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Introduction.

The study of real hypersurfaces of a complex projective space P_{n}C was
initiated by Takagi [11], who proved that all homogeneous hypersurfaces of
P_{n}C could be divided into six types which are said to be of type A_{1} , A_{2} , B,

C, D and E. He showed also in [12, 13] that if a real hypersurface M of
P_{n}C has two or three distinct constant principal curvatures, then M is
locally congruent to one of the homogeneous ones of type A_{1} , A_{2} and B.
This result is recently generalized by Kimura [4], who proves that a real
hypersurface M of P_{n}C has constant principal curvatures and J\xi is principal
if and only if M is locally congruent to one of the homogeneous hypersur-
faces, where \xi denotes the unit normal and J is the complex structure of P_{n}

C. In particular, real hypersurfaces of type A_{1} , A_{2} and B of P_{n}C have been
studied by several authors (cf. Cecil and Ryan [2], Kimura [5], Maeda
[6] and Okumura [10] ) .

On the other hand, real hypersurfaces of a complex hyperbolic space H_{n}

C have also been investigated from different points of view and there are
some studies by Chen, Ludden and Montiel [3] and Montiel and Romero
[9]. In particular, real hypersurfaces of H_{n}C , which are said of type A,

similar to those of type A_{1} and A_{2} of P_{n}C were treated by Montiel and
Romero [9].

Now, the Ricci tensor S is said to be cyclic-parallel if it satisfies

\mathfrak{S}\nabla S(X, Y, Z)=0

for any vector fields X, Y and Z, where \mathfrak{S} and \nabla denote the cyclic sum and
the Riemannian connection, respectively. It is noticed in \S 4 that the Ricci
tensors of real hypersurfaces of type A_{1} or A_{2} (resp. A) of P_{n}C (resp. H_{n}C )

are cyclic-parallel. The purpose of this paper is to investigate this converse
problem. Let M be a real hypersurface of a complex space form M_{n}(c) , c
\neq 0 , whose Ricci tensor is cyclic-parallel. In \S 3, it is verified that if J\xi is
principal, then all principal curvatures of M are constant and the number \‘of
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distinct principal curvatures is at most 5. By means of this result and the
classfication theorem due to Takagi [12] and Kimura [4], we can prove

THEOREM. Let M be a real hypersurface of P_{n}C, whose Ricci tensor is
cyclic-parallel. If J\xi is principal, then M is locally congruent to one of
homogeneous hypersurfaces of P_{n}C.

In the last section, real hypersurfaces of P_{n}C whose Ricci tensors are
cyclic-parallel are partially classified in the case where J\xi is principal.

The authors would like to express their thanks to the referee for his
valuable suggestions.

1. Preliminaries.

First of all, we recall a semi-Sasakian structure of a Riemannian
manifold or a Lorentz manifold. Let \overline{N} be a (2n+1) -dimensional semi-
Riemannian manifold of index 0 or 1 with a semi-Riemannian metric tensor
G. Let \phi,\overline{E} and \overline{\omega} be a tensor field of type (1, 1) , a vector field and a
1-form on \overline{N}, respectively, satisying the following properties:

(1. 1) \{

\phi=0,\overline{\omega}^{\circ}\phi=’ 0,\phi^{2}=-1+\overline{\omega}_{\frac{(}{E}}U)=\epsilon G(U\overline{E}),\overline{\omega}(\overline{E})=\frac{1}{\omega},\otimes\overline{E}G(,\overline{E},\overline{E})=\epsilon

,

G(\phi U, \phi V)=G(U, V)-\epsilon\overline{\omega}(U)\overline{\omega}(V) ,

for any vetor fields U and V on \overline{N}, where I denotes the identity mapping and
\epsilon=1 or -1 according as \overline{N} is Riemannian or Lorentz. In spite of the
respective cases, the set (\phi,\overline{E},\overline{\omega}, G) is called an almost contact metric
structure and \overline{N} is called an almost contact metric manifold. If the almost
contact metric atructure (\phi,\overline{E},\overline{\omega}, G) satisfies

(1.2) \overline{D}_{U}\phi(V)=-G(U, V)\overline{E}+\epsilon\overline{\omega}(U)V,

where \overline{D} denotes the Levi-Civita connection of N, then it is called a semi-
Sasakian structure, and \overline{N} is called a semi-Sasakian manifold. As is easily
seen, (1. 1) and (1. 2) imply

(1.3) \overline{D}_{U}\overline{E}=\epsilon\phi U, d\overline{\omega}(U, V)=G(\phi U, V),\overline{D}_{U}\phi(V)=\epsilon\overline{R}’(U, E)V,

where \overline{R}
’ denotes the Riemannian curvature tensor of \overline{N}, and hence\overline{E} is the

Killing vector field.
For a semi-Sasakian manifold \overline{N} a plane section in the tangent space N_{X}

at any point x of \overline{N} is called a \phi -section if it is spanned by a unit vector u
orthogonal to \overline{E}_{X} and \phi u . This section is non-degenerate in the case of the
Lorentz manifold, because \overline{E} is the time-like vector field. The sectional
curvature of the \phi -section is called a \phi -sectional curvature and \overline{N} is called a
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semi-Sasakian space form if it has constant \phi -sectional curvature. Let \overline{N} be
a (2n+1) -dimensional semi-Sasakian space form of \phi -sectional curvature c,

which is denoted by N_{a^{n+1}}^{2}(c) , where a=0 or 1 according as it is Riemannian
or Lorentz. The Riemannian curvature tensor \overline{R}’ of N_{a^{n+1}}^{2}(c) is given by

