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\S 1. Introduction

This work is a continuation of [11] in which we have shown the exis-
tence of a parametrix and studied the propagation of singularities near a
gliding point for a mixed (initial boundary value) problem for a second
order hyperbolic equation. In the present paper we are concerned with first
order symmetric hyperbolic systems. We do not repeat here the introduc-
tions of [10], [11], where the reader can find references and short histrical
surveys of this problem.

In the sequel the hypothesis (H_{2}) of [10] will be removed and the
assumption that the boundary condition is maximally dissipative will be
relaxed so that (1. 3) below holds. Besides, using the methods of this
paper, one can simplify fairly the equation (4. 14) of [11] on the boundary
and, as a result, remove the hypothesis that the subprincipal symbol of P is
pure imaginary. (See Remark 5.1 below).

Let P(x, D) be a symmetric hyperbolic system in R^{n+1}(n\geqq 2) of the
form

P(x, D)=\Sigma_{k=0}^{n}A_{k}(x)D_{k}+C(x) , D_{k}=-i\partial/\partial x_{k},

where x= (xi_{)}, x_{1}, \ldots.x_{n}) , A_{k} are hermitian m\cross m matrices and A_{0} is posi-
tive definite. Let us consider the following mixed problem in a closed half
space X=X’\cross[0, \infty)=\{x=(X^{r}- x_{n}) ; x_{n}\geqq 0, x’=(x_{)}, x_{1}, \ldots x_{n-1})\in X’=R^{n}\}

with boundary \partial X :

P(x, D)u=0 in X,
(1. 1) B(x)u=f on \partial X,

u=0 in X\cap\{x_{0}\ll 0\} .

We assume P is of constant multiplicity. Then, denoting by P_{1}(x, \xi) the
principal symbol of P with \xi=(\xi’. \xi_{n}) the covariable of x=(x’. x_{n}) , one can
write

(1.2) det P_{1}(x, \xi)=Q_{1}(x, \xi)^{m_{1}}\ldots Q_{r}(x, \xi)^{m_{r}}\tilde{Q}(x, \xi’) ,
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where Q_{1} , \ldots . Q_{r} and \tilde{Q} are homogeneous polynomials in \xi which have no
common zero in \xi_{0} , Q_{1} , \ldots . Q_{r} are strictly hyperbolic with respect to \xi_{0} ,

and \tilde{Q} is independent of \xi_{n} . (See Matsuura [14]). Setting

Q(x, \xi)=\Pi_{j=1}^{r}Q_{j}(x, \xi) ,

we assume that the boundary \partial X is noncharacteristic for Q and that, for
each x\in\partial X and \xi’\in R^{n}\backslash 0 , the multiplicity of real roots \xi_{n} of the equation Q
(x, \xi’\xi_{n})=0 is at most double and there is at most one double real root. Let
d^{+} be the number of the positive eigenvalues of A_{n}(x) , counting multiplicity,
which is independent of x\in\partial X. We also suppose that B(x) is a d^{+}\cross m

matrix of maximal rank and that A_{n}(x) , C(x) and B(x) are smooth (i.e.
C^{\infty}) , constant for |x| large enough. Moreover we assume
(1.3) ker A_{n}(x)\subset kerB(x) for x\in\partial X.
(See e.g. [12] for what this condition means).

Now let ( \overline{x}’. \overline{\xi}’)\in T^{*}X’\backslash 0 be a (fixed) gliding point, by definition, a
point such that for some 1\leqq j\leqq r, say j=1 , the equation Q_{1} (\overline{x}’. 0, \overline{\xi}’. \xi_{n})=0

has a real double root \overline{\xi}_{n} and

(1.4) \{ Q_{1\prime}\partial Q_{1}/\partial\xi_{n}\}(\overline{x,}\overline{\xi})<0

where \overline{x}= (\overline{x}’ O)\in\partial X,\overline{\xi}=(\overline{\xi}’,\overline{\xi}_{n}) and \{ . \} denotes the Poisson bracket
on T^{*}X. Then, since Q_{1} ( \overline{x,}\overline{\xi})=(\partial Q_{1}/\partial\xi_{n}) ( \overline{x,}\overline{\xi})=0 and (\partial^{2}Q^{1}/\partial\xi_{n}^{2})

(\overline{x,}\overline{\xi})\neq 0 , one can write

Q_{1}(x, \xi)=Q_{0}(x, \xi)Q_{1}’(x, \xi) with Q_{1}’(\overline{x,}\overline{\xi})\neq 0 ,
(1.5)

Q_{0}(x, \xi)=(\xi_{n}-\lambda(x, \xi’))^{2}-\mu(x, \xi’)

in a conic neighborhood of ( \overline{x,}\overline{\xi}) . Here \lambda(x, \xi’) , \mu(x, \xi’) are real valued
smooth functions, homogeneous in \xi’ of degree 1, 2, respectively, such that
\mu

( \overline{x,}\overline{\xi}’)=0 , \lambda ( \overline{x,}\overline{\xi}’)--\overline{\xi}_{n} and (1. 4) is equivalent to

(1.4)’ \{\xi_{n}-\lambda, \mu\}(\overline{x,}\overline{\xi})<0

Since Q_{1}(x, \xi) is strictly hyperbolic with respect to \xi_{0} , we have (\partial\mu/

\partial\xi_{0})\neq 0 . From now on we suppose, for definiteness,

(1. 6) (\partial\mu/\partial\xi_{0})(\overline{x,}\overline{\xi}’)>0 .

Note that, near ( \overline{x,}\overline{\xi}) , Q_{1}(x, \xi)=0 is equivalent to Q_{0}(x, \xi)=0 and if \xi_{0}>

\overline{\xi}_{0} then \mu
( \overline{x,}\xi_{0},\overline{\xi}’)>0 hence the equation Q_{0} ( \overline{x}, \xi_{0},\overline{\xi}’-\xi_{n})=0 with respect

to \xi_{n} has two simple real roots. Here we have set \xi’=(\xi_{0}, \xi’) and \xi’=

(\xi_{1}, \ldots \xi_{n-1}) . Besides, for \xi_{0}\gg 1 , all roots \xi_{n} of Q_{1} ( \overline{x,}\xi_{0},\overline{\xi}^{rr}-\xi_{n})=0 are
simple real. Bearing these in mind we make the following assumption on the
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polynomial Q_{1} .

(1.7) The two roots of the equation Q_{0}(\overline{x,}\xi_{0},\overline{\xi}’. \xi_{n})=0 with respect to
\xi_{n} , regarded as single-valued continuous functions of \xi_{0}>\overline{\xi}_{0} , are continued
up to \overline{\xi}_{0}<\xi_{0}<\infty as simple real roots of Q_{1}(\overline{x,}\xi_{0},\overline{\xi}’. \xi_{n})=0 .

This condition will be used only to essure (2. 4) and hence the
solvability of the transport equation (3. 23).

We also make certain assumptions on the boundary condition. To state
these let W(x’. \xi’. \xi_{n}) be a smooth m\cross m_{1} matrix of maximal rank, ana-
lytic in \xi_{n} , whose columns form a basis of ker P_{1}(x’. 0, \xi’\xi_{n}) when Q_{0}(x’ . 0 ,
\xi’ . \xi_{n}) =0 , where m_{1} is the multiplicity of Q_{1} in (1. 2). Besides, let W_{h}(x’ .
\xi’) or W_{e}(x’. \xi’) be, respectively, a smooth basis of the root subspace of
P_{1}(x’0, \xi’\xi_{n}) , corresponding to the simple real roots \xi_{n} of (Q/Q_{0})(x’. 0 , \xi’ .
\xi_{n})=0 such that \partial\xi_{n}/\partial\xi_{0}<0 or to the nonreal roots with positive imaginary
parts. Noting that ( W, W_{h}, W_{e}) is an m\cross d^{+} matrix, we set

\tilde{R}(x’. \xi’. \xi_{n})=B(x’, 0)(W(x’\xi’. \xi_{n}), W_{h}(x’. \xi’), W_{e}(x’\xi’)) ,(1.8)
R(x’\xi’\xi_{n})=\det\tilde{R}(x’. \xi’. \xi_{n}) .

Moreover let \xi_{n}^{+}(x’. \xi’) be the root of Q_{0}(x_{j}’0, \xi’, \xi_{n})=0 such that \partial\xi_{n}^{+}/\partial\xi_{0}<

0 for \mu>0 , Im \xi_{n}^{+}>0 for \mu<0 . Then

R(x’\xi’\xi_{n}^{+}(x’. \xi’))

is called a Lopatinski determinant. Note that \xi_{n}^{+}(x’. \xi’)=\lambda(x’. 0, \xi’)-\mu(x’

0 , \xi’)^{1/2} for \mu\geqq 0 under (1. 6). We also say that the strong Lopatinski
condition is satisfied at (\overline{x}’ \overline{\xi}’) if

(1.9) R(\overline{x}’ \overline{\xi}’\overline{\xi}_{n})\neq 0 with \overline{\xi}_{n}=\lambda ( \overline{x}’. 0,\overline{\xi}’) .

To the contrary, suppose in what follows
(1. 10) R(\overline{x}’\overline{\xi}’.\overline{\xi}_{n})=0 .

Then we assume
(1. 11) (\partial R/\partial\xi_{n})(\overline{\chi}_{-}’\overline{\xi}’\overline{\xi}_{n})\neq 0 .

Set for convenience
\mu_{0}^{(\chi’} . \xi’) =\mu(x’. 0, \xi’) , \lambda_{0}(x’. \xi’)=\lambda(x’0, \xi’) ,
N_{0}=\{(x’\xi’)\in T^{*}X’\backslash 0;\mu_{0}(x’. \xi’)=0\} ,
N_{\pm}=\{(_{X’-}\xi’)\in T^{*}X’\backslash 0;\mu_{0}^{(x’}<>0\}

and

(1. 12) R_{\lambda}(x’. \xi’)=(R/(\partial R/\partial\xi_{n}))(X^{r}-\xi’\lambda_{0}(x’\xi’)) .
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Our main assumption on the boundary condition is concerned with the range
of the normalized Lopantinski determinant R_{\lambda} , restricted to the glancing
surface N_{0} .

(H_{1}) There are a positive number \delta_{0}\leqq\pi/2 and a conic neighborhood \Sigma_{0} of
(\overline{x}’. \overline{\xi}’) such tht, for (x’\xi’)\in N_{0}\cap\Sigma_{0} ,

arg R_{\lambda}(x’. \xi’)\subset[\pi/2, (3/2)\pi-\delta_{0}] if m_{1}=1 ,

arg R_{\lambda}(x’. \xi’)\subset[\pi/2+\delta_{0}, (3/2)\pi-\delta_{0}] if m_{1}\geqq 2 ,

where m_{1} is the multiplicity of Q_{1} in (1. 2).

It is desirable for (H_{1}) to be relaxed, e.g., as
(H_{1})_{0} Re R_{\lambda}(x’. \xi’)\leqq 0 for (x’\xi’)\in N_{0}\cap\Sigma_{0} .

Unfortunately, when m_{1}\geqq 2 , in the set N_{+} of hyperbolic points we must
make an additional assumption on R_{\lambda} or on reflection coefficients c_{jk} with j,
k=1.2 , \ldots . m_{1} . Here, for (x’. \xi’)\in N_{+} , the c_{jk}(x’\xi’) is defined to be the
(j, k) entry of the following matrix

(1. 13) \tilde{R}(x’. \xi’\xi_{n}^{+}(x’\xi’))^{-1}\tilde{R}(x’. \xi’. \xi_{\overline{n}}(x’. \xi’)) ,

where \xi_{\overline{n}}(x’. \xi’)=\lambda_{0}(x’. \xi’)+\mu_{0}(x’-\xi’)^{1/2} is another root of Q_{0}(x’0, \xi’. \xi_{n})=

0 . (See [8], \S 6 for an interpretation of c_{jk}). Condition (H_{1})_{0} implies that,

near ( \overline{x}’ \overline{\xi}’) ,

(1. 14) |R(x_{J}’\xi’\xi_{n}^{+}(_{X’-}\xi’))|\geqq c_{\mu_{0}}(\chi’. \xi’)^{1/2}

for (x’\xi’)\in N_{+} with |\xi’|=1 , where C is a positive constant, hence c_{jk}(x’ .
\xi’) are well defined for (x’. \xi’)\in N_{+} . To see this we note that

(1. 15) R(x’. \xi’\xi_{n}^{+})=(\partial R/\partial\xi_{n})(x’. \xi’. \lambda_{0})(R_{\lambda}-\sqrt{\mu_{0}}+O(\mu_{0}))

for |\xi’|=1 . Thus (1. 14) follows from (H_{1})_{0} . Moreoverc_{jk}(x’. \xi’) are
bounded in N_{+} near (\overline{\chi}_{-}’\overline{\xi}’) , because \xi_{\overline{n}}=\xi_{n}^{+}+2\sqrt{\mu_{0}} and hence

(1. 16) c_{jk}=\delta_{jk}+O(\sqrt{\mu_{0}}/R(x’. \xi’. \xi_{n}^{+})) for |\xi’|=1 .

Besides, it follows from (1. 8), (1. 10) and (1. 11) that, for some 1\leqq j\leqq m_{1} ,

the j-th column of \tilde{R} (\overline{\chi}’.\overline{\xi}_{n}) is a linear combination of the others. One
can assume without loss of generality that j=1 . Bearing these in mind we
finally impose the following condition.

(H_{2}) Let m_{1}\geqq 2 . Suppose the fifirst column of \tilde{R}(\overline{x}’ \overline{\xi}’\overline{\xi}_{n}) is a linear
combination of the last d^{+}-1 columns. Then there is a conic neighborhood
\Sigma_{1} of ( \overline{x}’. \overline{\xi}’) such that, in N_{+}\cap\Sigma_{1} , either
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(1. 17) R(x’\xi’\xi_{n}^{+}(x’\xi’))=O(\sqrt{\mu_{0}}) for |\xi’|=1

or
(1.18) c_{1k}(x’. \xi’)=O(\sqrt{\mu_{0}}) for k=2 , \ldots , m_{1} and |\xi’|=1 .

Note that, according to (1. 15), (1. 17) is equivalent to

(1.19) R_{\lambda}(x’\xi’)=O(_{\mu_{0}}) for |\xi’|=1 in N_{+}\cap\Sigma_{1} ,

because \partial\mu_{0}/\partial\xi_{0}\neq 0 hence R_{\lambda} can be regarded as a smooth function of (x’. \xi’ .
\mu_{0}) . For many classical boundary conditions, either (1. 19) is satisfied or
c_{1k}=O(\mu_{0}/R(x’. \xi’. \xi_{n}^{+})) for k=2 , \ldots . m_{1} and |\xi’|=1 , which implies (1. 18).

We are now in a position to state our main results, analogous to [11],
Theorems 1. 1, 1. 2 and 1. 3. We shall keep using the notations in the preced-
ing paper, where P_{2}(x, \xi) is replaced by the symbol Q_{0}(x, \xi) in (1. 5),

unless stated otherwise. Since the boundary \partial X may be now characteristic
for P, we also need the same function space H_{1oc}^{\infty,-\infty}(V) as in [10], where V
is a relative open set in X. For a nonnegative integer k and a real number
s we mean by H^{hs}(X) the set of extensible distributions u\in \mathscr{D}’(X) such
that (1-\Delta_{X’})^{(k-j+S)/2}D_{n}^{j}u\in L^{2}(X) for j=0,1 , \ldots k. We then denote by
H_{1OC}^{\infty,-\infty}(V) the union of \bigcap_{k=0}^{\infty}H_{1oc}^{k,s_{k}}(V) for all decreasing sequence \{s_{k}\}_{k=0}^{\infty} of
real numbers, where u\in H_{1OC}^{hs}(V) means that \phi u\in H^{hs}(X) for all \phi\in C_{0}^{\infty}

(R^{n+1}) with (supp \phi ) \cap X\subset V. By \Gamma(\overline{x}’ \overline{\xi}’) we also denote the gliding
ray (i.e., null bicharacteristics of \mu_{0} (x’ . \xi’)) through (\overline{x}’. \overline{\xi}’) .

By M_{0}^{+}(f) with f\in \mathscr{D}’(X’) we denote the union of all gliding rays
which start from WF(f)\cap N_{0} and go into the positive x_{0} direction. Let \phi_{+} be
the canonical transformation on N_{+} such that the outgoing null bicharacteris-
tic of Q_{0} starting from \iota^{*-1}(x’. \xi’)\cap Q_{0}^{-1}(0) with (x’r, \xi’)\in N_{+} intersects
T^{*}X|_{\partial X} at \iota^{*-1}(\phi_{+}(x’\xi’))\cap Q_{0}^{-1}(0) once more. Here \iota^{*} is the pullback of
T^{*}X|_{\partial X} into T^{*}X’ induced by the natural injection \iota of X’ into X such that

\iota (X’)=\partial X. By \phi_{+}^{k}( WF(f)\cap N_{+}) we then denote the image of WF(f)\cap N_{+}

under the k-th power of \phi_{+} .
Suppose for simplicity of description that \overline{x}_{0}=0 with \overline{x}’=(\overline{x}_{0},\overline{x}_{1} , ..

x_{n-1}) .
THEOREM 1. 1. (main theorem). Let f\in \mathscr{C}’(X’) be a distribution with

compact support such that WF(f) is contained in a small conic neighborhood

of \Gamma(\overline{x}’ \overline{\xi}’)\cap\{x_{)}\geqq 0\} . Assume conditions (H_{1}) and (H_{2}) hold in the case
of (1. 10). Then there exist a parametrix E(f) for (1. 1) and a positive
number T such that

(1.20) E(f)\in H_{1OC}^{\infty,-\infty}(X_{T}) , where X_{T}=X\cap\{x)<T\} .
(1.21) E(f)\in C^{\infty}(X\cap\{x_{0}\ll 0\}) ,
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(1.22) PE(f)\in C^{\infty}(X_{T}) ,
(1 28) BE (f)|_{x_{n}=0}-f\in C^{\infty}(X_{\acute{T}}) , where X_{\acute{T}}=X’\cap\{x)<T\} .

Moreover E(f) is smooth up to the boundary at each point (\chi_{-}’\xi’)\in T^{*}X’\backslash

0 , with x_{0}<T, which does not belong to the set

(1.24) WF(f) \cup M_{0}^{+}(f)\cup(\bigcup_{k=1}^{\infty}\phi_{+}^{k}( WF(f)\cap N_{+})) .

Such results have been obtained by Petkov [16], [17] in the case of
(1. 9) and [18] in the case of (1. 19). (See also Melrose and Taylor [15],
[21] when m_{1}=1). Note that from the above theorem one can derive an
outer estimate for the wave front set of E(f) in the interior of X_{T}, using
results on propagation of singularities in the free space (see e.g. Taylor
[20], pp. 153-155).

Next we shall describe the propagation of singularities of solutions to
(1. 1). Noting that A_{n}(x) is of constant rank, we set

rank A_{n}(x)=d for x\in X.

Then, after a change of the unknown, one can assume without loss of
generality that A_{0}(x)=I_{m} ,

(1.25) A_{n}(x)=\{\begin{array}{ll}A(x) 00 0\end{array}\} ,

where A(x) is a nonsingular matrix of order d, and

(128) A(x)=\{\begin{array}{ll}A^{+}(x) 00 A^{-}(x)\end{array}\} ,

where A^{+}(x) , A^{-}(x) are square matrices of order d^{+} . d^{-} respectively,
with d^{+}+d^{-}=d, and A^{+}(x) , -A^{-}(x) are positive definite. Hereafter I_{k}

stands for the unit matrix of order k. Note that, under (1. 26), condition
(1. 3) yields

(1.27) B(x)=(B_{1}(x), 0) for x\in\partial X.

where B_{1} is a d^{+}\cross d matrix of maximal rank. We shall assume as usual
that, under (1. 26), the left d^{+}\cross d^{+} block of B_{1} is nonsingular and hence

(1.28) B_{1}(x)=(I_{d}+, S(x)) ,

where S is a d^{+}\cross d^{-} matrix. This hypothesis is satisfied for a wide class of
boundary conditions (see [12], \S 2, in particular, Lemmas 2. 9 and 2. 10).

THEOREM 1. 2. Assume (1. 28) as well as the hypotheses of Theoerm
1. 1 holds and let T be such a positive number as before. Let u\in H_{1oc}^{0,\overline{s}}(X_{T})
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with some \overline{s}\in R^{1} . Suppose that u\in C^{\infty}(X\cap\{x_{0}\ll 0\}) , Pu\in C^{\infty}(X_{T}) , Bu|_{x_{n}=0}

-f\in C^{\infty}(X_{\acute{T}}) and WF(A_{n}u|_{x_{n}=0}) is contained in a small conic neighbor-

hood of \Gamma(\overline{x}’. \overline{\xi}’)\cap\{x)\geqq 0\} . Then u is smooth up to the boundary at each
such point (x’-\xi’)\in T^{*}X’\backslash 0 as described in the preceding theorem.

THEOREM 1. 3. Assume (H_{1}) and (H_{2}) are satisfified in the case of
(1. 10). Besides, suppose (1. 28) holds. Let u\in H_{1OC}^{\infty,-\infty}( V) , where V is a

neighborhood of \overline{x} in X. Assume that Pu\in C^{\infty}(V) ,

WF(Bu|_{x_{n}=0})\cap\Gamma(\overline{x}’. \overline{\xi}’)\cap\{-\delta<_{X_{1}}\leqq 0\}=\phi

with some \delta>0 , and that WF(u|V\backslash \partial X) intersects no incoming null bichar-

acteristics of (Q/Q_{0})(x, \xi) which arrive at \iota^{*-1} ( \overline{x}’.\overline{\xi}’) . Here \iota*stands for
the pullback of T^{*}X|_{\partial X} into T^{*}X’ induced by the natural injection \iota of X’

into X such that \iota
(X’)=\partial X. Then

(\overline{x}’. \overline{\xi}’)\in\bigcup_{k=0}^{\infty}WF(D_{n}^{k}u|_{xn=0})

implies
\Gamma(\overline{x}’-\overline{\xi}’)\cap\{-\delta<_{X)}\leqq 0\}\subset WF(u|_{x_{n}=0})

provided \delta is small.

REMARK. When (1. 1) has an appropriate regularity property, TheO-

rem 1. 2 is a direct consequence of Theorem 1. 1. Besides, a global version
of Theorem 1. 3 is also valid. Indeed, assume (H_{1}) and (H_{2}) as well as
(1. 28) are satisfied at each point (\hat{x}’\hat{\xi}’)\in\Gamma(\overline{x}’. \overline{\xi}’)\cap\{x_{0}\leqq 0\} . Suppose u

\in H_{1tJC}^{\infty,-\infty}(X) , Pu\in C^{\infty}(X) , WF(u|x\backslash ax) intersects no incoming rays which
arrive at \iota*^{-1}(\hat{x}’.\hat{\xi}’) for such (\hat{x}’.\hat{\xi}’) , and

WF(Bu|_{x_{n}=0})\cap\Gamma(\overline{x}’. \overline{\xi}’)\cap\{x_{0}\leqq 0\}=\phi .

Then
(\overline{x}’. \overline{\xi}’)\in\bigcup_{k=0}^{\infty}WF(D_{n}^{k}u|_{x_{n}=0})

implies

\Gamma(\overline{x}’\overline{\xi}’)\cap\{x_{)}\leqq 0\}\subset WF(u|_{x_{n}=0}) .

In the preceding paper [11], we have obtained the analogous results in

the case where P is ascalar differential operator of the second order for
which the boundary \partial X is noncharacteristic. We have also shown in [8]

the existence of a parametrix near a diffractive point for such a hyperbolic
system as in the present article. For the purpose of proving Theorem 1. 1 we
will combine the methods of [11] with those of [8], although some devices
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are required.
The plan of this paper is as follows. In \S 2 we first refine the construc-

tion in [8] of bases of ker P_{1}(x, \xi) with Q_{0}(x, \xi)=0 , so that the hyper
bolicity of the transport equation (3. 23) is clear. Next we give an exten-
sion of Andersson and Melrose [1], Proposition 4. 16 to the present case.
Finally we show that (1. 1) has a regularity property provided the boundary
condition is maximally dissipative. In \S 3 we refine the construction in [8]
of asymptotic solutions to Pu=0. In \S 4 we give a summary of [11], \S 3
which is a collection of properties of Airy operators appearing in the bound-
ary values of the parametrix E(f) . \S 5 through 7 are devoted to study the
equation BE (f)|_{\partial X}=f on the boundary. In \S 5 we choose appropriately the
initial data for the transport equation (3. 23) and reduce BE(f)|_{\partial X}=f to
(5. 10), (5. 16) or (5. 21). Basic a priori estimates for solutions of the
reduced equation are derived in \S 6, and the singularities of the solutions are
examined in \S 7. The proof of Theorem 1. 1 is completed in \S 8. Finally,
Theorem 1. 2 an 1. 3 are proved in \S 9.

\S 2. Preliminaries

2. 1. We first refine the basis of ker P_{1}(x, \xi) with Q_{0}(x, \xi)=0 which is
obtained in [8]. In the case that \partial X is characteristic for P, namely, d<m,

we write according as (1. 25)

(2. 1) P_{1}(x, \xi)=\{\begin{array}{ll}A(x) 00 0\end{array}\} \xi_{n}+\{\begin{array}{llll}A_{11}(x, \xi’) A_{12}(x, \xi’)A_{21}(x, \xi’) A_{22}(x, \xi’)\end{array}\} ,

where A_{11} , A_{22} are square matrices of order d, m-d, respectively. Note
that A_{22}(x, \xi’) is nonsingular if and only if \tilde{Q}(x, \xi’)\neq 0 , where \tilde{Q} is the
polynomial in (1. 2). In fact, for each (x, \xi’) ,

\xi_{\overline{n}}^{d}\det P_{1}(x, \xi’. \xi_{n})=(\det A)\det A_{22}+O(\xi_{\overline{n}}^{1}) as \xi_{n}arrow\infty ,

while (1. 2) yields

\xi_{\overline{n}}^{d}\det P_{1}(x, \xi’\xi_{n})=Q_{1}(x, 0,1)^{m_{1}}\ldots Q_{r}(x, 0,1)^{m_{\Gamma}}\tilde{Q}(x, \xi’)

+O(\xi_{\overline{n}}^{1}) as \xi_{n}arrow\infty .
Therefore we have, modulo a nonzero factor,

(2.2) det A_{22}(x, \xi’)=\tilde{Q}(x, \xi’) .

In particular, A_{22} (\overline{x,}\overline{\xi}’) is nonsingular, because Q_{1} and \tilde{Q} have no common
zero in \xi_{0} . For (x, \xi’) with \tilde{Q}(x, \xi’)\neq 0 we set

M(x, \xi’)=-A^{-1}(A_{11}-A_{12}A_{22}^{-1}A_{21})
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and rewrite P_{1} as

(2. 3) P_{1}(x, \xi)=\{\begin{array}{ll}A(\xi_{n}-M) A_{12}A_{22}^{-1}0 I_{m-d}\end{array}\}\{\begin{array}{ll}I_{d} 0A_{21} A_{22}\end{array}\} .

In the case where \partial X is noncharacteristic for P, namely, d=m, we set M(x,
\xi’)=-A^{-1}A_{11}=\xi_{n}I_{m}-A_{n}(x)^{-1}P_{1}(x, \xi) . Such modification will be often
required throughout this paper. The following lemma refines [8], Lemma
2. 3.

LEMMA 2. 1. There is a nonsingular smooth matrix S(x, \xi’) of order d
defifined on a conic neighborhood of ( \overline{x,}\overline{\xi}’) , analytic and homogeneous of
degree zero in \xi’ . such that MS=S\tilde{M},

\tilde{M}=\{\begin{array}{ll}M_{0} 0 M_{h}^{+} M_{h}^{-} M_{e}^{+}0 M_{\overline{e}}\end{array}\} , M_{0}=\{\begin{array}{lllll}M_{1} 0 o o 0 \circ M_{m_{1}}\end{array}\}

and

M_{j}(x, \xi’)=\{\begin{array}{llll}\lambda(x, \xi’) 1 \mu(x, \xi’) \lambda(x, \xi’)\end{array}\} for |\xi’|=1 , j=1 , \ldots m_{1} .

Here M_{h}^{+} or M_{h}^{-} is a diagonal matrix whose eigenvalues are simple real roots
\xi_{n} of (Q/Q_{0})((x, \xi’\xi_{n})=0 such that \partial\xi_{n}/\partial\xi_{0} are negative or positive, respec-
tively: the imaginary parts of the eigenvalues of M_{e}^{+} or M_{e}^{-} are positive or
negative, respectively. Moreover
(2. 4) S_{2}^{*}A(\lambda-M)S_{2}(\overline{x,}\overline{\xi}’) is positive defifinite,

where S_{2}(x, \xi’)=(s_{2}, s_{4}, \ldots.s_{2m_{1}}) with s_{j} the j-th column of S.

