Hokkaido Mathematical Journal Vol. 17 (1988), p. 373~437

Microlocal parametrices and propagation of singularities
near gliding points for hyperbolic mixed problems II

Kb6ji KuBoTa
(Received August 27, 1987, Revised April 27, 1988)

§ 1. Introduction

This work is a continuation of in which we have shown the exis-
tence of a parametrix and studied the propagation of singularities near a
gliding point for a mixed (initial boundary value) problem for a second
order hyperbolic equation. In the present paper we are concerned with first
order symmetric hyperbolic systems. We do not repeat here the introduc-
tions of [10], [11], where the reader can find references and short histrical
surveys of this problem.

In the sequel the hypothesis (H,) of will be removed and the
assumption that the boundary condition is maximally dissipative will be
relaxed so that (1.3) below holds. Besides, using the methods of this
paper, one can simplify fairly the equation (4.14) of on the boundary
and, as a result, remove the hypothesis that the subprincipal symbol of P is
pure imaginary. (See Remark 5.1 below).

Let P(x, D) be a symmetric hyperbolic system in R™' (#=2) of the
form

P(x, D>:22=0Ak<x>Dk+C<x>, .Dk: _Za/axk,

where x=(x, %1, ..., %.), A, are hermitian m X m matrices and A, is posi-
tive definite. Let us consider the following mixed problem in a closed half
space X =X'X[0,00)={x=', x,) ; %20, x'=(x, %1, ..., %1 )VEX'=R"}
with boundary o.X :

P(x, D)u=0 in X,

1.D B(x)u=f on 9X,
#=0 in X N{x%<0}.

We assume P is of constant multiplicity. Then, denoting by P, (x, &) the
principal symbol of P with &= (&', &,) the covariable of x=(x’, x,,), one can
write

(1.2)  det P(x, ©)=Q(x, ©)™...Q.(x, ©)™Qx, &),
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where @, ..., @, and é are homogeneous polynomials in & which have no
common zero in &, @, ..., @, are strictly hyperbolic with respect to &,
and Q is independent of &,. (See Matsuura [14]). Setting

Q(x, g)ZH};IQj(x’ g>)

we assume that the boundary a8X is noncharacteristic for @ and that, for
each x€ 90X and &€ R"\0, the multiplicity of real roots &, of the equation @
(x, &, &,)=01is at most double and there is at most one double real root. Let
d* be the number of the positive eigenvalues of A,(x), counting multiplicity,
which is independent of x€9X. We also suppose that B(x) is a d*Xm
matrix of maximal rank and that A4,(x), C(x) and B(x) are smooth (.e.
C=), constant for |x| large enough. Moreover we assume

1.3 ker A,(x)Cker B(x) for x€oX.

(See e.g. for what this condition means).

Now let (x’, £)ET*X'\0 be a (fixed) gliding point, by definition, a
point such that for some 1<j<7, say j=1, the equation @ (x’, 0, &, &) =0
has a real double root &, and

(1.4  {Q, aQi/8&,} (x, £)<0

where x=(x",00€0X, §=(&’, &) and {,} denotes the Poisson bracket
on T*X. Then, since Q(x, £)=(0Q/3&)(x, £)=0 and (3?°Q'/3&2)
(x, &)+*0, one can write

Q(x, &)=Q(x &Qi(x, & with Qi(x, &)+0,
Qx, &)=0&—A2(x, &) ~ulx, &)

in a conic neighborhood of (x, &). Here A (x, &), u(x, &) are real valued
smooth functions, homogeneous in & of degree 1, 2, respectively, such that
ulx, £)=0, A(x, &)=E&, and (1.4) is equivalent to

(1.4 {&—A,ut(x, £)<0

Since Q,(x, &) is strictly hyperbolic with respect to &, we have (9u/
0&,)#0. From now on we suppose, for definiteness,

(1.6)  (ou/2&)(x, EN>0.

Note that, near (x, &), @ (x, &) =0 is equivalent to @, (x, &) =0 and if &>
Z, then u(x, &, £7)>0 hence the equation @,(x, &, &”, &) =0 with respect
to &, has two simple real roots. Here we have set &'=(&, &) and &=
(&, ..., &.). Besides, for &>1, all roots &, of @ (x, &, &”, &) =0 are
simple real. Bearing these in mind we make the following assumption on the

(1.5)
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polynomial Q.

(1.7)  The two roots of the equation @,(x, &, &”, &,) =0 with respect to
&n, regarded as single-valued continuous functions of &> &,, are continued
up to &,< &, <oo as simple real roots of @, (x, &, &”, &,)=0.

This condition will be used only to essure (2.4) and hence the
solvability of the transport equation (3.23).

We also make certain assumptions on the boundary condition. To state
these let W (x’, &, &,) be a smooth m X m, matrix of maximal rank, ana-
lytic in &,, whose columns form a basis of ker P,(x’, 0, & &,) when Q,(x’, 0,
&', &) =0, where m, is the multiplicity of @, in (1.2). Besides, let W,(x’,
&) or W.(x', &) be, respectively, a smooth basis of the root subspace of
P (x', 0, &', &), corvesponding to the simple real roots &, of (Q/Qy)(x’, 0, &,
&) =0 such that 9&,/9&,<0 or to the nonreal roots with positive imaginary
parts. Noting that (W, W,, W,) is an m X d* matrix, we set

R, &, e)=BU,0(W &, &, &), W, &), Wx, &),
R/, &, &)=det R(x', &, &,).

Moreover let £3,(x’, &) be the root of @, (x’, 0, &', &,) =0 such that 9&3/9&, <
0 for £>0, Im &3>0 for x<0. Then

R (xl, gl’ é-_;.l <x/’ gl))
is called a Lopatinski determinant. Note that £5(x’, £&)=1’, 0, &) —u (x’,

0, ENY2 for x=0 under (1.6). We also say that the strong Lopatinski
condition is satisfied at (x’, &) if

1.9 R/, &, &)=+0 with &,=1(x", 0, &).
To the contrary, suppose in what follows

(1.10 R(x’, &, &)=0.

(1.8

Then we assume
1.1  (8R/3&)(x’, &', &,) 0.
Set for convenience

w(x', EN=ulx’,0,&), 2, &)=211, 0, &),
No={, EDET*X\0; u(x’, &) =0},
N.={, EVET*X'\0; uo(x, )20}

and

(1.12) R, &D=(R/(BR/3&))(x', &, X, (x’, &)).
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Our main assumption on the boundary condition is concerned with the range
of the normalized Lopantinski determinant R, restricted to the glancing
surface N,.

UZJ There are a positive number 8= /2 and a conic neighborhood 2o of
(x’, &) such tht, for (x', &DEN, N2,

arg Ri(x', &DClx/2, B/2n—&] if m=1,
arg R(x, &NVClx/2+ 6, B/2Dx—&] if m =2,

where my is the multiplicity of @, in (1.2).
It is desirable for (H,) to be relaxed, e.g., as
(H,), Re R:(x/, &NV =0 for (&', EDEN,N 2.

Unfortunately, when ne, =2, in the set N, of hyperbolic points we must
make an additional assumption on R: or on reflection coefficients c;, with j,
k=1.2, ..., m. Here, for (x', &)EN,, the ¢;.(x’, &) is defined to be the
(j, k) entry of the following matrix

(1.13) R, &, &5, ENRU, &, &x(x', &,

where £5(x, &) =2,(x", &)+ u(x’, £D*? is another root of Q(x’, 0, &', &) =
0. (Seg [8], §6 for an interpretation of ¢;,). Condition (H,), implies that,
near (x', &),

(1.1 |RW, &, &:(x, ED]2Cue(x’, D172

for (x/, &)EN, with |&|=1, where C is a positive constant, hence ¢;.(x’,
&) are well defined for (x’, &)EN,. To see this we note that

(1.15) R, &, &) =(8R/0&)(x', &, Ao) (Ri— o+ O (o))

for | &|=1. Thus (1.14) follows from (H,),. Moreoverc;(x’, &) are
bounded in N, near (x’, &), because &,=&%4+2u, and hence

(1.16)  ¢=0t+O0Wu/R(x', &, &R for [&]=1.

Besides, it follows from (1.8), (1.10) and (1.11) that, for some 1=;7=m,
the j-th column of R(x’, &, &, is a linear combination of the others. One
can assume without loss of generality that j=1. Bearing these in mind we
finally impose the following condition.

(H,) Let m,=2. Suppose the first column of R(x', &, &) is a linear
combination of the last d*—1 columns. Then there is a conic neighborhood
S oof (x', &) such that, in N.N2, either
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(1.1 RW, &, &, EN=0Wm) for 1&1=1

or

(1.18)  c.(x’, EN=0Ww) for k=2,..., m; and |&'|=1.
Note that, according to (1.15), (1.17) is equivalent to

1.19 R, &)=0) for |&'|=11in N, N2,

because duo/ d& *+0 hence Ri can be regarded as a smooth function of («’, &7,
o). For many classical boundary conditions, either (1.19) is satisfied or
cx=0Cu/R(x', &, &) for k=2,..., m, and |&’|=1, which implies (1. 18).

We are now in a position to state our main results, analogous to [11],
Theorems 1.1, and .3, We shall keep using the notations in the preced-
ing paper, where P,(x, &) is replaced by the symbol @Q,(x, & in (1.5),
unless stated otherwise. Since the boundary 29X may be now characteristic
for P, we also need the same function space Hge=(V) asin [10], where V
is a relative open set in X. For a nonnegative integer 2 and a real number
s we mean by H*5(X) the set of extensible distributions #€2 '(X) such
that (1—d)**+92Diye[2(X) for j=0, 1,..., &. We then denote by

(V) the union of N=oH &*(V) for all decreasing sequence {s,}5, of
real numbers, where ¥ H%S(V) means that guEH*5(X) for all ¢=C5
(R™Y) with (supp ¢)NXCV. By I'(x’, &) we also denote the gliding
ray (i.e., null bicharacteristics of u(x’, &)) through (x’, &").

By M3(f) with f€2'(X’) we denote the union of all gliding rays
which start from WF (f) NN, and go into the positive x, direction. Let ¢, be
the canonical transformation on N, such that the outgoing null bicharacteris-
tic of @, starting from ¢*'(x’, &) N Q ;'(0) with (x/, &)E N, intersects
T*X|ox at o* (. (&', E))NQ:*(0) once more. Here ¢* is the pullback of
T*X |ax into T*X’ induced by the natural injection ¢ of X’ into X such that
((XH)=0X. By ¢:(WF(f)NN,) we then denote the image of WF (f) NN,
under the k-th power of ¢,.

Suppose for simplicity of description that x,=0 with x'=(x,, x, ...,
xn——1>-

THEOREM 1.1. (main theorem). Let fE€ &' (X’) be a distribution with
compact support such that WE (f) is contained in a small conic neighborhood
of T'(x’, ENN{x=20}. Assume conditions (H,) and (H,) hold in the case
of (1.10). Then there exist a parametrix E(f) for (1.1) and a positive
number T such that

(1.200 E(HeHz~(Xr), where X=X N{x<T}.
(1.21) EHelC=(XN{x<K0}),
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(1.22) PE(fHelC~(Xr),
(1.23)  BE(f)lxmeo—fEC*(XD, where X=X N{x<T}.

Moveover E(f) is smooth up to the boundary at each point (x', &)ET*X'\
0, with x<T, which does not belong to the set

(1.28) WF(PHOUMEHOUWUR2(WF(FNN,LD).

Such results have been obtained by Petkov [16], in the case of
(1.9) and in the case of (1.19). (See also Melrose and Taylor [15],
when m;=1). Note that from the above theorem one can derive an
outer estimate for the wave front set of £(f) in the interior of X7, using
results on propagation of singularities in the free space (see e.g. Taylor
[20], pp. 153-155).

Next we shall describe the propagation of singularities of solutions to
(1.1). Noting that A,(x) is of constant rank, we set

rank A,(x)=d for x&X.

Then, after a change of the unknown, one can assume without loss of
generality that A,(x) =1,

Ax) O],

(1.25) An(x):[ N

where A(x) is a nonsingular matrix of order d, and

Ar(x) 0 ]

126 AG=| N

where A*(x), A-(x) are square matrices of order d*, d-, respectively,
with d*+d=d, and A+*(x), —A~(x) are positive definite. Hereafter I,
stands for the unit matrix of order . Note that, under (1.25), condition
(1. 3) yields

1.27) Bx)=(B(x), 0) for x€aX.

where B, is a d* X d matrix of maximal rank. We shall assume as usual
that, under (1.26), the left d*Xd* block of B, is nonsingular and hence

(1.28) B, (x)=Us, Sx)),

where S is a d* X d~ matrix. This hypothesis is satisfied for a wide class of
boundary conditions (see [12], § 2, in particular, Lemmas 2.9 and 2. 10).

THEOREM 1.2.  Assume (1.28) as well as the hypotheses of Theoerm
1.1 holds and let T be such a positive number as before. Let u=H?S (Xr)
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with some s € R'. Suppose that u € C=(X N{%<0}), Pue C(Xr), Bt xa=0
—fEC>(XD and WF (Autlx=0) is contained in a small conic neighbor-
hood of T(x’, EVN{%=0}. Then u is smooth up to the boundary at each
such point (x', EVET*X'\0 as described in the preceding theorem.

THEOREM 1.3. Assume (H)) and (H,) are satisfied in the case of
(1.10). Besides, suppose (1.28) holds. Let uEH55c>(V), where V s a
neighborhood of x in X. Assume that Pue C=(V),

WE (Bulxn=0) NT(x’, ENDN{—0<%=0}=¢

with some 6>0, and that WF (u| vex) intersects no incoming null bichar-
acteristics of (Q/ @) (x, &) which arrive at (*1(x’, &). Here * stands for
the pullback of T*Xlax into T*X' induced by the natural injection ¢ of X'
into X such that (X)) =0X. Then

(x', ENVE Useo WF (D ktt]xa=0)
implies

T(x’, &) N{—0<%=0}C WF (tt|xn=0)
provided & is small.

REMARK. When (1.1) has an appropriate regularity property, Theo-
rem 1.2 is a direct consequence of Theorem 1.1. Besides, a global version
of Mheorem 1.3 is also valid. Indeed, assume (H,) and (H,) as well as
(1.28) are satisfied at each point (', é’)EI‘(x_’, ENN{x%=0}. Suppose u
eH2~(X), Pues C=(X), WF (u| x\ox) intersects no incoming rays which
arrive at ¢+~ 1(x’, &) for such (x/, £), and

WEF (But)xn=0) NT(x’, ENDN{x=0}=¢.

Then

(x', ENEUso WF (D}l xp=0)
implies

I(x’, EDN{%=0}C WF (u|xn=0).

In the preceding paper [11], we have obtained the analogous results in
the case where P is a scalar differential operator of the second order for
which the boundary 8X is noncharacteristic. We have also shown in
the existence of a parametrix near a diffractive point for such a hyperbolic

system as in the present article. For the purpose of proving Theorem 1.1 we
will combine the methods of with those of [8], although some devices
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are required.

The plan of this paper is as follows. In § 2 we first refine the construc-
tion in of bases of ker P, (x, &) with @(x, &) =0, so that the hyper-
bolicity of the transport equation (3.23) is clear. Next we give an exten-
sion of Andersson and Melrose [1], Proposition 4.16 to the present case.
Finally we show that (1.1) has a regularity property provided the boundary
condition is maximally dissipative. In § 3 we refine the construction in
of asymptotic solutions to P«=0. In §4 we give a summary of [11], § 3
which is a collection of properties of Airy operators appearing in the bound-
ary values of the parametrix E(f). §5 through 7 are devoted to study the
equation BE (f)|sx=f on the boundary. In §5 we choose appropriately the
initial data for the transport equation (3.23) and reduce BE (f)|sx=f to
(5.10), (5.16) or (5.21). Basic a priori estimates for solutions of the
reduced equation are derived in § 6, and the singularities of the solutions are
examined in § 7. The proof of Theorem 1.1 is completed in § 8. Finally,
[heorem 1.2 an 1.3 are proved in § 9.

§ 2. Preliminaries

2.1. We first refine the basis of ker P,(x, &) with @, (x, &) =0 which is
obtained in [8]. In the case that 8X is characteristic for P, namely, d <wm,
we write according as (1.25)

Alx) O]é_ [An(x, 50 Alz(x, §/>:|
0 nt A21<x, .’;"/> A22<x, §I> ’

where A,;, A,, are square matrices of order d, m—d, respectively. Note
that A,,(x, &) is nonsingular if and only if Q(x &) +0, where Q is the
polynomial in (1.2). In fact, for each (x, &),

Eridet P, (x, &, &,) =(det A)det A,,+0(&RY) as &,—0,
while (1.2) yields

gxddet P(x, &, &) =Q.(x, 0, D™...Q,(x, 0, D™ Q(x, &)
+0(&zY) as &,—o.
Therefore we have, modulo a nonzero factor,

(2.2)  det A(x, £)=Q, &).