(1.4) \overline{R}’(U, V)W=[(c+3\epsilon)\{G(V, W)U-G(U, W)V\}

+(\epsilon c-1)\omega(W)\{\omega(U)V-\omega(V)U\}

+(c-\epsilon)\{(G(U, W)\omega(V)

-G(V, W)\omega(U)\}E+G(\phi V, W)\phi U

-G(\phi U, W)\phi V-2G(\phi U, V)\phi W]/4 .

In particular, if c=\epsilon, then N_{a}^{2n+1}(c) is of constant curvature c. For details,
see cf. Takahashi [14] and Yano and Kon [15].

Let \overline{N} be a semi-Sasakian manifold with a structure (\phi,\overline{E},\overline{\omega}, G) and
let N be a 2n-dimensional semi-Riemannian hypersurface of \overline{N} tangent to \overline{E}.
By the same symbol G the induced semi-Riemannian metric of N is denoted.
Each tangent space N_{X} at a point x of N is by definition a non-degenerate
subspace of \overline{N}_{X} . Hence a property of a vector space furnished with a scalar
product gives the direct sum docomposition \overline{N}_{X}=N_{X}\oplus N_{X}^{\perp} and the normal
space N_{X}^{\perp} is non-degenerate. An endomorphism P’ of the tangent bundle T
(N) and a 1-form F’ with values is the normal bundle N(N) are defined by

\phi X’=P’X’+F’X’

Then P’ is skew-symmetric, because \phi is skew-symmetric, and the following
relationships are given:

(1.5) \{\begin{array}{l}G(F’X’-\xi’)+G(X’\phi\xi’)=0,P^{\prime 2}+\phi F’=-I\dagger\omega’\otimes E’.F’P’=0,P’ E’=F’E’=0\end{array}

for any tangent vector X’ and the unit normal \xi’ . where E’ and \omega’ are the
restriction of \overline{E} and \overline{\omega} to N, respectively. Let D be the Levi-Civita connec-
tion of N and let \sigma’ and A’ be the second fundamental form of N and the
shape operator in the direction of the unit normal, respectively. The first
equations of (1. 3) and (1. 5) and the Gauss equation give

(1.6) \{

D_{X’}E’=\epsilon P’X’F’X’=\epsilon\sigma’(X’. E’) , A’E’=-\epsilon\phi\xi’

\sigma’(E’, E’)=0 .

By means of the formulas of Gauss and Weingarten, we have

(1. 7) \{

D_{X’}P’(Y’)=G(F’Y’. \xi’)A’X’+\phi\sigma’(X’-Y’)-G(X’Y’)E’

+\epsilon\omega’(Y’)X’ .
D_{X’}P’(Y’)=-\sigma’(X’. P’Y’) .
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Let R’ and S’ be the Riemannian curvature tensor and the Ricci tensor of N
respectively. The Ricci tensor S’ is given by

S’(X’. Y’)=\Sigma\epsilon_{j}G(R’(E_{j}’, X’)Y’. E_{j}’)

relative to an orthonormal frame \{E_{j}’\} such that G(E_{i}’, E_{j}’)=\epsilon_{i}\delta_{ij} . In
particular, if N is a semi-Sasakian space form of \phi -sectional curvature c,
then the Gauss equation of N is given by

R’(X’. Y’)Z’
=[(c+3\epsilon)\{G(Y’, Z’)X’-G(X’. Z’)Y’\}

+(\epsilon c-1)_{\omega’}(Z’)\{\omega’(X’)Y’-\omega(Y’)X’\}

+(c-\epsilon)\{G(X’. Z’)\omega’(Y’)-G(Y’. Z’)_{\omega’}(X’)\}E’

+G(P’Y’. Z’)P’X’-G(P’X’. Z’)P’Y’-2G(P’X’. Y’)P’Z’]/4
+G(\sigma’(Y’Z’), \xi’)A’X’-G(\sigma’(X’Z’), \xi’)A’Y’

where E_{zn}=E’ and hence S’ is given by

(1.8) S’(X’. Y’)=[(2n-1)(c+3\epsilon)G(X’. Y’)

-2 (n-1)(\epsilon c-1)\omega’(X’)_{\omega’}(Y’)

+(c-\epsilon)\{3G(P’X’P’Y’)-G(X’Y’)\}]/4
+\Sigma_{j=1}^{2n-1}\{G(\sigma’(X’. Y’), \sigma’(E_{j}’, E_{j}’))

-G(\sigma’(X’E_{j}’), \sigma’(Y’E_{j}’))\}-\epsilon G(F’X’. F’Y’) .