The construction of the last m-2m_{1} columns of S is as usual. To
choose the first 2m_{1} columns s_{1} , \ldots-s_{2m_{1}} so that (2. 4) also is satisfied, we
use the following lemma. For (x, \xi’) with \mu(x, \xi’)\geqq 0 we denote by \Pi(x,
\xi’) the eigenprojection for eigenvalues \xi_{n}^{+}(x, \xi’) and \xi_{\overline{n}}(x, \xi’) of M(x, \xi’) ,
where

\xi_{n}^{\pm}(x, \xi’)=\lambda(x, \xi’)\mp\mu(x, \xi’)^{1/2} .

Then we have

LEMMA 2. 2. \Pi(\overline{\chi,}\overline{\xi}’) is an orhtogonal projection whose range is an
invariant subspace of the hermitian matrix
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A(\overline{x})(\xi_{n}^{+}(\overline{x,}\overline{\xi}’)-M(\overline{x,}\overline{\xi}’)) .

Moreover the restriction of the matrix to the range of \Pi(\overline{x,}\overline{\xi}’) is of rank m_{1}

and all nonzero eigenvalues are positive.

PROOF. For \xi_{0} close to \overline{\xi}_{0} we set
\Phi(\xi_{0})=A(\overline{x})(\xi_{n}^{+}-M)\Pi(\overline{x,}\xi_{0},\overline{\xi}’) .

Since (1. 7) implies that \xi_{n}^{\pm}(\overline{x,}\xi_{0},\overline{\xi}^{rr}) are continued analytically up to \xi_{0}>

\overline{\xi}_{0} , so is \Phi(\xi_{0}) . Besides, we have

\lim_{\xi 0arrow\infty}\xi_{n}^{\pm}(\overline{x,}\xi_{0},\overline{\xi}’)/\xi_{0}=\alpha_{\pm} ,

where \alpha_{\pm} are roots of the equation Q_{1} (\overline{x,} 1, 0, \xi_{n})=0 such that \alpha_{+}<0 , \alpha_{-}>0 .
Noting that -1/\alpha_{\pm} are eigenvalues of A (\overline{x}) because M(x, 1, O)=-A(x)^{-1} ,

one can assume without loss of generality that

A (\overline{x})=\{\begin{array}{lll}-(l/\alpha_{+})I_{m_{1}} 0 00 -(1/\alpha_{-})I_{m_{1}} 00 0 \beta\end{array}\}

where \beta is a nonsingular matrix of order d-2m_{1} whose eigenvalues are
different from -1/\alpha_{\pm} . Hence it follows from (1. 2) and (2. 3) that, for \xi_{0}

\gg 1 , A ( \overline{x})(\xi_{n}^{+}-M) ( \overline{x,}\xi_{0},\overline{\xi}’) has zero eigenvalue of multiplicity m_{1} and m_{1}

positive eigenvalues close to (1-\alpha_{+}/\alpha_{-}) \xi_{0} , while the others are far away
from those.

Now let \tilde{\Pi}(\xi_{0}) with \xi_{0}\gg 1 be the orthogonal projection for the zero
eigenvalue and those close to (1-\alpha_{+}/\alpha_{-})\xi_{0} of A(\overline{x})(\xi_{n}^{+}-M) ( \overline{x,}\xi_{0},\overline{\xi}’) .
Since the matrix is hermitian and analytic for \xi_{0}>\overline{\xi}_{0},\tilde{\Pi}(\xi_{0}) can be
continued analytically up to \xi_{0}>\overline{\xi}_{0} . (See Kato [7], p. 120). Moreover \Pi

(\overline{x,}\xi_{0},\overline{\xi}’) coincides with \tilde{\Pi}(\xi_{0}) for \xi_{0}\gg 1 hence for \xi_{0}>\overline{\xi}_{0} by analiticity.
Thus \Pi( \overline{x,}\overline{\xi}_{0},\overline{\xi}’)=\Pi(\overline{\xi}_{0})\sim by continuity.

Now let \tilde{\Pi}(\xi_{0}) with \xi_{0}\gg 1 be the orthogonal projection for the zero
eigenvalue and those close to (1-\alpha_{+}/\alpha_{-})\xi_{0} of A(\overline{x})(\xi_{n}^{+}-M)(\overline{x,}\xi_{0},\overline{\xi}’) .
Since the matrix is hermitian and analytic for \xi_{0}>\overline{\xi}_{0},\tilde{\Pi}(\xi_{0}) can be
continued analytically up to \xi_{0}>\overline{\xi}_{0} . (See Kato [7], p. 120). Moreover II
(\overline{x,}\xi_{0},\overline{\xi}’) coincides with \tilde{\Pi}(\xi_{0}) for \xi_{0}\gg 1 hence for \xi_{0}>\overline{\xi}_{0} by analiticity.
Thus II ( \overline{x,}\overline{\xi}_{0},\overline{\xi}’)=\Pi(\overline{\xi}_{0})\sim by continuity.

It is now clear that the range of \Pi(\overline{x,}\overline{\xi}’)=\tilde{\Pi}(\overline{\xi}_{0}) is an invariant sub-
space of A(\overline{x})(\xi_{n}^{+}-M) ( \overline{x,}\overline{\xi}’) and \Phi(\overline{\xi}_{0}) has m_{1} positive eigenvalues.
Moreover we have rank \Phi(\overline{\xi}_{0})=m_{1} according to [8], Lemma 2. 3. Thus we
complete the proof.
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PROOF OF LEMMA 2. 1. By virtue of Lemma 2. 2, the restriction of A
(\overline{x})(\lambda-M) ( \overline{x,}\overline{\xi}’) to the range of \Pi(\overline{x,}\overline{\xi}’) has m_{1} positive eigenvalues,
say, \alpha_{1} , \ldots : \alpha_{m_{1}} . Let h_{1} , \ldots . h_{m_{1}} be an orthonormal system of eigenvectors
of A(\overline{x})(\lambda-M) (\overline{x,}\overline{\xi}’) belonging to \alpha_{1} , \ldots , \alpha_{m_{1}} , respectively, such that
h_{j}=\Pi(\overline{x,}\overline{\xi}’)h_{j} . For j=1 , \ldots , m_{1} and (x, \xi’) near ( \overline{x,}\overline{\xi}’) , set

s_{2j}(x, \xi’)=\Pi(x, \xi’)h_{j},
s_{2j-1}(x, \xi’)=(M(x, \xi’))-\lambda(x, \xi’))_{S_{2j}}(x, \xi’) .

Then we shall show that 2m_{1} vectors s_{1} , \ldots s_{2m_{1}} have the required prop-
erties. To this end we need only to prove that (2. 4) and

(2.5) (M(x, \xi’)-\lambda(x, \xi’))s_{2j-1}(x, \xi’)=\mu(x, \xi’)s_{2j}(x, \xi’)

hold and that s_{1} , s_{3} , ’ . \tau . s_{2m_{1}-1} are linearly independent.
By [8], Lemma 2. 3 we have

(M-\lambda)^{2}\Pi(x, \xi’)=\mu\Pi(x, \xi’) ,

which implies (2. 5). Moreover, since
A(\overline{x})(\lambda-M)(\overline{x,}\overline{\xi}’)h_{j}=\alpha_{j}h_{j},

we have

S_{2}^{*}A(\lambda-M)S_{2}(\overline{x,}\overline{\xi}’)=(h_{1} , .. h_{m_{1}})^{*}(\alpha_{1}h_{1^{ }},\ldots. \alpha_{m_{1}}h_{m_{1}})

=[^{\alpha_{1}}0 . Q\alpha_{m_{1}}] ,

which yields (2. 4). It is now clear that s_{1} , s_{3} , , . 1 s_{2m_{1}-1} are linearly in-
dependent, because A (\overline{x})s_{2j-1} (\overline{x,}\overline{\xi}’)=-\alpha_{j}h_{j} . The proof is complete.

Using the S in Lemma 2. 1, one can construct a basis W(x, \xi) of ker P_{1}

(x, \xi) with Q_{0}(x, \xi)=0 which is very convenient in the following analysis.
Indeed we define, as in [8],

(2.5)
W(x, \xi’\xi_{n})=\{\begin{array}{ll}I_{d} -A_{22}^{-1}A_{21}(x, \xi’)\end{array}\}S_{0}(x, \xi’. \xi_{n}) ,

S_{0}(x, \xi’. \xi_{n})=S_{1}(x, \xi’)+(\xi_{n}-\lambda(x, \xi’))|\xi’|^{-1}S_{2}(x, \xi’) ,

where S_{1}= (s_{1}, s_{3}, , .. s_{2m_{1}-1}) , S_{2}=(s_{2}, s_{4}, \ldots. s_{2m_{1}}) and s_{j} is the j-th column
of S. Then (2. 3) yields

(2.7) P_{1}(x, \xi’. \xi_{n})W(x, \xi’. \xi_{n})=\{\begin{array}{l}I_{d}0\end{array}\}A(\xi_{n}-M)S_{0}
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=Q_{0}(x, \xi’. \xi_{n})|\xi’|^{-1}\{\begin{array}{l}I_{d}0\end{array}\}A(x)S_{2}(x, \xi’) ,

because MS_{1}=\lambda S_{1}+\mu S_{2} , MS_{2}=S_{1}+\lambda S_{2} for |\xi’|=1 .
Similarly, one can construct bases W_{h}^{+}(x, \xi’) , W_{e}^{+}(x, \xi’) of the root

subspaces of P_{1}(x, \xi) for the eigenvalues of M_{h}^{+}(x, \xi’) , M_{e}^{+}(x, \xi’) . Denot-
ing by S_{h}^{+} , S_{e}^{+} the blocks of S corresponding to M_{h}^{+} , M_{e}^{+} , respectively, we set

(2.8) ( W_{h}^{+}, W_{e}^{+})(x, \xi’)=\{\begin{array}{l}I_{d}-A_{22}^{-1}A_{21}\end{array}\} (S_{h}^{+}, S_{e}^{+}) .

Note that one can take the restrictions of W, W_{h}^{+} and W_{e}^{+} to x_{n}=0 as W, W_{h},
W_{e} in (1. 8).

2. 2. To prove the last statement of Theorem 1. 1 we need an extension
of [1], Proposition 4. 16 which gives a connection between the regularity of
boundary values of extensible distributions and the smoothness up to the
boundary. When \partial X is characteristic for P we also need the following
lemma.

LEMMA 2. 3. Let (\hat{x},\hat{\xi})=(\hat{x}’,\hat{x}_{n},\hat{\xi}’\hat{\xi}_{n})\in T^{*}R^{n+1}\backslash 0 be a point such that
\hat{\xi}’=0 and \hat{\xi}_{n}=1 . Let \psi_{1}(x’. D’)\in OPS_{1,0}^{0}(R^{n}) be a pseudodifferential opera-
tor such that \tilde{Q}(x’,\hat{x}_{n}, \xi’)\neq 0 on supp \psi_{1}(x’. \xi’) . Let u\in H_{1OC}^{\infty,-\infty}(V) , where
V is a neighborhood of \hat{x} in R^{n+1} . Suppose (\hat{x,}\hat{\xi})\not\in WF(\psi_{1}Pu) . Then (\hat{x,}

\hat{\xi})\not\in WF(\psi_{2}u) for any pseudodifferential operator \psi_{2}(\chi_{-}’D’)\in OPS_{1,0}^{0}(R^{n})

such that \psi_{1}(x’\xi’)=1 on a conic neighborhood of supp \psi_{2}(x’. \xi’) .

PROOF. By the assumption that (\hat{x,}\hat{\xi})\not\in WF(\psi_{1}Pu) there is a
pseudodifferential operator \chi_{1}(x, D)\in OPS_{1,0}^{0}(R^{n+1}) such that \chi_{1}\psi_{1}Pu\in C^{\infty}

(R^{n+1}) and \chi_{1}(x, \xi)=1 on a conic ne\overline{l}ghborhood of (\hat{x,}\hat{\xi}) . In view of (2. 1)

we write

(2.9) P(x, D)=\{\begin{array}{ll}P_{11} P_{12}P_{21} P_{22}\end{array}\} , u=\{\begin{array}{l}u_{1}u_{2}\end{array}\} and Pu=\{\begin{array}{l}f_{11}f\end{array}\} ,

where P_{11} is the upper left d\cross d block of P and u_{1} , f_{1} are the upper dX1
blocks of u, Pu, respectively. Then, since (2. 2) implies that P_{22}(x’.\hat{x}_{n},
D’)\in OPS_{1,0}^{1}(R^{n}) is elliptic on supp \psi_{1}(x’. \xi’) , there is a pseudodifferential
operator Q_{22,\wedge},(x’, x_{n}, D’)\in OPS_{1,0}^{-1}(R^{n}) , depending smoothly on the parameter
x_{n} close to x_{n}, such that

\psi_{1}Q_{22}P_{22}=\psi_{1} , mod OPS_{1,0}^{-\infty}(R^{n}) .

Note that \psi_{1}Q_{22}P_{22}u_{2}=\psi_{1}u_{2} , mod C^{\infty}(R^{n+1}) . Similarly, there is a mi-
crolocal parametrix Q_{11}(x, D)\in OPS_{1,0}^{-1}(R^{n+1}) for P_{11}-P_{12}Q_{22}P_{21} at (\hat{x,}\hat{\xi}) .
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We now define Q(x, D)\in OPS_{1,0}^{-1}(R^{n+1}) by

Q=\{\begin{array}{ll}Q_{11} 0-Q_{22}P_{21}Q_{11} <D_{X’}>-1I_{m-d}\end{array}\}\{\begin{array}{ll}I_{d} -P_{12}Q_{22}0 <D_{x’}>Q_{22}\end{array}\} ,

where< D_{x^{r}}>\in OPS_{1,0}^{1}(R^{n}) is the pseudodifferential operator with symbol
(1+|\xi’|^{2})^{1/2} . Then there \overline{1}S a pseudodifferential operator \chi_{2}(x, D)\in

OPS_{1,0}^{0}(R^{n+1}) , elliptic at (\hat{x},\hat{\xi}) , such that \chi_{1}(x, \xi)=1 on supp \chi_{2}(x, \xi) and
\chi_{2}\psi_{2}QPu=\chi_{2}\psi_{2}u, mod C^{\infty}(R^{n+1}) for each \psi_{2}(x’D’)\in OPS_{1,0}^{0}(R^{n}) with the
properties stated in the lemma. Since \chi_{2}\psi_{2}QPu=\chi_{2}\psi_{2}Q\chi_{1}\psi_{1}Pu mod
C^{\infty}(R^{n+1}) , we conclude that \chi_{2}\psi_{2}u\in C^{\infty}(R^{n+1}) and hence (\hat{x,}\hat{\xi})\not\in WF(\psi_{2}u) .
Thus we prove the lemma.

One can now prove the following extension of [1], (4. 16) to systems.

PROPOSITION 2. 4. Let (\hat{\chi}_{r}’,\hat{\xi}’)\in T^{*}X’\backslash 0 be a point such that \tilde{Q}(\hat{x}’. 0 ,
\hat{\xi}’)\neq 0 . Let u\in H_{1OC}^{\infty,-\infty}(V) , where V is a neighborhood of (\hat{x}’0) in X.
Suppose Pu\in C^{\infty}(V) and (\hat{x}’\hat{\xi}’)\not\in WF(u|_{x_{n}=0}) . Moreover assume that each
of null bicharacteristics of Q(x, \xi) through \iota^{*-1}(\hat{x}’.\hat{\xi}’) either immediately
enters x_{n}<0 in at least one direction or intersects a point (x, \xi)\in T^{*}X\backslash 0 such
that (x, \xi)\not\in WF(u)\backslash , x_{n}>0 and x\in V. Then u is smooth up to the bound-
ary at (\hat{x}’.\hat{\xi}’) , namely, there is a pseudodifferential operator \psi(x’. \xi’)\in

OPS_{1,0}^{0}(R^{n}) , elliptic at (\hat{x}’\hat{\xi}’) , such that \psi u\in C^{\infty}(X\cap\{0\leqq x_{n}\ll 1\}) .

PROOF. We shall keep using the notations in (2. 9). Since P_{22}(\chi_{-}’0 ,
\xi’) is elliptic at (\hat{x}’,\hat{\xi}’) according to (2. 2), one can find a small conic
neighborhood \Sigma of (\hat{x}’\hat{\xi}’) such that

(2. 10) WF (u|_{x_{n}=0})\cap\Sigma=\phi

and P_{22}(x’. 0, \xi’) is elliptic on \Sigma . We shall show

(2. 11) WF(D_{n}^{j}u|_{Xn=0})\cap\Sigma=\phi for all j\geqq 0 .

Set

P_{11}’(x, D’)=P_{11}(x, D)-A(x)D_{n} .

Then, since f_{1}\in C^{\infty}(V) and D_{n}u_{1}=A^{-1}(f_{1}-P_{11}’u_{1}-P_{12}u_{2}) , it follows from
(2. 10) that

(2. 12) WF (D_{n}u_{1}|_{x_{n}=0})\cap\Sigma=\phi .

Next, applying D_{n} to P_{22}u_{2}=f_{2}-P_{21}u_{1} , we have

P_{22}(x, D’)D_{n}u_{2}=D,f_{2}-P_{21}D_{n}u_{1}-[D_{n}, P_{22}]u_{2}-[D_{n}, P_{21}]u_{1} .

Therefore (2. 10) and (2. 12) yield (2. 11) for j=1 , because P_{22}(\chi_{\sim}’0, D’)
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is elliptic on \Sigma . Analogously we obtain (2. 11) for j\geqq 2 . Thus, as in [1],
p. 210, we can prove the proposition, by using (2. 11), Lemma 2. 3 and
results on propagation of singularity in the free space.

2. 3. To prove Theorem 1. 2 we will use the following regularity of
solutions to dissipative boundary value problems for P. Note that all roots
\tau_{1}(x, \xi’. \xi_{n}) , ’

..\wedge\tau_{m}(x, \xi’. \xi_{n}) of the equation det P_{1}(x, \xi_{0}, \xi^{rr}-\xi_{n})=0 with
respect to \xi_{0} are bounded real-valued functions of (x, \xi’. \xi_{n})\in X\cross\{(\xi’, \xi_{n})

\in R^{n} ; |\xi’|^{2}+\xi_{n}^{2}=1 }. Let \tau_{0} be the least upper bound of |\tau_{k}(x, \xi’\xi_{n})| for
such (x, \xi’. \xi_{n}) and k=1 , \ldots . m. For a point \overline{x}\in X we denote by \Gamma_{0}(\overline{x})

the interior of a backward cone with vertex x , more precisely, we set

\Gamma_{0} ( \overline{x})=\{x\in R^{n+1} : \tau_{0}(\overline{x}_{0}-x))>(|x^{rr}-\overline{x}’|^{2}+|x_{n}-\overline{x}_{n}|^{2})^{1/2}\} .

PROPOSITION 2. 5. Let \overline{x}\in X and u\in H_{1OC}^{0,s}(\Gamma_{0} (\overline{x})\cap X) for some
s\in R^{1} . Suppose Pu\in C^{\infty}(\Gamma_{0} ( \overline{x})\cap X) , Bu|_{x_{n}=0}\in C^{\infty}(\Gamma_{0} (\overline{x})\cap\{x_{n}=0\}) and u
\in C^{\infty}(\Gamma_{0} ( \overline{x})\cap X\cap\{x_{0}\ll\overline{x}_{0}\}) . Moreover assume that boundary condition
Bu|_{Xn=0}=0 is maximally nonpositive for P. Then u\in C^{\infty}(\Gamma_{0} ( \overline{x})\cap X) .

Although this proposition seems to be well known in essence, we shall
give a proof for the sake of completeness of description.

For an integer k and real numbers s, \gamma with \gamma\neq 0 we denote by H_{\gamma}^{k,S}(X)

the set of extensible distributions u\in \mathscr{D}’(X\backslash \partial X) such that e^{-\gamma x_{0}}u\in

H^{hs}(X) . (See e.g. [4], p. 51 for the space H^{hS}(X) with k<0).

LEMMA2. 6. For each nonnegative integer s, there is a positive number
\gamma_{s} such that if \gamma\geqq\gamma_{s}, u\in H_{\gamma}^{-1,0}(X) and P_{22}u\in H_{\gamma}^{0,s}(X) then u\in H_{\gamma}^{0,s}(X) .
Here P_{22} is the differential operator in (2. 9).

PROOF. Since P_{22} is a symmetric hyperbolic system, there is a positive
number \gamma_{\acute{S}} such that for each \gamma\geqq\gamma_{\acute{S}} there exists a function w\in H_{\gamma}^{0,s}(X)

satisfying P_{22}w=P_{22}u if P_{22}u\in H_{\gamma}^{0,S}(X) . Therefore it suffices to prove the
nuiqueness.

Let u\in H_{\gamma}^{-1,0}(X) and P_{22}u=0 in H_{\gamma}^{0,s}(X) . Then we need only to show
that u=0 in \mathscr{D}’(X\backslash \partial X) , because H_{\gamma}^{-1,0}(X) is a subspace of \mathscr{D}’(X\backslash \partial X) .
Let g\in C_{0}^{\infty}(R^{n+1}) be a test function, supported in \{x_{n}>0\} . Then the equa-
tion P_{22}^{*}v=g in R^{n+1} has a unique solution v\in H_{-\gamma}^{2,0}(R^{n+1}) for \gamma\geqq\gamma_{0} , where
P_{22}^{*} is the formal adjoint of P_{22} and 70 a positive number. Moreover, since
P_{22} does not contain D_{n’} we observe that supp v(x)\subset\{x_{n}>0\} . Hence
(u, g)=(P_{22}u, v)=0 . The proof is complete.

LEMMA 2. 7. Suppose the boundary condition Bu|_{Xn=0}=0 in maximally
nonpositive for P. Then for each positive integer k there is a positive number
\gamma_{k} such that, for any \gamma\geqq\gamma_{k} and f\in H_{\gamma}^{2k,0}(X) , the following boundary value
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problem

Pu=f in X,(2. 13)
Bu=0 on \partial X

has a unique solution u\in H_{\gamma}^{k,0}(X) . Moreover

(2.14) u(x)=0 in \Gamma_{0} ( \overline{x})\cap X if so is f
for each \overline{x}\in X.

PROOF. By the hypothesis of the lemma one can assume the B_{1}(x) in
(1. 27) is of the form (1. 28). (See [12], Lemmas 2. 9 and 2. 10). Set

H(x)=\{\begin{array}{ll}I_{d^{+}} -S(x)S^{*}(x) I_{d}-\end{array}\} ,

which is a nonsingular matrix of order d. Besides, set \tilde{B}_{1}=B_{1}H and \tilde{u}_{1}=

H^{-1}u_{1} with the notations in (2. 9). Then \tilde{B}_{1}\tilde{u}_{1}=B_{1}u_{1} and \tilde{B}_{1}=(I_{d^{+}}+SS^{*}, 0) ,
where I_{d^{+}}+SS^{*}is nonsingular. Thus after a change of the unknown u_{1} , one
can assume B_{1} is of the form

(2. 15) B_{1}(x)=(I_{d^{+}}, 0) ,

although (1. 26) may be not preserved. Moreover we define a d^{-}\cross d matrix
B_{1}’(x) by

(2. 16) B_{1}’(x)=(0, I_{d^{-}})A(x) .

Then the adjoint boundary condition is given by B_{1}’v_{1}|_{x_{n}=0}=0 , because
(Pu, v)_{L^{2}(X)}-(u, P^{*}v)_{L^{2}(X)}=i(u_{1}, Av_{1})_{L^{2}(\partial X)}

for u, v\in C_{0}^{\infty}(X) . Furthermore the hypothesis of the lemma implies that

(2.17) A(x)v_{1}\cdot v_{1}\geqq 0 for v_{1}\in kerB_{1}’(x) and x\in\partial X,

since the boundary condition B_{1}’v_{1}|_{x_{n}=0}=0 is maximally nonpositive for P^{*}

(see Lax and Phillips [13]). Therefore we see by a standard argument that
for each positive integer k there is a positive number \gamma_{k}’ such that (2. 13) has
a unique solution u\in H_{\gamma}^{0,2k}(X) for any \gamma\geqq\gamma_{k}’ and f\in H_{\gamma}^{0,2k}(X) .

Now let f\in H_{\gamma}^{1,2k-1}(X) . We shall show there is another positive num-
ber \gamma_{1}\geqq\gamma_{1}’ such that

(2. 18) u\in H_{\gamma}^{1,2k-2}(X) for \gamma\geqq\gamma_{1} .

We keep using the notations in (2. 9). As in the proof of Proposition 2. 4 we
then have D_{n}u_{1}\in H_{\gamma}^{0,2k-1}(X) hence u_{1}\in H_{\gamma}^{1,2k-1}(X) , because u_{1}\in_{\gamma}^{0,2k}(X) .
We also see that P_{22}D_{n}u_{2}\in H_{\gamma}^{0,2k-2}(X) Since D_{n}u_{2}\in H_{\gamma}^{-1,0}(X) , it follows
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from the preceding lemma that D_{n}u_{2}\in H_{\gamma}^{0,2k-2}(X) hence u_{2}\in H_{\gamma}^{1,2k-2}(X) if \gamma

is large enough. Thus there is a positive number \gamma_{1} such that (2. 18) holds.
Analogously one can find \gamma_{k} with the desired properties.

Finally we shall prove (2. 14). Let \nu(x)=(\nu_{0}(x), \nu_{1}(x) , \ldots . \nu_{n}(x)) be
the outward unit normal to \Gamma_{0}

(\overline{x})\cap X at a point x on the boundary \partial(\Gamma_{0} ( \overline{x})

\cap X) of \Gamma_{0}( \overline{x})\cap X and set

A^{\nu}(x)=\Sigma_{k=0}^{n}\nu_{k}(x)A_{k}(x) .

For convenience we write
(e^{-\gamma xo}u, e^{-\gamma xo}v)_{L^{2}(\Gamma_{0}(^{-})\cap X)}=(u, v)_{\gamma},
(e^{-\gamma xo}u, e^{-\gamma xo}v)_{L^{2}(\partial(\Gamma_{0}(^{-})nx)}=<u, v>_{\gamma}

and ||u||_{\gamma}=((u, u)_{\gamma})^{1/2} . Noting that

P(e^{-\gamma xo}u)=e^{-\gamma xo}(Pu+i\gamma A_{0}u) ,
P^{*}v=Pv+(\Sigma_{k=0}^{n}D_{k}A_{k}+C^{*}-C)v,

and setting

\tilde{C}(x)=\Sigma_{k=0}^{n}\partial A_{k}(x)/\partial x_{k}+i(C^{*}-C)(x) ,

by Green’s formula we have
-2\gamma||u||_{\gamma}^{2}-2{\rm Im}(f, u)_{\gamma}+(u,\tilde{C}u)_{\gamma}=<A^{\nu}u, u>_{\gamma} .

Moreover we claim that

(2. 19) <A^{\nu}u, u>_{\gamma}\geqq 0 .

In fact, since A^{\nu}(x)=-A_{n}(x) on \partial X, by assumption we have
A^{1j}(x)u\cdot u\geqq 0 for u\in kerB(x) and x\in\partial X.

Furthermore, on the boundary of \Gamma_{0}
(\overline{x}) we have

\nu(x)=(1+\tau_{0}^{2})^{-1/2}(\tau_{0}, \xi’, \xi_{n}) ,

where (\xi’\xi_{n})=(|x’-\overline{x}’|^{2}+|x_{n}-\overline{x}_{n}|^{2})^{-1/2}(x’-\overline{\chi}_{\tau}’,\chi_{n}-\overline{x}_{n}) , so
A^{\mu}(x)=(1+\tau_{0}^{2})^{-1/2}(\tau_{0}A_{0}(x)+\Sigma_{k=1}^{n}\xi_{k}A_{k}(x)) ,

which is positive semidefinite because of the definition of \tau_{0} . Thus we obtain
(2. 19) and hence

2\gamma||u||_{\gamma}^{2}+2{\rm Im}(f, u)_{\gamma}-(u,\tilde{C}u)_{\gamma}\leqq 0 .

Besides, since \tilde{C}(x) is bounded in X, there is a constant C_{0} such that
|(u,\tilde{C}u)_{\gamma}|\leqq C_{0}||u||_{\gamma}^{2} . Now let f=0 in \Gamma_{0}(\overline{x})\cap X. Then
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(2\gamma-C_{0})||u||_{\gamma}^{2}\leqq 0 ,

so u=0 in \Gamma_{0} (\overline{x})\cap X for \gamma>C_{0}/2 . Thus we prove the lemma.

REMARK 2. 8. From the proof we also observe the following. Supose
to the contrary that Bu|_{x_{n}=0}=0 is maximally nonnegative for P. Then the
conclusion of Lemma 2. 7 is still valid provided f\in H_{\gamma}^{2k,0}(X) , u\in H_{\gamma}^{k,0}(X)

and \Gamma_{0}(\overline{x}) are replaced, respectively, by f\in H_{-\gamma}^{2k,0}(X) , u\in H_{-\gamma}^{k,0}(X) and
the forward cone

\{x\in R^{n+1} ; \tau_{0}(_{j\%}-\overline{x}_{0})>(|x’-\overline{x}’|^{2}+|x_{n}-\overline{x}_{n}|^{2})^{1/2}\} .