In particular, A,,(x, &) is nonsingular, because @, and Q have no common
zero in &. For (x, &) with Q(x, &)+0 we set

M (x, 5’) =—A"'(A,—ALAR A

2.0 RG o=
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and rewrite P, as

2.3) P @:[A@,Z—M) AIZA;;][[,, 0]

0 Dn-a LAz Apl

In the case where 90X is noncharacteristic for P, namely, d=m, we set M (x,
E)=—A"1A,=&1,—A,(x)'P,(x, &). Such modification will be often

required throughout this paper. The following lemma refines [8],
2. 3.

LEMMA 2.1. Thereis a nonsingular smooth matrix S(x, &) of order d
defined on a conic neighborhood 0f~(x, &), analytic and homogeneous of
degree zero in &', such that MS=SM,

[ M, 0 T [ M, 0 7
+ L]
- h
M: ; , MOZ .
M3 .
L 0 M- L 0 Mn, |
and
A(x, &) 1 .
Mj ) ’ :l: ’ ’ ,] 1= y J—1, ..., .
(x, &) u(r &) Ak &) for |&=1, j=1 my

Here M or M3, is a diagonal matrix whose eigenvalues are simple rveal roots
&nof (Q/@Q)((x, &, &) =0 such that 3&,/d&, are negative or positive, respec-
tvely ; the imaginary parts of the eigenvalues of M3 or M~ are positive or
negative, respectively. Moreover

2.4 S3A—M)S,(x, &) is positive definite,
where S,(x, E)=(sp, S, ..., Sem) with s; the j-th column of S.

The construction of the last m—2m, columns of S is as usual. To
choose the first 2m, columns s, ..., %m, so that (2.4) also is satisfied, we
use the following lemma. For (x, &) with x(x, &) =0 we denote by I(x,

&’) the eigenprojection for eigenvalues &;(x, &) and &7(x, &) of M (x, &),
where

Exlx, E)=2(x, &) Fulx, EN2,
Then we have

LEMMA 2.2. TI(x, &) is an orhtogonal projection whose range 1S an
tnvariant subspace of the hermitian matvix
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A(x)(&h(x, ED—M(x, ED).

Moveover the restriction of the matrix to the range of I(x, &) is of rank m
and all nonzero eigenvalues arve positive.

ProoF. For &, close to &, we set
®(&)=A(x) (&L= M x, &, E).

Since (1.7) implies that &%(x, &, &”) are continued analytically up to &>
&y, so is ®(&,). Besides, we have

lim&5(x, &, &/&=ax,

where a. are roots of the equation @ (x, 1,0, &,) =0 such that a, <0, a_>0.
Noting that —1/a. are eigenvalues of A(x) because M (x, 1,0)=—A) ™,
one can assume without loss of generality that

_<1/a+>[m1 0 0
Alx)= 0 —A/a ) In, 0
0 0 Jé)

where 8 is a nonsingular matrix of order d—2m, whose eigenvalues are
different from —1/a.. Hence it follows from (1.2) and (2.3) that, for &
>1, A(x)(&t—M)(x, &, &”) has zero eigenvalue of multiplicity », and m,
positive eigenvalues close to (1—a,/a_)&,, while the others are far away
from those.

Now let ﬁ(&,) with &>1 be the orthogonal projection for the zero
eigenvalue and those close to (1—ay/a-)& of A(x)(&L—M)(x, &, E7).
Since the matrix is hermitian and analytic for &> &, ﬁ(&‘o) can be
continued analytically up to &> &,. (See Kato [7], p. 120). Moreover II
(x, &, &) coincides with II(&) for &>1 hence for &> &, by analiticity.
Thus II(x, &, &) =I(&,) by continuity.

Now let ﬁ(&o) with &>1 be the orthogonal projection for the zero
eigenvalue and those close to (1—a,/a-)& of ACx)(&L—M)(x, &, &7).
Since the matrix is hermitian and analytic for &> &, ﬁ(é,%) can be
continued analytically up to &> &,. (See Kato [7], p. 120). Moreover II
(x, &, &) coincides with [1(&) for &>1 hence for &> &, by analiticity.
Thus (%, &, &) =M(Z,) by continuity.

It is now clear that the range of I(x, &) =II(&,) is an invariant sub-
space of A(x)(&h—M)(x, &) and ®(&,) has m, positive eigenvalues.
Moreover we have rank ®(&,) =m, according to [8], Lemma2.3. Thus we
complete the proof.
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PROOF OF LEMMA 2.1. By virtue of Lemma 2.2, the restriction of A
(x)(A—=M)(x, &) to the range of M(x, &) has m, positive eigenvalues,
say, ai,..., am,. Let &, ..., hn, be an orthonormal system of eigenvectors
of A(x)(A—M)(x, &) belonging to ai, ..., am, respectively, such that
hi=T(x, E)h;. For j=1,..., m and (x, &) near (x, &), set

s, D =I(x, &) h;,
Soi-1(x, ED=(M (x, ) —2A(x, D)) sp;(x, ).

Then we shall show that 2m, vectors s, ..., S, have the required prop-
erties. To this end we need only to prove that (2.4) and

(2.5) (M, D=2 (x, ED)8551(x, ED)=pu(x, &) sp;(x, &)

hold and that s, S, ..., $m,-1 are linearly independent.

By [8], we have
(M—2)M(x, &) =pull(x, &,
which implies (2.5). Moreover, since
ACo)A—M)(x, EDhy=a;h,
we have

S§A<A_M>Sz(x_, é_,):(hl, ceey hml>*<a1h1, ceey a’mlhm)

_al

L aml—

which yields (2.4). It is now clear that s, S, ..., Sm;—1 are linearly in-
dependent, because A(x)s,;_,(x, &)=—a;h;. The proof is complete.

Using the S in Lemma 2.1, one can construct a basis W (x, &) of ker P,
(x, &) with @ (x, & =0 which is very convenient in the following analysis.
Indeed we define, as in [8],

’ _ Id ’
e T ‘5”>_[— 2 An (1, 5’>]S°<x’ 5 G

Solx, &, &) =5(x, ED+(&—A(x, EN|ETS,(x, &),

where S,=(s,, S, ..., Smi-1), $=($, S, ..., Sm,) and s; is the j-th column
of S. Then (2.3) yields

Q2. P&, &)Wk &, &= [ }A(«En M)S,
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QG &, &g Hacss &),

because MS,=AS,+uS,, MS,=S,+ 1S, for |&'|=1.

Similarly, one can construct bases Wi(x, &), Wt(x, &) of the root
subspaces of P,(x, &) for the eigenvalues of M+%(x, &), M%t(x, &). Denot-
ing by S%, St the blocks of S corresponding to M3, M%, respectively, we set

I
— A Axn

Note that one can take the restrictionsof W, W} and Witox,=0as W, W,
W, in (1.8).

2.2. To prove the last statement of Theorem 1. 1 we need an extension
of [1], Proposition 4. 16 which gives a connection between the regularity of
boundary values of extensible distributions and the smoothness up to the
boundary. When 0X is characteristic for P we also need the following
lemma.

LEMMA 2.3. Let(x, &)=, %, &, EDET*R™\0 be a point such that
E=0 and &,=1. Let y(x', DYEOPS? (R™ be a pseudodifferential opera-
tor such that Q(x', %, E)+0 on supp Yy (x', &). Let uHze>(V), where
V is a neighborhood of x in R™". Suppose (x, £)& WF (ynPu). Then (%,
EYE WF (You) for any pseudodifferential operator v (x’, D)EOPS? ((R™
such that ¥ (x', &) =1 on a conic neighborhood of supp ¥,(x', &).

@28 (Wi WDk &=| Jess so.

PROOF. By the assumption that (x, £)& WF(y,Pu) there is a
pseudodifferential operator y,(x, D)EO0OPS! ,(R™") such that y,v2PusC®
(R™") and x,(x, &) =1 on a conic neighborhood of (x, &). Inviewof (2.1)

we write
= d Pu= ,
[uz and Pu f;

where P, is the upper left d Xd block of P and u,, f; are the upper d X1
blocks of u, Pu, respectively. Then, since (2.2) implies that P,,(x’, %,
D) eO0PS} ,(R™ is elliptic on supp ¥, (x’, &), there is a pseudodifferential
operator Q,,(x’, x,, D")E0PS;L(R™), depending smoothly on the parameter
x, close to x,, such that

i QP2 = Y1, mod OPST,OSCR’D .

Note that ynQuPstt,=ynu,, mod C>(R™*'). Similarly, there is a mi-
crolocal parametrix @;(x, D)E0OPS;,(R™*) for P,— PP at (x, &).

2.9  P(x D>=[P“ P”],

PZl P22
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We now define Q(x, D)E0PS;L(R™) by

Q:[ Qu 0 ][Id _Plezz ]
'—szszQu <Dx’>'—1 m—d 0 <Dx’>sz ’

where <Dx>&0PS,}(R™ is the pseudodifferential operator with symbol
(1+]&|»v2. Then there is a pseudodifferential operator x.(x, D)E
OPS? ,(R™1), elliptic at (x, &), such that x;(x, £)=1 on supp x,(x, &) and
1Y QPu= x.yu, mod C=(R™) for each y,(x’, D)EO0PS! (R") with the
properties stated in the lemma. Since x,¥2QPu= x:v¥»Qx:1¥1Prv mod
C=(R™), we conclude that x,y,uE C*(R™") and hence (%, EYEWF (yru0).
Thus we prove the lemma.

One can now prove the following extension of [1], (4.16) to systems.

PROPOSITION 2.4. Let (X', EDYET*X'\0 be a point such that Q(x', 0,
EN#0. Let ucHs=(V), where V is a neighborhood of (x,0) in X.
Suppose Puc C>(V) and (x', E)E WF (ulxn=0). Moreover assume that each
of null bicharacteristics of Q(x, &) through N, ED either immediately
enters x,<0 in at least one divection or intersects a point (x, £)E T*X\0 such
that (x, &)E WF(w), %,>0 and xEV. Then u is smooth up to the bound-
ary at (x, &), namely, theve is a pseudodifferential operator (x', &)E
OPSS o(R™, elliptic at (', £, such that yu<sC>(X N{0=x,<1P.

Proor. We shall keep using the notations in (2.9). Since P, (x’, 0,

&) is elliptic at (x/, &) according to (2.2), one can find a small conic
neighborhood 2} of (x’, &) such that

(2.10  WF(ulx0) N =¢
and P,,(x’, 0, &) is elliptic on 2. We shall show
(2.11)  WFDju|x,-0) N2 =9 for all j=0.
Set
1w, D) =P,,(x, D)—A(x)D,.

Then, since AEC>(V) and Dy, =A"'(fi—PLu,— P,u,), it follows from
(2.10) that

(2.12)  WFDptt|xn-0) NZ=¢.
Next, applying D, to P,u,=f,— Psu,, we have

Py, (x, D) Dyt = Dyfy— Py Dytty — [ Dy, Pyyltt,— [ Dy, Py uts.
Therefore (2.10) and (2.12) yield (2.11) for j=1, because P,,(x’,0,D")
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is elliptic on 3. Analogously we obtain (2.11) for j=2. Thus, asin [1],
p. 210, we can prove the proposition, by using (2.11), and
results on propagation of singularity in the free space.

2.3. To prove [Theorem 1.2 we will use the following regularity of
solutions to dissipative boundary value problems for P. Note that all roots
n(x, &, &), ..., t(x, &, &) of the equation det P,(x, &, &, &,) =0 with
respect to &, are bounded real-valued functions of (x, &”, &) E X X{(&”, &
ER™; |&7|?+&2=1}. Let 7, be the least upper bound of |z,(x, &, &,)| for
such (x, &7, &, and k=1,..., m. For a point x €X we denote by I',(x)
the interior of a backward cone with vertex x, more precisely, we set

Lo(x)={xER™"; 7,(xo—2)> (1" — 2" P+ | — 2,1}

PROPOSITION 2.5. Let x€X and u€HYT,(x)NX) for some
SER'. Suppose Puc C>(Ty(x)NX), Bitlxn=0EC>(To(x)N {x,=0}) and u
eC=(To(x)NX N{x<Kxo}). Moreover assume that boundary condition
But]x,=0=0 is maximally nonpositive for P. Then usC=(Ty(x)NX).

Although this proposition seems to be well known in essence, we shall
give a proof for the sake of completeness of description.

For an integer £ and real numbers s, y with y=#0 we denote by H5*(X)
the set of extensible distributions #€ 2 '(X\8X) such that e ™u&
H*3(X). (Seee.g. [4], p. 51 for the space H*5(X) with £<0).

LEMMAZ2. 6.  For each nonnegative integer s, theve is a positive number
ys such that if y=vy,, uSH7?"°(X) and P, uSHY*(X) then uc HY*(X).
Here Py, is the differential operator in (2.9).

PROOF. Since P,, is a symmetric hyperbolic system, there is a positive
number ys such that for each y=ys there exists a function wEH*(X)
satisfying Py, w="P,, u if P,, u€ H?°(X). Therefore it suffices to prove the
nuiqueness.

Let uc H;"°(X) and P,, u=01in HY°*(X). Then we need only to show
that #=0 in @ "(X\8X), because H;"°(X) is a subspace of @ '(X\2X).
Let g=C%(R™") be a test function, supported in {x,>0}. Then the equa-
tion P}, v=g in R™"! has a unique solution vE H%)(R™*") for y=1y,, where
P3, is the formal adjoint of P,, and y, a positive number. Moreover, since
P,, does not contain D . we observe that supp v(x) C{x,>0}. Hence
(u, g)=(Pyu, v)=0. The proof is complete.

LEMMA 2.7. Suppose the boundary condition Bu|x=0=0 in maximally
nonpositive for P.  Then for each positive integer k theve is a positive number
vu such that, for any y=vy, and f EHY°(X), the following boundary value
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problem
Pu=f in X,
@1y
Bu=0 on 0X

has a unique solution uc H%°(X). Moreover
2.1 ux)=0mTy(x)NX if sois f

for each x <X,

PrROOF. By the hypothesis of the lemma one can assume the B,(x) in
(1.27) is of the form (1.28). (See [12], Lemmas 2.9 and 2.10). Set

Lo =S ]

H = [S*<x> L-

which is a nonsingular matrix of order d. Besides, set B,=B,H and "=
H ~'u, with the notations in (2.9). Then B,u,=B,u, and B,= (I;++SS*, 0),
where I;++SS5*is nonsingular. Thus after a change of the unknown #%,, one
can assume B, is of the form

2.15  Bix)=Us, 0,

although (1.26) may be not preserved. Moreover we define a d~ X d matrix
Bi(x) by

(2.16) 1) =00, l.-)Ax).

Then the adjoint boundary condition is given by Bv|x.—0=0, because
(Pu, v)recoy— oty P*0) 1200= 1 Caty, Avr) 2ax)y

for v, v&€C%(X). Furthermore the hypothesis of the lemma implies that

2.1 Ao 1,20 for yEker Bi(x) and xE 93X,

since the boundary condition B{v;|x,-0=0 is maximally nonpositive for P*
(see Lax and Phillips [13]). Therefore we see by a standard argument that
for each positive integer % there is a positive number ¥} such that (2.13) has
a unique solution u€ H%**(X) for any y=v, and fEHY**(X).

Now let fEH?**7'(X). We shall show there is another positive num-
ber y, =y} such that

(2.18) u€HY**(X) for y=y,.

We keep using the notations in (2.9). As in the proof of [Proposition 2. 4 we
then have D, €H%**'(X) hence u,EHY**'(X), because ,E%**(X).
We also see that P,,D,u,€H%**2(X) Since D,u,=H;"°(X), it follows
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from the preceding lemma that D,u,= H%**72(X) hence w,€ H¥**2(X) if y
is large enough. Thus there is a positive number y; such that (2.18) holds.
Analogously one can find y, with the desired properties.