Now, let \overline{M} be a 2n-dimensional Kaehler manifold with an almost
complex structure J and a Kaehler metric tensor g . Let M be a real
hypersurface of \overline{M} whose induced metric from that of \overline{M} is denoted by the
same symbol g. By the similar definition to that of the set of (P’. F’) , an
endomorphism P of T(M) and a 1-form F of T(M) with values in N(M)
are defined by

JX=PX+FX.

Then P is skew-symmetric and moreover the following relationships between
these operators are given:

(1.9) g(FX, \xi)+g(X, J\xi)=0 ,
P^{2}=-I-JF, FP=0 .

A Kaehler manifold of constant holomorphic sectional curvature is called a
complex space form. A complex space form of constant holomorphic curva-
ture 4c and of complex dimension n is denoted by M_{n}(c) . For the unit
normal \xi to M in \overline{M}, the tangent vector J\xi is denoted by-E. Then E is the
unit vector field on M and a 1-form \omega is defined by F(X)=\omega(X)\xi. As is
well known, M admits an almost contact metric structure (P, E, \omega, g) . Let
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\sigma and A be a second fundamental form of M and a shape operator derived
from \xi , respectively. The covariant derivative \nabla P is defined by \nabla {}_{X}P(Y)=

\nabla_{X}(PY)-P\nabla_{X}Y. Then it follows from the Gauss and the Weingarten
formulas that it satisfies

(1. 10) \{

\nabla_{X}P(Y)=-g(AX, Y)+\omega(Y)AX,
\nabla_{X}E=PAX,

where \nabla denotes the Riemannian connection of M. By the Gauss equation,
the Ricci tensor S of M is given by

(1. 11) S(X, Y)=c\{(2n+1)g(X, Y)-3\omega(X)\omega(Y)\}

+hg(AX, Y)-g (AX, A Y),

where h denotes the trace of A, and by the Codazzi equation we have

(1.12) \nabla_{X}A(Y)-\nabla_{X}A(X)=c\{_{\omega}(X)PY-\omega(Y)PX+2g(X, PY)E\} .

Frow now on, assume that the structure vector E is principal, that is, E
is an eigenvector of A associated with an eigenvalue \alpha . The equation
(1. 10) implies that

(1. 13) \nabla_{X}A(E)=d\alpha(X)E+\alpha PAX- APAX,

from which is follows that

(1. 14) \{

2APA=\alpha(AP+PA)+2cP,

\beta(AP+PA)=0 , d\alpha=\beta\omega,

where \beta=d\alpha(E) . It implies that the principal curvature \alpha is constant
provided that c>0 . Suppose that c<0 . Consequently (1. 12), (1. 13) and
(1. 14) give rise to

(1. 15) \{

\nabla_{X}A(E)=\alpha(PA-AP)X/2-cPX+\beta\omega(X)E,
\nabla A(Y)=\alpha (PA-AP) Y/2+\beta\omega(Y)E.

By combining these equations, the following relationship

(1. 16) dh(E)=\beta

is obtained. In fact, since the function h is the trace of the shape operator
A, we have

dh(E)=\Sigma\{g(\nabla_{E}A(E_{j}), E_{j})+2g(AE_{j}, \nabla_{E}E_{j})\}

=\Sigma\{\alpha g((PA-AP)E_{j}, E_{j})/2+\beta\omega(E_{j})^{2}+2g(AE_{j}, \nabla_{E}E_{j})\} ,

which is independent of the choice of the orthonormal frame \{E_{j}\} . Accord-
ingly, without loss of generality, each E_{j} may be chosen as a principal
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vector.
For details stated in this section, see cf. Yano and Kon [15].

2. Hypersurfaces.

Let \overline{N} be a (2n+1) -dimensional semi-Sasakian manifold equipped with
the structure (\phi,\overline{E},\overline{\omega}, G) . Assume that there is a fibration \overline{\pi} : \overline{N}arrow\overline{M},
where \overline{M} denotes the set of orbits of \overline{E} and a real 2n-dimensional Kaehler
manifold. \overline{N} is a principal circle bundle over \overline{M} and \overline{\omega} is a connection in
this bundle, and we have the orthogonal decomposition T_{q}(\overline{N})=T_{\overline{\pi}(q)}(\overline{M})+

span\{\overline{E}\} . Let*be the horizontal lift with respect to the connection \overline{\omega} . We
donote the Kaehler structure of \overline{M} by (J, g) , where J is defined by JX=d\overline{\pi}

(\phi X^{*}) . Then, by the construction we have
(2. 1) (JX)^{*}=\phi X^{*} , G(X^{*}. Y^{*})=g(X, Y)

for any vector fields X and Y on \overline{M}. The following relation between the
Riemannian connections \overline{\nabla} of \overline{M} and \overline{D} on \overline{N} is derived from the above
properties:

(2.2) (\overline{\nabla}_{X}Y)^{*}=-\phi^{2}\overline{D}_{X^{*}}Y^{*}=\overline{D}_{X}\cdot Y^{*}-G(\phi X^{*}. Y^{*})\overline{E},\overline{D}_{X}\cdot E=\epsilon\phi X^{*} .