COROLLARY 2. 9. Suppose the hypothesis of Lemma 2. 7 is satisfified. Let
u\in H_{1OC}^{0,S}(\Gamma_{0}(\overline{x})\cap X) for some s\in R^{1} . Suppose Pu=0 in \Gamma_{0}

( _{\overline{x}})\cap X, Bu=0
on \Gamma_{0}

(\overline{x})\cap\partial X and u=0 in \Gamma_{0} (\overline{x})\cap X\cap\{xi\ll\overline{x}_{0}\} . Then u=0 in \mathscr{D}’(\Gamma_{0}
( _{\overline{x}})

\cap\{x_{n}>0\}) .

PROOF. In view of (2. 16) and (2. 17) we see from the preceding
remark that, for each \gamma\geqq\gamma_{1} and g\in C_{0}^{\infty}(\Gamma_{0} (\overline{x})\cap\{x_{n}>0\}) , there is a function
v\in H_{-\gamma}^{1,|s|}(X) such that P^{*}v=g in X, B_{1}’v_{1}|_{Xn=0} and (supp v) \cap X\subset\Gamma_{0}

( _{\overline{x}}) .
Hence by Green’s formula we have (u, g)_{L^{2}(X)}=0 , which proves the corol-
lary.

PROOR OF PROPOSITION 2. 5. One can assume without loss of generality
that u=0 in \Gamma_{0} ( \overline{x})\cap X\cap\{x_{1}\ll\overline{x}_{0}\} . Let \hat{x}\in\Gamma_{0} ( \overline{x})\cap X and let k be an arbi-
trary positive integer such that k>s . Then it suffices to prove

(2.20) u\in H_{1OC}^{h0}(\Gamma_{0}(\hat{x})\cap X) .

In view of (2. 15) one can also assume Bu=0 on \Gamma_{0}(x)\cap\{x_{n}=0\} . Let \phi\in

C^{\infty}(R^{n+1}) be a cutoff function, suppoted in \Gamma_{0}(\overline{x}) , such that \phi(x)=1 on
\Gamma_{0}(\hat{x}) , and set f=\phi Pu . Then f\in C_{0}^{\infty}(X) , in particular, f\in H_{\gamma}^{2k,0}(X) for
all \gamma>0 . Hence by Lemma 2. 7 there is a solution v\in H_{\gamma}^{k,0}(X) of (2. 13)
such that v=0 in X\cap\{x_{1}\ll\hat{x}_{)}\} . Set w=u-v. Then w\in H_{1OC}^{0,S}(\Gamma_{0}(\hat{x})\cap(X) ,
Pw=0 in \Gamma_{0}(\hat{x})\cap X, Bw=0 on \Gamma_{0}(\hat{x})\cap\{x_{n}=0\} and w=0 in \Gamma_{0}(X)\cap X\cap

\{x_{)}\ll\hat{\eta}_{)}\} . Therefore by Corollary 2. 9 we have w=0 in \mathscr{D}’(\Gamma_{0}(\hat{x})\cap\{x_{n}>0\})

and hence (2. 20) follows, because H_{1OC}^{h0}(\Gamma_{0}(\hat{x})\cap X) is a subspace of
\mathscr{D}’(\Gamma_{0}(\hat{x})\cap\{x_{n}>0\}) . Thus we prove the proposition.

\S 3. Construction of a parametrix

In order to construct the parametrix E(f) we use the same phase func-
tions \theta(x, \eta’) , \rho(x, \eta’) and Airy functions A_{0}(z) , A_{\pm}(z) as in [11]. Recall
that \theta(x, \eta’) , \rho(x, \eta’) with \eta’=(\eta_{0}, \eta’)=(\eta_{0}, \eta_{1}, \ldots. \eta_{n-1}) are real valued
smooth functions defined on a conic neighborhood of ( \overline{x,}\overline{\eta}’) in X\cross(R^{n}\backslash 0) ,
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homogeneous in \eta’ of degree 1, 2/3, respectively, where \overline{\eta}_{0}=0,\overline{\eta}’=\overline{\xi}’\neq 0 .
Moreover the functions \phi^{\pm}=\theta\pm(2/3)\rho^{3/2} solve the eikonal equation Q_{0}(x,
\phi_{x}^{\pm})=0 in the following sense, where \phi_{x}^{\pm}=\partial\phi^{\pm}/\partial x and Q_{0}(x, \xi) is the func-
f or in (1. 5). Writing \lambda(x, \theta_{X’}\pm\sqrt{\rho}\rho_{X’})=\lambda_{1}\pm\sqrt{\rho}\lambda_{2} , \mu(x, \theta_{X’}\pm\sqrt{\rho}\rho_{X’})=\mu_{1}\pm

\sqrt{\rho}\mu_{2} for \rho>0 , where \lambda_{1} , \lambda_{2} , \mu_{1} and \mu_{2} are even functions of \sqrt{\rho} , we have for
\rho>0

(\theta_{x_{n}}-\lambda_{1})^{2}+\rho(\rho_{Xn}-\lambda_{2})^{2}-\mu_{1}=0 ,
(3. 1)_{+}

2 (\theta_{Xn}-\lambda_{1})(\rho_{x_{n}}-\lambda_{2})-\mu_{2}=0 ,

and, for \eta_{0}<0 and 0\leqq x_{n}\ll 1 ,

(\theta_{Xn}-\lambda_{1})^{2}+\rho(\rho_{x_{n}}-\lambda_{2})^{2}-\mu_{1}=O(x_{n}^{\infty}|\eta’|^{2}) ,
(3. 1)_{-}

2 (\theta_{Xn}-\lambda_{1})(\rho_{Xn}-\lambda_{2})-\mu_{2}=O(x_{n}|\eta’|^{5/3}) .

Furthermore, for x_{n}=0 ,

(3. 2) det \theta_{x^{r}\eta^{r}}>0 , where \theta_{x^{r}\eta^{r}}=\partial^{2}\theta/\partial x’\partial\eta’

(3.3) \theta_{xo\eta 0}>0 ,
(3.4) \rho_{x_{n}}<0 ,
(3.5) \rho(x’0_{ \eta)=\eta_{0}|\eta’|^{-1/3}=\alpha|\eta’|^{2/3}}’, , where \alpha=\eta_{0}/|\eta’| .

We also have for x_{n}=0

(3.6) \theta_{xn}=\lambda(x, \theta_{X’}) ,
(3. 7) \mu(x, \theta_{X’})=\alpha(\rho_{x_{n}})^{2} for |\eta’|=1 ,

because \lambda_{2}=\mu_{2}=0 , \lambda_{1}=\lambda and \mu_{1}=\mu for x_{n}=0 .
From now on, for x_{n}=0 we shall extend \theta , \rho , \theta_{x_{n}} and \rho_{Xn} to R^{n}\cross R^{n} in

such a way that (3. 2) through (3. 7) are preserved for |\alpha|<1 and that \theta(x’-

0 , \eta’)=x’\eta’ outside a conic neighborhood of (\overline{\chi}’. \overline{\eta}’) . Then \theta(x’. 0’, \eta)

generates a canonical transformation \phi_{1}(y’. \eta’)=(x’. \xi’) of T^{*}R^{n}\backslash 0 defined
by

(3.8) \xi’=\theta_{x’}(x’. 0_{ \eta}’,) , y’=\theta_{\eta^{r}}(\chi’. o_{ \eta}^{r},) .

Moreover, under \phi_{1}^{-1} , the gliding ray \Gamma(\overline{x}_{3}’\overline{\xi}’) is mapped (locally) onto
the straight line through (y^{-_{r}} \overline{\eta}’)=\phi_{1}^{-1}(\overline{x}’. \overline{\xi}’) which is parallel to the y_{0}

axis, where y’=(y_{0}, y’)=(y_{0}, y_{1}, \ldots.y_{n-1}) , and on which y_{0} increases as x_{0}

does.
Now we shall look for the parametrix E(f) in the same form as (6) of

[10], namely,

(3.8) Gv=G_{0}v_{0}+G_{h}v_{h}+G_{e}v_{e} .

Here v(y’)={}^{t}(^{t}v_{0}, tvh,{}^{t}v_{e}) is a vector with d^{+} components in H^{-\infty}(R^{n}) , and
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G_{h}, G_{e} are essentially the same operators as the G^{(2)} , G^{(3)} in [8], respective-
ly, while G_{0} is the same one as the G_{1} defined by (8) of [10], in other
words, we take q_{1}=1 and q_{2}=0 in the (7). More precisely, we define

(3. 10) (G_{0}v_{0})(x)= \int e^{i\theta}(A_{0}(\begin{array}{l}\vee\rho\end{array})\vee a^{vv}-iA_{\acute{0}}(\rho)b^{v})(A_{+}(\zeta)_{X1}^{-1}

+A_{0}(\zeta)^{-1}(1-\chi_{1}))\hat{v}_{0}(\eta’)d\eta’ .
where

\hat{v}_{0}(\eta’)=\int e^{-iy^{r}\eta^{r}}v_{0}(y’)dy ’

and v_{0}(y’) is determined later so that (1. 23) holds. Here A_{0} , A_{+} , \zeta and \chi_{1}

are the same functions as in_{\vee}[11]\vee’(2.15)\vee\cdot (See also (4. 1), (4. 4) and
(4. 7) below). Besides, d , \rho . a and b are almost analytic continuations
of \theta , \rho , a and b, analogous to (2. 17) of that paper (see also (3. 30)
below), while the amplitudes a(x, \eta’) and b(x, \eta’) are given in the following
theorem.

THEOREM 3. 1. There exist smooth m\cross m_{1} matrices a(x, \eta’) , b(x, \eta’)

defifined on a conic neighborhood of (\overline{x,}\overline{\eta}’) in X\cross(R^{n}\backslash 0) , which have
asymptotic expansions

a- \sum_{k=0}^{\infty}a_{k}, b- \sum_{k=0}^{\infty}b_{k},

where a_{k}(x, \eta’) , b_{k}(x, \eta’) are homogeneous in \eta’ of degree-k, - k-1/3,
respectively. Moreover if we write
(3. 11)

c- \sum.k\infty c_{k}=-1,d-\sum_{k=-1}^{\infty}d_{k}e^{-i\theta}P(x,D)(e^{i\theta}(A_{0}(\rho)a-, iA_{\acute{0}}(\rho)b))=A_{0}(\rho)_{C}-iA_{\acute{0}}(\rho)d
,

where c_{k}(x, _{lf’}) , d_{k}(x, \eta’) are homogeneous in \eta’ of degree - k, - k-1/3,
respectively, then

(3. 12) c_{k}, d_{k}=\{
0 for \rho\geqq 0 ,
O(x_{n}^{\infty}) for 0\leqq x_{n}\ll 1 , \eta_{0}<0 and |\eta’|=1 .

This theorem has been essentially obtained in [8], \S 3 and 4. Neverthe-
less, since the proof given there is somewhat inaccessible, we shall give
another proof. (See also Petkov [17]).

PROOF OF THEOREM 3. 1. We first seek a_{k}, b_{k} for \rho>0 and then extend
them to \rho\leqq 0 . Using the equation A_{\acute{\acute{0}}}(\rho)=-\rho A_{0}(\rho) and setting the
coefficients of A_{0}(\rho) , - iA_{\acute{0}}(\rho) on the left hand side of (3. 11) equal to c, d,
respectively, we have for k=-1,0,1 , 2, \ldots .
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c_{k}=P_{1}(x, \theta_{x})a_{k+1}+\rho P_{1}(x, \rho_{x})b_{k+1}+P(x, D)a_{k},
d_{k}=P_{1}(x, \theta_{x})b_{k+1}+P_{1}(x, \rho_{x})a_{k+1}+P(x, D)b_{k},

where a_{-1}=0 , b_{-1}=0 .
Let \rho>0 . Then (3. 12) is equivalent to

(3. 13) c_{k}\pm\sqrt{\rho}d_{k}=0 ,

where
c_{-1}\pm\sqrt{\rho}d_{-1}=P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})(a_{0}\pm\sqrt{\rho}b_{0}) .

Let W(x, \xi) be the matrix defined by (2. 6). Then it follows from (2. 7)

and the eikonal equation (3. 1)_{+} that

(3. 14) P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})W(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})=0 .

Thus, setting

(3. 15) a_{0}\pm\sqrt{\rho}b_{0}=W(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})(g_{0}\pm\sqrt{\rho}h_{0}) ,

we obtain (3. 13) for k=-1 , where g_{0}(x, \eta’) , h_{0}(x, \eta’) are arbitrary
smooth m_{1}\cross m_{1} matrices, homogeneous in \eta’ of degree 0, -1/3, respective-
ly. More preciesly, we define a_{0} , b_{0} as follows. Setting

W_{1}(x, \eta’)=(W(x, \theta_{x}+\sqrt{\rho}\rho_{x})+W(x, \theta_{x}-\sqrt{\rho}\rho_{x}))/2 ,
(3. 16)

W_{2}(x_{ \eta’},)=(W(x, \theta_{x}+\sqrt{\rho}\rho_{x})-W(x, \theta_{x}-\sqrt{\rho}\rho_{x}))/(2\sqrt{\rho})

so that W(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})=W_{1}\pm\sqrt{\rho}W_{2} , we define

(3. 17)
a_{0}=W_{1}g_{0}+\rho W_{2}h_{0}

b_{0}=W_{1}h_{0}+W_{2}g_{0}

Then (3. 15) holds and a_{0}(x, \eta’) , b_{0}(x, \eta’) are smooth near ( \overline{x,}\overline{\eta}’) , hom0-
geneous in \eta’ of degree 0, -1/3, respectivly, because so are W_{1}(x_{ \eta’},) , W_{2}

(x, \eta’) .
Next let k=0 and |\eta’|=1 . Then (3. 13) is equivalent to

(3. 18) P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{\chi})(a_{1}\pm\sqrt{\rho}b_{1})+P(x, D)a_{0}\pm\sqrt{\rho}P(x, D)b_{0}=0 ,

so we look for a_{1} , b_{1} in the form

a_{1}=W_{1}g_{1}+\rho W_{2}h_{1}+\tilde{a}_{1} ,
(3. 19)

b_{1}=W_{1}h_{1}+W_{2}g_{1}+\tilde{b}_{1} ,

where \tilde{a}_{1}\pm\sqrt{\rho}\tilde{b}_{1} are special solutions of (3. 18) with a_{0} , b_{0} given. We also
see, as above, that (3. 18) with (3. 19) becomes the following system of
linear equations for \tilde{a}_{1}\pm\sqrt{\rho}\tilde{b}_{1} :
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(3.20) P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})(\tilde{a}_{1}\pm\sqrt{\rho}\tilde{b}_{1})+P(x, D)a_{0}\pm\sqrt{\rho}P(x, D)b_{0}=0 ,

which is solvable if and only if

(3.21) W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})(P(x, D)a_{0}\pm\sqrt{\rho}P(x, D)b_{0})=0 .

Here W^{*} denotes the adjoint matrix of W, so the rows of W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})

are right null vectors of P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x}) . Notice that (3. 21) with (3. 17)

is equivalent to the following transport equation for g_{0}\pm\sqrt{\rho}h_{0} :

(3.22) \sum_{j=0}^{n}A_{j}^{\pm}(x, \eta’\sqrt{\rho})\frac{\partial}{\partial x_{j}}(g_{0}\pm\sqrt{\rho}h_{0})+C^{\pm}(x, \eta’\sqrt{\rho})(g_{0}\pm\sqrt{\rho}h)=0 ,

where

A_{j}^{\pm}(x, \eta’. t)=W^{*}(x, \theta_{x}\pm t\rho_{x})A_{j}(x)W(x, \theta_{x}\pm t\rho_{x}) ,
C^{\pm}(x, \eta’. t)=iW^{*}(x, \theta_{x}\pm t\rho_{x})P(x, D)W(x, \theta_{x}\pm t\rho_{x}) .

In fact, (3. 17) yields

P(x, D)a_{0}\pm\sqrt{\rho}P(x, D)b_{0}=\Sigma_{j=0}^{n}A_{j}(x) ( W_{1}\pm\sqrt{\rho}W_{2})D_{j}(g_{0}\pm\sqrt{\rho}h_{0})

+(P(x, D)W_{1}\pm\sqrt{\rho}P(x, D)W_{2})(g_{0}\pm\sqrt{\rho}h)

\pm(i/(2\sqrt{\rho}))(P_{1}(x, \rho_{x})W_{1}\mp\sqrt{\rho}P_{1}(x, \rho_{x})W_{2})h_{0} .

Moreover from (3. 14) and (3. 16) we have P_{1}(x, \rho_{x})W_{1}=-P_{1}(x, \theta_{x})W_{2} .
Therefore the left hand side of (3. 21) coincides with (-i) times that of (3.

22), because ( W_{1}^{*}\pm\sqrt{\rho}W_{2}^{*})P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})=0 .
Furthermore, making changes of variables (x’x_{n})-(x_{2}’\rho) and (x’, \rho)

arrow(x’t) with t=\sqrt{\rho}, and setting

a^{\pm}(x’. t_{ \eta}’,)=g_{0}(x, \eta’)\pm th_{0}(x, \eta’) ,

we see that (3. 22) is equ\overline{l}valent to

(3.23)_{\pm} C_{n}^{\pm}(x’t’, \eta)\frac{\partial a^{\pm}}{\partial t}+\sum_{j=0}^{n-1}C_{j}^{\pm}(x’t’, \eta)\frac{\partial a^{\pm}}{\partial x_{j}}+C_{n+1}^{\pm}(x’t_{ \eta}’,)a^{\pm}=0 ,

where

C_{n}^{\pm}(x’. t_{ \eta}’,)=(2t)^{-1}W^{*}(x, \theta_{x}\pm t\rho_{x})P_{1}(x, \rho_{x})W(x, \theta_{x}\pm t\rho_{x}) ,
C_{j}^{\pm}(x’t’, \eta)=A_{j}^{\pm}(x, \eta’t) , j=0,1 , \ldots r n-1 ,
C_{n+1}^{\pm}(x’. t_{ \eta}’,)=C^{\pm}(x, \eta’. t) .

We shall show that (3. 23)_{\pm} are hyperbolic with respect to dt. Since (3.
14) and (3. 16) yield P_{1}(x, \rho_{x})W_{1}=-P_{1}(x, \theta_{x})W_{2} hence W_{1}^{*}P_{1}(x, \rho_{x})=-W_{2}^{*}

P_{1}(x, \theta_{x}) we have
(W_{1}^{*}\pm tW_{2}^{*})P_{1}(x, \rho_{x}) ( W_{1}\pm tW_{2})
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=-W_{2}^{*}P_{1}(x, \theta_{x})W_{1}\mp 2tW^{*}{}_{2}P_{1}(x, \theta_{x})W_{2}+O(t^{2}) .

Besides P_{1}(x, \theta_{x})W_{1}=O(t^{2}) . Therefore we see that C_{n}^{\pm}(\chi_{r}’,t’, \eta) are
smoothly extended to t\leqq 0 and

C_{n}^{\pm}(x’, t_{ \eta}’,)=\mp W^{*}{}_{2}P_{1}(x, \theta_{x})W_{2}+O(t) .

(See [8], Lemma 4. 1, although the factor 1/2 in (4. 9) must be replaced by
1). Moreover, since (3. 5) and (3. 16) imply

W_{2}(x, \eta’)=\rho_{Xn}W_{\xi n}(x, \theta_{x})+O(\rho) for x_{n}=0 ,

we have
C_{n}^{\pm}(\overline{x}’. 0, \overline{\eta}’)=\mp(\rho_{x_{n}}(\overline{x,}\overline{\eta}’))^{2}(W^{*}{}_{\xi n}P_{1}W_{\xi n})(\overline{x,}\theta_{x}(\overline{x,}\overline{\eta}’)) .

Besides, (2. 3) and (2. 6) yield

W^{*}{}_{\xi n}P_{1}W_{\xi n}=S_{2}^{*}A(\xi_{n}-M)S_{2}/|\xi’|^{2} .

Thus we see from (2. 4), (3. 4), (3. 6) and (3. 8) that \mp C_{n}^{\pm}(x’t’, \eta) are
positive definite near ( \overline{x}’. 0, \overline{\eta}’) hence (3. 23)_{\pm} are symmetric hyperbolic
systems which are really ordinary differential equations along bicharacteris-
tic curves of Q_{0} . Consequently (3. 23)_{\pm} have the unique smooth solutions for
arbitrary smooth data prescribed on t=0 such that a^{-}(x’. t’, \eta)=a^{+}(x’ . - t,

\eta’) . Furhtermore, if we set

g_{0}(x, \eta’)=(a^{+}(x’\sqrt{\rho}, \eta’)+a^{+}(x’. -\sqrt{\rho}, \eta’))/2 ,
h_{0}(x, \eta’)=(a^{+}(x’. \sqrt{\rho}, \eta’)-a^{+}(\chi_{-}’,-\sqrt{\rho}, \eta’))/2\sqrt{\rho} ,

then g_{0} , h_{0} are smooth up to \rho\geqq 0 and (3. 21) also holds.
Now we shall extend the a_{0} , b_{0} given by (3. 17) to \rho\leqq 0 . Since W(x, \xi)

is analytic in \xi according to (2. 6), the W_{1} and W_{2} defined by (3. 16) are
even functions of \sqrt{\rho} hence they can be extended to \rho\leqq 0 in a natural way.
Let g_{0} , h_{0} be arbitrary smooth extensions to \rho<0 . Then we have (3. 12) for
k=-1 and \eta_{0}<0, because P_{1}(x, \theta_{x})W_{1}+\rho P_{1}(x, \rho_{x})W_{2} and P_{1}(x, \theta_{x})W_{2}+P_{1}(x,

\rho_{x})W_{1} are O(x_{n}^{\infty}) for |\eta’|=1 according to (2. 7) with \xi=\theta_{x}\pm\sqrt{\rho}\rho_{x} and (3.

1)_{-} .
Next we shall construct special solutions \tilde{a}_{1},\tilde{b}_{1} of (3. 20) so that (3. 12)

holds for k=0 . As in [8], pp. 284-285, one can extend g_{0} , h_{0} to \rho\leqq 0 so that
(3. 21) is satisfied to infinite order on x_{n}=0 for \alpha<0 , more precisely, so that
both W_{1}^{*}P(x, D)a_{0}+\rho W_{2}^{*}P(x, D) and W_{1}^{*}P(x, D)b_{0}+W_{2}^{*}P(x, D)a_{0} are O
(x_{n}^{\infty}) for \eta_{0}<0 and 0\leqq x_{n}\ll 1 . Therefore it suffices to construct \tilde{a}_{1},\tilde{b}_{1} so that
if the left hand sides of (3. 20) and (3. 21) are written as B^{(1)}\pm\sqrt{\rho}B^{(2)} and
B^{(3\rangle}\pm\sqrt{\rho}B^{(4)} , respectively, where B^{(j)}(x, \eta’) are smooth, then each element
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of B^{(1)} and B^{(2)} is, mod O(x_{n}^{\infty}) , a linear combination of those of B^{(3)} and B^{(4)}

with smooth coefficients. The procedure below will refine the proof of [8],
Proposition 3. 1.

Introducing an extra variable z in place of \pm\sqrt{\rho} , we set \xi=\theta_{x}(x, \eta’)+

z\rho_{x}(x, \eta’) and

a(x, \eta’. z)=\{\begin{array}{l}a_{1}a_{1I}\end{array}\} =\tilde{a}_{1}(x, \eta’)+z\tilde{b}_{1}(x, \eta’) ,

F(x, \eta’. z)=\{\begin{array}{l}F_{1}F_{11}\end{array}\} =-P(x, D)a_{0}(x, \eta’)-zP(x, D)b_{0}(x, \eta’) ,

where a_{1} , F_{1} are the upper d\cross m_{1} blocks of a, F, respectively. We shall
dominate P_{1}(x, \xi)a(x, \eta’, z)-F(x, \eta_{s}’z) by W^{*}(x, \xi)F(x, \eta’-Z)+O(Q_{0}) ,

where a is constructed similarly to the a_{-1}^{0} in [8], Proposition 3. 1.
It follows from (2. 3) that

P_{1}a=\{\begin{array}{l}A(\xi_{n}-M)a_{I}+A_{12}A_{22}^{-1}(A_{21}a_{I}+a_{22}a_{II})A_{21}a_{1}+A_{22}a_{11}\end{array}\} .

Hence, setting

a_{11}=A_{22}^{-1}(F_{11}-A_{21}a_{1}) ,

we need to estimate

A(\xi_{n}-M)a_{1}-F_{1}+A_{12}A_{22}^{-1}F_{11} .
Moreover, putting

(AS)^{-1}(F_{1}-A_{12}A_{22}^{-1}F_{II})=\{\begin{array}{l}F_{0}F_{h}F_{e}\end{array}\} ,

S^{-1}a_{1}=\{\begin{array}{l}a_{0}a_{h}a_{e}\end{array}\} ,

we see from Lemma 2. 1 that

(AS)^{-1}(A(\xi_{n}-M)a_{1}-F_{1}+A_{12}A_{22}^{-1}F_{11})= (\xi_{n}-M_{h})a_{h}-F_{h}](\xi_{n}-M_{0})a_{0}-F_{0}(\xi_{n}-M_{e})a_{e}-F_{e}

’

where

M_{h}=\{\begin{array}{ll}M_{h}^{+} 00 M_{h}^{-}\end{array}\} , M_{e}=\{\begin{array}{l}M_{e}^{+}0\end{array} M_{\overline{e}}0] .
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Since the eigenvalues of M_{h}(\overline{x,}\overline{\xi}’) , M_{e}(\overline{x,}\overline{\xi}’) are different from \overline{\xi}_{n} , we
define

a_{h}=(\xi_{n}-M_{h})^{-1}F_{h\prime}

a_{e}=(\xi_{n}-M_{e})^{-1}F_{e} .

Thus it suffices to construct a_{0} so that elements of (\xi_{n}-M_{0})a_{0}-F_{0} are linear
combinations of those of W^{*}F, mod O(Q_{0}) .

Now, (2. 6) yields

(3.24) W^{*}F=S_{0}^{*}(F_{1}-A_{12}A_{22}^{-1}F_{II})

=S_{0}^{*}AS\{\begin{array}{l}F_{0}F_{h}F_{e}\end{array}\} .

Noting that S_{0}^{*}AS is an m_{1}\cross d matrix of maximal rank, we set

S_{0}^{*}AS=(T_{1}, \ldots T_{d})

and suppose |\xi’|=1 . Then we shall show that

(3.25) T_{2j-1}=(\xi_{n}-\lambda)T_{2j}, (\xi_{n}-\lambda)T_{2j-1}-\mu T_{2j}=0 , mod O(Q_{0})

for j=1 , \ldots . m_{1} , and

(3.26) T_{j}=O(Q_{0}) for 2m_{1}<j\leqq d.

Since (2. 7) implies A(\xi_{n}-M)S_{0}=O(Q_{0}) , so is S_{0}^{*}A(\xi_{n}-M)S=(A(\xi_{n}-

M)S_{0})^{*} S. Therefore by Lemma 2. 1 we have

S_{0}^{*}AS(\xi_{n}-\tilde{M})=S_{0}^{*}A(\xi_{n}-M)S=O(Q_{0}) ,

which yields (3. 26). Moreover, since ( T_{2j-1}, T_{2j})(\xi_{n}-M_{j})=O (Q_{0}) , we
obtain (3. 25).

Now, define

a_{0}=-\{\begin{array}{l}.0F_{1}0F_{3}...0F_{2m_{1}- 1}\end{array} with F_{0}=\{\begin{array}{l}F_{1}F_{2}\vdots F_{2m_{1}}\end{array}\} .

Then we have



Microlocal parametrices and propagation of singularities
near gliding points for hyperbolic mixed problems II 397

(\xi_{n}-M_{0})a_{0}=\{\begin{array}{l}F_{1}0F_{3}0\vdots F_{2m_{1}- 1}0\end{array}\} -(\xi_{n}-\lambda)\{\begin{array}{l}0F_{1}0F_{3}\vdots 0F_{2m_{1}- 1}\end{array}\} ,

while (3. 24), (3. 25) and (3. 26) imply that T_{2} , T_{4} , \ldots
T_{2m_{1}} are linearly

independent and

(T_{2}, T_{4}, \ldots T_{2m1})^{-1}W^{*}F=(\xi_{n}-\lambda)\{\begin{array}{l}F_{1}F_{3}\vdots F_{2m_{1}- 1}\end{array}\}+\{\begin{array}{l}F_{2}F_{4}\vdots F_{2m_{1}}\end{array}\} +O(Q_{0}) .

Consequently we see that elements of (\xi_{n}-M_{0})a_{0}-F_{0} are linear combinatons
of those of W^{*}F, mod O(Q_{0}) .

Finally we set

\tilde{a}_{1}(x, \eta’)=(1/2)(a(x, \eta’, z)+a(x, \eta’--z))|_{z^{2}=\rho},
\tilde{b}_{1}(x, \eta’)=(1/(2z))(a(x, \eta’. z)-a(x, \eta’. -z))|_{z^{2}=\rho} .

Then, since a(x, \eta’. z) is an analytic function of z,\tilde{a}_{1}(x, \eta’) and \tilde{b}_{1}(x, \eta’)

are smooth in (x, p7’) and have the desired properties. Analogously one can
construct a_{k}, b_{k} for k\geqq 2 so that (3. 12) holds. Thus we prove the theorem.