Finally we shall prove (2.14). Let v(x)=(»(x), nx), ..., v,(x)) be
the outward unit normal to I'y(x ) N X at a point x on the boundary a(T',(x)
NX) of Ty(x)NX and set

Ay<x> - ZLovk(x)Ak(x) .
For convenience we write

Ce™™u, e ™ v) parynx = (u, v)y,
Ce™™u, e7™°0) pawannxy = <u, V>,

and |u«|,=((u, w),)"?. Noting that

Ple ™ u)=e ™ (Pu+iyAu),
P*U:PZ}+ (22=0DkAk+C*_ C)U,

and setting
C () =21-00A,(0)/ a,+i(C*— C) (x),
by Green’s formula we have
—29lul2—2Im (f w),+ (u, Cu)y=<A%u, u>,.
Moreover we claim that
(2.19 <A’u, u>,=0.
In fact, since A¥(x)=—A,(x) on 28X, by assumption we have
A" uuz0 for uker B(x) and x€0X.
Furthermore, on the boundary of I',(x) we have
v(x) =0+ 75 (5, &7, &),
where (&7, &) =(x"— 2"+ |x,— 2D 2 (x"— x”, %y— X,), SO
A=A+ ) 2 (A (x) + 2518 4:(x)),

which is positive semidefinite because of the definition of z,. Thus we obtain
(2.19) and hence

2yllul2+2Im (f u),— (u, Cu),=<0.

Besi@es, since C(x) is bounded in X, there is a constant C, such that
|Cu, C)o| < Collul2. Now let £=0in T'y(x)NX. Then
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Qy—Colul5=0,
so #=0in I'y(x)NX for y>C,/2. Thus we prove the lemma.

REMARK 2.8. From the proof we also observe the following. Supose
to the contrary that Bu|x,—o=0 is maximally nonnegative for P. Then the
conclusion of is still valid provided f€E H?*°(X), ucH*°(X)
and T,(x) are replaced, respectively, by fEH*°(X), ucH**(X) and
the forward cone

{x€R™; 7,(p—x0)>(x"— 1"

2+|xn_ ;n|2>1/2}-

COROLLARY 2.9.  Suppose the hypothesis of Lemma 2.7 is satisfied. Let
uEH Ty (x)NX) for some sSSR'. Suppose Pu=0 in T'y(x)NX, Bu=0
on To(x)N3X and u=0 in To(x)NX N{%< xs}. Then u=0in 2 "(T'y(x)
N{x,>0}).

PROOF. In view of (2.16) and (2.17) we see from the preceding
remark that, for each y=y, and g=C%(T,(x) N{x,>0}), there is a function
vEH(X) such that P*v=g in X, Biv\|xn=o and (supp ») N X CIy(x).
Hence by Green’s formula we have (u, ¢):2x,=0, which proves the corol-
lary.

PROOR OF PROPOSITION 2.5.  One can assume without loss of generality
that #=0 in Ty (x )N X N{x%<x,}. Let £€T,(x)NX and let £ be an arbi-
trary positive integer such that 2>s. Then it suffices to prove

(2.200 wu€eHET, @D NX).

In view of (2.15) one can also assume Bx=0 on ['h(x) N{x,=0}. Let ¢<
C=(R™*') be a cutoff function, suppoted in T',(x), such that ¢ (x)=1 on
['0(£), and set f=¢Pu. Then fEC5(X), in particular, FEH?°(X) for
all y>0. Hence by there is a solution v€H%°(X) of (2.13)
such that v=0 in X N{x%<%}. Set w=u—v. Then wEH%(T,(®)N(X),
Pw=0 in To(H)NX, Bw=0 on Ty(®)N{x,=0} and w=0 in T,(H)NXN
{%<%}. Therefore by Corollary 2.9 we have w=0 in @ "(T',(£) N{x,>0})
and hence (2.20) follows, because H#3(To(£)NX) is a subspace of
9 "(Ty(£) N{x,>0}). Thus we prove the proposition.

§3. Construction of a parametrix

In order to construct the parametrix E(f) we use the same phase func-
tions 8(x, ), p(x, #") and Airy functions 4,(2), A.(z) asin [11]. Recall
that 6(x, ), p(x, ) with %"=, 27) =, m, ..., na1) are real valued
smooth functions defined on a conic neighborhood of (x, #”) in X X (R™\0),
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homogeneous in 7’ of degree 1, 2/3, respectively, where 7,=0, "= &”+0.
Moreover the functions ¢*=6=+(2/3)p*? solve the eikonal equation @Q,(x,
¢%) =0 in the following sense, where ¢=09¢*/ox and Q,(x, &) is the func-
tion in (1.5). Writing A(x, bxtVppx)=0LFVp s u(x, bvtVppr)=m =
Jp iz for p>0, where 1;, A,, w4 and u, are even functions of vp, we have for
p>0

(ﬁxn_ll)2+p</)xn—lz)2—ﬂ1 :O,
2<5Xn_ A—l) (pJCn—AZ> — M2 :0,

and, for #,<0 and 0=x,<1,

(Oxn— /11>2+P<Pxn_/12>2_}l1 0<xn|77|2>
2<6Xn Al)(ﬁxn lz) M2 — O<xnl77|513>

Furthermore, for x,=0,

3.D.

3.D-

3.2) det 6y, >0, where xvr=0%8/3x" 3y,

3.3 Oxon0 >0,

3.4 pxn <0,

3.5 px’, 0, 7)) =nln" |7 B=aly”|?®, where a=n/|%"|.

We also have for x,=0

(36) 0xn—l<x 6x>
3.7 u (%, 6x)=a(px,)? for |7”|=1,

because 1,=u,=0, 4,=21 and u, =u for x,=0.

From now on, for x,=0 we shall extend 6, p, 6, and px, to R"XR" in
such a way that (3.2) through (3.7) are preserved for |«|<1 and that 4(x’,
0, ) =x"n" outside a conic neighborhood of (x’, ). Then 8(x’, 0, ")
generates a canonical transformation ¢,(y’, )=, &) of T*R™0 defined
by

(3.8) &=6U,0,9), y=6,1,0,75).

Moreover, under ¢7!, the gliding ray I'(x’, &) is mapped (locally) onto
the straight line through (v’, ) =¢1'(x’, &) which is parallel to the y,
axis, where v'=,, v )=, %1, ..., ¥n_1), and on which 3, increases as x,
does.

Now we shall look for the parametrix E (f) in the same form as (6) of

[10], namely,
(3 . 9) GU - Go Vo + Ghvh + Geve.

Here v(y") =t(tv,, tvs, tv,) is a vector with d* components in H ~(R™), and
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G, G. are essentially the same operators as the G®, G® in [8], respective-
ly, while G, is the same one as the G, defined by (8) of [10], in other
words, we take ¢s=1 and ¢,=0 in the (7). More precisely, we define

(3.10)  (Gyoy) () = feféulo( p)a—iAi(p) b)(A, () 'y
+A0<§>~1<1_X1>>?')\0<77,>d77,,

where
o (77/> = /e_iy,ﬂrvo Dady’

and 2,(y") is determined later so that (1.23) holds. Here 4,, A,, ¢ and y;
are the same functions as in [11], (2.15). (See also (4.1), (4.4) and
(4.7) below). Besides, 5{, /3/ , 2 and b are almost analytic continuations
of 6, p, @ and b, analogous to (2.17) of that paper (see also (3.30)
below), while the amplitudes a(x, ) and b(x, ") are given in the following
theorem.

THEOREM 3.1.  There exist smooth m X my matrices a(x, 57, b(x, 7")
defined on a comic meighborhood of (x, ") in X X(R™0), which have
asymptotic expansions

a~ 27;=Oak, bNE?:obk,

where a,(x, n"), b.(x, n) are homogeneous in n' of degree—k, —k—1/3,
respectively. Moreover if we write

31D e *P(x, D) (®(As(p)a—iAi(p) b)) =A,(p)c—iAt(p)d,
C’\“Zfz—lck, dN2f=—1dk,

where c,(x, n°), di(x, ") are homogeneous in n' of degree —k, —k—1/3,
respectively, then -

0 for p=0,
0x3) for 0=x,K1, <0 and |7'|=1.

This theorem has been essentially obtained in [8], § 3 and 4. Neverthe-
less, since the proof given there is somewhat inaccessible, we shall give
another proof. (See also Petkov [17]).

PROOF OF THEOREM 3.1.  We first seek a,, b, for p>0 and then extend
them to p=0. Using the equation Ai(p)=—pA4,(p) and setting the
coefficients of A,(p), —iAs(p) on the left hand side of (3.11) equal to ¢, 4,
respectively, we have for k=—1, 0, 1, 2, ..., '

3.12) ¢ dkz{
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Ck:PI (x’ 0x>ak+1+ppl <x) px> bk+l+P(x) D>ak)
dk::Pl (x, 9x> bk+l+P1 (x, Px>ak+1+P(x, D>bk,

where a_,=0, b_,=0.
Let p>0. Then (3.12) is equivalent to

(3.13)  ctVpdu=0,
where
C_li\/gd_l'_"Pl(x, Hxi—\/;px) (aoi\/fjb()).

Let W (x, & be the matrix defined by (2.6). Then it follows from (2.7)
and the eikonal equation (3.1), that

(3.14) P (x, 6:tpp) W (x, 6,=+p px)=0.
Thus, setting

(3.15)  a=EVpb=W(x, 6o p0) (Gt Vp ho),

we obtain (3.13) for k=-—1, where g¢,(x, "), hy(x, ) are arbitrary
smooth e, X m, matrices, homogeneous in #" of degree 0, —1/3, respective-
ly. More preciesly, we define ay, b, as follows. Setting

Wi (x, 7)) =(W (x, 6sF+Vppx)+ W (x, 6:—Vppo)/2,
VVz(X, ?7/>:<W<x, 0x+\/;3—px>—‘ W(x, ex—x/;pxn/@x//;)

so that W (x, 6,%p px) = Wit J/p W,, we define

ay= Wigo+pWahe
b0: VVll’lo+ W9,

(3.16)

(3.17)

Then (3.15) holds and @ (x, 7, b(x, ) are smooth near (x, "), homo-
geneous in 7’ of degree 0, —1/3, respectivly, because so are Wi(x, n), W,
(x, 77).

Next let #=0 and |#’|=1. Then (3.13) is equivalent to

(3.18) P (x, 6xtVppe) (@ EVp b)+P(x, D)ay*++p P(x, D)by=0,
so we look for @, b, in the form

o= Wiag +PVV2hl +C;1,

3.19) b= Wih+ VV291+51,

where @ +Vp b, are special solutions of (3.18) with 4, b, given. We also
see, as above, that (3.18) with (3.19) becomes the following system of
linear equations for a; £vp b; :
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(3.20)  Pi(x, 6:+ppo) (@Evp b)+P(x, D)ay++p P(x, D)by=0,
which is solvable if and only if
(3.21)  W*(x, 6,=Vp pe) (P(x, D)aytp P(x, D)b,)=0.

Here W * denotes the adjoint matrix of W, so the rows of W*(x, 6, +/p px)
are right null vectors of P,(x, 6.+=+ppx). Notice that (3.21) with (3.17)
is equivalent to the following transport equation for g,*+vp % :

(3.22) DA o, vp)-2—(gtp ) +CE(x, 7', ¥p) (o 4p he) =0,

i=0 8xj
where

Af(x, 7', O)=W*(x, 6, £t ) A;(x) W (x, 0L tpy),
Ct(x, n', D=iW*(x, ,xto ) P(x, D)W (x, 6, tp,).

In fact, (3.17) yields

P(x, D)ay=vp P(x, D) by=27-0A,;(x) (W, Vp Wo) D;(go+p ho)
+(P(x, D) Wi+ /p P(x, D) W) (got+p he)
+ 2/ 2vp ) (P (x, p) Wi Fp P(x, pr) Wo) ho.

Moreover from (3.14) and (3.16) we have P, (x, px) Wi=—P.(x, 6,) W.
Therefore the left hand side of (3.21) coincides with (—7) times that of (3.
22), because (Wixyp W35 P, (x, 6,=ppx) =0.

Furthermore, making changes of variables (x/, x,)— (', p) and (x', p)
—(x’, t) with t=+p, and setting

a=(x', b ) =g(x, ") £ thy(x, ),
we see that (3.22) is equivalent to

oa* oa*
ot ox;

n-1
<323>i Cg(x,) t) 77,> + ;)Cf(x', t) 77,> +C7-1_'—+1 (x,, t) ”’)ai:()y

where
Crx', t, n)=QOW*(x, et tp ) P (x, p) W (x, Ot toy),
C}—<x,; t) 77,>:A:7—F(x; 77,; t): j:O) 1) vesy n—ly
ni:i-l <x,) t) 77,>:Ci_<x, 77/, t).
We shall show that (3.23). are hyperbolic with respect to d¢. Since (3.

14) and (3.16) yield P, (x, px) Wi=—P,(x, 6,) W, hence WP, (x, p.)=— W3}
P, (x, 6,) we have

(WItiWDP (x, p) (Wi £tW,)
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=— WP (x, 60 WiF2tW 3P (x, 6 W+ 0.

Besides P,(x, 6,) W,=0(t?). Therefore we see that Cx(', t ") are
smoothly extended to =0 and

Cilx', t, n)=F WiP,(x, 6,0 Wo+0().

(See [8], Lemma 4.1, although the factor 1/2 in (4.9) must be replaced by
1). Moreover, since (3.5) and (3.16) imply

Wo(x, 7)) = pxa Wea(x, 6,) +0(p) for x,=0,
we have

Ci(x", 0, 70=F (oxn(x, 7002 (W P Wea) (x, 6:(x, 7).
Besides, (2.3) and (2.6) yield

W P, Wen=S3A(&,— M) S,/|&|%.

Thus we see from (2.4), (3.4), (3.6) and (3.8) that +C3(x, t, ") are
positive definite near (x, 0, ") hence (3.23). are symmetric hyperbolic
systems which are really ordinary differential equations along bicharacteris-
tic curves of Q,. Consequently (3.23). have the unique smooth solutions for
arbitrary smooth data prescribed on #=0 such that a= (', ¢, ) =a* ¥/, —¢,
n’). Furhtermore, if we set

9%, 7)) =C(a*x', Vp, ) +a* &', —Vp, 7))/2,
ho(x, 7)) =Ca* (', Vp, ) —a* (&', —vp, 7))/2p,

then g,, h, are smooth up to p=0 and (3.21) also holds.

Now we shall extend the @, b, givenby (3.17) to p=0. Since W (x, &)
is analytic in & according to (2.6), the W; and W, defined by (3.16) are
even functions of Vp hence they can be extended to p=0 in a natural way.
Let go, h, be arbitrary smooth extensions to p <0. Then we have (3.12) for
k=—1 and 7,<0, because P,(x, 8,) Wi+pP,(x, p.) W, and P, (x, 6,) W+ P, (x,
pe) Wi are O(x3) for |3/|=1 according to (2.7) with &=6,%=+vppx and (.
_.

Next we shall construct special solutions a, b, of (3.20) sothat (3.12)
holds for £=0. Asin [8], pp. 284-285, one can extend g,, % to p <0 so that
(3.21) is satisfied to infinite order on x,=0 for @ <0, more precisely, so that
both W*P(x, D)a,+pW3P(x, D) and W*P(x, D)b,+ W3P(x, D)a, are O
(x%) for ,<0 and 0=x,<1. Therefore it suffices to construct a, b so that
if the left hand sides of (3.20) and (3.21) are written as BY+/p B® and
B®+./p B®, respectively, where BY(x, /) are smooth, then each element
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of B® and B® is, mod O(x%), a linear combination of those of B® and B“
with smooth coefficients. The procedure below will refine the proof of [8],
Proposition 3. 1.

Introducing an extra variable z in place of +/p, we set &=6,(x, ")+
zpx(x, 7”) and

, a
alx, n',2)=
x 7, 2) [a

11

]: a (%, 7)) +2b (%, "),

Flx 7, z>=[§ﬂ=—P<x, DYas(x, ) — 2P (x, DY bo(x, 1),

where @, F, are the upper d X m; blocks of @ F, respectively. We shall
dominate P, (x, &)alx, n’, 2)—F(x, n’,z) by W*(x, &) F(x, n’, 2)+0(&),
where a is constructed similarly to the 4%, in [8], Proposition 3. 1.

It follows from (2.3) that

Pa— [A(ffn— M)a+ A, A% (Anai+ 0226111)]
1A= .
Apa+ Assan

Hence, setting

an= Az (Fu—Ana),
we need to estimate

A& —M)a—F+A,Az Fi.
Moreover, putting

Fy
F
F,

(AS)'"(Fi—ALAn Fh) =

@
S_lal = a4y,
Qe

we see from that

b

(gn_Mo>ao—Fo
(&n— M) a,—F,
(‘fn_Me)ae_Fe

(AS)'(A&—M)a—Fi+ALAR Fy) =

2

where

M0 (M0
M”_[ 0 ] Me_[ M;]'
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Since the eigenvalues of M,(x, &), M.(x, &) are different from &, we
define

an=(&n— M,) 7' F,
ae= (‘fn_' Me>‘1Fe-

Thus it suffices to construct g, so that elements of (&,— M,)a,— F, are linear
combinations of those of W*F, mod O(&,).
Now, (2.6) yields

(3.24) W*F=S5(Fi—AAz Fi)
Fy
F,
F,

=StAS

Noting that S§AS is an m, X d matrix of maximal rank, we set
StAS=(T,, ..., Tp

and suppose |&’|=1. Then we shall show that

(3.25) Ty =(&n—A) Tos, (&n—A) Tpjor—uT5;=0, mod O(Qy)

for 7=1,..., m,, and

(3.26) T;=0(Q,) for 2m <j<d.