Let N be a hypersurface tangent to \overline{E} of \overline{N}. In the sequel, we assume
that there is a fibration \pi : Narrow M, where M is a real hypersurface of \overline{M} such
that the diagram

i’
N -arrow\overline{N}

\pi\downarrow \downarrow\overline{\pi}

Marrow\overline{M}

i

is commutative and the immersion i’ of N into \overline{N} is a diffeomorphism of the
fibres. This shows that we have the orthogonal decomposition T_{q}(N)=
(T_{\pi(q)}M)^{*}+span\{E_{q}’\} . Then the fibrations \overline{\pi} : \overline{N}arrow\overline{M} and \pi:Narrow M are
both the Riemannian submersions in the sense of O’Nei11 . By G and g the
induced semi-Riemannian tensors of N and M are denoted, respectively.
Let D and \nabla be the Levi-Civita connections on N and M, and \sigma’ and \sigma be the
second fundamental forms of N and M, respectively. The associated shape
operators are denoted by A’ and A . The Gauss formulas for the immersions
i’ and i and (2. 2) yield

(2.3) D_{X}\cdot Y^{*}=(\nabla_{X}Y)^{*}-G(\phi X^{*}. Y^{*})E’ . \sigma’(X^{*}, Y^{*})=\sigma(X, Y)_{;}^{*}

and by the Weingarten formulas for the immersions and (2. 2) we have the
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following relations between the shape operators A’ and A :

(2.4) A’Y^{*}=(AY)^{*}+\epsilon G(A’Y^{*}, E’)E_{2}’D_{X}^{\perp}\cdot\xi^{*}=(\nabla_{X}^{\perp}\xi))^{*}J

where D^{\perp} and \nabla^{\perp} are the covariant differentials with respect to the normal
connections.

On the other hand, for the orthogonal operators (P’F’) and (P, F) of
the immersions i’ and i respectively, (2. 1) means that

(2.5) (PX)^{*}=P’X^{*} , (FX)^{*}=F’X^{*} , (J\xi)^{*}=\phi\xi^{*} ,

and by (1. 6) and (2. 4) it turns out that

(2.6) A’Y^{*}=(AY)^{*}+G(F’Y^{*}. \xi^{*})E’ . A’E’=-\epsilon\phi\xi^{*} .

For the relationship between covariant derivatives of the second fundamental
form \sigma’ of N and \sigma of M, it follows from (1. 3), (1. 6), (2. 3) and (2. 4)

that we have

(2. 7) \{

D_{X^{*}}\sigma’(Y^{*}, Z^{*})=\{\nabla_{X}\sigma(Y, Z)\perp\epsilon g(PX, Y)FZ+\epsilon g(PX, Z)FY\}^{*} .
D_{X}\cdot\sigma’(Y^{*}, E^{*})=D_{E’}\sigma’(X_{J}^{*}Y^{*})=-\epsilon\{\sigma(X, PY)+\sigma(PX, Y)\}^{*} .
D_{X}\cdot\sigma’(E’E’)=D_{E’}\sigma’(E’X^{*})=-2F’P’X^{*} .

By means of (1. 1) and (2. 2), a straightforward calculation gives rise to

(2.8) (\overline{R}(X, Y)Z)^{*}=\overline{R}’(X^{*}. Y^{*})Z^{*}+\epsilon\{G(Z^{*}. \phi Y^{*})\phi X^{*}

-G(Z^{*}. \phi X^{*})\phi Y^{*}-2G(Y_{J}^{*}\phi X^{*})\phi Z^{*}\}

and by choosing the orthonormal frame field in which E’ is included, it turns
out that

(2.8) \overline{S}(X, Y)=\overline{S}’(X^{*}. Y^{*})+2\epsilon g(X, Y) .

Then, by making use of (2. 3), (2. 6), (2. 7) and (2. 8) it follows from the
Gauss equations of N and M that we have

(2. 10) (R(X, Y)Z)^{*}=R’(X^{*}, Y^{*})Z^{*}+\epsilon\{g(PY, Z)PX

eg(PX, Z)PY-2g(PX, Y)PZ\}^{*}
+\{-G(F’X^{*}. \xi^{*})G(A’Y^{*}. Z^{*})+G(F’Y^{*}, \xi^{*})G(A’X^{*}, Z^{*})\}E^{*}

and hence it turns out that

(2. 11) S(X, Y)=S’(X^{*}, Y^{*})+2\epsilon g(PX, PY) .

In particular, if \overline{N} is a semi-Sasakian space form of \phi -holomorphic
curvature c , then we have by (1. 8)

(2. 12) S’(X^{*}. Y^{*})=[(2n-1)(c+3\epsilon)g(X, Y)
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+(c-\epsilon)\{3g(PX, PY)-g(X, Y)\}]/4

+\Sigma_{j=1}^{2n-1}\{g(\sigma(X, Y), \sigma(E_{j}, E_{j}))

-g(\sigma(X, E_{j}) , \sigma(Y, E_{j}))\}

-\epsilon g(FX, FY) ,
S’(X^{*}. E^{*})=\epsilon\Sigma_{j=1}^{2n-1}\{g(FX, \sigma(E_{j}, E_{j}))-g(\sigma X, E_{j}), FE_{j})\} ,
S’(E_{3}’E’)=(2n-1)c-\Sigma_{j=1}^{2n-1}g(FE_{j}, FE_{j}) .