The construction of G_{h}, G_{e} in (3. 9) is similar to that of G^{(2)} , G^{(3)} in [8].

First we take a Fourier integral operator \tilde{G}_{h} on X’ and a pseudodifferential
operator \tilde{G}_{e} on X’ . depending smoothly on parameter x_{n}, such that P(x, D)
G_{h}w_{h}\in C^{\infty}(X) , P(x, D)G_{e}w_{e}\in C^{\infty}(X) near \overline{x} for all w_{h}(x’) , w_{e}(x’)\in H^{-\infty}

(X’) with FW(w_{h}) , WF(w_{e}) contained in a small conic neighborhood of
WF(f) , whose boundary values are classical pseudodifferential operators of
the form

(\tilde{G}_{h}w_{h})(\chi’. 0)=(2\pi)^{-n\int e^{i\chi’\xi’}W_{h}(\chi’} . \xi’) \chi\sim(\xi’)\hat{w}_{h}(\xi’)d\xi’-

(3.27)
( \tilde{G}_{e}w_{e})(x’. 0)=(2\pi)^{-n}\int e^{iX’\xi’}W_{e}(x’. \xi’)\tilde{\chi}(\xi’)\hat{w}_{e}(\xi’)d\xi’-

Here W_{h}(x’, \xi’)=W_{h}^{+}(x’. 0, \xi’) , W_{e}(x’, \xi’)=W_{e}^{+}(x’. 0, \xi’) mod S_{1,0}^{-1} , where
W_{h}^{+}(x, \xi’) , W_{e}^{+}(x, \xi’) are the matrices defined by (2. 8), and \tilde{\chi} is a cutoff
function such that \tilde{\chi}(\xi’)=1 for (x’. \xi’) in a conic neighborhood of WF(f) .
The construction of such \tilde{G}_{h},\tilde{G}_{e} is well known (see for example [20], Chap.
IX) . Next let \Phi_{1} be a Fourier injegral operator, with the canonical transfor-
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mation \phi_{1} defined by (3. 8), whose amplitude is e^{i(\theta-\theta)(X’,0,\eta^{r})}\in S_{1,0}^{0}v , namely,
define

(3.28) ( \Phi_{1}v)(x’)=\int e^{i\theta(x^{r},0,\eta’)}e^{i(\check{\theta}-\theta)(x’,0,\eta^{r})}\hat{v}(\eta’)d’\eta

for v(y’)\in H^{-\infty}(R^{n}J . Hereafter \theta^{v}(x’. 0, \eta)’ is extended to R^{n}\cross(R^{n}\backslash 0) in
such a way that \theta(x’. 0’, \eta)=\theta(x’0, \eta)’==x’\eta’ outside a conic neighbor-
hood of ( \overline{x}’, \overline{\eta}’) . Finally we define G_{h}, G_{e} as the compositions

(3.29) G_{h}=\tilde{G}_{h}\circ\Phi_{1} , G_{e}=\tilde{G}_{e^{o}}\Phi_{1} .

To deduce (1. 22) we also use the following lemma. Recall that the
almost analytic continuation a^{v}(x, \eta’) of a(x, \eta’) is defined by

(3.10) \check{a}(x, \eta’)=\sum_{k=0}^{\infty}\frac{\partial^{k}a(x,\eta’)}{\partial\eta_{0}^{k}}\frac{(-i\tau)^{k}}{k!}\chi_{0}(N_{k}\tau|\eta’|^{-1}) ,

where \tau is a positive number, \chi_{0}(t)\in C_{0}^{\infty}(R^{1}) a cutoff function, supported in
|t|<2 , such that \chi_{0}(l)=1 for |t|<1 , and \{N_{k}\}_{k=0}^{\infty} with N_{0}=1 is a sequence of
positive number which increases fast enough. Applying P(x, D) to each
side of (3. 10) and using A_{\acute{\acute{0}}}(\rho)=-\rho A_{0}(\rho) , we have

(3.31) P(x, D)G_{0}v_{0}= \int e^{i\theta}(A_{0}(\rho^{v}\vee)\tilde{c}-iA_{\acute{0}}(\rho^{v})\tilde{d})(A_{+}(\zeta)^{-1}\chi_{1}

+A_{0}(\zeta)^{-1}(1-\chi_{1}))\hat{v}_{0}(\eta’)d\eta’ .

Here, setting

c(x, \theta, \rho, a, b)=P_{1}(x, \theta_{x})a+\rho P_{1}(x, \rho_{x}) P(x, D)a,
d(x, \theta, \rho, a, b)=P_{1}(x, \theta_{x})b+P_{1}(x, \rho_{x})a+P(x, D)b,

which coincide with c(x, \eta’) and d(x, \eta’) in (3. 11), respectively, we have
\tilde{c}(x, \eta’)=c(x, \theta^{v}, \rho^{v}, a^{v},\check{b}) ,

\tilde{b}(x, \eta’)=d(x, \theta^{v}, \rho^{v}, a^{v}, b^{v}) .

Moreover we obtain

LEMMA 3. 2. Let k be a nonnegative integer and let |\eta’|\geqq\tau N_{k} . Then

\tilde{c}(x, \eta’)=\{

O(|\eta’|^{-k}) for \rho\geqq 0 ,

0 ((\rho|\eta’|^{-2/3})^{\infty}|\eta’|)+O(|\eta’|^{-k}) for \rho<0 ,
O(x_{n}^{\infty}|\eta’|)+O(|\eta’|^{-k}) for \eta_{0}<0 and 0\leqq x_{n}\ll 1 .

The analogous estimate for \tilde{d} also holds with |\eta’| and |\eta’|^{-k} replaced by |\eta’|^{2/3}

and |\eta’|^{-k-1/3} , respectively.
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PROOF. Let c^{v}(x, \eta’) be the almost analytic continua_{\veetion} of c(x, \theta, \rho,

a, b) . Then, since \chi_{0}(N_{j}\tau|\eta’|^{-1})=1 for j\leqq k, we have \tilde{c}-c=O(|\eta’|^{-k}) and

c^{v}= \sum_{j=0}^{k}\frac{\partial^{j}c}{\partial\eta_{0}^{j}}\frac{(-i\tau)^{j}}{j!}+O(|\eta’|^{-k}) .

Hence the desired estimate follows immediately from Theorem 3. 1.

\S 4. Airy operators

The purpose of this section is to give a summary of [11], \S 3. Let Ai(z)
be the Airy function of the first kind, given by

Ai(z)=(2 \pi)^{-1}\int_{-\infty}^{\infty}e^{izt}e^{it^{3}/3}dt.

We define A_{\pm} , A_{0} by

A_{\pm}(z)=e^{\mp i\pi/3}Ai(e^{\mp i\pi/3}z) ,
(4. 1)

A_{0}(z)=A_{+}(z)+A_{-}(z)=Ai(-z) .

Then

(4.2) A_{\pm}’(z)+zA_{\pm}(z)=A_{\acute{\acute{0}}}(z)+zA_{0}(z)=0

and A_{\pm} have the asymptotic expansions for |z|\gg 1 with -\pi\pm\pi/3<\arg z<\pi\pm

\pi/3

A_{\pm}(z)=z^{-1/4}e^{\pm i(2/3)z^{3l2}}\Psi_{\pm}(z) ,
(4.3)

\Psi_{\pm}(z)-e^{\mp i\pi/4}\Sigma_{k=0}^{\infty}(\pm i)^{k}a_{k}z^{-(3/2)k},

where a_{k} are real and a_{0}=1/(2\sqrt{\pi}) . Besides, A_{+}(z)\neq 0 for Re z\geqq 0 , A_{-}(z)\neq

0 for Im z\leqq 0 and Re A_{+}(x)={\rm Re} A_{-}(x)=A_{0}(x)/2 for x real.
Throughout the present paper, all functions of (x’. \eta’) will be modified

for |\eta’|<1 so that they are smooth in R^{n}\cross R^{n} . Noting that \rho^{v}(x’0, \eta)’=

(\eta_{0}-i\tau)|\eta^{\gamma\gamma}|^{-1/s} for |\eta^{rr}|>\tau N_{1} , where \tau , N_{1} are the positive numbers in
(3. 30), we set

(4.4) \zeta=(\eta_{0}-i\tau)|\eta’|^{-1/3}=(\alpha-i\tau|\eta’|^{-1})|\eta^{rr}|^{2/3} .

The parameter \tau will be fixed so large as all a priori estimats in Propositions
6. 1, 6. 2, 6. 3, Corollaries 6. 4 and 6. 5 hold. Moreover we set

K_{\pm}(\eta’)=-i|\eta^{rr}|^{-1/s}(A_{\pm}’/A_{\pm})(\zeta) ,
(4.5)

K_{0}(\eta’)=-i|\eta’|^{-1/3}(A_{\acute{0}}/A_{0})(\zeta) ,
L(\eta’)=(A_{-}/A_{+})(\zeta) ,

(4.6)
\mathscr{L}(\eta’)=(K_{+}+K_{-}L)\chi_{1}+K_{0}(1-\chi_{1}) ,

(4.7) \chi_{1}(\eta’)=\chi(\alpha|\eta^{rr}|^{2/3}/t_{0})=\chi(\eta_{0}|\eta’|^{-1/3}/t_{0}) ,
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(4.8) \chi_{\epsilon}(\eta’)=\chi(\alpha|\eta’|^{\epsilon})=\chi(\eta_{0}|\eta’|^{\epsilon-1})

and

(4.9) \gamma=(\alpha^{2}+|\eta’|^{-4/3})^{1/4}=(\eta_{0}^{2}+|\eta’|^{2/3})^{1/4}|\eta’|^{-1/2} .

Here t_{0} is a positive number with t_{0}<1 such that A_{0}(t)>0 for t\leqq 3t_{0} and
Im A_{+}(t)<0 for 0\leqq t\leqq 3t_{0} , and \chi(t)\in C^{\infty}(R^{1}) is a real valued function,
supported in t>3/2 , such that \chi(t)=1 for t>2 and \chi’(t)\geqq 0 . The \epsilon is an
arbitrary (fixed) positive number with \epsilon<1/2 . Note that \chi_{1}\in S_{1/3,0}^{0} , x_{\epsilon}\in

S_{1-\epsilon,0}^{0} for |\alpha| bounded. We also denote the Fourier multiplires corresponding
to (4. 5) through (4. 9) by the same letters. For example, L denotes the
Fourier multiplier defined by

(Lv) (y’)=(2 \pi)^{-n}\int e^{iy’\eta^{r}}L(\eta’)\hat{v}(\eta’)d\eta’\sim

From now on we suppose |\alpha|<1 and |\eta’|^{1/3}\gg\tau>1 . In addition, we
denote by L_{0}^{2}(R^{n}) or H_{0}^{s}(R^{n}) , respectively, the set of functions v(y’)\in L^{2}

(R^{n}) or v(y’)\in H^{s}(R^{n}) such that supp ti(\eta’)\subset\{|\alpha|<1\} . Here -\infty\leqq s\leqq\infty .
We also denote constants independent of \tau by C, C’, C_{k} and so on, while
O(|\eta’|^{-1}) etc. may be depend on \tau .

LEMMA 4. 1. Let q be a real number. Then
|\partial_{\eta 0}^{k}\mathfrak{X}_{\eta^{rr}}\gamma^{q}|\leqq C_{q,k,\beta}|\eta’|^{-k-|\beta|}\gamma^{q-2k} for k, |\beta|\geqq 0 .

In particular, \gamma^{q} belongs to S_{1/3,0}^{0} if q>0 and to S_{1/3,0}^{-q/3} if q<0 .

LEMMA 4. 2. The functions K_{+}\chi_{1} , K_{-} and K_{0}(1-\chi_{1}) belong to S_{1/3,0}^{0} .
More percisely,

|\partial_{\eta 0}^{k}\mathfrak{X}_{\eta^{rr}}K_{-}(\eta’)|\leqq C_{k,\beta}|\eta’|^{-k-|\beta|}\gamma^{q-2k}(1+O(|\eta^{rr}|^{-1}) for k, |\beta|\geqq 0 .

The analogous estimates also hold for K_{+} and K_{0} if \alpha\geqq 0 and \alpha|\eta’|^{2/3}\leqq 3t_{0} ,
respectively, where t_{0} is the number in (4. 7).

LEMMA 4. 3. The operators K_{+}\chi_{1} , K_{-} and K_{0}(1-\chi_{1}) are bounded on
L_{0}^{2}(R^{n}) . More precisely,

||K_{-}v||^{2}\leqq C||\gamma v||^{2}+O(||v\Uparrow_{-1/2}^{2}) for v\in L_{0}^{2}(R^{n}) .
The analogous estimates also hold for K_{+} and K_{0} if supp \hat{v}(\eta’)\subset\{\alpha\geqq 0 { and
\{\alpha|\eta’|^{2/3}\leqq 3t_{0}\} , respectively.

For the commutators involving \gamma , K_{\pm} and K_{0} we have

LEMMA 4. 4. Let a(y’\eta’)\in S_{1/3,0}^{0} and q be a real number. Then
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|(\gamma^{1-q}[\gamma^{q}, a]v, w)|\leqq C_{q}||\gamma^{-1/2}v||_{-1/2}^{2}+||\gamma^{-1/2}w||_{-1/2}^{2}

+O(||v||_{-1/2}^{2}+||w||_{-1/2}^{2}) ,
|([K_{-}, a]v, w)|\leqq C||\gamma^{-1/2}v||_{-1/2}^{2}+||\gamma^{-1/2}w||_{-1/2}^{2}+O(||v||_{-1/2}^{2}+||w||_{-1/2}^{2})

and
|(K_{-}[\chi_{1}, a]v, w)|\leqq C’||\gamma^{-1/2}v||_{-1/2}^{2}+||\gamma^{-1/2}w||_{-1/2}^{2}+O(||v||_{-1/2}^{2}+||w||_{-1/2}^{2})

for v, w\in L_{0}^{2}(R^{n})- The analogous estimates also hold for K_{+} and K_{0} if
supp \hat{v}(\eta’) is as in the preceding lemma.

For the proofs see those of [11], Lemmas 3. 1 through 3. 4.
The following three lemmas will play basic roles in dealing with the

operators L or \mathscr{L}

LEMMA 4. 5. Let x\geqq 0 and 0<y\ll(1+x)^{-1/2} . T.hen
|A_{\pm}(x-iy)|^{2}=|A_{\pm}(x)|^{2}\pm b_{0}y+O(y^{2}(1+x)^{1/2}) ,

|A_{\pm}’(x-iy)|^{2}=|A_{\pm}’(x)|^{2}\pm b_{0}xy+O(y^{2}(1+x)^{3/2}) ,

where b_{0}=-\sqrt{3}Ai(O)Ai’(0)>0 . Moreover |A_{-}(x)|=|A_{+}(x)| and, when
x\gg 1 ,

|A_{+}(x)|^{2}=a_{0}^{2}x^{-1/2}(1+O(x^{-3})) ,

|A_{\pm}’(x)|^{2}=a_{0}^{2}x^{1/2}(1+O(x^{-3})) ,

where a_{o} is the positive number in (4. 3)

LEMMA 4. 6. Let \alpha\geqq 0 and set

l(\eta’)=L(\eta’)e^{i(4/3)a^{3l2}|\eta’|} .

Then

l(\eta’)=ie^{-2\tau\Gamma a}(1+O(\zeta^{-3/2})) for \alpha|\eta’|^{2/3}\gg 1

and
|\partial_{\eta 0}^{k}\mathfrak{X}_{\eta\prime\prime}L(\eta’)|\leqq C_{k,\beta}\gamma(k+3|\beta|1+O(|\eta’|^{-1})) for k, |\beta|\geqq 0 .

In particular, (L(1-\chi_{\epsilon})\chi_{1})(\eta’)\in S_{\epsilon/2,0}^{0} and L(D_{\mathcal{Y}’})\chi_{\epsilon} is a Fourier integral
operator with singular phase function

\varphi(y’. \eta’)=y’\eta’-(4/3)\alpha^{3/2}|\eta’| ,

with amplitude l(\eta’)\chi_{\epsilon}(\eta’)\in S_{1-\epsilon,0}^{0} , where \chi_{1} and \chi_{\epsilon} are the cutoff functios
defifined by (4. 7) and (4. 8), respectively. Moreover denote by \phi_{2} the canoni-
cal transformation associated with L\chi_{\epsilon} which is defifined by \phi_{2}^{-1}(y’. \eta’)=

(\varphi_{\eta^{r}}(y’\eta’), \eta’) . Then
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(4. 10) \phi_{2}(y’\eta’)=(y_{0}+2\sqrt{\alpha}, y’-(2/3)\alpha^{3/2}\eta’/|\eta’|, \eta’) for \alpha\geqq 0 .

LEMMA 4. 7. Let a(y’. \eta’) , b(y’. \eta’)\in S_{1-\epsilon,0}^{m} be homogeneous in \eta’ .

Then there exist symbols a^{(0\rangle} , b^{(0)}\in S_{1-\epsilon,0}^{m} and a^{(1)} , b^{(1)}\in S_{1-\epsilon,0}^{m-1+\epsilon} such that,
modulo smoothing operators,

(L\chi_{1})(D_{\mathcal{Y}’})a(y’. D_{\mathcal{Y}’})\chi_{\epsilon}=(a^{(0)}+a^{(1)})(y’, D_{y},)L(D_{\mathcal{Y}’})\chi_{\epsilon},
b(y’, D_{\mathcal{Y}’})L(D_{\mathcal{Y}’})\chi_{\epsilon}=(L\chi_{1})(D_{\mathcal{Y}’})(b^{(0)}+b^{(1)})(y’. D_{\mathcal{Y}’})\chi_{\epsilon} .

Here a^{(0)}(y’. \eta’)=a\circ\phi_{2}^{-1}(y’. \eta’) , b^{(0)}(y’,-\eta’)=b\circ\phi_{2}(y’, \eta’) , a^{(1)} and b^{(1)} are O
(|\eta^{rr}|^{m-1}\gamma^{-1}) , supp a^{(1)}\subset\phi_{2} supp \partial_{\mathcal{Y}’}a) and supp b^{(1)}\subset\phi_{2}^{-1} supp \partial_{\mathcal{Y}’}b ). In
particular, if a(y’\neg\eta’)\geqq 0 and

a\circ\phi_{2}^{-1}(y’, \eta’)\leqq a(y’, \eta’) ,

then supp a^{(j)}\subset supp a for j=0,1 ; if b(y’\wedge\eta’)\geqq 0 and

b\circ\phi_{2}(y’. \eta’)\leqq b(y’. \eta’) ,

then supp b^{(j)}\subset suppb for j=0,1 .

For the proofs see those of [11], Lemmas 3. 9, 3. 5 and 3. 7. The follow-
ing lemma is a drect consequence of Lemma 4. 5 if we set x=\alpha|\eta’|^{2/3} and y=
\tau|\eta’|^{-1/3} .

LEMMA 4. 8. Let b_{1} be the positive number in [11], Lemma 3. 10.
Then

1-|L(\eta’)|\geqq b_{1}\tau\gamma-O(|\eta^{rr}|^{-1}) if 0\leqq\alpha\ll\tau^{-2} ,
1-|L(\eta’)|\geqq\delta-O(|\eta’|^{-1}) if \alpha\geqq\delta^{2}\tau^{-2} and 0<\delta<1/2 .

Moreover for v\in L_{0}^{2}(R^{n})

Re((1+L\chi_{1})v, v)\geqq b_{1}\tau||\gamma^{1/2}\chi_{1}v||^{2}+||(1-\chi_{1})v||^{2}-O(||v||_{-1/2}^{2})

if supp \hat{v}(\eta’)\subset\{\alpha\ll\tau^{-2}\} , and

Re((1+L\chi_{1})v, v)\geqq\delta||v||^{2}-O(||v||_{-1/2}^{2})

if supp \hat{v}(\eta’)\subset\{\alpha\geqq\delta^{2}\tau^{-2}\} and 0<\delta<1/2 . In particular,

(4. 11) ||Lv||^{2}\leqq||v||^{2}+O(||v||_{-1/2}^{2})

for v\in L^{2}(R^{n}) with supp \hat{v}(\eta’)\subset\{0\leqq\alpha<1\} .
Note that Lemma 4. 3 and (4. 11) yield

(4. 12) ||\mathscr{L}v||^{2}\leqq C||\gamma v||^{2}+O(||v||_{-1/2}^{2})

for v\in L_{0}^{2}(R^{n}) .
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For the commutators involving L\chi_{1} or \mathscr{L} we have

LEMMA 4. 9. Let a(y’, \eta’)\in S_{1-\epsilon,0}^{0} . Then

||[L\chi_{1}, a]v||^{2}\leqq C||\gamma v||^{2}+O(||v||_{-1/2}^{2})

and
|([\mathscr{L}. a]v, w)|\leqq C’(||\gamma v||^{2}+||\gamma w||^{2})+O(||v||_{-/12}^{2}+||w||_{-1/2}^{2})

for v, w\in L_{0}^{2}(R^{n}) .

For the proof see that of [11], Lemma 3. 8. The following a priori

estimate for the operator \mathscr{L} will play an essential role in deriving a basic
estimate in this paper which will be given in Proposition 6. 1.

LEMMA 4. 10. There is a positive number b_{2} such that

Re(\mathscr{L}v, (1+L\chi_{1})v)\geqq b_{2}\tau(||\gamma\chi_{1}v||^{2}+||\gamma^{-1/2}(1-\chi_{1})v||_{-1/2}^{2})-O(||v||_{-1/2}^{2})

for v\in L_{0}^{2}(R^{n}) with supp \hat{v}(\eta’)\subset\{\alpha\ll\tau^{-2}\} .

For the proof see that of [11], Proposition 3. 12. The following lemmas
are supplements to the above estimate.

LEMMA 4. 11. Let 0<\delta\leqq\pi/2 and set

C_{8}=( \sin\delta)\inf_{x\leqq 0}(1-x)^{-1/2}A_{\acute{0}}(x)/A_{0}(x) .

Then C_{8} is positive and

Re(e^{i8}\gamma K_{0}v, v)\geqq C_{8}||\gamma v||^{2}-O(||v||_{-1/2}^{2})

for v\in L^{2}(R^{n}) with supp \hat{v}(\eta’)\subset\{-1<\alpha\leqq 0\} .

LEMMA 4. 12. Let \alpha|\eta’|^{\epsilon}>1 and 0<\epsilon<1/2 . Then

K^{\pm}(\eta’)=\pm\sqrt{\alpha}+i(4\alpha|\eta’|)^{-1}+O(\alpha^{-1/2}|\eta’|^{-1}) .

LEMMA 4. 13. Let 0<\delta<1/2 . Then

Re(\mathscr{L}v, (1+L\chi_{1})v)\geqq\delta^{2}\tau^{-1}||v||^{2}-O(||v||_{-1/2}^{2})

for v\in L_{0}^{2}(R^{n}) with supp \hat{v}(\eta’)\subset\{\tau^{2}\alpha>\delta^{2}\} .

For the proofs see those of [11], Lemmas 3. 17, 3. 18 and 3. 19.
We will also use in \S 7 the family of pseudodifferential operators \Lambda_{t} with

symbols \Lambda_{t}(y’. \eta’)=<\eta’>-ty0 . Here t>0 is a parameter and

<\eta’>=|\eta’|\chi(|\eta’|)+(1+|\eta’|^{2})^{1/2}(1-\chi(|\eta’|))
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with the \chi in (4. 7), so that <\eta’>=|\eta’| if |\eta’|>2 . For \tau>1 and t>0 we
set, as in [11],

\tau_{t}=\tau+t\log<\eta’> , \zeta_{t}=(\eta_{0}-i\tau_{t})<\eta’>-1/3 ,

L_{t}(\eta’)=(A_{-}/A_{+})(\zeta_{t}) ,
(4. 13) K_{\pm,t}(\eta’)=-i<\eta’>-1/3(A_{\pm}’/A_{\pm})(\zeta_{t}) ,

K_{0,t}(\eta’)=-i<\eta’>-1/3(A_{\acute{0}}/A_{0})(\zeta_{t}) ,

(4. 14) \chi_{1t}(\eta’)=\sum_{k=0}^{\infty}\frac{\partial^{k}\chi_{1}(\eta’)}{\partial\eta_{0}^{k}}\frac{(-it1og<\eta’>)^{k}}{k!}\chi_{0}(N_{k}t<\eta^{rr}>-1\log<\eta’>)

with such \mathcal{X}0 , N_{k} as in (3. 30), and

(4. 15) \mathscr{L}_{t}=(K_{+,t}+K_{-,t}L_{t})\chi_{1t}+K_{0t}(1-\chi_{1t}) .

Let v(y’)\in H^{-\infty}(R^{n}) be a function such that v\in H^{\infty}(R^{n}\backslash K) for a com-
pact set K and supp \hat{v}(\eta’)\subset\{|\alpha|<c_{0}<\eta’>-8\} with some positive numbers c_{0} ,
\delta. Then we have

(4. 16) \Lambda_{t}L\chi_{1}v=L_{t}\chi_{1t}\Lambda_{t}v, \Lambda_{t}\mathscr{L}v=\mathscr{L}_{t}\Lambda_{t}v

mod H^{\infty}(R^{n}\cap\{y_{0}>T\}) for any real number T. Moreover Lemmas 4. 2, 4.
3, 4. 4, 4. 9 and 4. 11 are still valid even if \tau and \chi_{1} are replaced by \tau_{t} and \chi_{1t} ,
respectively. Hereafter we suppose that |\alpha|<c_{0}<\eta’>-8 and v is as above.
Then we obtain the following estimates.

LEMMA 4. 14. Lelb_{1} be the positive number in Lemma 4. 8. Then
1-|L_{t}(\eta’)|\geqq b_{1}\tau_{t}\gamma-O(<\eta’>-1) if \alpha\geqq 0

and

Re((1+L_{t}\chi_{1t})v, v)\geqq b_{1}||(\tau_{t}\gamma)^{1/2}\chi_{1t}v||^{2}+||(1-\chi_{1t})v||^{2}

-O(||\tau_{t}v||_{-1/3}^{2}) if v\in L^{2}(R^{n}) .
LEMMA 4. 15. Let b_{2} be the positive number in Lemma 4. 10. Then

Re(\mathscr{L}_{t}v, (1+L_{t}\chi_{1t})v)

\geqq b_{2}(||\tau_{t}^{1/2}\gamma\chi_{1t}v||^{2}+||\tau_{t}^{1/2}\gamma^{-1/2}(1-\chi_{1t})v||_{-1/2}^{2})

-O(||\tau_{t}v||_{-1/2}^{2}) if v\in L^{2}(R^{n}) .
For the proofs see the end of [11], \S 3. We also see from Lemmas 4. 14

and 4. 3 that (4. 11) and (4. 12) hold for such v as bescribed above even if L
and \mathscr{L} are replaced by L_{t} and \mathscr{L}_{t} , respectively.

\S 5. Equation on the boundary

Our next task is to solve, mod C^{\infty} .
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(5. 1) BGv|_{x_{n}=0}=f,

where G is the operator defined by (3. 9), (3. 10) and (3. 29). From now on
we suppose that x_{n}=0 , |\alpha|\ll 1 , (x’. \xi’)=\phi_{1}(y’. \eta’) , where \phi_{1} is the canonical
transformation given by (3. 8), and often abbreviate (x’, O)\in\partial X as x’ . so
\theta_{x}(x’. \eta’)=(\theta_{x^{r}}(x_{f}’0’, \eta), \theta_{x_{n}}(x’. 0’, \eta)) and so on.

Let \Phi^{-1} be an elliptic Fourier integral operator with canonical transfor-
mation \phi_{1}^{-1} such that

(5.2) \Phi_{1}\Phi_{1}^{-1}=\Phi_{1}^{-1}\Phi_{1}=the identity, mod OPS_{1,0}^{-\infty} ,

where \Phi_{1} is the Four\overline{l}er integral operator defined by (3. 28). Then (5. 1) is
equivalent to

(5.3) \Phi_{1}^{-1}BG_{0}v_{0}+\Phi_{1}^{-1}B(G_{h}, G_{e}) \{\begin{array}{l}v_{h}v_{e}\end{array}\}=\Phi_{1}^{-1}f,

where (3. 27) and (3. 29) imply that \Phi_{1}-1B (G_{h}, G_{e}) is a classical
pseudodifferential operator with principal symbol B(x’) ( W_{h}, W_{e})(x’\xi’) .
Moreover, since \rho^{v}(x’. \eta’)=\zeta for |\eta’|\gg 1 , it follows from (4. 1), (4. 5) and
(4. 6) that, mod C^{\infty}(X’) ,

(BG_{0}v_{0})(x’)= \int e^{i\theta(\chi’,\eta’)}B(x’)a^{y}\vee(x’. \eta’)(1+L\chi_{1})(\eta’)\hat{v}_{0}(\eta’)d\eta ’

+ \int e^{i\check{\theta}(\chi\eta)}B’,’(x’)b^{v}(x’. \eta’)|\eta’|^{1/3}\mathscr{L}(\eta’)\hat{v}_{0}(\eta’)d\eta’ .