Since (2.7) implies A(&—M)Sy=0(&,), so is S}A(&E,—M)S=(A(&,—
M)YS)*S. Therefore by we have

SgAS(gn_M>:SEA<£n_M>S:O(QO)y

which yields (3.26). Moreover, since (T3;_1, T3;) (&n— M;)=0(Q,), we
obtain (3. 25).

Now, define
0 -
E r
a=—|F; with Fy= ]:—‘2
Of Fan
| Fomy-1

Then we have
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(F ] 0 1
0 F
F, 0
(&n—My)a,=|0 —(&— V)| F ,
F2m1—1 0
__0 i _F2m1—1_

while (3.24), (3.25) and (3.26) imply that 75, 7, ..., T,», are linearly
independent and

F F,
-1 * F3 F4
(n; 7:1) ceey me) W F:(gn_/l) . + . +O<Q0>'
FZTﬂl-—l F2m1

Consequently we see that elements of (&,— M,)a,— F; are linear combinatons
of those of W*F, mod O(&).
Finally we set

%(x) ”/>:<1/2> (d(x, 77,: Z)+a<x) 77,) _Z>>|22=p,
bi(x, n)=(1/22))(alx, 7', 2)—a(x, 7', —2))|z2=p.

Then, since a(x, ’, z) is an analytic function of 2, a(x, ") and bi(x, 7))
are smooth in (x, ") and have the desired properties. Analogously one can
construct a,, b, for £=2 so that (3.12) holds. Thus we prove the theorem.

The construction of G,, G.in (3.9) is similar to that of G®, G®in [8].
First we take a Fourier integral operator G, on X’ and a pseudodifferential
operator G, on X’, depending smoothly on parameter x,, such that P(x, D)
Guw,eC=(X), P(x, D)Gw.cC=(X) near x for all w,(x"), w.(x)EH"
(X" with FW (w,), WF (w,) contained in a small conic neighborhood of
WF (f), whose boundary values are classical pseudodifferential operators of
the form

(G (o, 0= @) " [ Wa', §)2(§)0u(8) 8

(3.27) . -

(Gae) (', )= @)™ [ W', §)72 (§)0e(5) 8"

Here W,(x', &)=WH,0,&), W(x', &)= W (x’,0,&) mod Sib, where
t(x, &), Wi(x &) are the matrices defined by (2.8), and ;5 is a cutoff

function such that y (&) =1 for (x/, &) in a conic neighborhood of WF (f).

The construction of such G,, G. is well known (see for example [20], Chap.

IX). Next let @, be a Fourier injegral operator, with the canonical transfor-
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mation ¢, defined by (3.8), whose amplitude is e"(;’*""""""")ES‘l’,o, namely,
define

(3.28) @v)(x)= /eiﬁ(x’,o, ﬂ')ei(vﬁ—e)(x’,o,n’){)\(”/> dy’

for v(y’)EH‘”(R’Q. Hereafter HV (x’, 0, #”) is extended to R*"X (R™\0) in
such a way that 6 (x', 0, ) =60(x’, 0, ") ==x"%" outside a conic neighbor-
hood of (x7, #"). Finally we define G,, G. as the compositions

(3-29> Gh:Ghoq)l; Ge:Gqu)l.

To deduce (1.22) we alsQ use the following lemma. Recall that the
almost analytic continuation a (x, ") of a(x, ") is defined by

(3.30) 6; x, n)= i 9%a(x, ') <_kif>kX0(NkT|77”‘_l>,

£=0 onk

where 7 is a positive number, x,(t)EC%(R") a cutoff function, supported in
|¢|<2, such that x,(£)=1for | #{<1, and {N.}%-o with N,=1is a sequence of
positive number which increases fast enough. Applying P(x, D) to each
side of (3.10) and using A¢(p)=—pA.(p), we have

(3.3D Py D)Gtu= [e(Ao(p)e=iMi(p) DAL 1
+ 4O A=) 07

Here, setting

c(x, 6, p,a b)=P(x, 6a+pP(x, p)b+P(x D)a,
d<x: 0) p) a’ b>:P1(x) €x>b+P1<x; px>d+P<x; D>b)

which coincide with ¢(x, ") and d(x, ") in (3.11), respectively, we have

~ \% \ Vv Vv
c(x,p)=clx, 6, p, a, b),

~ Vv \ \% Vv
b(x,n)=d(x 6, p, a, b).
Moreover we obtain
LEMMA 3.2. Let k be a nonnegative integer and let |n”"|Z7N,. Then

i On'|™ for p=0,
c(x, 1) =107’ I#)=7’ D+ 07’ |™® for p<0,
O’ D+O0Un' |7 for 7 <0 and 0=x,<1.

The analogous estimate for d also holds with |n’| and |n’|™* replaced by |n'|*®
and |n’|"* Y3, respectively.
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PrOOF. Let cV (x, #°) be the almost analytic continu%tion of c(x, 6, p,
a, b). Then, since xo(N;z|p”|")=1for j<k wehavec— ¢ =0(]»'|"® and

o'c (—i7)
1

Hence the desired estimate follows immediately from [Theorem 3. 1l

LLodqm.

§4. Airy operators

The purpose of this section is to give a summary of [11], §3. Let Ai(2)
be the Airy function of the first kind, given by

Ai(2)= (2! [ " it gits i3 gy,

We define A., A, by

AL (2)=eFimBA;(eFm32),

@D g =A.(D+A (D) =Ai(—2).

Then
(4.2) 1(2)+2A:(2)=AF(2)+2A,(2) =0

and A. have the asymptotic expansions for |z|>1 with—z+#z/3<arg 2<z =+
/3

Ai (Z) — 2_1/4€ii(2/3)2312‘1’i (Z) ,

WD g, ()~ e, () ez

where a, are real and a,=1/(2/z). Besides, A,(z)=+0for Re 220, A_(2)+
0 for Im z<0 and Re A, (x)=Re A_(x)=A,(x)/2 for x real.

Throughout the present paper, all functions of (x’, ") willv be modified
for |#”|<1 so that they are smooth in R”X R”. Noting that p (x', 0, )=
(go—i7)|7”|"¥® for |5”|>zN,, where 7, N, are the positive numbers in
(3.30), we set

4.4)  E=(p—in)|n" = (a—iz|n"| D|n" 2.

The parameter 7 will be fixed so large as all a priori estimats in Propositions
6.1, 6.2, 6.3, Corollaries 6.4 and 6.5 hold. Moreover we set

Ki(n)=—iln"|""*(AL/ A (8),
Ko(n")=—i|n"|7"(As/ Ao (),
4.6) L(n)=(A-/A) (D),

' -7(77,>:<K++K_L)X1+KO(I_X1>,
4.0 @) =x(aln"?/t)=x (mln" |7/ 1),

(4.5)
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4.8 x@D=x(a|ln”|9=x(nlyp”|*Y

and
(4.9 Y= (a®+ | 77”|_4/3> Ha= <773+ |77”|2/3) 1/4| 77”|_1/2-

Here 4 is a positive number with %<1 such that 4,(¢)>0 for t<3% and
Im A, (£)<0 for 0=¢t<34, and x(H)EC*(RY) is a real valued function,
supported in £>3/2, such that x (#)=1 for £>2 and x’(¢)=0. The ¢ is an
arbitrary (fixed) positive number with ¢ <1/2. Note that XESs0, XE
5?0 for |a| bounded. We also denote the Fourier multiplires corresponding
to (4.5) through (4.9) by the same letters. For example, L denotes the
Fourier multiplier defined by

L)) =Qm)™" [ Lg )0 (n )y

From now on we suppose |¢|<1 and |5”|'"*>»7z>1. In addition, we
denote by L3(R"™) or H$(R™), respectively, the set of functions v(yHel?
(R™) or v(y)EH*(R™ such that supp (") C{|a|<1}. Here —co<s=<oo.
We also denote constants independent of z by C, C’, C, and so on, while
O(n”|™") etc. may be depend on 7.

LEMMA 4.1. Let q be a real number. Then
|azoafi”7q’§Cq,k,ﬂ”]”‘—k_lm'yq_u fO?’ k: |ﬂ|20
In particular, y? belongs to S%s,, if ¢>0 and to Sp¥3 if ¢<O0.

LEMMA 4.2.  The functions K,x, K_ and K,(1—y,) belong to S%s.,.
More percisely,

105,05 K_(n)|= Cypln”

“k=Blya-2k (14 O(|p”|™)) for k, |8 20.

The analogous estimates also hold for K, and K, if a=0 and a|y”|**<3t,
respectively, where t, is the number in (4.7).

LEMMA 4.3.  The operators K,x,, K and K,(1—x,) are bounded on
S(R™. More precisely,

IK_v|P< Cllyv|P+ O v|212) for veELi(R™.

The analogous estimates also hold for K, and K, if supp 9(5n") C{a=0{ and
{a|n”|**<3t}, respectively.

For the commutators involving y, K. and K, we have

LEMMA 4.4. Let a(y’, n)ES%s0 and q be a real number. Then
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(= 1y? alo, WIS Colly ol + vy w2
+ O (0] 12+ wl212),
(K-, alv, w)|< Clly ™ 2v)2 e+ 1y~ 2w]2 12+ O(v)2 12+ w212

and
|(K_[x1, alv, w>|§C’||7_1/20||2—1/2+"’}’—mwuz—uz+0(||U||2—1/2+”w"31/2)

for v, we Li(R"™). The analogous estimates also hold for K, and K, if
supp 9(n’) is as in the preceding lemma.

For the proofs see those of [11], Lemmas 3. 1 through 3. 4.
The following three lemmas will play basic roles in dealing with the
operators L or & .

LEMMA 4.5. Let x=0 and 0<y<(1+x)""2.  Then
|A: (x— ) [P=]A: (OPt by + 02 (A+x)"),
|AL (x— i) P=|AL () Pt boxy + O (¥ (A +x)%),

where by=—J3Ai(0)Ai’(0)>0. Moreover |A_(x)|=|A+(x)| and, when
>1,

Ay O =agx™ 21+ 0&™),
|ALCOP=agx?A+ 0= ™),

where a, is the positive number in (4.3)
LEMMA 4.6. Let a=0 and set
[ =L(7)e 9=,
Then

() =ie % (1+0(5™¥D) for aly’*>1

and
10% 35 L ()| < Cp,sy* ¥ A+ O0n"|™) for k, |B|20.

In particular, (L(1—xo)x)(n)ESe and L(Dy) xe z's a Fourier integral
operator with singular phase function

(v, n)=y'n—4/3a*|7"

with amplitude 1(n) xe(n)ESY_c,0, where x, and x. ave the cutoff functios
defined by (4.7) and (4.8), rvespectively. Moreover denote by ¢, the canoni-
cal transformation associated with Ly. which is defined by $3'(y', n)=
(o', 1), n"). Then |
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(4.100 0", D= t2Va, y"—2/3a**n"/|n"|, n") for a=0.

LEMMA 4.7. Let a(y’, n"), b(y’, )ESTco be homogeneous in 7.
Then there exist symbols a®, b®=S? ., and aV, bVYESPLE¢ such that,
modulo smoothing operators,

(Lx) Dy)aly’, Dy)xe= (@¥4+a®) W', D) L(Dy)xe,
b, Dy)L(Dy)xe= (Lx1) (Dy) (04 56)(y’, Dy) xe.

Here a®(y', n)=ac¢3:'(y’', 7°), b0, 7)) =bog, (3", 77, a® and bV are O
(n"|" Yy, supp aVC . (supp oya) and supp bVC 3 (supp 8,0). In
particular, if a(y’, n)=0 and

acdz (v, n)=aly’, 77,

then supp a¥’Csupp a for j=0, 1; if b(y’, ") =0 and
bod: (v, n)Sb(Y, 77,

then supp bV Csupp b for =0, 1.

For the proofs see those of [11], Lemmas 3.9, 3.5and 3.7. The follow-
ing lemma is a drect consequence of Lemma 4.5 if we set x=a|%”|?®* and y =
T|n”| 713,

LEMMA 4.8. Let b, be the positive number in [11], Lemma 3.10.
Then

1—|L)H|2bizy—O(n”|™) if 0fa<k77?,
1—|L(x)|=6—0n"|™) if a=6%r2 and 0<8<1/2.

Moreover for veL3(R™)
Re ((1+Lxov, v) 2br|y 2ol + A=z 0[P = Ov]22)
if supp 0(n")Cl{al 7%}, and
Re ((A1+Lx)v, v)zd|ol*— 0ol
if supp 0(n)C{a=6*r"2%} and 0<6<1/2. In particular,
41D |LvfP=]ol*+ Ov)2 )

Jor veL*(R™) with supp 0(")C{0<a<1}.
Note that Lemma 4.3 and (4.11) yield

“4.12) & o= Clyel*+ 0212
for vEL3(R™.
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For the commutators involving Ly, or & we have
LEMMA 4.9. Let a(y’, )ESY_co. Then
I[Lx:, alolP< Cllyvl+ O (o]212)
and
[z, alv, w)|= C(yol+ywl?) + OUv )2z +[wlzs2)
for v, weLi(R™).

For the proof see that of [11], Lemma 3.8. The following a priori
estimate for the operator & will play an essential role in deriving a basic
estimate in this paper which will be given in [Proposition 6. 1.

LEMMA 4.10. There is a positive number b, such that
Re (£, <1+LX1>U>gsz(”'}’lel|2+\l)’_”z(l“‘Xl)0"2-1/2>'—0(“0"2—1&)
for veL3(R™) with supp 9(n") C{a<77%}.

For the proof see that of [11], Proposition 3.12. The following lemmas
are supplements to the above estimate.

LEMMA 4.11. Let 0<0<n/2 and set
Cs=(sin §) 12£ (1—x)"12A5(x)/As(x).

Then Cs is positive and
Re (e*yKov, v) 2 Cyllyvl?— O(|v]212)
for veL*(R™) with supp 0(n)C{—1<a=0}.
LEMMA 4.12. Let a|p”|*>1 and 0<e<1/2. Then
K*(g)=xJa+ilda|lp’ D7+ 0 7",
LEMMA 4.13. Let 0<8<1/2. Then
Re (£v, (1+Lx)v) =827 Yv|*—O0(v|%12)
for veL3(R™ with supp 9(n") C{z’a>d*}.

For the proofs see those of [11], Lemmas 3. 17, 3.18 and 3. 19.
We will also use in § 7 the family of pseudodifferential operators A, with
symbols A,(y’, 7)) =<x">"?°. Here {>0 is a parameter and

<n">=|n"lxn"D+A+17"D"A=xn"D)
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with the x in (4.7), so that <x”>=|"| if |9”|>2. For z>1 and >0 we

set, as in [11],
n=1+tlog <u">, &= (p—1ir)<y">7'%,

L(n)=C(A-/A) (&,
(4.13) K. () =—i<p">"M(AL/A) (&),
Ko, t<77’> =—i< 77”>_1/3<A0/A0> (Ct

0 _ ” k
4.1 x(g)= g ° X1(077> (—u 101%'1<77 >) Xo (Net <2”>"'log<z”>)

with such yx,, N, asin (3.30), and
(4. 15) L= <K+,t+K—, tLt>X1t+K0t<]-_X1t>-

Let v(y))eH=(R™ be a function such that veH*(R™\K) for a com-

pact set K and supp 9(»") C{|a|<c,<#%”>"°} with some positive numbers c,,
d. Then we have

(4 . 16) Athlv :thl tAtU, At_S” V= .%gAtv

mod H=(R"N{3%>T}) for any real number 7. Moreover Lemmas £_3, 4.
3, 4.4, and . T1 are still valid even if z and x, are replaced by 7, and x.,,

respectively. Hereafter we suppose that |a|<c¢,<#%”>~% and v is as above.
Then we obtain the following estimates.

LEMMA 4.14.  Let b, be the positive number in Lemma 4.8. Then
—|L)|zbiry—O0(<n">"Y) if a=0
and

Re ((1+Lt/'tflt>v; U)%b1||<’l't7)1/2X1t0”2‘|’”<1_x”>v”2
_O(”Ttvnal/ﬂ f veL*(R™.

LEMMA 4.15.  Let b, be the positive number in Lemma 4.10. Then

Re (Zw, A+Lixiv)
2b2<||71/27X1tU||2+I|T”2 “2(1- X1t>7)" 12)
—O(|7v)212) if veL*(R™).