Finally, the following property between the covariant derivatives of
Ricci tensors S’ and S is given. The proof is omitted, because it is only the
straightforward calculation in which many formulas mentioned above are
used.

LEMMA 2. 1. Let \overline{N} be a semi-Sasakian space form of constant \phi -

sectional curvature c and N be semi-Riemannian hypersurface tangent to the
structure vector \overline{E}. Assume that there exist fibrations \overline{\pi} : \overline{N}arrow\overline{M} and \pi : Narrow

M, where M is a hypersurface of a Kaehler manifold \overline{M}. If the one is
compatible with the other, then we have

(2. 13) D_{X^{*}}S’(Y^{*}, Z^{*})=\nabla_{X}S(Y, Z)+g(PX, Y)S’(E’. Z^{*})

+g(PX, Z)S’(E’. Y^{*})

-2\epsilon\{g(\sigma(Y, PZ), FX)+g(\sigma(Z, PY), FX)\}

+2\epsilon\{g(\sigma(X, Y), FPZ)+g(\sigma(X, Z), FPY)\}

for any vector fifietds X, Y and Z tangent to M.

REMARK. Lemma 2. 1 holds in the case where N and M are semi-
Riemannian submanifolds of N and M, respectively.

3. Cyclic-parallel Ricci tensors.

This section is devoted to the investigation about the principal curva-
tures of a real hypersurface of a complex space form whose Ricci tensor is
cyclic-parallel. The Ricci tensor S of the semi-Riemannian manifold is said
to be cyclic-parallel, if it satisfies \mathfrak{S}\nabla S=0 , where \mathfrak{S} denotes the cyclic sum,
that is, it satisfies

(3. 1) \mathfrak{S}\nabla S(X, Y, Z)=\nabla_{X}S(Y, Z)+\nabla_{Y}S(Z, X)+\nabla_{Z}S(X, Y)=0

for any tangent vector fields X, Y and Z, which is equivalent to \nabla S(X, X,

X)=0 . For this condition, refer to Besse [1].
Let M be a real hypersurface of M_{n}(c)(c\neq 0) whose Ricci tensor is

cyclic-parallel. Then M admits an almost contact metric structure (P, E,
\omega, g) . Assume that the structure vector field E is principal. The principal
curvature is denoted by \alpha . Then it follows from some formulas given in \S 1
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that (3. 1) is reduced to

(3.2) h\{g(\nabla_{X}A(Y), Z)+g(\nabla_{Y}A(Z), X)+g(\nabla_{Z}A(X), Y\}

+ {Xhg(A Y, Z)+Yhg(AZ, X)+Zhg(AX, Y) }
-\{g(AX, \nabla_{Y}A(Z)+\nabla_{Z}A(Y))

+g(AY, \nabla_{Z}A(X)+\nabla_{X}A(Z))

+g(AZ, \nabla_{X}A(Y)+\nabla_{Y}(X)\}

-3c\{\omega(X)g(BY, Z)+\omega(Y)g(BZ, X)+\omega(Z)g(BX, Y)\}=0 ,

where B denotes the operator of T(M) defined by PA-AP.
First of all, the constancy of the principal curvature \alpha is proved. In the

case of P_{n}C, the fact is true without the condition that S is cyclic-parallel.

LEMMA 3. 1. Let M be a real hypersurface of M_{n}(c) , (c\neq 0) , whose
Ricci tensor is cyclic-parallel. If E is principal, then the corresponding
principal curvature \alpha is constant.

PROOF. Putting Z=E in (3. 2) and taking account of (1. 15) and
(1. 16), we have
(3. 3) (3\alpha h-8c-2^{2}\alpha)B-2\alpha(PA^{2}-A^{2}P)+2\alpha(dh\otimes E+\omega\otimes gradh)

+2\beta A+6\beta(h-2\alpha)_{\omega}\otimes E=0 ,

where \beta=d\alpha(E) . If this operator acts on E, then it turns out that

(3.4) \alpha dh=\beta(4\alpha-3h)\omega,

from which together with (1. 16) it follows that

(3.5) \beta(\alpha-h)=0 .

Let U be the set consisting of points of M at which the function \beta is not
zero. Suppose that U is not empty. Then we have

(3.6) PA+AP=0, \alpha=h

by means of (1. 14) and (3. 5). Accordingly the following equation is der-
ived from (3. 3) :

(\alpha^{2}-8c)PA-\alpha\beta\omega\otimes E+\beta A=0 .

For a principal vector X on U orthogonal to E with a principal curvature \lambda ,

we have

(\alpha^{2}-8c)\lambda PX+\beta\lambda X=0

Since X and PX are mutually orthogonal, it means that \lambda=0 on U. This
together with (3. 6) implies that
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AX=0, APX=0,

which show that the shape operator A and the structure tensor P commute
each other on U. The same argument as those of Okumura [10] (c>0)
and Montiel and Romero [9] (c<0) proves that \alpha is constant on U. By
(1. 15) it turns out that \beta=0 , which is a contradiction. Consequently U is
empty and therefore \beta=0 on M. q. e . d .

Since \alpha is constant, (3. 3) and (3, 4) give

(3.7) \alpha dh=0 , (3\alpha h-8c-2\alpha^{2})B-2\alpha(PA^{2}-A^{2}P)=0 .