Therefore, applying \Phi_{1}^{-1} to each side, we have

(5.4) (\Phi_{1}^{-1}BG_{0}v_{0})(y’)=\tilde{c}(1+L\chi_{1})v_{0}+\tilde{d}\mathscr{L}v_{0} ,

where \tilde{c,}\tilde{d}\in OPS_{1,0}^{0} and, mod S_{1,0}^{-1} ,

\tilde{c}(y’\eta’)=B(x’)a_{0}(x’. \eta’) ,
\tilde{d}(y’. \eta’)=B(x’)b_{0}(X^{r}-\eta’)|\eta’|^{1/3}

with a_{o} , b_{0} the symbols given by (3. 17). Note that (2. 6), (3. 5), (3. 6) and
(3. 16) yield

a_{0}(X_{\sim}’\eta’)=W(x’,\eta\xi_{3}’\lambda(x’, \xi’))g_{0}(x’. \eta’)

+\alpha|\eta’|^{2/3}\rho_{Xn}(x’. \eta’)W_{\xi n}(x’\xi’)h_{0}(x’, \eta’)

(5. 5)
b_{0}(x’\eta’)=W(x’. \xi’. \lambda(x’. \xi’))h_{0}(x’. \eta’)

+\rho_{Xn}(x’\eta’)W_{\xi n}(x’, \xi’)g_{0}(x’. \eta’) ,

because W_{\xi n} is independent of \xi_{n} .
We shall here specify the initial data on t=0 for the transport equation

(3. 23)_{\pm} . First suppose (1. 9) holds. Let E(y’. D_{\mathcal{Y}’})\in OPS_{1,0}^{0} be an elliptic
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pseudodifferential operator whose symbol is the matrix \tilde{R}(\chi_{-}’\xi’, \xi_{n}) given
by (1. 8) with \xi_{n}=\lambda(x’,r\xi’) . Applying a parametrix E^{-1} for E to each side
of (5. 3), one can write

(5.6) B_{11}v_{0}+B_{12}\{\begin{array}{l}v_{h}v_{e}\end{array}\}=F_{1} , B_{21}v_{0}+B_{22}\{\begin{array}{l}v_{h}v_{e}\end{array}\}=F_{2} .

Here B_{11} , B_{22} are square matrices of order m_{1} , d_{+}-m_{1} , respectively; B_{12} ,
B_{22}\in OPS_{1,0}^{0} and, mod S_{1,0}^{-1} , B_{12}(y’. \eta’)=0 , B_{22}(y’, \eta’)=I_{d_{+}-m_{1}} . Hence, set-
ting

\{\begin{array}{l}v_{h}v_{e}\end{array}\}=B_{22}^{-1}(F_{2}-B_{21}v_{0}) ,

we see from (5. 4) and (5. 5) that (5. 6) becomes
(5. 7) (\tilde{c}_{1}g_{0}+\tilde{c}_{2}h_{0})(1+L\chi_{1})v_{0}+(\tilde{d}_{1}h_{0}+\tilde{d}_{2}g_{0})\mathscr{L}v_{0}=F_{1}-B_{12}B_{22}^{-1}F_{2} ,

where \tilde{c}_{1},\tilde{d}_{2}\in OPS_{1,0}^{0},\tilde{d}_{1},\tilde{c_{2}}\in OPS_{1,0}^{1/3} and \tilde{c_{1}}(y’. \eta’)=I_{m_{1}}+O(\alpha) mod S_{1,0}^{-1} ,
\tilde{c}_{2}(y’. \eta’)=O(\alpha|\eta’|^{1/3}),\tilde{d}_{1}(y’, \eta’)=(I_{m_{1}}+O(\alpha))|\eta’|^{1/3} mod S_{1,0}^{-2/3} .

We shall now take g_{0}(\mathcal{X}’-\eta’) , h_{0}(x, \eta’) for \rho=0 in such a way that g_{0} is
elliptic and, for x_{n}=0 ,

(5.8) h_{0}|\eta’|^{1/3}+\tilde{d}_{2}g_{0}=O(\alpha) , mod S_{1,0}^{-1} .

In fact, setting t=0 in (3. 23)_{+} , we have

(5.9) \sum_{j=0}^{n-1}C_{j}^{+}(x’. 0’, \eta)\frac{\partial g_{0}}{\partial x_{j}}+C_{n+1}^{+}(x’. 0’, \eta)g_{0}=-C_{n}^{+}(x’, 0’, \eta)h .

Therefore, if we define h_{0}=-\tilde{d}_{2}g_{0}|\eta’|^{-1/3} for t=0, the above equation
becomes a symmetric hyperbolic system for g_{0}(x’. \eta’)|_{\rho=0} , because C_{0}^{+}(x’. 0 ,
\eta’) is positive definite. Thus (5. 9) has a unique solution with initial data
g_{0}=1 on x_{0}=0 . Consequently, g_{0} is elliptic and, by (3. 5), (5. 8) holds.
Finally, applying a parametrix for \tilde{c}_{1}g_{0}+\tilde{c}_{2}h_{0} to each side of (5. 3), we arrive
at

(5. 10) (1+L\chi_{1})v_{0}+b\mathscr{L}v_{0}=f_{0} ,

where b (y’. _{lf’})=O(\alpha) mod S_{1.0}^{-1} , and
f_{0}=(\tilde{c}_{1}g_{0}+\tilde{c}_{2}h_{0})^{-1}(F_{1}-B_{12}B_{22}^{-1}F_{2}) .

Next suppose (1. 10) and (1. 11) hold. For convenience we denote by
\tilde{R}_{jk}(x’. \xi’. \xi_{n}) , j, k=1 , \ldots . m_{1} , the matrix \tilde{R}(x’. \xi’. \xi_{n}) with the j-th col-
umn of W(x’. \xi’. \xi_{n}) replaced by the k-th column of W_{\xi n}(x’. \xi’)|\eta’| and set
R_{jk}=\det\tilde{R}_{jk} . Then (1. 11) means
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\Sigma_{k=1}^{m_{1}}R_{kk}(\overline{x}’. \overline{\xi}’.\overline{\xi}_{n})\neq 0 .

Hereafter we suppose for definiteness that R_{11} ( \overline{x}’. \overline{\xi}’.\overline{\xi}_{n})\neq 0 . Let E_{1}\in

OPS_{1,0}^{0} be an elliptic pseudoidfferential operator with symbol \tilde{R}_{11}(x’. \xi’ . \lambda(x’ .
\xi’)) . Applying a parametrix E_{1}^{-1} for E_{1} to each side of (5. 3), we obtain an
equation of the same form as (5. 6), where B_{12} , B_{22} are as before. Set

(5. 11) \{\begin{array}{l}v_{h}v_{e}\end{array}\}=B_{22}^{-1}(F_{2}-B_{21}v_{0})

with

\{\begin{array}{l}F_{1}F_{2}\end{array}\}=E_{1}^{-1}\Phi_{1}^{-1}f.

Then (5. 3) is equivalent to

(5. 12) (B_{11}-B_{12}B_{22}^{-1}B_{21})v_{0}=F_{1}-B_{12}B_{22}^{-1}F_{2} ,

the left hand side of which is of the same form as that of (5. 7). Since B_{12}B_{22}^{-1}

\in OPS_{1,0}^{-1} , it suffices to examine B_{11} only.
Write

\{\begin{array}{l}B_{!^{1}}B_{21}\end{array}\}=\tilde{c}’(1+L\chi_{1})+\tilde{d}’\mathscr{L}

Then, mod S_{1,0}^{-1} ,

\tilde{c}’(y_{2}’\eta’)=E_{1}^{-1}BWg_{0}+O(\alpha) ,
\tilde{d}’(y’. \eta’)=(E_{1}^{-1}BWh+\rho_{Xn}E_{1}^{-1}BW_{\xi n}g_{0})|\eta’|^{1/3}

where W=W(\chi_{r}’,\xi’\lambda(x’, \xi’)) , W_{\xi n}=W_{\xi n}(x’. \xi’) . Therefore, setting

(5. 13) E_{1}^{-1}(y’\eta’)B(x’)W(x’. \xi’. \lambda(x’. \xi’))=\{\begin{array}{lll}e_{11} \cdots e_{1m_{1}}\vdots \vdots e_{d_{+}1} \cdots e_{d_{+}m_{1}}\end{array}\} (y’. \eta’) ,

we have, mod S_{1,0}^{-1} ,

e_{11}=(R/R_{11})(x’. \xi’. \lambda(x’. \xi’))|\eta’|^{-1}+O(\alpha) ,
(5. 14) e_{j1}=-(R_{j1}/R_{11})(\chi_{r}’,\xi’\lambda(x’, \xi’))+O(\alpha) for 2\leqq j\leqq m_{1} ,

e_{jk}=\delta_{jk}+O(\alpha) for 1\leqq j\leqq m_{1},2\leqq k\leqq m_{1} .

We shall now take the initial data g_{0}(x, ’\rho’) and h(x, \eta’) on \rho=0 for
(3. 23)_{\pm} as follows. In the case of m_{1}=1 , we define h(x, \eta’)=0 for \rho=0 and
then solve (5. 9) with initial data g_{0}=1 on x_{)}=0 , so that g_{0} is elliptic and, by
(3. 5), we have
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(5. 15) h_{0}(x’\eta’)=O(\alpha|\eta’|^{-1/3}) .

Moreover (5. 12) can be written as
c^{\approx}(1+L\chi_{1})+d^{\approx}\mathscr{L}=F_{1}-B_{12}B_{22}^{-1}F_{2} ,

where, mod S_{1,0}^{-1} ,

c^{\approx}(y’. \eta’)=e_{11}g_{0}(y’. \eta’)+O(\alpha) ,
d(y’,-\eta’)=g_{0}(X^{r},r\eta’)\rho_{xn}(x’,r\eta’)|\eta’|^{-2/3}+O(\alpha) .

Since d^{\approx}\in S_{1,0}^{0} is elliptic, applying a parametrix d^{-1}\approx to each side, we arrive
at

(5. 16) \mathscr{B}v_{0}=f_{0}

with f_{0}=d^{-1}(F_{1}-B_{12}B_{22}^{-1}F_{2})\approx and

(5. 17) \mathscr{B}=a(1+L\chi_{1})+\mathscr{L}

Here a\in OPS_{1,0}^{0} and, mod S_{1,0}^{-1} ,

(5. 18) a(y’. \eta’)=R_{\lambda}(x’. \xi’)/(\rho_{x_{n}}(x’\eta’)|\eta’|^{1/3})+O(\alpha) ,

so that condition (H_{1}) and (3. 4) yield

arg a(y’, \eta’)\subset[-\pi/2, \pi/2-\delta_{0}] for \alpha=0 .

In the case of m_{1}\geqq 2 , we take

(5. 19) g_{0}(x, \eta’)|_{\rho=0}=\{\begin{array}{ll}1 0-e_{21} \vdots I_{m_{1}-1}-e_{m11} \end{array}\}

and define h_{0}(x, \eta’)|_{\rho=0} so that (5. 9) holds. Then (5. 12) becomes

(5.20) \tilde{a}’(1+L\chi_{1})v_{0}+\tilde{b}’\mathscr{L}v_{0}=F_{1}-B_{12}B_{22}^{-1}F_{2} ,

where \tilde{a}’-\tilde{b}’\in OPS_{1,0}^{0} and, mod S_{1,0}^{-1} ,

\tilde{a}’(y’. \eta’)=\{\begin{array}{ll}e_{11} 00 I_{m_{1}-1}\end{array}\} +O(\alpha) .

Moreover, denoting by \tilde{b}_{1k}’(y’-\eta’) the (1, k) entry of \tilde{b}’(y’. \eta’) , we see
from (5. 13), (5. 14) and (5. 19) that, mod S_{1,0}^{-1} ,

\tilde{b}_{11}’(y’. \eta’)=(\Sigma_{k=1}^{m_{1}}R_{kk}/R_{11})(X_{-}’\xi’-\lambda(x’. \xi’))\rho_{x_{n}}|\eta’|^{-2/s}+O(e_{11})

+O(\alpha)
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and, for 2\leqq k\leqq m_{1} ,

\tilde{b}_{\acute{1}k}(y’. \eta’)=(R_{1k}/R_{11})(x’\xi’. \lambda(x’. \xi’))\rho_{x_{n}}|\eta^{rr}|^{1/3}+O(e_{11})+O(\alpha) ,

because the (1, k) entry of E_{1}^{-1}BW_{\xi n} is equal to R_{1k}/R_{11} , mod O(e_{11}) , for
k\geqq 2 . (See the proof of [8], (5. 25)).

Now let E_{2} be an elliptic pseudodifferential operator whose symbol is
equal to I_{m_{1}} with the (1, 1) entry replaced by \tilde{b}_{11}’(y’. \eta’) . Applying a par-
ametrix E_{2}^{-1} to each side of (5. 20), we arrive at

(5.21) \mathscr{B}v_{0}=f_{0}

with f_{0}=E_{2}^{-1}(F_{1}-B_{12}B_{22}^{-1}F_{2}) and

(5.22) \mathscr{B}=a(1+L\chi_{1})+b\mathscr{L} .

where a, b\in OPS_{1,0}^{0} . Moreover, setting

(5. 23) a=\{\begin{array}{ll}a_{11} a_{12}a_{21} a_{22}\end{array}\} , b=\{\begin{array}{ll}b_{11} b_{12}b_{21} b_{22}\end{array}\} , v_{0}=\{\begin{array}{l}v_{1}v_{2}\end{array}\} , f_{0}=\{\begin{array}{l}f_{11}f\end{array}\} ,

where a_{11} , b_{11} , v_{1} , f_{1} are scalar, and a_{22} , b_{22} square matrices of order m_{1}-1 ,

we have, mod S_{1,0}^{-1} ,

(5.24) a_{11}(y’. \eta’)=\frac{R_{\lambda}(x’,\xi’)}{\rho_{xn}(x’.\eta’)|\eta’|^{1/3}\prime}(1+O(\frac{R_{\lambda}}{\rho_{xn}|\eta’|^{1/3}\prime}))+O(\alpha) ,

(5.25) a_{12}(y’. \eta’)=O(\alpha) , a_{21}(y’\eta’)=O(\alpha) ,
(5. 26) a_{22}(y’. \eta’)=I_{m_{1}-1}+O(\alpha) ,
(5.27) b_{11}(y’, \eta’)=1

and

(5.28) b_{12}(y’,\neg\eta’)=R_{\xi n}^{-1}(R_{12}, \ldots R_{1m_{1}})(x_{2}’\xi_{2}’\lambda(x’\xi’))+O(a_{11})+O(\alpha) .

Here R_{1k} are the functions described above (5. 11).
Finally we modify \mathscr{B} for y_{0}\ll\overline{y}_{0} as follows. Since WF(f) is contained

in a small conic neighborhood of \Gamma (\overline{\chi}_{-}’\overline{\xi}’)\cap\{x)\geqq 0\} , one can assume there is
a positive number \delta_{1} such that

(5.29) f_{0}\in H^{\infty}(R^{n}\cap\{y_{0}<\overline{y}_{0}-\delta_{1}\}) .

Let q_{1}(y_{0}) , q_{2}(y_{0})\in C^{\infty}(R^{1}) be cutoff functions such that q_{j}’(y_{0})\geqq 0 and

q_{1}(y_{0})=1 for y_{0}>\overline{y}_{0}-2\delta_{1} , suppq_{1}\subset(\overline{y}_{0}-3\delta_{1}, \infty) ,
(5.30)

q_{2}(y_{0})=1 for y_{0}>\overline{y}_{0}-4\delta_{1} , suppq_{2}\subset(\overline{y}_{0}-5\delta_{1}, \infty) .

Then we set
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\tilde{a}=q_{1}a+(1-q_{1})I_{m_{1}},\tilde{b}=q_{2}b,(5.31)
\overline{\mathscr{B}}=\tilde{a}(1+L\chi_{1})+\tilde{b}\mathscr{L}-

so that

\tilde{\mathscr{B}}=\{\begin{array}{l}\mathscr{B}fory_{0}>\overline{y}_{0}-2\delta_{1},\tilde{a}(1+L\chi_{1})+b\mathscr{L}fory_{0}>\overline{y}_{0}-4\delta_{1},(1+L\chi_{1})I_{m_{1}}+\tilde{b}\mathscr{L}fory_{0}<\overline{y}_{0}-3\delta_{1},(1+L\chi_{1})I_{m_{1}}fory_{0}<\overline{y}_{0}-5\delta_{1}.\end{array}

In the sequel we will find a solution v_{0}\in H^{-\infty}(R^{n}) of \overline{\mathscr{B}}v_{0}=f_{0} such that v_{0}\in

H^{\infty}(R^{n}\cap\{y_{0}<\overline{y}_{0}-\delta_{1}\}) and hence \mathscr{B}v_{0}=f_{0} , mod H^{\infty}(R^{n}) .

REMARK 5. 1. Adopting such a modification as (5. 31), one can sim-
plify fairly the procedure in [11]. In the rest of this remark we shall use the
notations in the preceding paper except for q_{1} and q_{2} , and restrict ourselves
to the case of (1. 7). First we replace (2. 13) by Gv=G_{1}v, so that (4. 15)
becomes (5. 10). (The (2. 12), (4. 8) and (4. 13) are unnecessary). Next
we modify \mathscr{B}0 for y_{0}\ll\overline{y}_{0} analogously to (5. 31) of the present article.
Denote the modified operator by \mathscr{B} Then (5. 5) is replaced by

S=q_{3}^{2}\{(1+L\chi_{1})+\sqrt{\tau}e^{-i8_{0}}\gamma\chi_{-1}^{2}\}+(1-q_{3})\gamma(1-q_{3}) ,

where q_{3} is a cutoff function such that q_{3}=1 on supp q_{1} and q_{2}=1 on supp q_{3} .
(The (5. 2), (5. 3), (5. 4) and Lemma 5. 8 are unnecessary). Besides, in the
proof of Lemma 6. 8 or 6. 9 one can assume that \mathscr{B}=1+L\chi_{1} or \mathscr{B}=1+L\chi_{1}+

q_{2}\mathscr{L} . respectively. (See the proof of Lemma 7. 5 below).

REMARK 5. 2. It should be pointed out that, in the case where (\overline{x}’. \overline{\xi}’)

is a diffractive point, the equation (5. 21) can be replaced by (a+bK_{-})v_{0}=

f_{0} with \tau=0 in (4. 5). Since a_{22}+b_{22}K_{-}\in S_{1/3,0}^{0} is elliptic, the system of m_{1}

equations is reduced to a single equation for v_{1} only, namely, to (5. 28) of
[8]. Therefore, using Theorem B.1 of Eskin [5] in the references of [11]
(Comm. in P. D. E., Vol. 10 (1985), pp. 1117-1212), one can relax the
hypothesis (iv) of [8] so that arg R_{\lambda}(x’. \xi’) is contained in the closed inter-
val [\delta_{0}, (3/2)\pi-\delta_{0}] for (x’\xi’)\in N_{0}\cap\Sigma_{0} , where \delta_{0} , N_{0} and \Sigma_{0} are the
notations in (H_{1}) .

\S 6. A priori estimates for the equation on the boundary

In the rest of this paper we deal with the more difficult case where (1. 10)
holds, unless stated otherwise. (For the case of (1. 9) see Remarks 6. 11
and 7. 10 below).

The main purpose of the present section is to derive a priori estimates for



Microlocal parametrices and propagation of singularities
near gliding points for hyperbolic mixed problems II 411

solutions of \overline{\mathscr{B}}v_{0}=f_{0} and \mathscr{B}v_{0}=f_{0} which will be stated in Propositions 6. 1 and
6. 3, respectively. Here \mathscr{B} is the operator defined by (5. 17) when m_{1}=1

and by (5. 22) when m_{1}\geqq 2 , and \overline{\mathscr{B}} the modified operator given by (5. 31),

where b=1 if m_{1}=1 . From now on we assume the symbols a(y’, \eta’) ,

b(y’. \eta’) are homogeneous in \eta’ for |\eta’|>1 .
First suppose m_{1}=1 . Then

\mathscr{B}=a(1+L\chi_{1})+\mathscr{L}

is a scalar operator, where L, \mathscr{L} and \chi_{1} are the Fourier multipliers given by
(4. 6), (4. 7). Moreover, by (5. 18), the condition (H_{1}) implies that

(6. 1) arg a(y’. \eta’)\subset[-\pi/2, \pi/2-\delta_{0}] for \alpha=0 ,

in particular,

(6. 1)_{0} Re a(y’\eta’)\geqq 0 for \alpha=0 .

Next suppose m_{1}\geqq 2 . Then, according to (5. 24) and (H_{1}) , one can
assume without loss of generality that

(6.2) arg a_{11}(y’-\eta’)\subset[-\pi/2, \pi/2-\delta_{0}] for \alpha=0 ,

in particular,

(6. 2)_{0} Re a_{11}(y’. \eta’)\geqq 0 for \alpha=0 .

In order to state a basic a priori estimate for \overline{\mathscr{B}} we now introduce an
auxiliary bounded operator S on L^{2}(R^{n}) , defined by

(6.3) Sv_{0}=q^{2}\{\begin{array}{l}S_{1}v_{1}S_{2}v_{0}\end{array}\}+(1-q)\gamma(1-q)v_{0}

with

(6.4) S_{1}=(1+L\chi_{1})+\delta_{2}\tau e^{-i80}\gamma\chi_{-1}^{2} ,

(6.5) S_{2}v_{0}=(1+L\chi_{1})v_{2}+\gamma v_{2}+(\tilde{b}_{21}\mathscr{L}v_{1}+\tilde{b}_{22}\mathscr{L}v_{2}) ,

where if m_{1}=1 then v_{0}=v_{1} and S_{2}v_{0}=0 . Here \chi_{-1}(\eta’)=\chi_{1} (-\eta’) , \gamma is the
Fourier multiplier given by (4. 9), \tau the parameter in (4. 4) and \delta_{2} a small
positive number. Moreover q=q(y_{0})\in C^{\infty}(R^{1}) is a cutoff function such that
q(y_{0})=1 for y_{0}>\overline{y}_{0}-3\delta_{1} and supp q\subset(\overline{y}_{0}-4\delta_{1}, \infty) . Note that (5. 30)

yields qq_{1}=q_{1} and qq_{2}=q .
The following a priori estimate for \overline{\mathscr{B}} will play a basic role in the

following analysis.

PROPOSITION 6. 1. Assume (6. 1) or (6. 2) holds in the case of m_{1}=1
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or m_{1}\geqq 2 , respectively. Then there are positive numbers \tau_{1},
C_{1} and \delta_{2} such

that

(6.6) Re(\tilde{\mathscr{B}}v_{0}, Sv_{0})\geqq C_{1}\tau||\gamma v_{0}||^{2}-O(||v_{0}||_{-1/2}^{2})

for \tau\geqq\tau_{1} and v_{0}\in L^{2}(R^{n}) with supp \hat{v}_{0}(\eta’)\subset { \gamma<\tau^{-1} and \alpha\ll\tau^{-2} }.

Note that (6. 6) yields

(6.7) \tau||\gamma v_{0}||_{s}^{2}\leqq C_{1}’||\gamma^{-1}\overline{\mathscr{B}}v_{0}||_{s}^{2}+C_{\tau,s}||\gamma^{-1}v_{0}||_{s-1}^{2}

for any real number s and \gamma^{-1}v_{0}\in H^{s}(R^{n}) with supp \hat{v}_{0} as above, in particu-
lar,

(6.8) \tau||v_{0}||_{s-1/3}^{2}\leqq C_{1}’||\overline{\mathscr{B}}v_{0}||_{s+1/3}^{2}+C_{\tau,s}||v_{0}||_{s-2/3}^{2}

if v_{0}\in H^{s+1/3}(R^{n}) , where C_{1}’ is a constant independent of \tau , s.
For the purpose of showing that there exists a solution of \tilde{\mathscr{B}}v_{0}=f_{0} , we

need also the following a priori estimate for S.

PROPOSITION 6. 2. There are positive numbers \tau_{2} and C_{2} , independent
of \delta_{2} , such that

(6.9) Re(Sv_{0}, v_{0})\geqq C_{2}(\tau||\gamma^{1/2}qv_{0}||^{2}+||\gamma^{1/2}(1-q)v_{0}||^{2})-O(||\gamma^{-1/2}v_{0}||_{-1/2}^{2})

for \tau\geqq\tau_{2} and such v_{0}\in L^{2}(R^{n}) as in the preceding proposition.

To study the propagation of singularities in the region \alpha|\eta’|^{\epsilon}\gg 1 we use
the following a priori estimate for \mathscr{B}

PROPOSITION6. 3. Assume that (6. 1)_{0} holds in the case of m_{1}=1 and
that (H_{1}) , (H_{2}) hold in the case of m_{1}\geqq 2 . Then there are positive numbers
\tau_{3} , C_{3} and \delta_{3} such that, if p(y’. \eta’)\in S_{1,0}^{0} is homogeneous in \eta’0\leqq p(y_{j}’

\eta’)\leqq 1 and p\circ\phi_{2}(y’\eta’)\leqq p(y’, \eta’) , \phi_{2} being the canonical transformation
given by (4. 10), then

(6. 10) \tau||\gamma^{2}pv_{0}||^{2}\leqq C_{3}(||p\mathscr{B}v_{0}||^{2}+||pL\chi_{\epsilon}\mathscr{B}v_{0}||^{2})+O(||\gamma^{2}v_{0}||_{-\epsilon 0}^{2})

for \tau\geqq\tau_{3} and v_{0}\in L^{2}(R^{n}) with supp \hat{v}_{0}(\eta’)\subset\{2|\eta’|^{-\epsilon}<\alpha<\delta_{3}\tau^{-2}\} . Here \epsilon_{0}=

1/2-(3/4)\epsilon with \epsilon the number in (4. 8), and \tau_{3} , C_{3} and \delta_{3} are independent
of p.

We also need an analogue to (6. 6) for \mathscr{B} . Denoting by S_{0} the operator
S defined by (6. 3) with q=1 , we have

CCROLLARY 6. 4. Assume (6. 1) or (6. 2) holds in the case of m_{1}=1

or m_{1}\geqq 2 , respectively. Then there are positive numbers \tau_{4} , C_{4} and \delta_{2} such
that
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(6. 11) Re(\mathscr{B}v_{0}, S_{0}v_{0})\geqq C_{4}\tau||\gamma v_{0}||-O(||v_{0}||_{-1/2}^{2})

for \tau\geqq\tau_{4} and such v_{0}\in L^{2}(R^{n}) as in Proposition 6. 1.

COROLLARY 6. 5. There are positive numbers \tau_{5} , C_{5} such that

(6. 12) Re(S_{0}v_{0}, v_{0})\geqq C_{5}\tau||\gamma^{1/2}v_{0}||^{2}-O(||\gamma^{-1/2}v_{0}||_{-1/2}^{2})

for \tau\geqq\tau_{5} and such v_{0}\in L^{2}(R^{n}) as above.

The rest of this section will be devoted to the proofs of the above
estimates. From now on we suppose v_{0}\in L^{2}(R^{n}) , supp \hat{v}(\eta’)\subset\{\gamma<\tau^{-1} ,
-1<\alpha\ll\tau^{-1}\} , and denote constants independent of \tau by C_{k}, C and so on.

PROOF OF PROPOSITION 6. 1 IN THE CASE OF m_{1}=1 . Write
(\tilde{\mathscr{B}}v_{0}, Sv_{0})=(q\tilde{\mathscr{B}}v_{0}, q(1+L\chi_{1})v_{0})

+\delta_{2}\tau(e^{i8_{0}}q\overline{\mathscr{B}}v_{0}, q\gamma\chi_{-1}^{2}v_{0})+((1-q)\tilde{\mathscr{B}}v_{0}, \gamma(1-q)v_{0})

=I_{1}+\delta_{2}\tau I_{2}+I_{3} .

Then, since q\overline{\mathscr{B}}=q\tilde{a}(1+L\chi_{1})+q\mathscr{L} and (6. 1)_{0} implies that

Re \tilde{a}(y’. \eta’)\geqq 0 for \alpha=0 ,

we obtain, analogously to [11], Lemma 5. 5,

(6.13) Re I_{1}\geqq b_{2}\tau(||\gamma\chi_{1}qv_{0}||^{2}+||\gamma^{-1/2}(1-\chi_{1})qv_{0}||_{-1/2}^{2})

-C||\gamma v_{0}||^{2}-O(||v_{0}||_{-1/2}^{2}) ,

where b_{2} is the positive number in Lemma 4. 10. We also have, analogously
to [11], Lemma 5. 6,

(6. 14) Re I_{2}\geqq C_{8_{0}}||\gamma\chi_{-1}qv_{0}||^{2}-C||\gamma^{3/2}\chi_{-1}qv_{0}||^{2}

-C’||\gamma^{-1/2}(1-\chi_{1})v_{0}||_{-1/2}^{2}-O(||v_{0}||_{-1/2}^{2}) ,

where C_{8_{0}} is the positive number in Lemma 4. 11 with \delta=\delta_{0} . Finally consider
I_{3} . Since

(1-q) \tilde{\mathscr{B}}=(1-q)(1+L\chi_{1})+(1-q)q_{2}\mathscr{L} .
one can write

I_{3}=((1+L\chi_{1})(1-q)v_{0}, \gamma(1-q)v_{0})

+([1-q, L\chi_{1}]v_{0}, \gamma(1-q)v_{0})+((1-q)q_{2}\mathscr{L}v_{0}, \gamma(1-q)v_{0}) .

