let \tau be an ergodic, invertible, measurable
transformation on \Omega preserving \mu . Suppose, too, that F is a real-valued
measurable function on \Omega satisfying 0<c\leq F(\omega)\leq C for certain constants c

and C , and all \omega\in\Omega , and satisfying \int_{\Omega}Fd\mu=1 . We extend F to a function
\phi on Z\cross\Omega by the formula

\phi(n, \omega)=\{

\sum_{k=0}^{n-1}F(\tau^{k}\omega) , n>0
0, n=0
-\phi(-n, \tau^{n}\omega) , n<0

Then \phi satisfies the equation \phi(n+m, \omega)=\phi(n, \omega)+\phi(m, \tau^{n}\omega) for all m,
n\in Z and \omega\in\Omega . Let \tilde{X}=\Omega\cross R and let \tilde{m}=\mu\cross\lambda , where \lambda is Lebesgue
measure on R . Also, let X be the region under the graph of F, i . e. , X=
\{(\omega, r)\in\tilde{X}|0\leq r<F(\omega)\} , and let m be the restriction of \tilde{m} to X . Then

since \int_{\Omega}Fd\mu=1 , m is a probability measure on X On \tilde{X}, let \{ S_{t}\}_{t\in R}

denote the group of \tilde{m}-preserving transformations defined by the formula
S_{t}(\omega, r)=(\omega, r+t) , and let \sigma be the measurable, invertible \tilde{m} preserving
transformation given by the formula

\sigma(\omega, r)=(\tau\omega, r+F(\omega)) .

Then \sigma commutes with \{ S_{t}\}_{t\in R} , and \sigma^{n}(\omega, r)=(\tau^{n}\omega, r+\phi(n, \omega)) , n\in Z,

(\omega, r)\in\tilde{X}. Observe that \tilde{X} is the disjoint union \bigcup_{n\in Z}\sigma^{n}(X) . We define II

mapping \tilde{X} onto X by the formula II (\omega, r)=(\tau^{n}\omega, r-\phi(n, \omega)) , if \phi(n, \omega)

\leq r<\phi(n+1, \omega) , and we define \{ T_{t}\}_{t\in R} on X by the formula

T_{t}(\omega, r)=(\tau^{n}\omega, (r+t-\phi(n, \omega))) ,

if \phi(n, \omega)\leq r+t<\phi(n+1, \omega) . It is easily checked that \{ T_{t}\}_{t\in R} is a 1-
parameter group of m-preserving transformations on X that satisfies \Pi S_{t}=

T_{t}\Pi for all t\in R . It is also easily checked that \{ T_{t}\}_{t\in R} is ergodic (cf. [1]
or [11] ) .

For f\in L^{1}(\tilde{X},\tilde{m}) and (\omega, r)\in X , set (Pf) ( \omega, r)=\sum_{n\in Z}f\circ\sigma^{n}(\omega, r) .

Then for m-almost all (\omega, r)\in X . this series converges and defines an
element in L^{1}(X) . The map P is a norm-0ne linear map from L^{1}(\tilde{X}) onto
L^{1}(X) satisfying PS_{t}=T_{t} Pfor all t\in R . (See Lemma 1 of [11] for a proof of
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these assertions.)

Fix h\in H^{1}(R) and consider the map \Phi_{h} from L^{1}(\Omega) into L^{1}(X) defined
by the formula \Phi_{h}(f)=P (%) where fh(\omega, r)=f(\omega)h(r) . Then \Phi_{h} is a
bounded linear map from L^{1}(\Omega) into L^{1}(X) with norm dominated by ||h||_{1} .
Moreover, since h\in H^{1}(R) , the range of \Phi_{h} is contained in H^{1}(X) . This is
easy to see directly, or appeal can be made to Lemma 6 of [11]. So, to
complete the proof of our theorem, all we need to do, by the lemma, is to
show that we can choose h so that \Phi_{h} is bounded below. To this end, choose

\epsilon such that 0< \epsilon<\frac{c}{c+1} where, (recall c>0 is a lower bound for F), and then

choose
h\in H^{1}(R) such that |1-|h(r)||<\epsilon , r\in[0, c] , and \int_{R/[0,C]}|h(r)|dr<\epsilon .