By making use of this equation, the following theorem is proved. By means
of the congruence theorem due to Kimura [4], the main theorem mentioned
in the introduction is a direct consequence of the following result.

THEOREM 3. 2. Let M be a real hypersurface of M_{n}(c) , c\neq 0 , whose
Ricci tensor is cyclic-parallel. If the structure vector E is principal, then all
principal curvatures of M are constant and the number of distinct principal
curvatures are at most 5.

PROOF. Let X be a principal vector orthogonal to E with a principal
curvature \lambda . Then it follows from (1. 14) that

(2\lambda-\alpha)APX=(\lambda\alpha+2c)PX.

Let V be the set consisting of points at which the function 2\lambda-\alpha is non-zero.
In the case of c>0 , V is entirely equal to M. Suppose that V is not empty.
Then PX is also principal on the open set V and its corresponding principal
curvature \mu is given by

\mu=(\alpha\lambda+2c)/(2\lambda-\alpha) .

Consequently, as the relationship between principal curvatures \lambda and \mu ,

(3. 7) is reduced to

(3.8) (\lambda-\mu)\{\alpha(\lambda+\mu)-k\}=0 , k=(3\alpha h-8c-2\alpha)2/2 ,

which is the quartic equation of variable \lambda whose coefficients are not neces-
sarily constant.

Suppose that \alpha=0 . Then (3. 8) is regarded as c(\lambda-\mu)=0 and hence
\lambda=\mu , which implies that \lambda^{2}=c>0 , because of the definition of \mu . It means
that \lambda is constant on V and hence the continuity of \lambda shows that V coincides
with M.

On the other hand, suppose that \alpha\neq 0 . It is seen that the function h is
constant by (3. 7) and hence (3. 8) is the quartic equation of \lambda whose
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coefficients are constant. It means that \lambda is constant on V and hence on M,

and the number d of the distinct principal curvatures is at most 5.
Next, the case where V is emtpy is considered. Then we have 2\lambda=\alpha

on M and hence \alpha\lambda+2c=0 , \lambda^{2}=-c>0 on M. Accordingly \lambda\neq\alpha and \alpha\neq

0 , and hence h is constant on M. Suppose that there exist a point x and a
principal vector u at x orthogonal to E_{x} with a principal curvature \tau such
that \tau\neq\alpha/2 . Then P_{x}u becomes a principal vector with a principal curva-
ture

(\alpha\tau+2c)/(2\tau-\alpha)\neq\alpha/2

and from (3. 3) it follows that

(2\tau-\alpha)(3h-2\tau-\alpha)=0 .

Accordingly, \tau=(3h-\alpha)/2 and it is different from \alpha . In fact, suppose that
\tau=\alpha and its multiplicity is equal to p. Then we have h=\alpha, which yields
(2n-1+p)\alpha=0 , a contradiction. This shows that there exist distinct con-
stant principal curvatures \alpha , \alpha/2 and (3h-\alpha)/2 . q . e . d .

REMARK 1. In a complex projective space Kimura [4] proved that if
all principal curvatures are constant and if E is principal, then d\leqq 5 .

REMARK 2. In a complex hyperbolic space, Montiel and Romero [10]
gave an example of a real hpersurface whose distinct principal curvatures
are \alpha and \alpha/2 with multiplicites 1 and 2n-2 . It is stated in the next section.

REMARK 3. Under the condition \nabla(\mathfrak{S}\nabla S)=0 , the same conclusion as
that in this section is obtained.

4. Examples.

In this section, some standard examples of real hypersurfaces of M_{n}(c)

(c\neq 0) whose Ricci tensors are cyclic-parallel are given. In the complex
Euclidean space C^{n+1} equipped with the Hermitian form F, the Euclidean
metric of C^{n+1} which is identified with R^{2n+2} is given by Re F. For the unit
sphere S^{2n+1}=\{z\in C^{n+1} : F(z, z)=1\} the tangent space T_{z}S^{2n+1} at each point
z can be identified with { w\in C^{n+1} : Re F (z, w)=0 }. Let T_{\acute{z}} be the orth-
ogonal complement of the vector iz in T_{z}S^{2n+1} . When the sphere S^{2n+1} is
considered as a principal fibre bundle over P_{n}C with the structure group S^{1}

and the projection \pi , there is a connection such that T_{\acute{z}} is the horizontal
subspace at z which is invariant under the S^{1} -action. The Fubini-Study
metric g of constant holomorphic sectional curvature 4 is given by g_{P}(X,
Y)={\rm Re} F_{Z}(X^{*}, Y^{*}) for any tangent vectors X and Y in T_{P}(P_{n}C) , where
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z is any point of S^{2n+1} with \pi(z)=p and, X^{*} and Y^{*} are the vectors in T_{\acute{Z}}

such that d\pi X^{*}=X and d\pi Y^{*}=Y. On the other hand, the complex struc-
ture J:warrow iw in T_{\acute{Z}} is compatible with the action of S^{1} and induces the
almost complex structure J on P_{n}C such that d\pi^{\circ}i=J\circ d\pi. Then P_{n}C is a
complex projective space with constant holomorphic curvature 4.