Therefore, by virtue of Lemmas 4. 8, 4. 9 and (4. 12), we obtain

(6. 15) Re I_{3}\geqq b_{1}\tau||\gamma\chi_{1}(1-q)v_{0}||^{2}+||\gamma^{1/2}(1-\chi_{1})(1-q)v_{0}||^{2}

-C||\gamma v_{0}||^{2}-O(||v_{0}||_{-1/2}^{2}) ,
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where b_{1} is the positive number in Lemma 4. 8. Now (6. 6) follows from
(6. 13), (6. 14) and (6. 15), if we take \delta_{2} small relatively to b_{1} , b_{2} and 1. In
fact, mod O(||v_{0}||_{-1/2}^{2}) ,

||\gamma^{3/2}\chi_{-1}qv_{0}||^{2}\leqq\tau^{-1}||\gamma\chi_{-1}qv_{0}||^{2} ,
||\gamma^{-1/2}(1-\chi_{1})(1-q)v_{0}||_{-1/2}^{2}\leqq\tau^{-1}||\gamma^{1/2}(1-\chi_{1})(1-q)v_{0}||^{2} ,
||\gamma^{1/2}(1-\chi_{1})(1-q)v_{0}||^{2}\geqq\tau||\gamma(1-\chi_{1})(1-q)v_{0}||^{2}

and

||\gamma(1-\chi_{1}-\chi_{-1})qv_{0}||^{2}\leqq C||\gamma^{-1/2}(1-\chi_{1})qv_{0}||_{-1/2}^{2} .

Therefore we obtain (6. 6) for \tau\gg 1 and complete the proof.
To prove Proposition 6. 1 in the case of m_{1}\geqq 2 we represent the \tilde{a},\tilde{b} in

(5. 31) analogously to (5. 23). Then, in view of (5. 25) and (5. 26), one
can assume without loss of generality that

\tilde{a}=\{\begin{array}{ll}a_{11} 00 I_{m_{1}-1}\end{array}\}\sim .

For convenience set

\overline{\mathscr{B}}v_{0}=[_{\tilde{f_{2}}}^{\tilde{f_{1}}}] ,

so that

(6. 16) \tilde{f_{1}}=\tilde{a}_{11}(1+L\chi_{1})+\tilde{b}_{11}\mathscr{L}v_{1}+\tilde{b}_{12}\mathscr{L}v_{2} ,

(6. 17) \tilde{f_{2}}=(1+L\chi_{1})v_{2}+\tilde{b}_{21}\mathscr{L}v_{1}+\tilde{b}_{22}\mathscr{L}v_{2} .

We also write

(6. 18) (\overline{\mathscr{B}}v_{0}, Sv_{0})=(q\tilde{f_{1}}, q(1+L\chi_{1})v_{1})

+\delta_{2}\tau(e^{i8_{0}}ff\tilde{f_{1}}, q\gamma\chi_{-1}^{2}v_{1})+(ff\tilde{f_{2}}, qS_{2}v_{0})

+((1-q)\tilde{\mathscr{B}}v_{0}, \gamma(1-q)v_{0}) .

LEMMA 6. 6. Suppose (6. 2)_{0} holds. Then

(6. 19) Re(ff\tilde{f_{1}}, q(1+L\chi_{1})v_{1})

\geqq b_{2}\tau(||\gamma\chi_{1}qv_{1}||^{2}+||\gamma^{-1/2}(1-\chi_{1})qv_{1}||_{-1/2}^{2})

-(1/2)||(1+L\chi_{1})qv_{2}||^{2}-C_{6}||\gamma v_{0}||^{2}-O(||v_{0}||_{-1/2}^{2}) .

Here b_{2} is the positive number in Lemma 4. 10.

PROOF. As we derived (6. 13), it follows from (6. 2)_{0} and (5. 27) that

Re (ff\tilde{f_{1}}, q(1+L\chi_{1})v_{1})

\geqq{\rm Re}(b_{12}\mathscr{L}qv_{2}, (1+L\chi_{1})qv_{1})
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+b_{2}\tau(||\gamma\chi_{1}qv_{1}||^{2}+||\gamma^{-1/2}(1-\chi_{1})qv_{1}||_{-1/2}^{2})-C||\gamma v_{0}||^{2}-O(||v_{0}||_{-1/2}^{2}) .

Hence we need only to prove

(6. 20) |b_{12}\mathscr{L}qv_{2} , (1+L\chi_{1})qv_{1})|

\leqq(1/2)||(1+L\chi_{1})qv_{2}||^{2}+C’||\gamma v_{0}||^{2}+O(||v_{0}||_{-1/2}^{2}) .

By (4. 6) one can write

\mathscr{L}=K_{-}(1+L\chi_{1})+K,

where K=K_{+}\chi_{1}+K_{0}(1-\chi_{1})-K-, Hence

(b_{12}\mathscr{L}qv_{2}, (1+L\chi_{1})qv_{1})

=((1+L\chi_{1})qv_{2}, K_{-}^{*}b_{12}^{*}(1+L\chi_{1})qv_{1})

+(qv_{2}, K^{*}b_{12}^{*}(1+L\chi_{1})qv_{1})

=I_{1}+I_{2} .

Besides, Lemma 4. 3 yields

|I_{1}|\leqq(1/4)||(1+L\chi_{1})qv_{2}||^{2}+C||\gamma v_{1}||^{2}+O(||v_{1}||_{-1/2}^{2}) .

Moreover, writing

I_{2}=((1+L\chi_{1})^{*}qv_{2}, K^{*}b_{12}^{*}qv_{1})+(qv_{2}, K^{*}[b_{12}^{*}, L\chi_{1}]qv_{1}) ,

we have

|I_{2}|\leqq(1/4)||(1+L\chi_{1})^{*}qv_{2}||^{2}+C||\gamma v_{0}||^{2}+O(||v_{1}||_{-1/2}^{2}) .

Since ||(1+L\chi_{1})^{*}qv_{2}||^{2}=||(1+L\chi_{1})qv_{2}||^{2} , we thus obtain (6. 20) and complete
the proof.

LEMMA 6. 7. Suppose (6. 2) holds. Then

(6.21) Re(e^{i80}q\tilde{f_{1}}, q\gamma\chi_{-1}^{2}v_{1})

\geqq(1/2)C_{80}||\gamma\chi_{-1}qv_{1}||^{2}-C_{7}||\gamma\chi_{-1}qv_{2}||^{2}

-C_{\acute{7}}||\gamma^{-1/2}(1-\chi_{1})v_{0}||_{-1/2}^{2}-C_{7}’||\gamma^{s/2}\chi_{-1}qv_{1}||^{2}-O(||v_{0}||_{-1/2}^{2}) ,

where C_{80} is the positive number in Lemma 4. 11.

PROOF. Since it follows from (6. 16) and (4. 6) that, mod H^{\infty}(R^{n}) ,

\chi_{-1}ff\tilde{f_{1}}=\chi_{-1}q(\tilde{a}_{11}v_{1}+b_{11}K_{0}v_{1}+b_{12}K_{0}v_{2}) ,

we have, analogously to (6. 14),

Re (e^{i8_{0}}ff\tilde{f_{1}}, q\gamma\chi_{-1}^{2}v_{1})

\geqq C_{80}||\gamma\chi_{-1}qv_{1}||^{2}-C||\gamma^{3/2}\chi_{-1}qv_{1}||^{2}-C’||\gamma^{-1/2}(1-\chi_{1})v_{0}||_{-1/2}^{2}

-O(||v_{0}||_{-1/2}^{2})+{\rm Re}(b_{12}K_{0}\chi_{-1}qv_{1}, \gamma\chi_{-1}qv_{2}) .
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Besides, by Lemma 4. 3, the last term is stimate from below by

-(1/2)C_{8_{0}}||\gamma\chi_{-1}qv_{1}||^{2}-C’||\gamma\chi_{-1}qv_{2}||^{2}-O(||v_{0}||_{-1/2}^{2}) .

Therefore we obtain (6. 21).

LEMMA 6. 8. We have

(6.22) Re(ff\tilde{f_{2}}, qS_{2}v_{0})

\geqq b_{1}\tau||\gamma\chi_{1}qv_{2}||^{2}+||\gamma^{1/2}(1-\chi_{1})qv_{2}||^{2}

+(3/4)||(1+L\chi_{1})qv_{2}||^{2}-C_{8}||\gamma v_{0}||^{2}-C_{\acute{8}}||\gamma^{-1/2}v_{0}||_{-1/2}^{2}-O(||v_{0}||_{-1/2}^{2}) .

RROOF. It follows from (6. 5) and (6. 17) that

Re (ff\tilde{f_{2}}, qS_{2}v_{0})

\geqq||q(1+L\chi_{1})v_{2}||^{2}+{\rm Re}(q(1+L\chi_{1})v_{2}, q\gamma v_{2})

+2{\rm Re}(q(1+L\chi_{1})v_{2}, q(\tilde{b}_{22\mathscr{L}}v_{2}+\tilde{b}_{21}\mathscr{L}v_{1}))-C’||\gamma v_{0}||^{2}-O(||v_{0}||_{-1/2}^{2}) .

Applying Lemma 4. 8 to the second term on the right hand side, from (4. 22),

Lemmas 4. 4 and 4. 9 we have therefore

Re (q\tilde{f_{2}}, qS_{2}v_{0})

\geqq b_{1}\tau||\gamma\chi_{1}qv_{2}||^{2}+||\gamma^{1/2}(1-\chi_{1})qv_{2}||^{2}+(1-\delta)||q(1+L\chi_{1})v_{2}||^{2}

-C_{8}||\gamma v_{0}||^{2}-C’||\gamma^{-1/2}v_{0}||_{-1/2}^{2}-O(||v_{0}||_{-1/2}^{2})

for \delta>0 . Besides,

||q(1+L\chi_{1})v_{2}||^{2}\geqq(1-\delta)||(1+L\chi_{1})qv_{2}||^{2}-C_{\acute{8}}||\gamma v_{2}||^{2}-O(||v_{2}||_{-1/2}^{2}) .

Hence we obtain (6. 22)

PROOF OF PROPOSITION 6. 1 IN THE CASE OF m_{1}\geqq 2 . Since

(1-q) \overline{\mathscr{B}}=(1-q)(1+L\chi_{1})+(1-q)\tilde{b}\mathscr{L} ,

the last term of (6. 18) is estimated similarly to (6. 15). Therefore (6. 6)

follows from (6. 19), (6. 21) and (6. 22), as in the case of m_{1}=1 . Thus we
prove the proposition.

PROOF OF PROPOSITION 6. 2. write

(Sv_{0}, v_{0})=(q(1+L\chi_{1})v_{0}, qv_{0})+(\gamma(1-q)v_{0}, (1-q)v_{0})

+\delta_{2}\tau e^{-i8_{0}}(q\gamma\chi_{-1}^{2}v_{1}, qv_{1})

+(q(\gamma+\tilde{b}_{22}\mathscr{L})v_{2}+q\tilde{b}_{21}\mathscr{L}v_{1}, qv_{2})

=I_{1}+I_{2}+I_{3}+I_{4} .

By virtue of Lemma 4. 8 together with Lemmas 4. 1 and 4. 9 we have
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Re I_{1}\geqq b_{1}\tau||\gamma^{1/2}\chi_{1}qv_{0}||^{2}+||(1-\chi_{1})qv_{0}||^{2}-\tau^{1/2}||\gamma^{1/2}qv_{0}||^{2}

-C\tau^{-1/2}||\gamma^{1/2}v_{0}||^{2}-O(||\gamma^{-1/2}v_{0}||_{-1/2}^{2}) .

Clearly

I_{2}=||\gamma^{1/2}(1-q)v_{0}||^{2} .

It is also not hard to show that

Re I_{3}=\delta_{2}\tau (cos \delta_{0} ) ||\gamma^{1/2}\chi_{-1}qv_{1}||^{2}+O(||\gamma^{-1/2}v_{1}||_{-1/2}^{2}) .

Besides,

|I_{4}|\leqq C||\gamma^{1/2}qv_{0}||^{2}+C’||\gamma^{3/2}v_{0}||^{2}+O(||\gamma^{-1/2}v_{0}||_{-1/2}^{2}) .

Thus, noting that

||(1-\chi_{1})qv_{0}||^{2}\geqq\tau||\gamma^{1/2}(1-\chi_{1})qv_{0}||^{2}+O(||v_{0}||_{-1/2}^{2}) ,

we complete the proof.
We shall now proceed to the proof of Proposition 6. 3.

LEMMA 6. 9. Let m_{1}\geqq 2 . Assume (H_{1}) and (1. 18) hold. Then
there is a positive constant C such that

(6.23) |b_{12}(y’. \eta’)|\leqq C(Rea_{11}(y’\eta’)+\sqrt{\alpha}) for 0<\alpha\ll 1 ,

where a_{11} , b_{12} are the symbols in (5. 28)

PROOF. In view of (5. 28) it suffices to prove (6. 23) with b_{12} replaced
by R_{1k}(x’. \xi’. \lambda_{0}(x’. \xi’)) for 2\leqq k\leqq m_{1} , where (x’-\xi’)=\phi_{1}(y’. \eta’) and R_{1k} is
the notation described above (5. 11), because (H_{1}) and (5. 24) together
with (3. 4) imply that |a_{11}(y’. \eta’)|\leqq C{\rm Re} a_{11}(y’, \eta’) for \alpha=0 , mod S_{1.0}^{-1} .
Hereafter we omit the variables except \xi_{n} , so R(\xi_{n}) stands for R(x’. \xi’. \xi_{n})

and so on.
We first show

(6.24) 2\sqrt{\mu_{0}}R_{1k}(\xi_{n}^{+})=c_{1k}R(\xi_{n}^{+}) for \mu_{0}>0 and 2\leqq k\leqq m_{1} .

Set

W(\xi_{n})=(V_{1}(\xi_{n}), \ldots V_{m_{1}}(\xi_{n})) ,
W_{\xi n}=(V_{1}’, , . ( \cdot V_{\acute{m}_{1}}) ,

so that
\tilde{R}(\xi_{n})=(V_{1}(\xi_{n}), \ldots V_{m_{1}}(\xi_{n}), W_{h}, W_{e}) .

Then by (1. 13) we have
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det B ( V_{k}(\xi_{\overline{n}}), V_{2}(\xi_{n}^{+}) , \ldots . V_{m_{1}}(\xi_{n}^{+}) , W_{h}, W_{e})=c_{1k}R(\xi_{n}^{+}) .

Since \xi_{\overline{n}}=\xi_{n}^{+}+2\sqrt{\mu_{0}} and V_{k}’ is independet of \xi_{n} , we also see that

V_{k}(\xi_{\overline{n}})=V_{k}(\xi_{n}^{+})+2\sqrt{\mu_{0}}V_{k}’ .

Therefore we obtain (6. 24).

Now, since \xi_{n}^{+}=\lambda_{0}-\sqrt{\mu_{0}} and by (3. 4) and (3. 7), -\sqrt{\mu_{0}}=\sqrt{\alpha}\rho_{xn}|\eta’|^{1/3} ,

we have from (1. 12)

R(\xi_{n}^{+})=R_{\xi n}(\lambda_{0})(R_{\lambda}+\sqrt{\alpha}\rho_{x_{n}}|\eta’|^{1/3})+O(\alpha) ,

so (6. 24) yields

2\sqrt{\mu_{0}}R_{1k}(\lambda_{0})=c_{1k}R_{\xi n}(\lambda_{0})(R_{\lambda}+\sqrt{\alpha}\rho_{Xn}|\eta’|^{1/3})+O(\alpha) .

Consequently we deduce from (1. 18), (5. 24) and (H_{1}) that R_{1k}(\lambda_{0})/({\rm Re}

a_{11}+\sqrt{\alpha}) is bounded. Thus we prove the lemma.
Now, by Lemma 4. 8 there is a positive number \delta_{3} such that

(6.25) 1-|L(\eta’)|^{2}\geqq b_{1}\tau\gamma-O(|\eta’|^{-1}) for 0<\alpha<\delta_{3}\tau^{-2} .

Suppose v_{0} is as in (6. 10) with the above \delta_{3} . Then (4. 6) and (4. 7) imply
that L\chi_{1}v_{0}=Lv_{0} and \mathscr{L}v_{0}=(K_{+}+K_{-}L)v_{0} . Hence by Lemma 4. 12 and (4. 9)

we have

(’6.26) \mathscr{L}v_{0}=\gamma(1-L)v_{0}+O(||\gamma^{-2}v_{0}||_{-1}) .

We also see from Lemma 4. 7 that there are pseudodifferential operators p^{(0)} ,
p^{(1)} such that, modulo a smoothing operator,

pLv_{0}=L\chi_{\epsilon}p^{(0)}v_{0}+L\chi_{\epsilon}p^{(1)}v_{0} ,

where p^{(0)}(y’. \eta’)=p\circ\phi_{2}(y’. \eta’) with the canonical transformation \phi_{2} given
by (4. 10), and p^{(1)}(y_{3}’\eta’)\in S_{1-\epsilon,0}^{-1+\epsilon} . Hereafter L(\eta’) is modified outside
supp \hat{v} in such a way that L(\eta’)(1-\chi_{\epsilon}(\eta’))\in S_{\epsilon/2,0}^{0} .

LEMMA 6. 10. Let p\in OPS_{1-\epsilon,0}^{0} be as in Proposition 6. 3 and let q, s be
real numbers. Then for v\in H^{s}(R^{n}) with supp \hat{v}(\eta’)\subset\{|\eta^{rr}|^{-\epsilon}<\alpha<1\} we
have

(6.27) ||\gamma^{q}p^{(0)}v||_{s}^{2}\leqq||\gamma^{q}pv||_{s}^{2}+O(||\gamma^{q}v||_{s+(-1+\epsilon)/2}^{2}) ,
(6.28) ||\gamma^{q}pLv||_{s}^{2}\leqq||L\gamma^{q}pv||_{s}^{2}+O(||\gamma^{q}v||_{s+(-1+\epsilon)/2}^{2}) ,

(6.29) ||\gamma^{q}pLv||^{2}\leqq||\gamma^{q}pv||_{s}^{2}+O(||\gamma^{q}v||_{s+(-1+\epsilon)/2}^{2}) .

PROOF. The first estimate can be proved analogously to [11], (5. 16).

To derive (6. 28) one can assume q=s=0, because the symbol of the com-
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mutator [\gamma^{q}, p] is O(\gamma^{q}|\eta^{rr}|^{-1+\epsilon}) on supp \hat{v}. Now we have
||pLv||^{2}=||Lp^{(0)}v||^{2}+O(||v||_{(-1+\epsilon)/2}^{2}) .

Since Lemma 4. 6 implies that |L(\eta’)|\in S_{1-\epsilon,0}^{0} , we denote by |L| the
pseudodifferential operator with symbol |L(\eta’)| . Then, noting that
||Lp^{(0)}v||^{2}=|||L|p^{(0)}v||^{2} and [|L|, p^{(0)}]\in OPS_{1-\epsilon,0}^{-1+\epsilon} , we get

||Lp^{(0)}v||^{2}=||p^{(0)}|L|v||^{2}+O(||v||_{(-1+\epsilon)}^{2}) .
Therefore by (6. 27) we obtain (6. 28), which yields (6. 29), because of
(4. 11).

PROOF OF PROPOSITION 6. 3. Since the case of m_{1}=1 can be handled
analogously to [11], Proposition 5. 3, we suppose that m_{1}\geqq 2 and v_{0} is as in
(6. 10). In view of (6. 26), we may also replace \mathscr{B} by

\mathscr{B}0^{=a(1+L)}+b\gamma(1-L) .
Moreover by (5. 25), (5. 26) and (5. 27) one can assume that

a(y’\eta’)=\{\begin{array}{ll}a_{11} 00 I_{m_{1}- 1}\end{array}\} ,

b(y’, \eta’)=\{\begin{array}{ll}1 b_{12}b_{21} b_{22}\end{array}\}

and

a_{11}(y’. \eta’)=a_{11}(y’0, \eta’) .

Now set

\mathscr{B}_{0}v_{0}=\{\begin{array}{l}f_{11}f\end{array}\} ,

so that

(6.30) f_{1}=a_{11}(1+L)v_{1}+\gamma(1-L)v_{1}+b_{12}\gamma(1-L)v_{2} ,
(6.31) f_{2}=(1+L)v_{2}+b_{21}\gamma(1-L)v_{1}+b_{22}\gamma(1-L)v_{2} .

First suppose (1. 19) holds. Then (5. 24) implies a_{11}=O(\alpha) . Hence
one can assume
(6.30)_{0} f_{1}=\gamma(1-L)v_{1}+b_{12}\gamma(1-L)v_{2} .

We shall prove

(6. 32) b_{1}\tau||\gamma^{2}pv_{0}||^{2}\leqq||pf_{1}||^{2}+||pLf_{1}||^{2}+C(||\psi f_{2}||^{2}+||\gamma pLf_{2}||^{2})

+C’||\gamma^{2}pv_{0}||^{2}+O(||\gamma^{2}v_{0}||_{-\epsilon 0}^{2}) ,
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where b_{1} is the positive number in Lemma 4. 8 and C, C’ are independent of
\tau . Let us apply 1+L to each side of (6. 30)_{0} . Since Lemma 4. 7 implies that
Lb_{12}=b_{12}L+b_{12}’L, where b_{12}’\in OPS_{1-\epsilon,0}^{0} and b_{12}’(y’, \eta’)=O(\gamma) mod S_{1-\epsilon,0}^{-1+\epsilon} , we
have

\gamma(1-L^{2})v_{1}=(1+L)f_{1}-b_{12}\gamma(1-L)(1+L)v_{2}-b_{12}’\gamma L(1-L)v_{2} .

Moreover (6. 31) yields

b_{12}\gamma(1-L)(1+L)v_{2}

=b_{12}\gamma(1-L)f_{2}-b_{12}\gamma(1-L) \{ b_{21}\gamma(1-L)v_{1}+b_{22}\gamma(1-L)v_{2}\} .

Hence by (2. 28) and (6. 29) we get

2|(p\gamma(1-L^{2})v_{1}, \gamma^{2}pv_{1})|

\leqq||pf_{1}||^{2}+||pLf_{1}||^{2}+C(||\gamma\phi f_{2}||^{2}+||\gamma pLf_{2}||^{2}+C’||\gamma^{2}pv_{0}||^{2}+O(||\gamma^{2}v_{0}||_{(-1+\epsilon)/2}^{2}) ,

while

2{\rm Re}(\gamma\phi(1-L^{2})v_{1}, \gamma^{2}pv_{1})\geqq||\gamma^{s/2}pv_{1}||^{2}-||L\gamma^{3/2}pv_{1}||^{2}

-O(||\gamma^{3/2}v_{1}||_{(-1+\epsilon)/2}^{2}) .

Therefore by (6. 25) we obtain

b_{1}\tau||\gamma^{2}pv_{1}||^{2}\leqq||pf_{1}||^{2}+||pLf_{1}||^{2}+C(||\gamma\phi f_{2}||^{2}+||\gamma pLf_{2}||^{2})

+C’||\gamma^{2}pv_{0}||^{2}+O(||\gamma^{3/2}v_{0}||_{(-1+\epsilon)/2}^{2}) .
Similarly, (6. 31) yields

(6.33) b_{1}\tau||\gamma^{2}pv_{2}||^{2}\leqq||?pf_{2}||^{2}+C||\gamma^{2}pv_{0}||^{2}+O(||\gamma^{3/2}v_{0}||_{(-1+\epsilon)/2}^{2}) .

Thus we obtain (6. 32), because
||\gamma^{3/2}v_{0}||_{(-1+\epsilon)/2}^{2}=O(||\gamma^{2}v_{0}||_{-\epsilon_{0}}^{2}) .

Next suppose (6. 2)_{0} and (6. 23) hold. Then we shall rewrite (6. 30)
as

(a_{11}+\gamma)v_{1}+(a_{11}-\gamma)Lv_{1}=f_{1}-b_{12}\gamma(1-L)v_{2}

and prove

(6.34) b_{1}\tau||\gamma^{2}pv_{0}||^{2}\leqq||pf_{1}||^{2}+||\gamma\phi f_{2}||^{2}+C||\gamma^{2}pv_{0}||^{2}+O(||\gamma^{2}v_{0}||_{-\epsilon_{0}}^{2}) ,

where C is independent of \tau . For convenience we modify \gamma outside supp \hat{v}_{0}

as
\gamma=\gamma\chi_{\epsilon}+(1+|\eta’|^{2})^{-\epsilon/4}(1-\chi_{\epsilon})

with \chi_{\epsilon} given by (4. 8), so that \gamma v_{0}=\tilde{\gamma}v_{0} and \tilde{\gamma}\in S_{1-\epsilon,0}^{0} . Since Re a_{11}(y’. \eta’)
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\geqq 0 , there is a parametrix \Phi\in S_{1-\epsilon,\epsilon/2}^{\epsilon/2} for a_{11}+\tilde{\gamma} such that \Phi(y’, \eta’)=(a_{11}(y’ ,
\eta’)+\tilde{\gamma})^{-1} , mod S_{1-\epsilon,\epsilon/2}^{-1+2\epsilon} . Applying \Phi p to each side of (6. 30), we have
(6.35) pv_{1}+\Phi(a_{11}-\tilde{\gamma})pLv_{1}=\Phi pf_{1}-\Phi b_{12}\gamma\phi(1-L)v_{2}+O(||\gamma^{-2}v_{0}||_{-1}) .

Now, since \Phi(a_{11}-\tilde{\gamma})\in OPS_{1-\epsilon,\epsilon/2}^{0} and
|(a_{11}(y_{j}’\eta’)+\tilde{\gamma})^{-1}(a_{11}(y’. \eta’)-\tilde{\gamma})|\leqq 1 ,

we have
||\Phi(a_{11}-\tilde{\gamma})\gamma^{3/2}pLv_{1}||^{2}

\leqq||\gamma^{3/2}pLv_{1}||^{2}+O(||\gamma^{3/2}pLv_{1}||_{-1/2+(3/4)\epsilon}^{2})

and hence by (6. 28) and (6. 25) we obtain
2{\rm Re}(pv_{1}+\Phi(a_{11}-\tilde{\gamma})pLv_{1}, \gamma^{3}pv_{1})

\geqq b_{1}\tau||\gamma^{2}pv_{1}||^{2}-C||\gamma^{2}pv_{1}||_{-1/2+\epsilon}^{2}-O(||\gamma^{3/2}v_{1}||_{(-1+\epsilon)/2}^{2}) .

On the other hand we see from (6. 23) that \Phi b_{12}\in OPS_{1-\epsilon,\epsilon/2}^{0} . Therefore by
(6. 35) we have

2|(pv_{1}+\Phi(a_{11}-\tilde{\gamma})pLv_{1}, \gamma^{3}pv_{1})|

\leqq||pf_{1}||^{2}+C’||\gamma^{2}pv_{0}||^{2}+O(||\gamma^{2}v_{0}||_{(-1+\epsilon)/2}^{2}) ,

because \Phi^{*}\gamma\in S_{1-\epsilon,\epsilon/2}^{0} . Thus we get

b_{1}\tau||\gamma^{2}pv_{1}||^{2}\leqq||pf_{1}||^{2}+C||\gamma^{2}pv_{0}||^{2}+O(||\gamma^{2}v_{0}||_{-\epsilon 0}^{2}) .

By this and (6. 33) we obtain (6. 34) and hence (6. 10) if \tau\gg 1 . The proof
is complete.

REMARK 6. 11. Suppose (1. 9) holds. Set \mathscr{B}=(1+L\chi_{1})+b\mathscr{L} and
\overline{\mathscr{B}}=(1+L\chi_{1})+q_{2}b\mathscr{L} . where b\in OPS_{1,0}^{0} is the pseudodifferential operator in
(5. 10) and q_{2} the cutoff ffunction in (5. 31). Then, using Lemma 4. 8 and
(4. 12), we obtain easily

(6.36) {\rm Re} (\tilde{\mathscr{B}}v_{0}, \gamma v_{0})\geqq C\tau||\gamma v_{0}||^{2}-O(||v_{0}||_{-1/2}^{2})

for such \tau and v_{0} as in (6. 6), in particular,

(6.37) \tau||\gamma v_{0}||_{s}^{2}\leqq C’||\tilde{\mathscr{B}}v_{0}||_{s}^{2}+C_{\tau,s}||\gamma^{-1}v_{0}||_{s-1}^{2}

for s\in R^{1} and v_{0}\in H^{s}(R^{n}) with supp \hat{v}(\eta’) as before. Here C, C’ are
positive constants independent of \tau , s and v_{0} . Moreover, by virtue of
(6. 25), (6. 28) and (6. 28) we have

(6.38) \tau||\uparrow\phi v_{0}||^{2}\leqq C’||p\mathscr{B}v_{0}||^{2}+O(||\gamma v_{0}||_{-\epsilon_{0}}^{2})
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for such p, \tau and v_{0} as in (6. 10). Here \epsilon_{0} is the same number as before and
C’ a constant independent of p, \tau and v_{0} .