For the proofs see the end of [11], §3. We also see from Lemmas . 14
and that (4.11) and (4.12) hold for such v as bescribed above even if L
and & are replaced by L, and & ,, respectively.

§5. Equation on the boundary

Our next task is to solve, mod C*,
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GRY BGv |Xn=0 =1,

where G is the operator defined by (3.9), (3.10) and (3.29). From now on
we suppose that x,=0, |a|<1, (x', &) =¢: (', "), where ¢, is the canonical
transformation given by (3.8), and often abbreviate (x’, 0)=8X as x’, so
O(x', 1) =0 (¥, 0, "), 6, (x’, 0, %)) and so on.

Let @' be an elliptic Fourier integral operator with canonical transfor-
mation ¢;7' such that

(5.2 ®,D;'=®;'®, =the identity, mod OPS:IY,

where @, is the Fourier integral operator defined by (3.28). Then (5.1) is
equivalent to

(5.3)  ®7'BGyy+ 0B (G, Ga[:j”}:@rlf,

where (3.27) and (3.29) imply that ®:'B(G, G, is a classical
pseudodifferential Voperator with principal symbol B (") (W,, W) (x’, &).
Moreover, since p (x/, ") =¢ for |5”|>1, it follows from (4.1), (4.5) and
(4.6) that, mod C>(X"),

(BGwn) (&)= [e#5 B (x) a (¢, ) A+ L) () 0oy
_i_/eié(x’,n')B (x’) b (x/, 77/>|77//|1/3 & (77/> 770<77,) d?]’.
Therefore, applying ®;! to each side, we have
(5.4 (@'BGu) ) =c+LxDv+d £ v,
where ¢, d=OPS?, and, mod S7},
cO, n)=B&ax', 1),
dy', n)=B&)b (', 7)|n”

with a,, b, the symbols given by (3.17). Note that (2.6), (3.5), (3.6) and
(3.16) yield

ax, n)=W &, &, A, E))g(x', n)
+a|n"Ppx, (&', 7)) We (2, ED o (', 77)
bo(x', n =W, &, A, ENhy(x/, 77)
+/3xn<x,, 77/> W/En<x,) 5,>g0<xly 77,>)
because W,, is independent of &,.

We shall here specify the initial data on #=0 for the transport equation
(3.23)+. First suppose (1.9) holds. Let E(y’, D,)eOPS?, be an elliptic

1/3

(5.5)
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pseudodifferential operator whose symbol is the matrix R (x’, &, &, given
by (1.8) with &,=1(x", &). Applying a parametrix E-! for E to each side
of (5.3), one can write

(5.6) Bu?)o—l—Bwl:zh

e

Un

:|:Fl, 321Uo+Bzz[ }:FZ-

e

Here By, B,, are square matrices of order m,, d,—m,, respectively ; B,
B,,€O0PS}, and, mod S:i}, By, )=0, B,,(y’, n)=1;,_n,. Hence, set-
ting

[vh] =By (F;—Bvy),

e

we see from (5.4) and (5.5) that (5.6) becomes
GB.D (Elgo+ého><1+LX1>Uo+(g1h0+gzgo>gUO:Fl_Blsz_lez,

where ¢, &€OPS%,, d, GEOPSY and ¢(y', #)=I,+0(a) mod Si},
&, 1) =0Caly""®), &', 7)) =Un+0(a))|7"|"* mod Si%°.

We shall now take g,(x’, #"), h(x, #”) for p=0 in such a way that g, is
elliptic and, for x,=0,

(5.8 holn” |+ dgo = O(a), mod Stb.
In fact, setting t=01in (3.23),, we have

j=

n-1
(5.9) ZO C:l"(x,) 07 ”/>%+ C;-;-l(xl, O, 77,>g0: —CZ(?C’, 0, 77,>h0.

Therefore, if we define hy=—d,g|7n”|""* for t=0, the above equation
becomes a symmetric hyperbolic system for g,(x’, 7)|o=0, because C¢(x’, 0,
n’) is positive definite. Thus (5.9) has a unique solution with initial data
go=1o0n %=0. Consequently, g, is elliptic and, by (3.5), (5.8) holds.
Finally, applying a parametrix for ¢,g,+ ¢,4, to each side of (5.7), we arrive
at

(5.10) (1+LX1>Uo+b & Vo=,
where b(y’, ) =0(a) mod St}, and
ﬁ):(C~1g0—|—52h0)_1(F1—Blng_lez).

Next suppose (1.10) and (1.11) hold. For convenience we denote by
Ru(x', &, &), j, k=1,..., m,, the matrix R(x, &, &) with the j-th col-
umn of W (x’, &, &) replaced by the k-th column of W, (x, &EN|n”| and set
R;.=det R, Then (1.11) means
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2y Run(x7, é—', E_n):/:O.

Hereafter we suppose for definiteness that Ry, (x’, &, £,)+0. Let E,&
OPS},, be an elliptic pseudoidfferential operator with symbol R,, (x’, &, Ax,
&)). Applying a parametrix E1! for E, to each side of (5.3), we obtain an
equation of the same form as (5.6), where B,,, B,, are as before. Set

.10 | *]|=Bz (F—Baw)

e

with

F
f]-5vor

Then (5.3) is equivalent to
(5.12) (B —Bi:B3 B,))vy,=F,— B;B;} F,,

the left hand side of which is of the same form as that of (5.7). Since B,,B;}
& OPST}, it suffices to examine B;; only.
Write

{Bu
B;,

Then, mod S},

C:’(y’, n)=E7'BWg+O0(a),
d'y', n)=ET'BWho+ pe, ET' BWe,g0) | 77|V

where W=W ', &, A(x', &)), W.,= W,.,(x’, &). Therefore, setting

]:E’(1+Lxl)+c7’ e

€11 ...6m,
(5.13) ETQ,9DB@H WX, &, A, 5’))—[ : : }(y’, 7,
€dilee.Caim
we have, mod St},
en=WR/R), &, A, EN|n"["'+0(a),

B5.14)  en=—Ru/R), &, A, &)+ 0(a) for 2<7<m,,
er=0;+0(a) for 1<7<m,, 2<k<m,.

We shall now take the initial data g,(x, ") and %4 (x, ") on p=0 for
(3.23)+ as follows. In the case of m; =1, we define /4, (x, ) =0 for p=0 and
then solve (5.9) with initial data g,=1 on x,=0, so that g, is elliptic and, by
(3.5), we have
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(5.15)  ho(x', 7)=0C(aln"|".
Moreover (5.12) can be written as

¢ 1+Lx)+ d & =F,—B,BiiF,
where, mod St4,

¢, 1) =enge (¥, n)+0(),
d ', 1) =g, 7)pu(x, 7)|7"|7*+ 0 (a).

Since d eS5?, is elliptic, applying a parametrix d ' to each side, we arrive
at

(.16)  ZF n=f
with f,= d “'(F,— B,B7F,) and
5.1 F=a(l+Lx)+ <.
Here a= OPS¢ , and, mod St},
(6.18)  al’, gD =R, &)/ (pxa(x’, 7)|7"["*)+ O(a),
so that condition (H,) and (3.4) yield
arg a(y’, n)C[—=x/2, n/2— &) for a=0.
In the case of m,; =2, we take

1 0

— €
(5.19) g (x 7)|e=0= 2 I
m1—1

—em11
and define %, (x, #")|o-0 S0 that (5.9) holds. Then (5.12) becomes
(5.20) 5’<1+LX1>00+5, & vy=F,—B,B3;} F,,

where @/, 6’=0PS?, and, mod St},

€11 0

“@””:[0 Im1_1]+0<a>'
Moreover, denoting by 4,(y’, ) the (1, k) entry of & (y’, 7)), we see

from (5.13), (5.14) and (5.19) that, mod S},

~11<y,) 77,>:<22n=11Rkk/R11>(x/’ ‘;:,) A-(x,) ‘g,>)an|77”|_2/3+O(ell>
+O0(a)
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and, for 2<k<m,,

~ik<y” 7)) =R/ R &, A(x, g,)>an|77”|ll3+ O(en)+0(a),

because the (1, %) entry of ET'BW,, is equal to R,,/R;;, mod OC(e,,), for
k=2. (See the proof of [8], (5.25)).

Now let E, be an elliptic pseudodifferential operator whose symbol is
equal to I,, with the (1,1) entry replaced by 6%,(y’, ). Applying a par-
ametrix E;! to each side of (5.20), we arrive at

(B.21)  F v=hf
with f=E;'(Fi—B;,B3 F;) and
(5.22) % =a(l+Lx)+b>z,

where a, b€ OPS?,. Moreover, setting

a1 o by b, U 1
o e[t @) o= 2 w2 iff]
( ) @G by bz ’ (%) S 12
where a;;, b, v, fi are scalar, and &, b,, square matrices of order m, —1,
we have, mod S},

T )= RA(x,’ éﬁ) _..__R"_
(5.24) @ (Y, n )= Pxn<x,; 77’>’77”I1/3 (1+O<pxn|77”|1/3>>+0<a’>;
(5.25) @, ) =0(a), a:(’, n)=0(a),
(5-26> a22<y,) 77/>:Im1—1+0<a’>;

5.2 (), 7)=1

and

(5.28) 0¥, 1) =Rz (Ris, ..., Rin) &, &, A", §))+ 0(@) +0(a).

Here R,, are the functions described above (5.11).

Finally we modify % for y,< y, as follows. Since WF (f) is contained
in a small conic neighborhood of T'(x”, &) N {x% =0}, one can assume there is
a positive number ¢, such that

(5.29)  AEHR"N{3<yo—a}).
Let ¢ (3), @) € C*(RY) be cutoff functions such that ¢;(y,) =0 and

¢ (3) =1 for y,> y,—264, supp ¢ C(¥,—3d, ),

5.3 ¢ 4
(5.30) g.(3) =1 for y,> yo—46:, supp ¢2C(y,—56, ).

Then we set
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1= e+ A=) In, b=aq.b,

G ity 45 &,

so that

ZF for y,> y,—26,,
a(l+Lyx)+b% for y,> y,—A46,,
A+ Lx) In,+ 5 % for y,< y,—38,,
A+ Ly 1I,, for y,< y,—56..

Y

In the sequel we will find a solution v, H=(R"™ of Zv,=f, such that v,
H>(R"N{3%<y,—3,}) and hence Fv,=f,, mod H*(R").

REMARK 5.1.  Adopting such a modification as (5.31), one can sim-
plify fairly the procedure in [11]. In the rest of this remark we shall use the
notations in the preceding paper except for ¢; and ¢,, and restrict ourselves
to the case of (1.7). First we replace (2.13) by Gv=G,v, so that (4.15)
becomes (5.10). (The (2.12), (4.8) and (4.13) are unnecessary). Next
we modify %, for y»%<y, analogously to (5.31) of the present article.
Denote the modified operator by .%. Then (5.5) is replaced by

S=@{A+LxD+Vre oyt +1—g)y(1—g),

where ¢ is a cutoff function such that ¢;=1 on supp ¢, and ¢ =1 on supp ¢.
(The (5.2), (56.3), (5.4) and Lemma 5. 8 are unnecessary). Besides, in the
proof of or 6.9 one can assume that # =1+ Ly, or & =1+ Ly, +
¢, respectively. (See the proof of below).

REMARK 5.2. It should be pointed out that, in the case where (x’, &)
is a diffractive point, the equation (5.21) can be replaced by (a+ bK )v,=
fo with 7=0 in (4.5). Since @+ b,,K_ &5, is elliptic, the system of m,
equations is reduced to a single equation for », only, namely, to (5.28) of
[8]. Therefore, using Theorem B.1 of Eskin in the references of
(Comm. in P.D.E., Vol. 10 (1985), pp. 1117-1212), one can relax the
hypothesis (iv) of so that arg R,(«x’, &) is contained in the closed inter-
val [&, 3/2)x—a] for (v, ENEN,N, where &, N, and 3, are the
notations in (H,).

§6. A priori estimates for the equation on the boundary

In the rest of this paper we deal with the more difficult case where (1.10)
holds, unless stated otherwise. (For the case of (1.9) see Remarks 6. 11
and 7. 10 below).

The main purpose of the present section is to derive a priori estimates for
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solutions of .Z v,=f, and & v, =f, which will be stated in Propositions 6. 1 and
6.3, respectively. Here 4 is the operator defined by (5.17) when m, =1
and by (5.22) when m, =2, and % the modified operator given by (5.31),
where b=1 if m;=1. From now on we assume the symbols a(y’, #),
b(y’, n") are homogeneous in #’ for |5’|>1.

First suppose m;=1. Then

ZF =a(l+Lx)+ <

is a scalar operator, where L, ¢ and y, are the Fourier multipliers given by
(4.6), (4.7). Moreover, by (5.18), the condition (H,) implies that

6.1 arg a(y’, n)C[—=/2, n/2— &) for a=0,
in particular,
(6.1)s Rea@y’, n)=0 for a=0.

Next suppose my=2. Then, according to (5.24) and (H)), one can
assume without loss of generality that

6.2) arg an(y', n)C[—n/2, w/2—&] for a=0,
in particular,
(6.2)0 Re a,, (v, 77’);0 for a=0.

In order to state a basic a priori estimate for % we now introduce an
auxiliary bounded operator S on L%(R™), defined by

6.9 Sw=q| o ]+a-ara-ou

with

(64) 51:<1+LX1)+§2'I'€_{80’}/X2_~1, N
(65) Szvo:<1+Lx1>vz+’yvz+<b21g Ul"‘bzzg vz>,

where if m,=1 then v,=v, and S,u,=0. Here x_(#)=x:(—7%"), v is the
Fourier multiplier given by (4.9), z the parameter in (4.4) and ¢, a small
positive number. Moreover ¢=q(3,)&EC=(R") is a cutoff function such that
gy =1 for y%>y,—38 and supp ¢C(y,—4d;, ). Note that (5.30)
yields gg1=¢, and qg.=gq. B

The following a priori estimate for % will play a basic role in the
following analysis.

PROPOSITION 6.1. Assume (6.1) or (6.2) holds in the case of m =1
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or my 22, respectively. Then theve arve positive numbers ©,, C, and &, such
that

6.6)  Re (Z v, Svo)=Ciz|yvel2— O wo]112)

for vz and v, L*(R™) with supp 0,(n")C{y<z™! and a<r7?%}.
Note that (6.6) yields

6.7 zlywlR=Cily ' wli+ Cosly voll3

for any real number s and y~!v,& HS(R™ with supp &, as above, in particu-
lar,

(6 .8) T“ 00”2—1/3 = C{" v% Uo||§+1/3 + Cz’,s” 7)0“.29—2/3

if vy, H**'3(R™), where C{ is a constant independent of z, s.
For the purpose of showing that there exists a solution of % v,=f,, we
need also the following a priori estimate for S.

PROPOSITION 6.2.  There are positive numbers v, and C,, independent
of &, such that

(6.9 Re (Svy, vy)= C2<T|"}’1/2qvo||2+ “')’1/2<1 —q) Z)0”2> - 0(“’}’_1/200“2—1/2)
for r=1, and such vy, L*(R™) as in the preceding proposition.

To study the propagation of singularities in the region a|7”|*>1 we use
the following a priori estimate for .Z .

PROPOSITIONG. 3. Assume that (6.1), holds in the case of my=1 and
that (H,), (H,) hold in the case of my=2. Then there ave positive numbers
7, G and & such that, if p(y’, n)ESY, is homogeneous in n’, 0<p(y’,
n)=1 and pod, (v, n )P, n"), ¢, being the canonical transformation
given by (4.10), then

(6.10)  7]|y*bulP < Cp Z vol* +IPLxe 2 vol>) + O (| y2vo|2e0)

Jfor v=1 and v, L*(R™) with supp 0,(n") C{2|n"| *<a<dzr7%. Here o=
1/2—(3/4)e with & the number in (4.8), and v, C; and & are independent
of p.

We also need an analogue to (6.6) for &. Denoting by S, the operator
S defined by (6.3) with g=1, we have

CCROLLARY 6.4. Assume (6.1) or (6.2) holds in the case of m,=1

or my =2, respectively. Then there ave positive numbers 7,, C, and & such
that
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(6.11) Re (F vy, Sove) = Cyz|yvo| — O (ol 1s2)
for v=7, and such vy, L*(R™) as in Proposition 6. 1.
COROLLARY 6.5.  There are positive numbers s, Cs such that
(6.12) Re (Sowo, v0) 2 Cstl|y2vo|?— O(ly 2052 112)
for T=1; and such v,&L*(R™ as above.

The rest of this section will be devoted to the proofs of the above
estimates. From now on we suppose v,&L?(R™), supp #(n)Cl{y<r},
—1<a< 7'}, and denote constants independent of v by C, C and so on.