Now, for any positive number r a hypersurface N_{0}(2n, r) of S^{2n+1} is
defined by

N_{0}(2n, r)=\{(z_{1}, \ldots.z_{n+1})\in S^{2n+1}\subset C^{n+1} : \Sigma_{j=1}^{n}|z_{j}|^{2}=r|z_{n+1}|^{2}\} .

For an integer m(2\leqq m\leqq n-1) and a positive number s, a hypersurface N
(2w, m, s) of S^{2n+1} is defined by

N(2n, m, s)=\{(z_{1}, , . _{t} z_{n+1})\in S^{2n+1}\subset C^{n+1} :
\Sigma_{j=1}^{m}|z_{j}|^{2}=s\Sigma_{j=m+1}^{n+1}|z_{j}|^{2}\} .

Then it is seen that N_{0}(2n, r) and N(2n, m, s) are both isoparametric
hypersurfaces of S^{2n+1} which have two distinct constant principal curvatures
[12, 13] , and the second fundamental forms are parallel.

For a real hypersurface M of P_{n}C it is known that we can construct a
real hypersurface N of S^{2n+1} which is a principal S^{1} -bundle over M with
totally geodesic fibres and the projection \pi . Moreover, the projection is
compatible with the Hopf fibration \overline{\pi}:S^{2n+1}arrow P_{n}C, that is, the diagram

i’
Narrow S^{2n+1}

\pi\downarrow \downarrow\overline{\pi}

Marrow P_{n}C

i

is commutative ( i’ and i being the respective immersions). Since the sec-
ond fundamental forms of the immersions i’ of the examples mentioned above
are parallel, so are the Ricci tensors. It follows from this result together
with Lemma 2. 1 that M_{0}(2n-1, r)=\pi(N_{0}(2n, r)) and M(2n-1, m, s)=\pi
(N(2w, m, s))(n\geqq 3) are examples of real hypersurfaces of P_{n}C whose Ricci
tensors are cyclic-parallel, because the shape operator and the induced
structure tensor P commute with each other.

REMARK 1. It is known [11] that M_{0}(2n-1, r) and M(2n-1, m, s)
are both compact connected real hypersurfaces of P_{n}C with constant two or
three distinct principal curvatures respectively, which are said to be of type
A_{1} and A_{2} respectively.
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REMARK 2. It is shown in [2] and [10] that M_{0}(2n-1, r) and M
(2n-1, m, s) , s=(m-1)/(n-m) , are pseud0-Einstein. From this prop-
erty that the Ricci tensor is cyclic-parallel can be checked by the direct
calculation.

Now, some examples of real hypersurfaces of H_{n}C are considered. In
C^{n+1} with the standard basis, a Hermitian form F is defined by

F(z, w)=-z_{0} \overline{w}_{0}+\sum_{k=1}^{n}z_{k}\overline{w}_{k\prime}

where z= (z_{0}, .. . z_{n}) and w=(w_{0}, \ldots , w_{n}) are in C^{n+1} . The Minkowski
space (C^{n+1}, F) is simply denoted by C_{1}^{n+1} . The scalar product given by Re
F(z, w) is a semi-Riemannian metric of index 2 in C_{1}^{n+1} . Let H_{1}^{2n+1} be a real
hypersurface of C_{1}^{n+1} defined by

H_{1}^{2n+1}=\{z\in C_{1}^{n+1} : F(z, z)=-1\} ,

and let G be a semi-Riemannian metric of H_{1}^{2n+1} induced from the complex
Lorentz metric Re F of C_{1}^{n+1} . Then (H_{1}^{2n+1}, G) is the Lorentz manifold of
constant curvature -1, which is called an anti-de Sitter space. For any
point z of H_{1}^{2n+1} the tangent space T_{z}H_{1}^{2n+1} can be identified with { w\in C_{1}^{n+1} :
Re F(z, w)=0\} . Moreover, similar to the case of the complex projective
space, it is known in [9] that H_{1}^{2n+1} is a principal S^{1} -bundle over a complex
hyperbolic space H_{n}C with the projection \pi:H_{1}^{2n+1}arrow H_{n}C, which is a semi-
Riemannian submersion with the fundamental tensor J and time-like totally
geodesic fibres.

Now, for given integers p and q with p+q=n-1 and r\in R with 0<r<
1 , a Lorentz hypersurface N_{p,q}(r) of H_{1}^{2n+1} is defined by

N_{p,q}(r)= \{(z_{0}, \ldots z_{n})\in H_{1}^{2n+1} : r(-|z_{0}|^{2}+\sum_{j=1}^{p}|z_{j}|^{2})=-\sum_{j=p+1}^{n}|z_{j}|^{2}\}

and a Lorentz hypersurface N_{n} of H_{1}^{2n+1} is given by

N_{n}=\{(z_{0}, \ldots.z_{n})\in H_{1}^{2n+1} : |z_{0}-z_{1}|^{2}=1\} .

Then it is seen from [8] that N_{p,q}(r) is isometric to H_{1}^{2p+1}(1/(r-1))\cross S^{2q+1}

(r/(1-r)) and the second fundamental forms of N_{p,q}(r) and N_{n} are both
parallel, and hence so are the Ricci tensors.