\S 7. Singularities on the boundary

In this section we study the propagation of singularities of solutions to
(5. 16) for m_{1}=1 and (5. 21) for m_{1}\geqq 2 . From now on we shall fix the
parameter \tau in (4. 4) and choose a positive number \delta_{4} in such a way that
(6. 6), (6. 9), (6. 11) and (6. 12) hold for v_{0}\in L^{2}(R^{n}) with supp \hat{v}_{0}(\eta’)\subset

\{|\alpha|<2\delta_{4}\} and that (6. 10) holds for v_{0}\in L^{2}(R^{n}) with supp \hat{v}(\eta’)\subset

\{2|\eta’|^{-\epsilon}<\alpha<2\delta_{4}\} . For convenience we rewrite (6. 7), (6. 8) as

(7. 1) ||\gamma v_{0}||_{s}\leqq C_{1}||\gamma^{-1}\overline{\mathscr{B}}v_{0}||_{S}+C_{S}||\gamma^{-1}v||_{s-1}

for s\in R^{1} and \gamma^{-1}v_{0}\in H^{s}(R^{n}) with supp \hat{v}_{0}(\eta’)\subset\{|\alpha|<2\delta_{4}\} , in particular,

(7.2) ||v_{0}||_{s-1/3}\leqq C_{1}||\tilde{\mathscr{B}}v_{0}||_{s+1/3}+C_{s}||v_{0}||_{s-2/3}

if v_{0}\in H^{s+1/3}(R^{n}) . The analogous estimates for \mathscr{B} also follows from
(6. 11). Moreover (6. 10) implies that

(7.3) ||\gamma^{2}pv_{0}||_{s}\leqq C_{0}(||p|\mathscr{B}v_{0}||_{s}+||pL\chi_{\epsilon}\mathscr{B}v_{0}||_{s})+C_{p,s}||\gamma^{2}v_{0}||_{S-\epsilon_{0}}

for such p\in OPS_{1,0}^{0} , s\in R^{1} and v_{0}\in H^{s}(R^{n}) with supp \hat{v}_{0}(\eta’)\subset\{2|\eta’|^{-\epsilon}<\alpha<

2\delta_{4}\} , where C_{0} is independent of p, s. One can also assume without loss of
generality that

(7. 4) WF (f_{0})\subset\{|\alpha|<\delta_{4}\} .

For the existence of solutions we have

PROPOSITION 7. 1. Assume (6. 6) and (6. 9) hold. Suppose f_{0}\in H^{s+1/3}

(R^{n}) for some s\in R^{1} and (7. 4) holds. Then there is a solution v_{0}\in H^{s-1/3}

(R^{n}) of \overline{\mathscr{B}}v_{0}=f_{0} mod H^{\infty}(R^{n}) such that WF(v_{0})\subset\{|\alpha|<\delta_{4}\} , supp \hat{v}_{0}(\eta’)\subset

\{|\alpha|<2\delta_{4}\} and

||\gamma v_{0}||_{s}\leqq C_{1}||\gamma^{-1}f_{0}||_{s}+C_{s}||\gamma^{-1}v_{0}||_{s-1} ,

where \overline{\mathscr{B}} is the modifified operator, given by (5. 31). Besides, the solution is
unique mod H^{\infty}(R^{n}) in the set { v_{0}\in H^{-\infty}(R^{n}) ; supp \hat{v}_{0}(\eta’)\subset\{|\alpha|<2\delta_{4}\} }.
The analogous result with \overline{\mathscr{B}} replaced by \mathscr{B} is also valid, provided (6. 11)

and (6. 12) are satisfified instead of (6. 6) and (6. 9).

For the proof see that of [11], Proposition 6. 1.
To examine the singularities of the solution we divide it into two parts,

as in the preceding paper. Set
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\tilde{\chi}_{\epsilon}(\eta’)=\chi(\alpha|\eta’|^{\epsilon}-1)

\sim

with the \chi in (4. 8), so that \chi_{\epsilon}\in S_{1-\epsilon,0}^{0} and \chi_{\epsilon}=1 on supp \chi_{\epsilon} .

PROPOSITION 7. 2. Let v_{01}\in H^{-\infty}(R^{n}) be a solution of \mathscr{B}v_{01}=\tilde{\chi}_{\epsilon}-f_{0} mod
H^{\infty}(R^{n}) such that supp \hat{v}_{01}(\eta’)\subset\{|\alpha|<2\delta_{4}\} . Suppose (7. 1) with \mathscr{B} replaced
by \mathscr{B} holds. Then

(7.5) v_{01}=\chi_{2}v_{01} , mod H^{\infty}(R^{n}) ,

for any cutoff function \chi_{2}(\eta’)\in S_{1-\epsilon,0}^{0} , like \chi_{\epsilon}, such that \chi_{2}=1 on supp \chi_{\epsilon} .
Furthermore assume (5. 29) and (7. 3) hold.

Then

(7.6) v_{01}\in H^{\infty}(R^{n}\cap\{y_{0}<\overline{y}_{0}-\delta_{1}\})

and

(7. 7) WF(v_{01})\cap\hat{N}_{0}\subset\hat{M}_{0}^{+}(f_{0}) ,

where
\hat{N}_{0}=\{(y’\eta’)\in T^{*}R^{n}\backslash 0;\alpha=0\} ,
\hat{M}_{0}^{+}(f_{0})=\{(y_{0}+t, y’. \eta’)\in\hat{N}_{0} : (y’. \eta’)\in WF(f_{0}), t\geqq 0\} .

PROOF. The proofs of (7. 5) and (7. 6) are analogous to those of
[11], (6. 12) and (6. 14), respectively. To prove (7. 7) let (\tilde{y}’.\tilde{\eta}’) be a
point in \hat{N}_{0} such that (\tilde{y}_{2}’\tilde{\eta}’)\not\in\hat{M}_{0}^{+}(\tilde{\chi}J_{0}) and set \tilde{y}’=(\tilde{y}_{0},\tilde{y}’) . Then it
suffices to show that (y_{0},\tilde{y}’.\tilde{\eta}’)\not\in WF(v_{01}) for \overline{y}_{0}-\delta_{1}\leqq y_{0}\leqq\tilde{y}_{0} .

As in the proof of [11], Proposition 6. 4, one can find a sequence of
cutoff functions p_{k}(y’-\eta’)\in S_{1,0}^{0}(k=1,2, \ldots) such that p_{k}\tilde{\chi}J_{0}\in H^{\infty}(R^{n}) , p_{k}

(y_{0},\tilde{y}’.\tilde{\eta}’/|\tilde{\eta}’|)=1 for y_{0}\leqq\tilde{y}_{0} , p_{k+1}(y’. \eta’)=1 on supp p_{k}, 0\leqq p_{k}\leqq 1 and p_{k}\circ\phi_{2}

(y’\eta’)\leqq p_{k}(y’\eta’) for \alpha>0 . Moreover Lemma 4. 7 yields that, mod
H^{\infty}(R^{n}) , p_{k}\mathscr{B}p_{k+1}v_{01}=p_{k^{1}}\mathscr{B}v_{01} and p_{k}L\chi_{\epsilon}\mathscr{B}p_{p+1}v_{01}=p_{k}L\chi_{\epsilon}|\mathscr{B}v_{01} . Therefore
by virtue of (7. 3) we have \gamma^{2}p_{1}v_{01}\in H^{s+N\epsilon_{0}}(R^{n}) for each positive integer N
provided \gamma^{2}v_{01}\in H^{s}(R^{n}) , and hence we deduce that p_{1}v_{01}\in H^{\infty}(R^{n}) . Thus
we conclude that (y_{0},\tilde{y}’.\tilde{\eta}’)\not\in WF(v_{01}) for y_{0}\leqq\tilde{y}_{0} , which completes the
proof.

PROPOSITION 7. 3. Let v_{01}\in H^{-\infty}(R^{n}) be a solution of \mathscr{B}v_{01}=\tilde{\chi}_{\epsilon}f_{0} mod
H^{\infty}(R^{n}) satisfying (7. 5) and (7. 6). Suppose (6. 1)_{0} or (6. 2)_{0} holds in the
case of m_{1}=1 or m_{1}\geqq 2 , respectively. Then

(7.8) WF(v_{01}) \cap\hat{N}_{+}\subset\bigcup_{k=0}^{\infty}\phi_{2}^{k}(WFy_{0})\cap\hat{N}_{+}) ,
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where \phi_{2} is the canonical transformation given by (4. 10) and

\hat{N}_{+}=\{y’-\eta’)\in T^{*}R^{n}\backslash 0;\alpha>0\} .

Proof. Since the case of m_{1}=1 can be handled analogously to [11],
Proposition 6. 5, we assume m_{1}\geqq 2 . Then (5. 22), (4. 6) and (7. 5) imply

cv_{01}+dL\chi_{\epsilon}v_{01}=\tilde{\chi}J_{0} , mod H^{\infty}(R^{n}) ,

where

c=(a+K_{+}I_{m_{1}})\chi_{\epsilon}+(1-\chi_{\epsilon})I_{m_{1}} ,
d=a+K_{-}I_{m_{1}} .

Therefore, in view of the proof of the proposition cited above, it suffices to
show that there is a left parametrix c^{-1}\in S_{1-(3/2)\epsilon,\epsilon/2}^{\epsilon/2} for c.

Setting, as (5. 23),

c=\{\begin{array}{ll}c_{11} c_{12}c_{21} c_{22}\end{array}\} ,

we see from (5. 26) and Lemma 4. 12 that c_{22}\in S_{1-\epsilon,0}^{0} is elliptic. Let c_{22}^{-1}\in

S_{1-\epsilon,0}^{0} be a parametrix for c_{22} . Then we have

\{\begin{array}{ll}1 -c_{12}c_{22}^{-1}0 c_{22}^{-1}\end{array}\}\{\begin{array}{ll}c_{11} c_{12}c_{21} c_{22}\end{array}\}=\{\begin{array}{ll}p 0c_{22}^{-1}c_{21} I_{m_{1}- 1}\end{array}\} , mod oPS^{-\infty} .

where

p=c_{11}-c_{12}c_{22}^{-1}c_{21} .

Moreover (6. 2)_{0} and (5. 25) imply that there is a parametrix p^{-1}\in

S_{1-(3/2)\epsilon,\epsilon/2}^{\epsilon/2} for p (see the proof of [11], Proposition 6. 5). Therefore, set-
ting

c^{-1}=\{\begin{array}{ll}p^{-1} 0-c_{22}^{-1}c_{21}p^{-1} I_{m_{1}- 1}\end{array}\}\{\begin{array}{ll}1 -c_{12}c_{22}^{-1}0 c_{22}^{-1}\end{array}\} ,

we have c^{-1}c=I_{m_{1}} mod OPS^{-\infty} . The proof is complete.
For the purpose of studying the propagation of singularities of the

solution v_{0} to \mathscr{B}v_{0}=(1-\tilde{\chi}_{\epsilon})f_{0} , we first take a solution v_{02} of the modified
equation \overline{\mathscr{B}}v_{02}=(1-\tilde{\chi}_{\epsilon})f_{0} and then show that WF (v_{02})\subset\{y_{0}>\overline{y}_{0}-2\delta_{1}\} hence
(5. 31) yields \mathscr{B}v_{02}=\mathscr{B}v_{02} mod H^{\infty}(R^{n}) .

PROPOSITION 7. 4. Let v_{02}\in H^{-\infty}(R^{n}) be a solution of \overline{\mathscr{B}}v_{02}=(1-\tilde{\chi}_{\epsilon})f_{0}

mod H^{\infty}(R^{n}) such that supp \hat{v}_{02}(\eta’)\subset\{|\alpha|<2\delta_{4}\} . Suppose (7. 1) holds.
Then



Microlocal parametrices and propagation of singularities
near gliding points for hyperbolic mixed problems II 425

(7.9) v_{02}=\chi_{3}v_{02} , mod H^{\infty}(R^{n}) ,

for any cutoff function x_{3}\in S_{1-\epsilon,0}^{0} , like 1-\mathcal{X}\epsilon
’ such that \mathcal{X}s(\eta’)=1-

\chi(\alpha|\eta’|^{\epsilon}-t) with 2<t<3 , so \chi_{3} , so \chi_{3}(\eta’)=0 for \alpha|\eta^{rr}|^{\epsilon}>2+t and \chi_{3}(\eta’)=

1 for \alpha|\eta’|^{\epsilon}<1+t. In particular WF(v_{02})\cap\hat{N}_{+}=\phi . Moreover

(7. 10) WF(v_{02})\cap\hat{N}_{-}\subset WF(f_{0}) ,

(7. 11) WF(v_{02})\cap\hat{N}_{0}\subset\hat{M}_{0}(f_{0}) ,

where
\hat{N}_{-}=\{(y’,-\eta’)\in T^{*}R^{n}\backslash 0;\alpha<0\} ,
\hat{M}_{0}(f_{0})=\{(y_{0}+t, y’. \eta’)\in\hat{N}_{0} ; (y’. \eta’)\in WF(f_{0}), -\infty<t<\infty\} .

PROOF. The proof of (7. 9) is analogous to that of (7. 5). Besides,
(7. 10) is a direct consequence of (7. 1). To prove (7. 11) let (\tilde{y}_{0},\tilde{y}’,-\tilde{\eta}’)\in

\hat{N}_{0} be a point such that (\tilde{y}_{0},\tilde{y}’\tilde{\eta}’)\not\in\hat{M}_{0}(f_{0}) . Then (y_{0},\tilde{y}^{rr}.\tilde{\eta}’)\not\in WF(f_{0}) for
all y_{0}\in R^{1} . Moreover one can find a conic neighborhood \sum of (\tilde{y}’,\tilde{\eta}’) such
that (y_{0}, y’. \eta’)\not\in WF(f_{0}) for all y_{0}\in R^{1} and (y^{r_{\wedge}}\eta’)\in\Sigma . Let p(y’, \eta’)\in

S_{1,0}^{0} be a symbol, independent of y_{0} , such that supp p\subset\Sigma . Then p\tilde{\mathscr{B}}v_{02}\in

H^{\infty}(R^{n}) and it follows from (4. 7), Lemmas 4. 1 and 4. 2 that the commuta-
tors [p, \chi_{1}] , [p, \chi_{3}] and \gamma^{-1}[p, \gamma] belong to OPS_{1/3,0}^{-1} , and the symbols of [p,

K_{+}\chi_{1}] , [p, K-] and [p, K_{0}(1-\chi_{1})] are O(\gamma|\eta’|^{-1}) . Furthermore, by
Lemma 4. 6, the symbol of [p, L\chi_{1}\chi_{3}] is O(\gamma^{2}|\eta’|^{-\epsilon/2}) . Therefore by (7. 1)

we deduce that ?\Phi v_{02}\in H^{s+\epsilon/2}(R^{n}) if \gamma v_{02}\in H^{s}(R^{n}) . Thus we obtain (7. 11).

LEMMA 7. 5. Let v_{02}\in H^{-\infty}(R^{n}) be a solution of \tilde{\mathscr{B}}v_{02}=(1-\tilde{\chi}_{\epsilon})f_{0} ,

mod H^{\infty}(R^{n}) , satisfying (7. 9), (7. 11) and supp \hat{v}_{02}(\eta’)\subset\{|\alpha|<2\delta_{4}\} . supp
pose (5. 29) and (7. 1) hold. Then

(7. 12) v_{02}\in H^{\infty}(R^{n}\cap\{y_{0}<\overline{y}_{0}-3\delta_{1}\}) .

PROOF. We first show that v_{02} is smooth for y_{0}\ll\overline{y}_{0} , more precisely,

(7. 13) v_{02}\in H^{\infty}(R^{n}\cap\{y_{0}<\overline{y}_{0}-5\delta_{1}\}) .

Let p(y_{0})\in C^{\infty}(R^{1}) be a cutoff function such that p(y_{0})=1 for y_{0}<\overline{y}_{0}-5\delta_{1}+

\delta and p(y_{0})=0 for y_{0}>\overline{y}_{0}-5\delta_{1}-+2\delta with small \delta>0 . Then from (5. 30) and
(5. 31) we have p\mathscr{B}=p(1+L\chi_{1}) . Hence we obtain (7. 13) similarly to
[11], Lemma 6. 8.

Now, the proof of (7. 12) is also similar to that of Lemma 6. 9 in the
paper cited above. Note that by virtue of (7. 1) and (7. 9) one can assume

(7. 14) supp (\hat{v}_{02})(\eta’)\subset\{|\alpha|<5|\eta’|^{-\epsilon}\} ,

because \tilde{\mathscr{B}}\chi_{-2}\in OPS_{1-\epsilon,0}^{0} and [\chi_{-2},\tilde{\mathscr{B}}]\in OPS_{1-\epsilon,0}^{-1+\epsilon} if \chi_{-2}(\eta’)=\chi (-\alpha|\eta’|^{\epsilon}) .
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Let p_{0}(y_{0})\in C_{0}^{\infty}(R^{1}) be a cutoff function, supported in a small neighborhood
of [\overline{y}_{0}-5\delta_{1},\overline{y}_{0}-3\delta_{1}] , such that p=1 on a smaller one. Then we have

\tilde{\mathscr{B}}p_{0}v_{02}=g

with
g=p_{0}(1-\tilde{\chi}_{\epsilon})f_{0}-[p_{0},\tilde{\mathscr{B}}]v_{02} ,

so that g\in H^{\infty}(R^{n}\cap\{y_{0}<\overline{y}_{0}-3\delta_{1}\}) and (5. 31) together with (5. 30) implies

\tilde{\mathscr{B}}p_{0}v_{02}=(1+L\chi_{1})p_{0}v_{02}+\tilde{b}\mathscr{L}p_{0}v_{02} , mod H^{\infty}(R^{n})

Moreover (4. 16) yields

p\Lambda_{t}\tilde{\mathscr{B}}p_{0}v_{02}=\mathscr{B}_{t}\Lambda_{t}p_{0}v_{02}- , mod H^{\infty}(R^{n}) ,

for any cutoff function p(y_{0})\in C_{0}^{\infty}(R^{1}) such that p=1 on supp p_{0} . Here
\tilde{\mathscr{B}}_{t}=(1-L_{t}\chi_{1t})+\tilde{b}_{t}\mathscr{L}_{t},

where L_{t}, \chi_{1t} and |\mathscr{L}_{t} are the Fourier multipliers defined by (4. 13), (4. 14)

and (4. 15), respectively, and \tilde{b}_{t}=\tilde{b} mod OPS_{1,0}^{-1+8} for any \delta>0 . Therefore,
applying p\Lambda^{s}\Lambda_{t} to each side of \mathscr{B}p_{0}v_{02}=g and setting v_{t}=\Lambda_{t}p_{0}v_{02} , we arrive
at

(7. 15) \overline{\mathscr{B}}_{t,s}\Lambda^{s}v_{t}=p\Lambda^{s}\Lambda_{t}g, mod H^{\infty}(R^{n}) ,

where \Lambda^{s} is the pseudodifferential operator with symbol <\eta’>^{s} and
\overline{\mathscr{B}}_{t,s}=(1+L_{t}\chi_{1t})+(\tilde{b}_{t}+[\Lambda^{s},\tilde{b}_{t}]\Lambda^{-s})\mathscr{L}_{t} .

Furthe rmore by virtue of Lemma 4. 14 and so on we obtain

Re (\tilde{\mathscr{B}}_{t,s}\Lambda^{s}v_{t}, \gamma\Lambda^{s}v_{t})\geqq C_{1}||\tau_{t}^{1/2}\gamma\Lambda^{S}v_{t}||^{2}-O(||\tau_{t}\Lambda^{s}v_{t}||_{-1/2}^{2})

for t\geqq 1 and s\in R^{1} . where C_{1} is a positive constant independent of t, s.
Thus one can deduce that p_{0}v_{02}\in H^{\infty}(R^{n}\cap\{y_{0}<\overline{y}_{0}-3\delta_{1}\}) , which yields
(7. 12).

We are now in a position to prove an analogue to (7. 7).

PROPOSITION 7. 6. Let v_{02}\in H^{-\infty}(R^{n}) be a solution of \overline{\mathscr{B}}v_{02}=(1-\tilde{\chi}_{\epsilon})f_{0}

with (5. 29) such that supp \hat{v}_{02}(\eta’)\subset\{|\alpha|<2\delta_{4}\} . Assume the hypotheses of
Proposition 6. 1 are satisfified. Then

(7. 16) WF(v_{02})\cap\hat{N}_{0}\subset\hat{M}_{0}^{+}(f_{0}) .

In particula, v_{02}\in H^{\infty}(R^{n}\cap\{y_{0}<\overline{y}_{0}-\delta_{1}\}) so that \overline{\mathscr{B}}v_{02}=\mathscr{B}v_{02} mod H^{\infty}(R^{n}) .

PROOF. Let (\tilde{y}’.\tilde{\eta}’)\in\hat{N}_{0} be a point such that (\tilde{y}’.\tilde{\eta}’)\not\in\hat{M}_{0}^{+}(f_{0}) . Let q
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(y’, \eta’)\in S_{1,0}^{0} be a symbol independent of y_{0} , supported in a small conic
neighborhood of (\tilde{y}’.\tilde{\eta}’) , such that q(y’, \eta’)=1 on a smaller one. Let
w_{1} , w_{2}\in H^{-\infty}(R^{n}) be solutions of \overline{\mathscr{B}}w_{1}=q(1-\tilde{\chi}_{\epsilon})f_{0},\overline{\mathscr{B}}w_{2}=(1-q)(1-\tilde{\chi}_{\epsilon})f_{0}

such that \hat{w}_{j}(\eta’)\subset\{|\alpha|<2\delta_{4}\} , j=1,2 , respectively. Then we have (\tilde{y}’.\tilde{\eta}’)\not\in

WF (w_{2}) analogously to (7. 11). Thus it suffices to prove (\tilde{y}’\tilde{\eta}’)\not\in

WF(w_{1}) . To do it one can assume that w_{1} satisfies (7. 12) and (7. 14), so
(5. 30) and (5. 31) imply

\overline{\mathscr{B}}w_{1}=(\tilde{a}(1+L\chi_{1})+b\mathscr{L})w_{1} .

Moreover, since (y_{0},\tilde{y}’\tilde{\eta}’)\not\in WF(f_{0}) for y_{0}\leqq\tilde{y}_{0} , there is a positive number
T such that

q(1-\tilde{\chi}_{\epsilon})f_{0}\in H^{\infty}(R^{n}\cap\{y_{0}<\tilde{y}_{0}+2T\})

provided supp q(y’. \eta’) is sufficiently small.
Let p_{0}(y_{0})\in C_{0}^{\infty}(R^{1}) be a cutoff function, supported in a small neighborhood
of [\overline{y}_{0}-3\delta_{1},\tilde{y}_{0}+2T] , such that p_{0}=1 on a smaller one. Then, setting v_{t}=

\Lambda_{t}p_{0}w_{1} , we have an analogue to (7. 15):

(7. 17) \tilde{\mathscr{B}}_{t,s}\Lambda^{s}v_{t}=p\Lambda^{s}\Lambda_{t}g, mod H^{\infty}(R^{n}) ,

for any cutoff function p(y_{0})\in C_{0}^{\infty}(R^{1}) such that p=1 on supp p_{0} , where
g=p_{0}q(1-\tilde{\chi}_{\epsilon})f_{0}-[p_{0},\tilde{\mathscr{B}}]w_{1} ,

so that g\in H^{\infty}(R^{n}\cap\{y_{0}<\tilde{y}_{0}+2T\}) . Here
\overline{\mathscr{B}}_{t,s}=(\tilde{a}_{t}+[\Lambda^{s},\tilde{a}_{t}]\Lambda^{-s})(1+L_{t}\chi_{1t})+(b_{t}+[\Lambda^{s}, b_{t}]\Lambda^{-s})\mathscr{L}_{t},
\tilde{a}_{t}(y’, \eta’)=\tilde{a}(y’\eta’)+(\partial_{\eta 0}\tilde{a}(y_{\tau}’,\eta’)) (-itlog <\eta’> ), mod S_{1,0}^{-1}

and b_{t} also has thye property analogous to \tilde{a}_{t} . Furhtermore one can derive

(7. 18) ||\tau_{t}^{1/2}\gamma\Lambda^{s}v_{t}||\leqq C_{0}||\tau_{t}^{-1/2}\gamma^{-1}\overline{\mathscr{B}}_{t,s}\Lambda^{s}v_{t}||+O(||\tau_{t}^{3/2}\gamma^{-1}\Lambda^{s}v_{t}||_{-1})

for t\geqq 1 and s\in R^{1} , where C_{0} is a constant independent of t, s. To prove
this one can assume

\overline{\mathscr{B}}t,S^{=\tilde{a}(1+L_{t}\chi_{1t})+b\mathscr{L}_{t}} .

Therefore, analogously to (6. 6), we obtain

Re (\tilde{\mathscr{B}}_{t,s}\Lambda^{s}v_{t}, S_{t}\Lambda^{s}v_{t})\geqq C_{1}||\tau_{t}^{1/2}\gamma\Lambda^{S}v_{t}||^{2}-O(||\tau_{t}\Lambda^{s}v_{t}||_{-1/2}^{2})

for t\geqq 1 and s\in R^{1} , where C_{1} is a positive constant independent of t, s.
Here S_{t} is the operator defined by (6. 3) with q=1 , in which \tau , \chi_{1}L and \mathscr{L}

are replaced by \tau_{t} , \chi_{1t} , L_{t} and \mathscr{L}_{t} , respectively. Moreover in the proof we
use Lemmas 4. 14 and 4. 15 in place of Lemmas 4. 8 and 4. 10, respectively.
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Thus we obtain (7. 18).

Note that (7. 17) and (7. 18) imply

||\Lambda^{s-1/3}v_{t}||\leqq C_{0}||p\Lambda^{s+1/3}\Lambda_{t}g||+O(||\Lambda^{s-2/3+8}v_{t}||)

for any \delta>0 , say, \delta=1/6 . Hence we have

||\Lambda^{s-1/3}v_{t}||\leqq 2C_{0}||p\Lambda^{s+1/s}\Lambda_{t}g||+C_{t,s}||\Lambda^{s-\beta t}v_{t}||

for each t\geqq 1 and s\in R^{1} , where \beta=\tilde{y}_{0}+T-(\overline{y}_{0}-3\delta_{1}) . Now suppose w_{1}\in

H^{\overline{s}}(R^{n}) for some \overline{s}\in R^{1} . Then for each t\geqq 1 , taking s=\overline{s}-1/3+(\tilde{y}_{0}+T)t,

we see that ||\Lambda^{s-1/3}v_{t}|| is finite, because w_{1} satisfies (7. 12). Consequently we
have

p_{0}w_{1}\in H^{\infty}(R^{n}\cap\{y_{0}<\tilde{y}_{0}+T\}) ,

in particular, (\tilde{y}_{0},\tilde{y}’,\tilde{\eta}’)\not\in WF(w_{1}) . Since v_{02}=w_{1}+w_{2} mod H^{\infty}(R^{n}) we
thus prove the proposition.

Now, we shall return to (5. 3), restricted to the case of (1. 10). Set f_{\epsilon}=

\Phi_{1}\tilde{\chi}_{\epsilon}\Phi_{1}^{-1}f, where \tilde{\chi}_{\epsilon} is the cutoff function described above Proposition 7. 2.
We also define v_{h1} , v_{e1} by (5. 11) with v_{0} and f replaced by v_{01} and f_{\epsilon},

respectively, and v_{h2} , v_{e2} analogously with v_{0} and f replaced by v_{02} and f-
f_{\epsilon}, respectively. Finally set

(7. 19) v^{(j)}=\{\begin{array}{l}v_{0j}v_{hj}v_{ej}\end{array}\} , j=1,2 .

Then from the results of this section we have easily

PROPOSITION 7. 7. Suppose the hypotheses of Proposition 7. 2 and 7. 3 are
fulfifilled. Then (7. 5), (7. 7) and (7. 8) hold with v_{01} and f_{0} replaved by v^{(1)}

and \Phi_{1}^{-1}f, respectively. In particular, WF(v^{(1)})\cap\hat{N}_{-}=\phi .

PROPOSITION 7. 8. Suppose the hypotheses of Proposition 7. 4 and 7. 6 are
fulfifilled. Then (7. 9), (7. 10) and (7. 16) hold with v_{02}nadf_{0} replaced by
v^{(2)} and \Phi_{1}^{-1}f, respectively. In particular, WF(v^{(2)})\cap N_{+}=\phi .

From these we obtain

COROLLARY 7. 9. Suppose the hypotheses of Theorem 1. 1 are satisfified.
Let v^{(1)} , v^{(2)} be given by (7. 19) and set v=v^{(1)}+v^{(2)} . Then

BGv|_{x_{n}=0}-f\in C^{\infty}(X’)

where G is the operator defined by (3. 9), (3. 10) and (3. 29). Moreover for
x_{n}=0 we have WF(Gv^{(1)})\cap N_{-}=\phi, WF(Gv^{(2)})\cap N_{+}=\phi, WF(Gv^{(2)})\cap N

-

\subset
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WF(f) , WF(Gv^{(j)})\cap N_{0}\subset M_{0}^{+}(f) for j=1,2 and

WF(Gv^{(1)}) \cap N_{+}\subset\bigcup_{k=0}^{\infty}\phi_{+}^{k}(WFCf)\cap N_{+}) .