PROOF OF PROPOSITION 6.1 IN THE CASE OF m; =1. Write

(v%’vo, Svo>: (Q«é Vo, qg+LX1)Uo> _
+&r(e?°q. % v, qyx:0)+(A—q) F v, yA—q@) v,)
:[1+§2712+13-

Then, since q,% :q5(1+Lx1)+qg and (6.1), implies that
Re a(y’, 7)) =0 for =0,
we obtain, analogously to [11], Lemma 5.5,

(6.13) Re [, = bZT(“ 7X1q?)0||2+ “’}’—1/2<1_7Cl)q7)0”2—1/2>
= Cllyvo>— Ol woll?12),

where b, is the positive number in Lemma 4. 10. We also have, analogously

to [11I], Lemma 5.6,

(6.14)  Re L=GC; |yx-1qv)?— Clly*x-1qv0|?
_C,||'}’_1/2<1“X1)Uo||2—1/2*0<||Uo||2—1/2>,

where C;, is the positive number in Lemma 4. 1] with §=¢6,. Finally consider
L. Since

1-F=U-U+Lx)+(—Q gz,

one can write

L=(A+Lx)A—@ v, yA—q@) vy)
+(1-¢q, Lxi]vo, yA=@v)+(1—@) g Fvo, yA—q wp).

Therefore, by virtue of Lemmas [£.8, and (4.12), we obtain

(6.15) Re L=birllyxi A=) v+ y"2(A— x1) A —q) vo|?
—C| 7”0"2_ O<” 7)0”2—1/2),
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where b, is the positive number in [Lemma 4.8, Now (6.6) follows from

(6.13), (6.14) and (6.15), if we take &, small relatively to b, b, and 1. In
fact, mod O(|vol21/2),

ly*2x-1q0l* < 77 yx-1900l%,
ly 21— x) A= wo|21. = 77 y"2A — ) A — @) o,
“71/2<1_x1> (1—q) 7)0”22_ 1||y(1—x1> A-q) 7)0”2

and
”'}’(1_){1 ”‘X—x)qvonzé C"’}’_”Z(l‘—)a)qz}ouz—uz-

Therefore we obtain (6.6) for >>1 and complete the proof.

To prove [Proposition 6. 1 in the case of m, =2 we represent the a, bin
(5.31) analogously to (5.23). Then, in view of (5.25) and (5. 26), one
can assume without loss of generality that

TN
B 0 [ﬂn—l '

For convenience set
~ S

\@ Uo = |: ~],
f2

so that
(6.16) f~12511<1+LX1>+511.701+512.702,

~

6.17) fé:(1+LX1>02+521.701+522_702-

We also write

(6.18)  (F w, Sw)=(gh, ¢(1+LxDv) i
+§2T(3i3°%, Q’}’Xz—lvl)‘f‘(q}“z, qS:vp)
+ (A=) F vy, yA—qvp).

LEMMA 6.6.  Suppose (6.2), holds. Then

(6.19) Re (gh, q+LyxDw)
= byr(yxgol?+lly A= x1) quil212)
— /DN A+ Lx) qva|*— Co| yvolP— O (o212 .

Here b, is the positive number in Lemma 4. 10.
PROOF. As we derived (6.13), it follows from (6.2), and (5.27) that

Re (gfi, g(1+Lx)wv)
=Re (b, % qu,, (1+Lx)qv)
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+ bz (lyxrgon|?+lly A= x1) qun 12120 —C]|| yVol?— O (| vol2112) -

Hence we need only to prove

(6.20) |b12Zqz;2, <1+LX1>qvl)|
< 1/2)|A+LxD) qual*+ C'llywoll?+ O lvo]2112).

By (4.6) one can write
=K (14+Lx)+K,
where K =K., x,+K,(1—x1) — K_, hence

(b2 & qua, 1+ Lx)qu)
=(A+Lx)gr., KxbH A+ Lyx)qv)
+ (qus, K*b3,(1+Lx) qu)

=1+15.

Besides, yields

L= A/DIA+Lxd quaf*+ Cllyn P+ O (o212
Moreover, writing

L=((+Lx)*qu,, K*bhquv)+(qus, K*[b%;, Lxi]qv0),
we have

L] = /D A+ L) * que|*+ Cllynl* + O (o212

Since |(1+Lx) *qu|*=] 1+ Lx.) qvs|?, we thus obtain (6.20) and complete
the proof.

LEMMA 6.7. Suppose (6.2) holds. Then

6.21)  Re (e™qf, qyx2iv1)
= (1/2) Csollyx-1q0: | — Gl yx-1902|
- C§||'J/_”2<1—X1> 7)0“31/2— C'?'" v x-1q0y ||2_ O<””0"2—1/2>,

where Cs, is the positive number in Lemma 4.11.
PrOOF. Since it follows from (6.16) and (4.6) that, mod H*(R™),
X10f = 2-1q (@ vy + by Kooy + b Kovy),
we have, analogously to (6. 14),

Re (e®gf, qyx:iv)
zCaollyx-lqvlllz—C||73’2x—1q01||2—C’IIV‘”ZG—xl)vollz-uz
_O<||Uo||31/2>‘|‘Re (blzKoX—lqvb VX—quz).
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Besides, by Lemma 4. 3, the last term is stimate from below by
—(1/2) Coollyz-1quil* — C" | yx-1qva)*— O (| vo[ 112D -
Therefore we obtain (6. 21).
LEMMA 6.8.  We have

(6.22) Re (gh, 4Sit0)
2 bl yxiqoel+ vy A~ x1) quel?
+ B/ A+ Lxo) qua|*— Gsllywol*— Cilly 26212 — O (]| Uol|2 172 -

Rroor. It follows from (6.5) and (6.17) that

Re (qu; qS:0)
gHQ<1+L%1>1)2”2‘}'Re (qg1+LX1>?32, qyvs)
+2Re (q(A+Lyxi)ve, q(bpv Uz+b21yvl>)_cl"700"2_O("%”%/z)-

Applying Lemma 4. 8 to the second term on the right hand side, from (4.12),
Lemmas 4.4 and 4.9 we have therefore

Re (gf, ¢S:tn)
= b7l yxaqual®+ v (1= x1) qual*+ A — Ol A+ Lx1) v
— Csllywoll*— C'lly 2o 2112— O (| vo]|212)

for 6>0. Besides,
lg(1+ LD vl 2 A=A+ L) qual*— Col yre | — O (w212
Hence we obtain (6.22)
PROOF OF PROPOSITION 6. 1 IN THE CASE OF m; =2. Since
A-p#=1-U+Lx)+(-bg,

the last term of (6.18) is estimated similarly to (6.15). Therefore (6.6)
follows from (6.19), (6.21) and (6.22), as in the case of m;=1. Thus we
prove the proposition.

PROOF OF PROPOSITION 6.2. write

(Svo, v0) =(q(1+Lx)vo, qu) +(yA=q)vo, 1 —q)10)
+c3‘2're"'3°(~q;/x2_101, qvi)
+(q(y+ b &)+ qboy &£ 11, qU2)
:Il+lz+[3+l4.

By virtue of together with Lemmas @. 1 and we have
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Re I, gblrlly”leqvo||2+”(1_7“)%"2— 11/2"’}/1/2(]00"2
— oy 2t — Oy unl ).

Clearly

L=|ly"* (=@ vl*.
It is also not hard to show that

Re L=a,7(cos a)ly"*x-1qu|*+ Oy 0i212).
Besides,

L= Clly"que|* + C'ly* vol*+ O(ly o[ 2112).
Thus, noting that

11— xD) quol*Z 7y A= x1) quol*+ O (| wo|%112),

we complete the proof.
We shall now proceed to the proof of Proposition 6. 3.

LEMMA 6.9. Let wmy=2. Assume (H,) and (1.18) hold. Then
there is a positive constant C such that

(6.23) |0y, 7D|ISC(Re an(y’, ") +/a) for 0<aK],

where ay1, b, are the symbols in (5.23).

Proor. In view of (5.28) it suffices to prove (6.23) with b, replaced
by Ri.(x', &, A(x', &) for 2<k<m,, where (x/, &)= (', ) and Ry, is
the notation described above (5.11), because (H;) and (5.24) together
with (3.4) imply that |a,(y’, #)|£CRe a,(y’, ") for a=0, mod Sis.
Hereafter we omit the variables except &,, so R(&,) stands for R(x’, &', &)
and so on.

We first show

(6.24)  2JueRix(ER) =c1xR(&L) for 4o>0 and 2<k<m;.
Set

W(§n>:<1/l<gn>) ) Vrm(‘g:n)),
We,= (V1 oo, Vi,

so that

RED=(Vi(&D, ..., Vi, (&), Wa, Wo).
Then by (1.13) we have
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det B(Vk<£7_‘l>) IfZ(&Z)) see Vﬂll(g;)’ Wh; We>:clkR(g-;l>-
Since &,=&%4+24/u, and V', is independet of &, we also see that
Vi(&w) = V(&R +24/po Vi

Therefore we obtain (6. 24).
Now, since &4=2— v and, by (3.4) and 3.7), — o =vapx|n"|",

we have from (1.12)

R<g2> = Rén(A'O) (R/l-l_ \/EPXn|77”|1/3> + O(“))
so (6.24) yields

zw/lTOle(AO = 16, (A0) (Ri+ \/EPXn‘””II/3> +0(a).

Consequently we deduce from (1.18), (5.24) and (H,) that R,.(1,)/(Re
a1+ +Ja) is bounded. Thus we prove the lemma.
Now, by there is a positive number ¢; such that

(6.25) 1—|Ly)HPP=zbizy—O0(n”|™) for 0<a<d7r™2

Suppose 7, is as in (6.10) with the above ;. Then (4.6) and (4.7) imply
that Ly,vo=Lv, and & v,=(K,+K_L)v,. Hence by Lemma 4. 12 and (4.9)
we have

(6.26) Fuu=y(A—=L)v,+ 0y %v|-1).

We also see from that there are pseudodifferential operators p®,
p™ such that, modulo a smoothing operator,

pLvy=Lxpvo+ Lxp" v,

where p @y, ') =po¢,(y’, ") with the canonical transformation ¢, given
by (4.10), and p™W(y’, ) EST2E;. Hereafter L(z’) is modified outside
supp ¢ in such a way that L(z")(1—x.(#))&ES%,.

LEMMA 6.10. Let p=OPS}_., be as in Proposition 6.3 and let q, s be
real numbers. Then for veHS(R™ with supp 0(n)C{|n"|"*<a<l} we
have

6.2 |y Ovi=|lyvli+ Oy )3+ —iver2),
6.28)  |lypLoli=|Ly“poli+ Oyl c14e2),
6.29)  |ypLo|*=|lypoli+ Oy olis 1) -

PrROOF. The first estimate can be proved analogously to [11], (5.16).
To derive (6.28) one can assume g=s=0, because the symbol of the com-
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mutator [y p] is O(y9n”|7**¢) on supp . Now we have
lpLo|*=| Lo v]*+ O (v[f-14 612D

Since Lemma 4.6 implies that |L(%)|€S%_.0, we denote by |L| the
pseudodifferential operator with symbol |L(%”)|. Then, noting that
ILp@v|?=|||L|p®v|? and [|L|, p**]€ OPS;1t5, we get

ILp@ ol =[p|LIv|*+ Ov[f-1+e)-

Therefore by (6.27) we obtain (6.28), which yields (6.29), because of
(4.1D).

PROOF OF PROPOSITION 6.3. Since the case of m, =1 can be handled
analogously to [11], Proposition 5. 3, we suppose that #, =2 and v, is as in
(6.10). In view of (6.26), we may also replace .Z by

Fo=a(l+L)+by(1—-L).
Moreover by (5.25), (5.26) and (5.27) one can assume that

a(y’, n’>=[a” ’ ]

0 Im1—1
’ N — 1 b12
by, 7 >—[b21 sz

and

an (Y, 77,> =a, (v, 0, 77”>-

Now set

ﬂo%: |:f;j|:
so that

(6.30) A=au(d+L)oi+yA—L)vi+b,y(1—L) v,
6.3D  fo=A+L)vy+buyy(Q—L)vi+bopy(1—L)v,.

First suppose (1.19) holds. Then (5.24) implies @;=0(a). Hence
one can assume

(6.30)0 f1:'y<1_L>Ul+blz’y<1_L>Uz-
We shall prove

(6.32)  bizly*pwl*<|pAlP+ LA+ C Ayptel? +Ilvp LA
+ C,“ 72P00||2+ O(" y? ”0"2—60),
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where b, is the positive number in and C, C’ are independent of
7. Letusapply 1+L to each side of (6.30),. Since implies that
Lby,= b, L+ b1,L, where bi,& OPSY_., and b7,(3’, ) =0(y) mod Silts, we
have

yA=LHo=A+L)i—by(A—L)A+L)v,—bi,yL(1—L) ;.
Moreover (6.31) yields

b12'}’<1_L> A+L)v,
=by(A—=L)fo—biy(A—L){byy(A—L) v+ byyy(1—L)v,}.

Hence by (2.28) and (6.29) we get

2|y A—=LBv, y*pv)|
<[eAlP LA+ C Avplell? +lvp LA+ Cly*buol’ + O Uy volt-1ve12),

while

2Re (yp(A—=L»vy, y*pv) 2|y*2poi|?—|Ly**pu,|?
— 0(”’}’3/201 ”%—l+s)/2> .

Therefore by (6.25) we obtain

b|y*pul* < oAl +ILAIR+ C A vpfell* + |y LA
+ C’|ly*puol*+ OUly**volf-14)2) -

Similarly, (6.31) yields

(6.33)  bzly*pulP<|ypll?+ Clly*pvel*+ O y*2 vol2-15err2) -
Thus we obtain (6. 32), because

3/2

¥ 00 [t-14092= O (| ¥* w02 )
Next suppose (6.2), and (6.23) hold. Then we shall rewrite (6.30)
as
(ant+y)vi+(a—y)Loy=f—b,y(1—L)v,
and prove

(6.30)  birly*puol®<|pAIP+ 9%l + Cly*pvel? + O Ul y*vol2en),

where C is independent of . For convenience we modify y outside supp %,
as

y=vxe+ A+|7"D 11— x0)

with y. given by (4.8), so that yUo=y0, and ;/ES?_E,O. Since Re a, (v/, #")
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>0, there is a parametrix ®< S{’4 ., for @, + v such that ®(y’, )= (a, (¥,
7))+ 7)Y, mod Silt%,. Applying ®p to each side of (6.30), we have

(6.35)  pi+®@(an—y)pLoy=®pfi—®bi,yp (1~ L) v,+ Oy 20| -).
Now, since @(all—');)EOPS?_E,e,z and
I(auQ’,’ 77’)+77)"(au(y’, ﬂ’)‘&)lél,

we have

|®(an—7) y**pLv, I
<|ly**pLv:|>+ O (| y*"*pLv1|% 1124 310¢)

and hence by (6.28) and (6.25) we obtain

2Re (pvi+®(a,—y)pLvy, v*pvy)
2 bz y*pu|P— Clly*puil? 1ose— OU v vu |31 e)2) -

On the other hand we see from (6.23) that ®5,,& OPS?_. .. Therefore by
(6.35) we have

2| (pvl +¢<a” - ;)pLUl, ’)/prl>|
=pAlP+ Cly*pvel®+ Oy vllf-14 012,

because ®*y<SY_. ... Thus we get

bir|y’pul*<pAlP+ Cly*pul+ Ol y* vl e

By this and (6.33) we obtain (6.34) and hence (6.10) if z>>1. The proof
is complete.

REMARK 6.11.  Suppose (1.9) holds. Set % =(1+Lx)+b % and
% =1+Lyx)+qbs, where be OPS} , is the pseudodifferential operator in
(5.10) and g, the cutoff ffunction in (5.31). Then, using and
(4.12), we obtain easily

(6.36) Re (v%’ Vo, YVo) = CT” 77)0”2_ 0(” 7)0“2—1/2>
for such 7 and v, as in (6.6), in particular,
6.37)  7llywol< C'|F volli+ Ce, sy~ vl

for s&eR' and v,&H°(R") with supp 9(»’) as before. Here C, C’ are

positive constants independent of 7z, s and v,. Moreover, by virtue of
(6.25), (6.26) and (6.28) we have

(6.38)  zlypuol*= ClpZ vol*+ Olywl2 e
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for such p, = and v, asin (6.10). Here ¢, is the same number as before and
C” a constant independent of p, = and v,.