Note that such a choice is easily made.

AssERTION. \Phi_{h} is bounded below by the postive constant c(1-\epsilon)-\epsilon .
To prove this, first note that the adjoint ofP , P^{*} . maps L^{\infty}(X) isomet-

rically into L^{\infty}(X) by the formula g=\tilde{g} wwhere\tilde{g} is the automorphic exten-
sion of g to \tilde{X};i . e.,\tilde{g} is the unique function on \tilde{X} such that \tilde{g}\circ\sigma=\tilde{g} and such
that \tilde{g}|_{X}=g . So, for f\in L^{1}(\Omega) we have

|| \Phi_{h}y)||_{1}=sup||g||_{\infty}\leq 1\int_{X}P({?})gdm|

= \sup_{||g||_{\infty}\leq 1}|\int_{\overline{x}}fh\tilde{g}d\tilde{m}|

\geq sup||g||_{\infty}\leq 1\{|\int_{\Omega}\int_{0}^{c}f(\omega)h(r)\tilde{g}(\omega, r)d\lambda(r)d\mu(\omega)

-| \int_{\Omega}\int_{R|[0,C]}f(\omega)h(r)\tilde{g}(\omega, r)d\lambda(r)d\mu(\omega)|\}

\geq\sup_{||g||_{\infty}\leq 1}\{|\int_{\Omega}\int_{0}^{c}f(\omega)h(r)g(\omega, r)d\lambda(r)d\mu(\omega)|-\epsilon||f||_{1}\}

It should be remarked that ||g||_{\infty} is the essential supremum taken over all of
X , but any L^{\infty} function on \Omega\cross[0, c] can be extended to X without increa-
sing its essential \sup-norm. Consequently, the last term in our inequeality
equals

\int_{\Omega}|f(\omega)|d\mu(\omega)\int_{0}^{c}|h(r)|d\lambda(r)-\epsilon||f||_{1}

\geq c(1-\epsilon)||f||_{1}-\epsilon||f||_{1}=(c(1-\epsilon)-\epsilon)||f||_{1} ,

which verifies the assertion and completes the proof of our theorem.

\S 3. Concluding Remarks
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The space H^{\infty}(X) is a weak-* Dirichlet algebra on X with respect to m
(see [9]). It makes sense to ask the following question: If H^{1}(m) is the
abstract H^{1} -space associated to a weak-* Dirichlet algebra on a probability
measure space, when is H^{1}(m) a dual space ? We suspect that this is so
only when H^{1}(m) is the classical Hardy space H^{1}(T) . The problem seems
to particularly difficult for maximal weak-* Dirichlet algebras for in most,
if not all, non maximal weak-* Dirichlet algebras it is possible to show
directly that H^{1}(m) contains a copy of L^{1}([0,1]) .

Let G be a compact abelian group, let \Lambda be a subset of \hat{G}, and let L_{\Lambda}^{1} be
the set of functions in L^{1}(G) with the property that their Fourier transforms
are supported in \Lambda . Among other things, Lust was concerned in [8] with
the question: when is L_{\Lambda}^{1} a dual space ? In view of our result, it is natural
to ask: If L_{\Lambda}^{1} is not a dual space, must L_{\Lambda}^{1} contain a copy of L^{1}([0,1]) ?

Finally, we note that it is possible to transfer the real-variable approach
to H^{1} and to define an ergodic H^{1} a la Stein and Weiss when R^{n} acts on a
measure space (cf. [3, 4]). It this space a dual space ? Does it contain a
copy of L^{1} ?
Acknowledgement. Thanks are due to Bill Johnson and joel Shapiro for
enlightening conversations on the subject of this note.
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