The proof is analogous to that of [11], Corollary 6. 10.
REMARK 7. 10. Suppose (1. 9) holds and let \mathscr{B}

\overline{\mathscr{B}} be as Remark 6.
11. Then the existence of solutions to \tilde{\mathscr{B}}v_{0}=f_{0} follows as usual from (6. 36).

Moreover the conclusions of Propositions 7. 2, 7. 3, 7. 4 and 7. 6 are still valid,

because of (6. 37) and (6. 38). Hence those of Propositions 7. 7, 7. 8 and
Corollary 7. 9 are also true.

\S 8. Proof of Theorem 1. 1

In this section we will complete the proof of Theorem 1. 1, by showing
that E(f)=Gv has the required properties. Here Gv is the same function as
in Corollary 7. 9.

Let \delta_{n} , V\subset X’ and \sum\subset R^{n}\backslash 0 be, respectively, a positive number, a
neighborhood of \overline{x}’ and a conic neighborhood of \overline{\eta}’ such that, for (x’, x_{n})\in

V\cross[0, \delta_{n}) and \eta’\in\Sigma , the phase functions \theta(x, \eta’) , \rho(x, \eta’) and the ampli-
tudes a(x, \eta’) , b(x, \eta’) have the properties stated in \S 3. In what follows we
take \delta_{n} , V and \sum small if necessary, and often write U_{n}=V\cross[0, \delta_{n}) . Then
by virtue of (3. 4) one can assume
(8. 1) \rho(x, \eta’)\leqq(\alpha-c_{n}x_{n})|\eta’|^{2/3} for (x, \eta’)\in U_{n}\cross\Sigma ,

where c_{n} is a positive number.
Now, that Gv\in H_{1oc}^{\infty,-\infty}(U_{n}) is a consequence of the following.

PROPOSITION 8. 1. Suppose v^{(1)} , v^{(2)}\in H^{\overline{s}}(R^{n}) with some \overline{s}\in R^{1} .
Then D_{n}^{k}Gv^{(j)}\in H_{1OC}^{0,s_{k}}(U_{n}) for each integer k\geqq 0 and j=1,2 , where s_{k} is the
minimum of 0 and 3 ( \overline{s}-k)-2n-2 .

PROOF. From (7. 5) and (7. 7) through (7. 11) we see analogously to
the proof of [11], Proposition 7. 4 that D_{n}^{k}G_{0}v_{0j}\in H_{1OC}^{0,s_{k}}(U_{n}) . One can also
show as usual that DlnGhvhjy D_{n}^{k}G_{e}v_{ej}\in H_{1oc}^{o,\overline{s}-k}(U_{n}) . (See e.g. Chap. 10, \S 2

of KumanO-go [14] in the references of [11] ) . The proof is complete.
On the singular support of Gv we have

PROPOSITION 8. 2. There are compact sets K_{1} , K_{2}\subset X and a positive
number T such that K_{j}\cap\{x_{0}<T\}\subset U_{n} and Gv^{(j)}\in C^{\infty}(U_{n}\backslash K_{j}) , j=1,2 .

PROOF. Set

K_{02}= { (x’0)\in X ; x’\in sing supp \Phi_{1}v_{02} }.

Then from Propositions 7. 4 and 7. 6 we see analogously to [11], Proposition
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7. 6 that G_{0}v_{02}\in C^{\infty}(U_{n}\backslash K_{02}) provided \delta_{1} and \delta_{4} are small. One can also
deduce as usual that G_{e}v_{e2} is smooth outside { (x’. O)\in X :x’esing supp \Phi_{1}

v_{e2}\} and that G_{h}v_{h2} is smooth except the union of all outgoing bicharacteristic
curves of (Q/Q_{0})(x, \xi) starting from \iota^{*-1}(WF(\Phi_{1}v_{h2})) . Therefore it fol-
lows from Proposition 7. 8 that there is a compact set K_{2}\subset X which has the
required properties provided T>0 is small. Similarly one can find such a
compact set K_{1}\subset X. Thus we prove the proposition.

That (1. 22) holds is a consequence of the following.

PROPOSITION 8. 3. PGv^{(j)}\in C^{\infty}(U_{n}) , j=1,2 .

The proof is analogous to that of [11], Proposition 7.5, if we use
Lemma 3. 2.

END OF PROOF OF THEOREM 1. 1. By virtue of Proposition 8. 2 one can
cut off Gv^{(j\rangle} outside K_{1}\cup K_{2} modulo smooth errors and extend them to X_{T}.
Then Gv=Gv^{(1\rangle}+Gv^{(2)} satisfies (1. 20), (1. 27) and (1. 22). Moreover
(1. 23) is a direct consequence of Corollary 7. 9. To derive the last conclu-
sion of the theorem, let (\hat{x}’\hat{\xi}’)\in T^{*}X’\backslash 0 be a point, with \hat{x}_{0}<T, which does
not belong to the set (1. 24). First suppose \tilde{Q}(\hat{x}’0,\hat{\xi}’)\neq 0 . Then it follows
from Proposition 2. 4 and Corollary 7. 9 that Gv is smooth up to the boundary
at (\hat{x}’.\hat{\xi}’) . Next suppose \tilde{Q}(\hat{x}’0,\hat{\xi}’)=0 . In virtue of Proposition 8. 2 one
can also assume \hat{x}’ is close to \overline{x}’. Then we see that \hat{\xi}’ is far away from
\theta_{X’}(\hat{x}’. 0, \eta)’ and hence from \psi_{kX’}(x, \eta’) provided x=(x’. x_{n}) is close to (\hat{\chi}_{-}’

0) and (\theta_{\eta^{r}}(x’. 0’, \eta), \eta’)\in WF(v_{0}) . Here \psi_{k}(x, \eta’) are the phase functions
in [11], Lemma 7. 2. Therefore by a standard integration by parts method
we find that G_{0}v_{0} is smooth up to the boundary at (\hat{x}’.\hat{\xi}’) . (See e.g.
H\"ormander [5], \S 1. 2). Sim\overline{l}larly it follows that so are G_{h}v_{h} and G_{e}v_{e} . In
view of Remark 7. 10 we thus prove the thorem.

\S 9. Proofs of Theorems 1. 2 and 1. 3

The proof of Theorem 1. 2 is similar to that of [11], Theorem 1. 2, if we
use, instead of the Dirichlet problem, the following auxiliary mixed problem

P(x, D)u=0 in X,
(9. 1) B_{0}(x)u=g on \partial X,

u=0 in X\cap\{x_{0}\ll 0\} .

Here B_{0}(x) is the d^{+}\cross m matrix defined by (1. 27) and (1. 28) with S(x)=
0 . Note that the boundary condition B_{0}u|_{Xn=0}=0 is strictly dissipative, name-
ly, it is not only maximally nonpositive for P but also

A_{n}(x)u\cdot u<0 for u\in kerB_{0}(x)\backslash 0 and x\in\partial X.
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Therefore (1. 9) with B=B_{0} holds (see Georgive [2]).

PROOF OF THEOREM 1. 2. Let E(f) be as in Theorem 1. 1 and set w=
u-E(f) . Then

(9.2) w\in H_{1OC}^{0,s^{r}}(X_{T}) for some s’\in R^{1} ,

(9.3) w\in C^{\infty}(X\cap\{k_{)}\ll 0\}) ,
(9.4) Pw\in C^{\infty}(X_{T})

and

(9.5) Bw|_{Xn=0}\in C^{\infty}(X_{\acute{T}}) .

In a special case where the boundary condition Bw|_{x_{n}=0}=0 is maximally
dissipative, we see by virtue of Proposition 2. 5 that w\in C^{\infty}(X_{T}) . Thus it
suffices to prove

(9.6) w|_{x_{n}=0}\in C^{\infty}(X_{\acute{T}})

so that B_{0}w|_{x_{n}=0}\in C^{\infty}(X_{\acute{T}}) .
In virtue of Theorem 1. 1 applied to (9. 1) with g=B_{0}w|_{x_{n}=0} , there is a

parametrix Gv\in H_{1OC}^{\infty,-\infty}(X_{\tau_{0}})\cap C^{\infty}(X\cap\{x_{1}\ll 0\}) with some T_{0}>0 such that
PGv\in C^{\infty}(X_{To}) and B_{0}Gv|_{Xn=0}-g\in C^{\infty}(X_{\acute{T}0}) . We also see from Remark 7.
10 that v\in H^{-\infty}(R^{n}) and

(9.7) WF (v) \subset WF(\Phi_{1}^{-1}g)\cup\hat{M}_{0}^{+}(\Phi_{1}^{-1}g)\cup(\bigcup_{k=1}^{\infty}\phi_{2}^{k}(WF(\Phi_{1}^{-1}g)\cap\hat{N}_{+})) .

For simplicity we rewrite the minimum of T and T_{0} as T. Then (9. 2),

(9. 3) and (9. 4) yield that Gv-w\in H_{1OC}^{0,s}(X_{T})\cap C^{\infty}(X\cap\{x_{)}\ll 0\}) for some s
\in R^{1} , P(Gv-w)\in C^{\infty}(X_{T}) and B_{0}(Gv-w)|_{xn=0}\in C^{\infty}(X_{\acute{T}}) . Therefore by
virtue of Proposition 2. 5 we have

(9.8) Gv-w\in C^{\infty}(X_{T}) .

Hence we need only to prove

(9.9) Gv|_{Xn=0}\in C^{\infty}(X_{\acute{T}}) ,

which is analogous to [11], (8. 6).

Set

f=BGv|_{x_{n}=0} .

Then (9. 5) and (9. 8) imply f\in C^{\infty}(X_{\acute{T}}) . Moreover by virtue of (9. 7)

one can assume v(y’)\in H^{\infty}(R^{n}\cap\{y_{0}<\overline{y}-\delta_{1}\}) , where \delta_{1} is the positive num-
ber in (5. 29). We also have \mathscr{B}v_{0}=f_{0} , where \mathscr{B} is an operator defined by
one of (5. 10), (5. 17) and (5. 22), and f_{0} also defined as before. Therefore



432 K. Kubota

similarly to Corollary 7. 9 we obtain (9. 9). Thus we prove the theorem.

We shall proceed to the proof of Theorem 1. 3. Since WF(u|_{x_{n}=0}) is a
closed set in T^{*}X’\backslash 0 , the theorem is a consequence of the following together
with Proposition 2. 4.

PROPOSITION 9. 1. Suppose the hypotheses of Theorem 1. 3 are, fulfifilled.
Let (\hat{x}’\hat{\xi}’)\in\Gamma( \overline{x}’. \overline{\xi}’) be a point such that -\delta<\hat{x}_{0}\leqq 0 . Assume WF
(u|_{x_{n}=0})\cap\Gamma(X’,-\overline{\xi}’)\cap\{\hat{m}-\delta’<x_{)}<\hat{x}_{1}\}=\phi for some \delta’ with 0<\delta’\leqq\hat{x}_{1}+\delta.
Then (\hat{x}’.\hat{\xi}’)\not\in WF(u|_{x_{n}=0}) .

PROOF. One can assume without loss of genelality that (\hat{\chi}_{-}’\hat{\xi}’)=(\overline{x}’ ,
\overline{\xi}’) and \delta’=\delta, taking \delta small. We shall reduce the proposition to Theorem
1. 2. Since \Gamma(\overline{x}_{3}’\overline{\xi}’) can be parametrized by x_{0} , we write a point on it as
(x_{)}, x’(x_{1}) , \xi’(x_{)})) .

Let \psi_{1}(x_{\mathcal{F}}’D’)\in OPS_{1,0}^{0} be a pseudodifferential operator, with symbol \psi_{1}

(x’. \xi’) homogeneous in \xi’ for |\xi’|>1 , such that supp \psi_{1\backslash }’x’ . \xi’) is contained
in a small conic neighborhood of \Gamma(\overline{x,}\overline{\xi}’)\cap\{-\delta/3\leqq x\}\leqq 0\} , \psi_{1}(x’. \xi’)=1 on
a smaller one, and \psi_{1}(x’. \xi’)=0 when |x_{)}|+|x’-x’(:\%)|\geqq 2\delta/3 . Then it
suffices to prove

(9. 10) WF(\psi_{1}u|_{x_{n}=0})\cap\Gamma(\overline{x}’. \overline{\xi}’)\cap\{x_{)}\leqq 0\}=\phi .

Set

(9. 11) \Gamma_{1}=\Gamma(\overline{x}’. \overline{\xi}’)\cap\{-2\delta/3\leqq x_{)}\leqq-\delta/3\} .

By assumption we have WF(u|_{x_{n}=0})\cap\Gamma_{1}=\phi . Therefore by virtue of PropO-
sition 2. 4 there are a positive number \epsilon_{1} and a pseudodifferential operator \psi_{2}

(x’D’)\in OPS_{1,0}^{0} , with symbol \psi_{2}(x’. \xi’) homogeneous in \xi’ for |\xi’|>1 , such
that

(9. 12) \psi_{2}u\in C^{\infty}(X\cap\{0\leqq x_{n}<\epsilon_{1}\})

and \psi_{2}(x’. \xi’)=1 on a small conic neighborhood of \Gamma_{1} . Let \epsilon>0 and \chi_{\epsilon}(x_{n})

\in C_{0}^{\infty}(R^{1}) be a cutoff function, supported in -\epsilon<x_{n}<\epsilon, such that \chi_{\epsilon}(x_{n})=1

for |x_{n}|<\epsilon/2 . Then from (9. 12) we have
(9. 13) P\chi_{\epsilon}\psi_{1}u=[P, \chi_{\epsilon}\psi_{1}](1-\psi_{2})u, mod C^{\infty}(X)

for 0<\epsilon<\epsilon_{1}/2 . From now on we suppose 0<\epsilon<\epsilon_{1}/2 and \delta, \epsilon_{1} are small.
For convenience we set

P’(x, D’)=P(x, D)-A_{n}(x)D_{n},

which does not contain D_{n} . Then we have
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[P, \chi_{\epsilon}\psi_{1}]=A_{n}(D_{n}\chi_{\epsilon})\psi_{1}+\chi_{\epsilon}([A_{n}, \psi_{1}]D_{n}+[P’. \psi_{1}]) .

Now let F_{1} be the zero extension of A_{n}(D_{n}\chi_{\epsilon})\psi_{1}(1-\psi_{2})u to x_{n}<0 . Note
that F_{1}\in H^{\infty,-\infty}(R^{n+1}) and F_{1}(x)=0 when x_{n}<\epsilon/2 or x_{0}<-2\delta/3 . Next set

(9. 14) f_{2}=([A_{n}, \psi_{1}]D_{n}+[P’\psi_{1}])(1-\psi_{2})\chi_{\epsilon_{1}}u

and let Ef_{2} be a Seeley extension of f_{2} to x_{n}<0 (see [19]). Then, since f_{2}\in

H^{\infty,-\infty}(X) , we see that Ef_{2}\in H^{\infty,-\infty}(R^{n+1}) . Finally, setting

(9. 15) F_{2}=\chi_{\epsilon}Ef_{2} ,

we have

(9. 16) P\chi_{\epsilon}\psi_{1}u=F_{1}+F_{2} , mod C^{\infty}(X) .

Let us consider the following Cauchy problem with zero initial data

Pv=F_{j} in R^{n+1} , j=1,2,
(9. 17)_{j}

v(x)=0 for x_{0}<-2\delta/3 .

Then we obtain

Lemma 9. 2. For eac/z j=1,2, the Cauchy problem (9. 17)_{j} has a solu-
tion v_{j} such that v_{j}\in H_{1OC}^{\infty,-\infty}(\Omega_{T}) for any T>0 , where \Omega_{T}=\{x\in R^{n+1} : x) <
T\} .

PROOF. For a nonnegative integer k and real numbers s, \gamma with \gamma>0 ,

we denote by H_{\gamma}^{k,s} the set of distributions u in R^{n+1} such that e^{-\gamma x_{0}}u\in

H^{hs}(R^{n+1}) . Let j=1 or 2, and for simplicity drop the subscripts. Then,
since F\in H^{\infty,-\infty}(R^{n+1}) and F(x)=0 for x_{0}<-2\delta/3 , there is a decreasing
sequence \{s_{k}\}_{k=0}^{\infty} of real numbers such that F\in H_{\gamma}^{k,S_{k}} for any integer k\geqq 0 and
\gamma>0 . Hence, for each integer k\geqq 0 , there is a positive number \gamma_{k} such that
(9. 17) has a unique solution v\in H_{\gamma}^{k,S_{k}} if \gamma\geqq\gamma_{k} . Let F be an arbitrary
positive integer. Then it follows from the uniqueness of the solution that v

is independent of k=0,1 , \ldots F if \gamma is large according as F. Hence v\in

H_{1oc}^{\infty,-\infty}(\Omega_{T}) for any T>0 . Thus we prove the lemma.
Now let v_{j}, j=1,2 , be such solutions of (9. 17)_{j} as in Lemma 9. 2. For

small T>0 we take a cutoff function \tilde{\chi}_{T}(\eta)\in C^{\infty}(R^{1}) , supported in x_{0}<T,

such that \tilde{\chi}_{T}(x_{0})=1 for x_{0}<T/2 , and set

(9. 18) w=\chi_{\epsilon}\psi_{1}u-\tilde{\chi}_{T}(v_{1}+v_{2})|_{X}.

We shall prove

(9. 19) (\overline{x}’,\overline{\xi}’)\not\in WF(w|_{x_{n}=0}) .
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To this end we use Theorem 1. 2. Clearly w\in H_{1OC}^{\infty,-\infty}(X_{T})\cap C^{\infty}(X\cap\{x_{\}}\ll 0\}) .
Moreover (9. 16) yields Pw\in C^{\infty}(X_{T/2}) . Set

f=Bw|_{x_{n}=0} .

If we show that

WF (f)\cap\Gamma_{2}(x’.\overline{\xi}’)=\phi,

where

\Gamma_{2}=\Gamma(\overline{x}’. \overline{\xi}’)\cap\{-2\delta/3\leqq x_{)}\leqq 0\} ,

and that WF(w|_{x_{n}=0}) is contained in a small conic neighborhood of (\overline{x}”. \overline{\xi}’) ,
then (9. 19) follows. Thus it suffices to prove the following two lemmas.

LEMMA 9. 3. There is a positive number T such that WF(\tilde{\chi}_{T}(v_{1}+v_{2})

|_{x_{n}=0}) is contained in a small conic neighborhood of (\overline{x}’ \overline{\xi}’) .

LEMMA 9. 4. WF(v_{j}|_{x_{n}=0})\cap\Gamma_{2}=\phi for j=1,2 .

PROOF OF LEMMA 9. 3. Set v=v_{1}+v_{2} , F=F_{1}+F_{2} and V_{T}=(sing supp
v)\cap\{x)\leqq T\}) . Then, since WF(F) is contained in a small conic neighbor-
hood of \iota^{*-1} ( \overline{x}’. \overline{\xi}’) , we see that V_{T} is a compact subset of R^{n+1} for each
T>0 and it is small if so are \delta , \epsilon and T. In what follows we fix T small
and restrict ourselves to a small neighborhood of V_{T} in R^{n+1} .

Let \phi_{1}(x’. D’)\in OPS_{1.0}^{0} be a pseudodifferential operator such that supp
\phi_{1}(x_{J}’\xi’) is away from the union of supp \psi_{1}(X_{-}^{r}\xi’) and the set

\Sigma_{0}= { (x’ . \xi’)\in T^{*}X’\backslash 0:Q(x’, x_{n}, \xi’)=0 for some x_{n} }.

Then it follows from Lemma 2. 3 and results on propagation of singularities
in the free space that WF(\phi_{1}v) is contained in the union of null bichacteris-
tics through WF(F) . Bearing this in mind, we take pseudodifferential
operators \phi_{2}(x’. D’) , \phi_{3}(x’. D’)\in OPS_{1,0}^{0} such that supp \phi_{2}(x’. \xi’) and supp
\phi_{3}(x’. \xi’) are contained, respectively, in small conic neighborhoods of supp
\psi_{1}(x’. \xi’) and \Sigma_{0} , and \phi_{j}(x_{j}’\xi’)=1 on smaller ones, j=2,3. Divide v as
v=v^{(1)}+v^{(2)}+v^{(3)} , where v^{(1)}=(1-\phi_{3})(1-\phi_{2})v, v^{(2)}=\phi_{2} and v^{(3)}=\phi_{3}(1-\phi_{2})

v. Then we see from the above observation and [5], Theorem 2. 5. 11’ that
WF(\tilde{\chi}_{T}v^{(1)}|_{x_{n}=0}) is contained in a small conic neighborhood of (\overline{x}’. \overline{\xi}’) pr0-
vided \delta , \epsilon and T are small, Clearly so is WF(v^{(2)}|_{x_{n}=0}) also. Finally we
shall show that v^{(3)}\in C^{\infty}(R^{n+1})\cap\{x_{0}<T\}) for some T>0 . Since supp
\phi_{3}(x’. \xi’) can be assumed to be far away from supp \phi_{2}(x’. \xi’) , we have v^{(3)}=

\phi_{3}v hence

Pv^{(3)}=\phi_{3}Pv+[P, \phi_{3}]v, mod C^{\infty}(R^{n+1}) .
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Note that \phi_{3}Pv=\phi_{3}F\in C^{\infty}(R^{n+1}) . Moreover

[P, \phi_{3}]v=[P, \phi_{3}]\phi_{1}v, mod C^{\infty}(R^{n+1}) ,

for such \phi_{1}(x’. D’) as described above. Therefore we see that [P, \phi_{3}]v\in

C^{\infty}(R^{m+1}\cap\{x\}<T\}) hence so is Pv^{(3)} . Thus v^{(3)}\in C^{\infty}(R^{n+1}\cap\{x)<T\}) for
small T>0 . The proof is complete.

PROOF OF LEMMA 9. 4. Let (\hat{x}’.\hat{\xi}’)\in\Gamma_{2} and set \hat{x}=(\hat{x}’0) . Then it
suffices to show that

(9.20)_{j} (\hat{x,}\xi’\wedge\xi_{n})\not\in WF(q_{j}v_{j})

for (\xi’, \xi_{n})=(0,1) and some pseudodifferential operators q_{j}(x_{2}’D’)\in OPS_{1.0}^{0}

which are elliptic at (\hat{x}’.\hat{\xi}’) , and

(9.21)_{j} (\hat{x,}\hat{\xi}’-\xi_{n})\not\in WF(v_{j})

for each root \hat{\xi}_{n} of Q(\hat{x,}\hat{\xi}’\xi_{n})=0 . (See [5], Theorem 2. 5. 11’).

Since \tilde{Q}(\chi_{\backslash }’0, \xi’)\neq 0 for (x’, \xi’)\in\Gamma_{2} and F_{1}(x)=0 for x_{n}<\epsilon/2 , by virtue
of Lemma 2. 3 there is a pseudodifferential operator q_{1}(x’. D’) , elliptic on \Gamma_{2} ,

such that (9. 20)_{1} holds. Next, since

(9.22) \Gamma_{2}\cap (supp grad \psi_{1} ) \cap(supp1-\psi_{2})=\phi ,

it follows from (9. 14) that \psi J_{2}\in C^{\infty}(X) for some \psi_{3}(x’. D’)\in OPS_{1,0}^{0} , ellip-
tic on \Gamma_{2} . Hence (9. 15) yields \psi_{3}F_{2}\in C^{\infty}(R^{n+1}) , because \psi_{3} and the exten-
sion operator E commute. Thus, as above, there is a pseudodifferential
operator q_{2}(\chi_{-}’D’) , elliptic on \Gamma_{2} , such that (9. 20)_{2} holds.

Now we shall prove (9. 21)_{j} . Let \xi_{n}^{+}(x, \xi’) or \xi_{\overline{n}}(x, \xi’) be one of sim-
ple real roots of (Q/Q_{0})(x, \xi’. \xi_{n})=0 such that \partial\xi_{n}^{+}/\partial\xi_{0}<0 or \partial\xi_{\overline{n}}/\partial\xi_{0}>0 ,

respectively. If \hat{\xi}_{n}=\xi_{n}^{+}(\hat{x},\hat{\xi}’) or \hat{\xi}_{n}=\lambda(\hat{x},\hat{\xi}’) , then (9. 21)_{1} follows from
(9. 17)_{1} , because WF(F_{1}) and the bicharacteristics of Q(x, \xi)\wedge through
(\hat{x,}\hat{\xi}’,\hat{\xi}_{n}) do not intersect for x_{n}\leqq 0 . Let \hat{\xi}_{n}=\xi_{\overline{n}}(\hat{x},\hat{\xi}’) . If x_{0}<0 , then
(\hat{x}’,\hat{\xi}’)\not\in WF(u|_{xn=0}) by assumption hence it follows from Proposition 2. 4
that WF(u) does not intersect the bicharacteristics through (\hat{x},\hat{\xi}’.\hat{\xi}_{n}) for
small x_{n}>0 . The same is true by assumption also when x_{0}=0 . Thus WF (F_{1})

and the bicharacteristics do not intersect for x_{2}\geqq 0 provided \epsilon is small.
Hence we obtain (9. 21)_{1} .

Next we shall prove (9. 21)_{2} . Let \hat{\xi}_{n}=\xi_{n}^{+}(x,\hat{\xi}’) or \hat{\xi}_{n}=\xi_{\overline{n}}(\hat{x},\hat{\xi}’) .
Then the projection on T^{*}X’ of a segment, with |x_{n}|\ll 1 , of the bicharacteris-
tics of Q(x, \xi) through (\hat{x,}\hat{\xi}’.\hat{\xi}_{n}) is contained in a small conic neighbor-
hood of \Gamma_{2} . Therefore, by (9. 15) and (9. 22), there is a positive number \epsilon_{2} ,

independent of (\hat{x}’.\hat{\xi}’)\in\Gamma_{2} , such that WF (F_{2}) does not intersect the bichar-
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acteristics if 0<\epsilon<\epsilon_{2} . Thus (9. 21)_{2} follows.
Finally let \hat{\xi}_{n}=\lambda(\hat{x}’,\hat{\xi}’) . Denote by (\hat{x}(t),\hat{\xi}(t)) the bicharacteristics

of - Q_{0}(x, \xi) through (\hat{x,}\hat{\xi}’.\hat{\xi}_{n}) , where the parameter t is taken in such a
way that dx_{)}(t)/dt>0 and (\hat{x}(0),\hat{\xi}(0))=(\hat{x,}\hat{\xi}’\hat{\xi}_{n}) . Let t_{0} be a small
positive number such that

(\hat{x}’(t),\hat{\xi}’(t))\not\in (supp grad \psi_{1} ) \cap(supp1-\psi_{2})

for - t_{0}<t\leqq 0 and (\hat{\chi}_{\sim}’\hat{\xi}’)\in\Gamma_{2} . Then, analogously to the proof of [11],
Lemma 8. 3, we find a positive number \epsilon_{3} , independent of (\hat{x}’.\hat{\xi}’)\in\Gamma_{2} , such
that if -\epsilon_{3}<\hat{x}_{n}(t)<0 and t<0 then - t_{0}<t. Let 0<\epsilon<\epsilon_{3} . Then (\hat{x}(t) ,
\hat{\xi}(t))\not\in WF(F_{2}) for t\leqq 0 and (\hat{\chi}_{-}’\hat{\xi}’)\in\Gamma_{2} . Hence (9. 21)_{2} follows. Thus,
taking \epsilon<\epsilon_{2} and \epsilon<\epsilon_{3} , we complete the proof.

END OF proof OF PROPOSITION 9. 1. It follows from (9. 18), (9. 19)

and Lemma 9. 4 that ( \overline{x}’ \overline{\xi}’)\not\in WF(\psi_{1}u|_{xn=0}) . Since \psi_{1} is elliptic at ( \overline{x}’,
\overline{\xi}’) , we have ( \overline{x}’. \overline{\xi}’)\not\in WF(u|_{Xn=0}) . The proof is complete.

PROOF OF THEOREM 1. 3. Assume the hypotheses of the theorem are
fulfilled. If ( \overline{x}’. \overline{\xi}’)\not\in WF(u|_{x_{n}=0}) , we see from Proposition 2. 4 that u is
smooth up to the boundary at ( \overline{x}’, \overline{\xi}’) , in particular,

(\overline{x}’. \overline{\xi}’)\not\in\bigcup_{k=0}^{\infty} WF (D_{n}^{k}u|_{x_{n}=0}) .

If there is a point (\hat{x}’.\hat{\xi}’)\in\Gamma( \overline{x}’-\overline{\xi}’)\cap\{-\delta<\eta)<0\} such that (\hat{\chi}_{-}’\hat{\xi}’)\not\in WF

(u|_{x_{n}=0}) , we observe from Proposition 9. 1 that ( \overline{x}’. \overline{\xi}’)\not\in WF(u|_{x_{n}=0}) .
Thus we prove the theorem.
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