§ 7. Singularities on the boundary

In this section we study the propagation of singularities of solutions to
(5.16) for m;=1 and (5.21) for m;=2. From now on we shall fix the
parameter 7 in (4.4) and choose a positive number &, in such a way that
(6.6), (6.9), (6.11) and (6.12) hold for v,&L*(R"™ with supp ,(n)C
{le|<28,} and that (6.10) holds for w,& L?*(R™ with supp o(%")C
{2|n”|"*<a<26,}. For convenience we rewrite (6.7), (6.8) as

(7.1) lyvels= C1||7_1«%90“s+ Colly ' v)s
for seR' and y v, H*(R™) with supp % (") C{|a|<2d,}, in particular,
(7.2) ”%"s—l/zéclnv% Z)0||s+1/3‘Jf'Cs”?)o”s—zm

if vobeHs*"3(R™). The analogous estimates for % also follows from
(6.11). Moreover (6.10) implies that

(7.3 |v*pvols= Gp % volls+pLxe F vols) + Co, slly* volls-co

for such p€OPS¢,, s€R! and v, H3(R™) with supp 6,(n") C{2|n"| *<a<
20}, where G, is independent of p, s. One can also assume without loss of
generality that

(7.4  WFU C{la|<a}).
For the existence of solutions we have

PROPOSITION 7.1. Assume (6.6) and (6.9) hold. Suppose f,&H*'?
(R™ for some s€R' and (7.4) holds. Then there is a solution v, H S '?
(R™ of % v=f, mod H*(R™ such that WF(v)C{|a|<d.}, supp 6, (5)C
{la|<28,} and

lyvolls< Cillyfolls+ Coll vy~ vol|s-1,

where F is the modified operator, given by (5.31). Besides, the solution is
unique mod H=(R™ in the set {vy,cH =(R™ ; supp 0,(n") C{|a|<2d}}.
The analogous result with % replaced by F is also valid, provided (6.11)
and (6.12) are satisfied instead of (6.6) and (6.9).

For the proof see that of [11], Proposition 6. 1.
To examine the singularities of the solution we divide it into two parts,
as in the preceding paper. Set
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xe(n)=x(aly’|*=1
with the x in (4.8), so that x.=S% ., and x.=1 on supp xe.

PROPOSITION 7.2. Let v, eH ~(R"™ be a solution of F vy, :_jEeﬁ) mod
H>*(R™ such that supp 0y, (") C{|a|<26,}. Suppose (7.1) with % replaced
by % holds. Then

(7.5) Vo1 = X2U01, mod H(R™),

for any cutoff function x,(n)ESI_..o, like xe, such that x,=1 on supp x..
Furthermore assume (5.29) and (7.3) hold.

Then

(7.6) va€EH (R"N{%<ye—061})
and

7.7 WF Q) NN,C M5,
where

No={(’, #)ET*R™\0; a=0},
M5 ={u+t 3", nHEN,; &', nHe WF(), t=0}.

ProoF. The proofs of (7.5) and (7.6) are analogous to those of
[11], (6.12) and (6.14), respectively. To prove (7.7) let (', 7") be a
point in N, such that (3, 7}’)621123(;257%) and set v'=0, v”). Then it
suffices to show that (3, ¥7, 7)EWF (vy1) for yo— 6 <%= %.

As in the proof of [11], Proposition 6.4, one can find a sequence of
cutoff functions p.(y’, ) ES?, (k=1,2,...) such that pk;EE}%eH“(R”), De
o, 37, 7'/1m’ D=1 for %<3, pa:1(¥’, 7)=1 on supp p», 0=<px=1 and prog,
O, ) Ep(y', ) for a>0. Moreover Lemma 4.7 yields that, mod
H>(R™), pr B Drs1V01 =P B vy, and pplxe B Dps1V0n =prlxe % v5;. Therefore
by virtue of (7.3) we have y?p,v,,E H " °(R™) for each positive integer N
provided y*v,,€ H*(R™), and hence we deduce that p,vp,€ H*(R™). Thus
we conclude that (1, v, 7)&EWF (v5,) for 3<%, which completes the
proof.

PROPOSITION 7.3. Let vnneH=(R" be a solution of B vo1= x. f, mod
H=>(R™ satisfving (7.5) and (7.6). Suppose (6.1), or (6.2), holds in the
case of my=1 or m, =2, respectively. Then

(7.8)  WF (o) NN, C U0 WF () NN,
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where ¢, is the canonical transformation given by (4.10) and
Ni={y", n)ET*R™\0; a>0}.

Proof. Since the case of m, =1 can be handled analogously to [11],
Proposition 6.5, we assume #,=2. Then (5.22), (4.6) and (7.5) imply

CUp + deel)(n :,geﬁ), mod Hw(Rn),
where

c= <a+K+Im1>Xe+ (l_xe:)]mu
d=a+K_I,,.

Therefore, in view of the proof of the proposition cited above, it suffices to
show that there is a left parametrix ¢ *&S{%;,3)c,¢2 for c.
Setting, as (5. 23),

__|:C11 CIZ]

c= 3

€1 Co

we see from (5.26) and [Lemma 4. 12 that ¢,,ES?_., is elliptic. Let cn €&
S9_c.0 be a parametrix for ¢;;. Then we have

_ -1
|:1 Clzczz:H:Cll 612]:[ b [0 }, mod OFS~,
mi—1

0 Ca2 C1 Caz Cz2 Can
where
p=cu— C12€C322 Co1.-

Moreover (6.2), and (5.25) imply that there is a parametrix p~'&
S§230e.e2 for p (see the proof of [11], Proposition 6.5). Therefore, set-

ting
c_l__[ P 0 ][1 _Clzcz_zl]
B —CpCup™t In,11L0 Ca2 ’

we have ¢ 'c¢=1,, mod OPS~™. The proof is complete.

For the purpose of studying the propagation of singularities of the
solution v, to @ v,=(1—xe)fs, we first take a solution vy, of the modified
equation Z ve, = (1— x.)f, and then show that WF (v,,) C{3> ¥o—2d1} hence
(5.31) yields F V=P vy, mod H*(R™).

PROPOSITION 7.4. Let v H 2(R™ be a solution of Fv=1—xfs
mod H=(R™ such that supp 9.(n")C{|a|<2d,}. Suppose (7.1) holds.
Then
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(7.9 Vo2 = X302, mod H*(R™),

for any cutoff function xs& S o, like 1—x . such that x;(n’)=1—
x(alp”|f—1) with2<t<3, so xs, 0 x3(n) =0 for a|n”|*>2+t and x:(n") =
1 for a|y”|c<1+t. In particular WF (vy) NN,=¢. Moreover

(7.10)  WF (v) NN-C WF (),
(7.1 WF (v02) N NoC My (o),

where

N.={W’, n»)eT*R"\0; a<0},
MO(]‘(-)>:{<y0+t; y”) 77,>€N0; (y/: 77,>EWF%>, -——OO<t<OO},

ProoOF. The proof of (7.9) is analogous to that of (7.5). Besides,
(7.10) is a direct consequence of (7.1). To prove (7.11) let Yo, ¥, 7;’)6
N, be a point such that (3, y”, 7)& M (). Then (v, 7, 7)EWF () for
all y,=R!. Moreover one can find a conic neighborhood 3! of (3”, ) such
that (3, v”7, 7)EWF(fy) for all 3 €R' and (y”, ) EX. Let p(y”, n)E
S, be a symbol, independent of ¥, such that supp pC>. Then DB U E
H>(R™ and it follows from (4.7), Lemmas 4.1 and 4. 2 that the commuta-
tors [p, x:], [, xs] and y~'[p, v] belong to OPSi},, and the symbols of [p,
K.x:], [p, K-] and [p, Ko(1—x:)] are O(y|#”|™"). Furthermore, by
Lemma 4.6, the symbol of [p, Lxixs] is O(y?%”|~¢'*). Therefore by (7.1)
we deduce that ypv,,€ H*2(R") if yv,€ H°(R™). Thus we obtain (7.11).

LEMMA 7.5. Let ve,€H =(R™ be a solution of évozz(l—ie)j%,
mod H=(R™), satisfving (7.9), (7.11) and supp 00,(n") C{|a|<28,}. Sup-
pose (5.29) and (7.1) hold. Then

(7.12) UozeHm<Rnﬂ{y0<y—0—3é\l}>-
PrOOF. We first show that v, is smooth for y,< y,, more precisely,
(7.13) UozeHw<Rnﬂ{yo<370_56l})-

Let p(3,)EC=(RY) be a cutoff function such that p(3,) =1 for 3, < y,—56 +
¢ and p(¥,) =0 for ¥ > yo—5d,+206 with small 6 >0. Then from (5.30) and
(5.31) we have ».% =p(1+Ly,). Hence we obtain (7.13) similarly to
[11], Lemma 6.8,

Now, the proof of (7.12) is also similar to that of in the
paper cited above. Note that by virtue of (7.1) and (7.9) one can assume

(7.14) supp (Do) (n") C{|a|<5|n"|"¢},
because % x_,EOPS%_., and [x-» Z |EOPSTits if x.(n)=x(—aln”

.
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Let po(3,) € C5(RY) be a cutoff function, supported in a small neighborhood
of [yo—56), ¥o—361], such that p=1 on a smaller one. Then we have

F ot =g

with
9=t(A— x> fo~ [0, Z 1z,

so that ge H*(R"N {1 < y0—361}) and (5.31) together with (5.30) implies
Z Dovoz =1+ Lx) povo: + b povn, mod H*(R™)

Moreover (4.16) yields
DALT Potoz =B Aibovy,, mod H*(R™,

for any cutoff function p(y,)E C3(R") such that p=1 on supp p,. Here
F=1—-Ly)+b.<,

where L, x.: and &; are the Fourier multipliers defined by (4.13), (4.14)
and (4.15), respectively, and btfb mod OPS:yt for any 6>0. Therefore,
applying pA°A; to each side of % pyv,, =g and setting v,=Apy0y;, We arrive
at

(7.15)  Zys A°v,=pA°A.g, mod H=(R™,

where A° is the pseudodifferential operator with symbol <#”>° and
% 5=+ Lgn) + (b +[AS, 6]A) 2.

Furthermore by virtue of Lemma 4. 14 and so on we obtain
Re (F,s A0, yA*0) 2 G| 742y A0 )P — O (| 7:A%0:)210)

for t=1 and s€R*!, where C, is a positive constant independent of # s.
Thus one can deduce that pove.E H*(R"N {3 < yo—36:}), which yields
(7.12).

We are now in a position to prove an analogue to (7.7).

PROPOSITION 7.6. Let v, H (R™ be a solution of B Uy = (1—xk
with (5.29) such that supp 0o,(n") C{|a|<26,}. Assume the hypotheses of
Proposition 6. 1 are satisfied. Then

(7.16) WF<002>HN0CMJ5%>-
In particula, vy, €H®(R"N{%<yo—01}) so that B Vo= F Vo, mod H*(R™).
Proor. Let (¥, 7}’)6]\70 be a point such that (y’, 7;’)65117‘5(]‘0). Let ¢
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(y”, n)E€S?, be a symbol independent of 3, supported in a small conic
neighborhood of (y”, 7;’), such that ¢(3”, »)=1 on a smaller one. Let
w,, w.H=(R™ be solutions of éwlzq(l—fe)ﬁ, Fw,=1—A—xf
such that @;(7") C{|a|<26:}, =1, 2, respectively. Then we have (', 7) &
WF(w,) analogously to (7.11). Thus it suffices to prove v, g &
WF(w,). To do it one can assume that w, satisfies (7.12) and (7.14), so
(5.30) and (5.31) imply

Fw =@+ Lx)+bz)w.

Moreover, since (3, v, 7)EWF () for %< 3, there is a positive number
T such that

qA—xhicH (RN {3 <3 +2T})

provided supp ¢(v”, ") is sufficiently small.

Let po(3,) € C%(RY) be a cutoff function, supported in a small neighborhood
of [¥o—361, 3% +2T], such that p,=1 on a smaller one. Then, setting v,=
Apow,, we have an analogue to (7.15):

(7.17)  BysA°0:=pA°Asg, mod H=(R™,

for any cutoff function p(3,) = C%(RY) such that p=1 on supp p,, wWhere
9=0a(1= x> fo [0, # Jws,

so that g€ H*(R"N{n%<n+2T}). Here

Bys= @+ A% a]A) A+ Ligad) + (b +[A% 0]A™ 2,
a:(y', n)=a(y’, 7))+ (0,,a(y’, 7)) (—itlog<n">), mod Si}

and b, also has thye property analogous to @;. Furhtermore one can derive
(7.18)  ||7¥2yAsv| = G 72yl g, A0+ O (| =32y Asvy| 1)

for t=1 and s=R!, where C, is a constant independent of ¢, s. To prove
this one can assume

L%t,s:C;(l‘}'LtXu) + b Z.
Therefore, analogously to (6.6), we obtain
Re (ét s Nv, SiNv) = C ” T%/Z’J/Asvtuz_ O(” TtASvt”2—1/2>

for t=1 and seR!, where C, is a positive constant independent of ¢ s.
Here S, is the operator defined by (6.3) with ¢=1, in which 7, y; L and &
are replaced by 7, xi1,, L: and &, respectively. Moreover in the proof we
use Lemmas 4. 14 and in place of Lemmas and K. 10, respectively.
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Thus we obtain (7.18).
Note that (7.17) and (7.18) imply

”As—llsvt” g Co‘lpAs+1/3Atgl| + O(”AS—Z/3+avt|D
for any 6>0, say, d=1/6. Hence we have
[AS~ 20| S2C|Ip AT B Argll+ Co | A°~ 04

for each t=1 and s€R?, where 8=%+ T —(y,—3d8). Now suppose w;E
H(R™ for some s €R!. Then for each =1, taking s= §—1/3+ G+ T,
we see that |ASy,| is finite, because w, satisfies (7.12). Consequently we
have

pown€H*(R™N {y0<370+ ThH,

in particular, (3, ", 7)&EWF (w,). Since vp;=w,+w, mod H*(R") , we
thus prove the proposition.

Now, we shall returnto (5.3), restricted to the case of (1.10). Set f.=
@, x.O7'f, where x. is the cutoff function described above [Proposition 7.2,
We also define v, v. by (5.11) with v, and f replaced by v, and f,
respectively, and vy, ve., analogously with v, and f replaced by v, and f —
f., respectively. Finally set

Voj
(719) U(j): Uns |, ]:1, 2.

Vej
Then from the results of this section we have easily

PROPOSITION 7.7.  Suppose the hypotheses of Proposition 7.2 and 7.3 are
fulfilled. Then (7.5), (1.7) and (7.8) hold with vy, and f, replaved by vV
and ®7' f, respectively. In particular, WF (v'V) NN_=¢.

PROPOSITION 7.8.  Suppose the hypotheses of Proposition 7.4 and 7.6 are
fulfilled. Then (7.9), (7.10) and (7.16) hold with vy, nad f, replaced by
v? and ®7' f, respectively. In particular, WF (v®)NN,=¢.

From these we obtain

COROLLARY 7.9.  Suppose the hypotheses of Theorem 1.1 are satisfied.
Let v, v be given by (7.19) and set v=0vP+0®. Then

BGv|xu=0—f€C*(X")

where G is the operator defined by (3.9), (3.10) and (3.29). Moreover for
x%,=0 we have WF(GV"W)NN_=¢, WF(Gv?)NN,=¢, WF(Gv?)NN-C
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WE(f), WE(GvP)NN,CME(f) for j=1, 2 and
WF (Gv'") NN, C U0 2(WF(f)NNL).

The proof is analogous to that of [11], Corollary 6. 10.

REMARK 7.10. Suppose (1.9) holds and let %, % be as Remark 6.
11. Then the existence of solutions to .Z v,= f, follows as usual from (6. 36).
Moreover the conclusions of Propositions[7. 2, 7.3, (.4 and[7. 6l are still valid,
because of (6.37) and (6.38). Hence those of Propositions .7, 7.8 and
Corollary 7.9 are also true.

§8. Proof of Theorem 1.1

In this section we will complete the proof of Theorem 1.1, by showing
that E (f) = Gv has the required properties. Here Gv is the same function as
in Corollary 7. 9.

Let 8, VCX’ and CR™0 be, respectively, a positive number, a
neighborhood of x’ and a conic neighborhood of 7’ such that, for (x’, x,) &
V x[0, 6,) and #’€3], the phase functions 6(x, "), p(x, ') and the ampli-
tudes a(x, #”), b(x, ") have the properties stated in § 3. In what follows we
take 6,, V and 3 small if necessary, and often write U,= V X[0, 8,). Then
by virtue of (3.4) one can assume

B.1) plx, )= (a—cux)|n"|*® for (x, nHEUXZ,

where ¢, is a positive number.
Now, that Gve H3:=(U,) is a consequence of the following.

PROPOSITION 8.1. Suppose v, v®c H*(R™ with some s € R'.
Then DXGoOP= H%+(U,) for each integer k=0 and j=1, 2, where s, is the
minimum of 0 and 3(s —k)—2n—2.

PROOF. From (7.5) and (7.7) through (7.11) we see analogously to
the proof of [11], Proposition 7.4 that D Gyu,,€H%e*(U,). One can also
show as usual that D G,v,;, DE:Gow,cH *(U,). (See eg. Chap. 10, §2
of Kumano-go in the references of [11]). The proof is complete.

On the singular support of Gv we have

PROPOSITION 8.2. There are compact sets K,, K,CX and a positive
number T such that K;N{%<T}CU, and GvWeC>(U\K;), j=1, 2.

PROOF.  Set
Kp,={(x’, 00X ; x’sing supp @0 }.
Then from Propositions [7. 4 and we see analogously to [11], Proposition
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7.6 that Gyvp,eC~(U,\Koy,) provided ¢; and ¢, are small. One can also
deduce as usual that G,v., is smooth outside {(x’, 0)X ; x'Esing supp ®,
Ve} and that G,vy, is smooth except the union of all outgoing bicharacteristic
curves of (Q/€Q,) (x, &) starting from ¢* *(WF(®,v,,)). Therefore it fol-
lows from Proposition 7. 8 that there is a compact set K,C X which has the
required properties provided 7 >0 is small. Similarly one can find such a
compact set K;CX. Thus we prove the proposition.
That (1.22) holds is a consequence of the following.

ProPOSITION 8.3. PGvYeC>(U,, j=1, 2.

The proof is analogous to that of [11], Proposition 7.5, if we use
Lemma 3. 2.

END OF PROOF OF THEOREM 1.1. By virtue of Proposition 8. 2 one can
cut off Gv" outside K; UK, modulo smooth errors and extend them to X.
Then Gv=Gv®V+ Gov® satisfies (1.20), (1.21) and (1.22). Moreover
(1.23) is a direct consequence of Corollary 7.9. To derlve the last conclu-
sion of the theorem, let (x, 5 yeT*X'\0bea pomt with %, < 7, which does
not belong to the set (1.24). First suppose Q(x 0, 5 )#0. Then it follows
from Proposition 2. 4 and Corollary 7.9 that Gv is smooth up to the boundary
at (x, é ). Next . suppose Q(x 0, g )=0. In virtue of Propos1t10n 8.2 one
can also assume x’ is close to . Then we see that & is far away from
60 (x’, 0, n’) and hence from wkr(x, n’) provided x=(x’, x,) is close to (x ,
0) and (6, (x’,0,%"), nYe WF (v,). Here ¥.(x, ) are the phase functions
n [11], Lemma 7.2. Therefore by a standard integration by parts method
we find that Gyu, is smooth up to the boundary at (x’, &). (See e.g.
Hérmander [5], §1.2). Similarly it follows that so are G,v, and G,v.. In
view of Remark 7. 10 we thus prove the thorem.

§9. Proofs of Theorems 1.2 and 1.3

The proof of Theorem 1. 2 is similar to that of [11], Theorem 1.2, if we
use, instead of the Dirichlet problem, the following auxiliary mixed problem

P(x, D)u=0in X,
9.1)  By(x)u=g on 3aX,
u=01n X N{x%<0}.
Here B,(x) is the d* X m matrix defined by (1.27) and (1.28) with S(x)=

0. Note that the boundary condition Byu|,,-o=0 is strictly dissipative, name-
ly, it is not only maximally nonpositive for P but also

A, () uu<0 for ucker B,(x)\0 and x€aX.
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Therefore (1.9) with B=25B, holds (see Georgive [2]).

PrROOF OF THEOREM 1.2. Let E(f) be as in Theorem 1.1 and set w=
u—E (). Then

9.2) we H%S (X)) for some s’eR!,
(9.3) welC(XN {%<K0}),
9.4 PweC>(Xy)

and
(95) Bw|xn=o€ CO°<X/T>

In a special case where the boundary condition Bw|y,-o=0 is maximally
dissipative, we see by virtue of Proposition 2.5 that weC*(X;). Thus it
suffices to prove

9.6) W|xn=eEC*(X D

so that Byw|x,-eE C*(X 7).

In virtue of Theorem 1.1 applied to (9.1) with g=Byw|,-0, there is a
parametrix GveEH 3 (X7,) NC*(X N{%<K0}) with some 7,>0 such that
PGve C>(Xy,) and ByGv|xm0—gEC*(X7,). We also see from Remark 7.
10 that ve H*(R™ and

9.7  WF)CWF@®r'g) UM§(@'¢) U (U5 p2(WF(@7'9) N N).

For simplicity we rewrite the minimum of 7 and 7; as 7. Then (9.2),
(9.3) and (9.4) yield that Gv—weH%3(Xr) NC*(X N{%<K0}) for some s
eR', P(Gv—w)eC=(Xy) and By(Gv—w)|x=0=C*(X7). Therefore by
virtue of Proposition 2.5 we have

Hence we need only to prove
9.9 GVlw=0EC~(XD),

which is analogous to [11], (8.6).
Set

f:BGU|Xn=O-

Then (9.5) and (9.8) imply feC=(X%. Moreover by virtue of (9.7)
one can assume v(y)EH*(R*N{y <y —d&}), where ¢ is the positive num-
ber in (5.29). We also have % v,=f,, where % is an operator defined by
one of (5.10), (5.17) and (5.22), and f, also defined as before. Therefore
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similarly to Corollary 7.9 we obtain (9.9). Thus we prove the theorem.

We shall proceed to the proof of Theorem 1.3. Since WF (|x,=0) is a
closed set in 7*X"\0, the theorem is a consequence of the following together
with Proposition 2. 4.

PROPOSITION 9.1.  Suppose the hypotheses of Theovem 1.3 are fulfilled.
Let (x, é’)e T(x’, &) be a point such that —o6<%£<0. Assume WF
(Ulin=0) NT (X7, ENVN{ZB— <0<} =¢ for some & with 0<&<%+6.
Then (%', &)&E WF (t],m0).

PROOF.  One can assume without loss of genelality that (x, é") =(x’,
&) and ¢"=4, taking ¢ small. We shall reduce the proposition to Theorem
1.2. Since I'(x’, &) can be parametrized by %, we write a point on it as
(X0, X" (%), &' (%)).

Let ¢n (x', D)€ OPSY,, be a pseudodifferential operator, with symbol W
(x’, &) homogeneous in & for |£’|>1, such that supp ¥, (x’, &) is contained
in a small conic neighborhood of I'(x, &) N{—¢/3<%=<0}, ¢, (x’, &)=1on
a smaller one, and ¥y (¥, £&)=0 when |%|+|x”—x"(x%)|=26/3. Then it
suffices to prove

(9.100 WFWhtt|x,=0) NT(x7, ENN{%=0}=4¢.
Set
(9.1 T =T(x’, EHN{—26/35x%<—46/3}.

By assumption we have WF (#|y,-,) N\T';=¢. Therefore by virtue of Propo-
sition 2. 4 there are a positive number &, and a pseudodifferential operator
(x’, D) EOPSY,, with symbol ¥, (x’, &) homogeneous in & for |&’|>1, such
that

9.12)  YucsC(XN{0=x,<e})

and v¥,(x’, &) =1 on a small conic neighborhood of I',. Let ¢ >0 and xe(Xn)
€CF(RY) be a cutoff function, supported in —e <x,<e, such that xe(x) =1
for |x,/<e&/2. Then from (9.12) we have

9.13) PXeW1%:[P, Xe1ﬁ1](1_1ﬁ2>% mod C*(X)

for 0<e<e /2. From now on we suppose 0<e<e¢,/2 and 8, & are small.
For convenience we set

P'(x, D)=P(x, D)—A,(x)D,,

which does not contain D,. Then we have
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[R }CeTpl]:An<DnXe> WI‘I"Xe([An; ¢'1]Dn+[P,’ 1#XZD

Now let F; be the zero extension of A,(Dyx.) ¢¥n(1—vy,)u to x,<0. Note
that FFEH>(R™") and F,(x)=0 when x,<e&/2 or %< —26/3. Next set

9.1  fi={An % ]Du+[P, i D A=) xeiut

and let Ef, be a Seeley extension of f, to x,<0 (see [19]). Then, since f,&
H>—(X), we see that E,e H>"=(R""). Finally, setting

9.15) F,=x.Lf,
we have
9.16) Pxhu=F+F, mod C*(X).

Let us consider the following Cauchy problem with zero initial data

Pv=F;in R"™*, j=1, 2,

G103 ) =0 for x < —24/3.

Then we obtain

LEMMA 9.2.  For each j=1, 2, the Cauchy problem (9.17); has a solu-
tion v; such that v;E H3c>(Qr) for any T >0, where Qr={x€ER™!; %<
T}.

Proor. For a nonnegative integer % and real numbers s, y with y>0,
we denote by HZ%¢ the set of distributions # in R™' such that e ™ uc
H#A5s(R™"Y). Let j=1 or 2, and for simplicity drop the subscripts. Then,
since FEeH>(R™") and F(x)=0 for x<—2d/3, there is a decreasing
sequence {s,}%-, of real numbers such that & H % for any integer £=0 and
y>0. Hence, for each integer £=0, there is a positive number y, such that
(9.17) has a unique solution v&€H%%* if y=v, Let k be an arbitrary
positive integer. Then it follows from the uniqueness of the solution that v
is independent of £=0, 1,..., k if y is large according as k2. Hence ve
H$o>(Qr) for any T >0. Thus we prove the lemma.

Now let v;, 7=1, 2, be such solutions of (9.17); as in Lemma 9.2. For
small T>0 we take a cutoff function yx;(%)EC>(RY), supported in %< T,
such that ;Er(xo) =1 for x,< 7T /2, and set

(9.18) w:XE’#lu_)‘ET(UI‘FUz)‘X-
We shall prove
(9.19)  (x', ENVEWF (wlin=0)-
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To this end we use Theorem 1. 2. Clearly we H3:(X) NC(X N{x%<0}).
Moreover (9.16) yields PweC>(Xr,,). Set

f:Bw|xn=0'
If we show that
WE() N, E)=4¢,

where
[=T(x’, E)N{—26/3<x=<0},

and that WF (w|,,-o) is contained in a small conic neighborhood of (x”, &),
then (9.19) follows. Thus it suffices to prove the following two lemmas.

LEMMA 9.3.  There is a positive number T such that WF (xr(vi+v5)
|xn=0) S comtained in a small conic neighborhood of (x', &').

LEMMA 9.4,  WF (0)|xp=0) NT2=¢ for j=1, 2.

PROOF OF LEMMA 9.3. Set v=v,+v,, F=F +F, and V,;=(sing supp
v)N{x%=T}). Then, since WF(F) is contained in a small conic neighbor-
hood of ¢*~'(x’, &), we see that V; is a compact subset of R™! for each
T >0 and it is small if so are ¢, ¢ and 7. In what follows we fix T small
and restrict ourselves to a small neighborhood of V; in R™.

Let ¢, (x’, D)€ OPS! , be a pseudodifferential operator such that supp
¢ (x’, &) is away from the union of supp ¥, (x’, &) and the set

2o={&, &HeT*X"\0; Q' x,, &)=0 for some x,}.

Then it follows from Lemma 2. 3 and results on propagation of singularities
in the free space that WF(¢,v) is contained in the union of null bichacteris-
tics through WF(F). Bearing this in mind, we take pseudodifferential
operators ¢,(x’, D"), ¢3(x’, D)€ OPSY,, such that supp ¢,(x’, &) and supp
¢s(x’, &) are contained, respectively, in small conic neighborhoods of supp
Y (x’, &) and 2, and ¢;(x’, &) =1 on smaller ones, 7=2, 3. Divide v as
v=0vV4+0vP+0® where vV=1—¢s) A —o)v, v?=¢, and v®=g;(1—¢,)
v. Then we see from the above observation and [5], Theorem 2. 5. 11’ that
WF (70| 1,=0) is contained in a small conic neighborhood of (x’, &) pro-
vided ¢, ¢ and T are small, Clearly so is WF(v»®?|,,-,) also. Finally we
shall show that v®& C*(R™)N{x<T}) for some 7 >0. Since supp

¢s(x’, &) canbe assumed to be far away from supp ¢,(x’, &), we have v®=
ésv hence

Pv®=g¢sPv+[P, ¢s]v, mod C=(R™M).
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Note that ¢:Pv=¢;FC>(R™"). Moreover
[P, ¢s]o=[P, ¢s]év, mod C=(R"™),

for such ¢,(x’, D”) as described above. Therefore we see that [P, ¢s]veE
C*(R™'N{x%<T)}) hence so is Pv®. Thus v®C*(R"™'N{%<T}) for
small 7 >0. The proof is complete.

PROOF OF LEMMA 9.4. Let (&', £)ET, and set x=(x’, 0). Then it
suffices to show that

(9.20); (% &, EDEWF(gv)

for (&, &, =(0,1) and some pseudodifferential operators ¢;(x’, D")& OPS3,
which are elliptic at (x’, &), and

9.2D); (& &, EHDEWF ()

for each root £, of Qx, &, &)=0. (See [5], Theorem 2.5.11").

Since Q(x’, 0, &) +0 for (x’, &) €T, and F,(x) =0 for x,<e/2, by virtue
of Lemma 2. 3 there is a pseudodifferential operator ¢, (x’, D"), elliptic on I';,
such that (9.20),; holds. Next, since

(9.22) TN (supp grad ¥1) N(supp 1—y») =4,

it follows from (9. 14) that yuf,eC=(X) for some ¢, (x’, D)€ OPS3,,, ellip-
ticon T',. Hence (9.15) yields y»F,eC=(R™"), because ¢ and the exten-
sion operator E commute. Thus, as above, there is a pseudodifferential
operator ¢, (x’, D), elliptic on I';, such that (9.20), holds.

Now we shall prove (9.21);. Let &4(x, &) or &,(x, &) be one of sim-
ple real roots of (Q/QO) (x ‘f &,) =0 such that 9&%/0&, <0 or 9&7/0&,>0,
respectively. If cfn—§+(x 5 ) or é‘n A(x, «E ), then (9.21), follows from
(9 17)1, because WF(F,) and the blcharacterlstlcs of Q(x, 6) through
(x 5 &, do not intersect for x,<0. Let E,=&n(x, &), If % <0, then
(x 5 YEWF (#|x,-0) by assumption hence it follows from Proposmon 2.4
that WF(«#) does not intersect the bicharacteristics through (%, é’;' 5,,) for
small x,>0. The same is true by assumption also when %=0. Thus WF(F)
and the bicharacteristics do not intersect for x,=0 provided e is small.
Hence we obtain (9. 21),.

Next we shall prove (9.21),. Let &=&5(x &) or &,=&n(x, &).
Then the projection on T*X’ of a segment, with |x,/<1, of the bicharacteris-
tics of Q(x, &) through (x, &, &) is contained in a small conic neighbor-
hood of I',. Therefore, by (9.15) and (9.22), there is a positive number e,
independent of (J?’, éf’) &T,, such that WF(F,) does not intersect the bichar-
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acteristics if 0<e <e,. Thus (9.21), follows.

Finally let £,=1(x’, &). Denote by (x(¢), £(¢)) the bicharacteristics
of —@Qy(x, &) through (9?, é’, é,,), where the parameter ¢ is taken in such a
way that dx,(£)/dt>0 and (x(0), £0)=(x, &, &). Let # be a small
positive number such that

(' (8), & (#))¢€ (supp grad ¥x) N (supp 1— )

for —4,<t<0 and (¥, £)ET,. Then, analogously to the proof of [11],
Lemma 8.3, we find a positive number &, independent of (&, é')erz, such
that if —e<x,(#)<0 and ¢<0 then —#<t. Let 0<e<e. Then (x(#),
E())EWF(F,) for t<0 and (v, &)ET,. Hence (9.21), follows. Thus,
taking € <e; and & <&, we complete the proof.

END OF PROOF OF PROPOSITION 9.1. It follows from (9.18), (9.19)
and Lemma 9.4 that (x’, &)&EWF(yYnu|r-0). Since ¢ is elliptic at (x’,
&), we have (x/, &)EWF (#|y,-0). The proof is complete.

PrROOF OF THEOREM 1.3. Assume the hypotheses of the theorem are
fulfilled. If (x’, &)&WF (#|x,=0), We see from Proposition 2.4 that u is
smooth up to the boundary at (x’, &), in particular,

(x', &N Uszo WF(D ] 1m0).

If there is a point (2, £)ET(x’, E)N{—0<x%<0} such that (x’, ENEWF
(t|xn=0), We observe from Proposition 9.1 that (x’, &)EWF (#|xn=0).
Thus we prove the theorem.
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