Since N_{p,q}(r) and N_{n} are S^{1} -invariant, M_{p_{q}},(r)=\pi(N_{p,q}(r)) and M_{n}=\pi

(N_{n}) are real hypersurfaces of H_{n}C. Then \pi:N_{p,q}(r)arrow M_{p_{q}}.(r) and \pi:N_{n}

arrow M_{n} are semi-Riemannian submersions which are compatible with the S^{1}-

fifibration \pi : H_{1}^{2n+1}arrow H_{n}C. By means of Lemma 2. 1 it follows that M_{p,q}(r)

and M_{n} are examples of real hypersurfaces of H_{n}C whose Ricci tensors are
cyclic-parallel, because the shape operator and the structure tensor commute
with each other.
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Real hypersurfaces of H_{n}C are due to Montiel [8] and Montiel and
Romero [9].

REMARK 3. It is seen that M_{p,q}(r) and M_{n} are complete connected real
hypersurfaces of H_{n}C with constant two or three distinct principal curva-
tures, which are said to be of type A .

5. Classifications in P_{n}C .
In this section the complete connected real hypersurface of P_{n}C whose

Ricci tensor is cyclic-parallel is considered. Let M be such a hypersurface
of P_{n}C and assume that the structure vector E is principal. Then it is
already seen that all principal curvatures are constant and the number d of
distinct principal curvatures is at most 5. Let \lambda_{a}(a=0, \ldots r,4) be distinct
principal curvatures with multiplicities m_{a}, respectively, defined by

\lambda_{0}=\alpha ,
(5.1) \lambda_{1} , \lambda_{2} : the roots of x^{2}-\alpha x-1=0 ,

\lambda_{3} , \lambda_{4} : the roots x^{2}-kx/\alpha+k/2+1=0 ,

where k=(3\alpha h-8-2\alpha)2/2(\alpha\neq 0) . Accordingly, by means of a theorem due
to Kimural [4], M is congruent to an open set of a homogeneous real
hypersurface of P_{n}C.

In connection with the examples given in the previous section, we next
investigate whether or not the homogeneous real hypersurfaces of P_{n}C which
are not of type A_{1} or A_{2} satisfy the condition \mathfrak{S}\nabla S=0 . In order to answer
this purpose, the sufficient condition for the cyclic-parallelism of the Ricci
tensor is first considered.

LEMMA 5. 1. Let M be a real hypersurface of P_{n} C. If the structure
vector is principal, then the Ricci tensor is cyclic-parallel if and only if

\mathfrak{S}\nabla S|E^{\perp}=0 , \mathfrak{S}\nabla S(X, Y, E)=0

for any vector fifietds X and Y, where E^{\perp} denotes the orthogonal complement
of E.

PROOF. It suffices to prove only the ” if “ part. Since the operator \mathfrak{S}\nabla

S is trilinear, we have

\mathfrak{S}\nabla S(X, Y, Z+\beta)=\mathfrak{S}\nabla S(X, Y_{J}Z) for any function f,

from which together with the assumption \mathfrak{S}\nabla S|E^{\perp}=0 it follows that

\mathfrak{S}\nabla S(X, Y, Z)=0 for any vector fields X and Y of E^{\perp} .
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By repeating the similar argument to the above one, the conclusion is given.
q. e . d .

By taking account of (3. 2) and (3. 3), it is easily seen that the second
condition is equivalent to the equation (3. 7), because h is constant.

Lemma 5. 2. Let M be a real hypersurface of P_{n} C. If E is principal,
then it satisfifies the condition \mathfrak{S}\nabla S(X, Y, E)=0 for any vector fifietds X and Y

if and only if the function h is constant and

(5.2) \alpha(PA^{2}-A^{2}P)-k (PA-AP) =0.

where k=(3\alpha h-2\alpha-28)/2 .

Let M be a homogeneous hypersurface of type B, C, D or E of P_{n}C.
Then it has always principal curvatures \lambda_{3} and \lambda_{4} with the same multiplic-
ities m_{3} and m_{4} , which satisfy \lambda_{3}\lambda_{4}=-1 (cf. [12], Table). Accordingly, in
order for M to satisfy the condition \mathfrak{S}\nabla S(X, Y, E)=0 , the principal curva-
tures \lambda_{3} and \lambda_{4} must satisfy the relation (5. 2), in other words, they ought to
be the roots of the second equation of (5. 1). This means that h=2\alpha/3 is a
necessary and sufficient condition. Since h is given by h=\alpha+m_{1}(\lambda_{1}+\lambda_{2})+

m_{3}(\lambda_{3}+\lambda_{4}) , we have

h=(1+m_{1})\alpha-4m_{3}/\alpha,

because of \lambda_{1}+\lambda_{2}=\alpha and \lambda_{3}+\lambda_{4}=-4/\alpha . It yields that h=2\alpha/3 is equiva-
lent to

\alpha^{2}=12(n-1) , 24/(3n-8), 48/13 or 72/25,

according as the homogenous hypersurface M of type B, C, D or E.
We next consider the condition \mathfrak{S}\nabla S|E^{\perp}=0 . Suppose that the number d

of distinct principal curvatures of a real hypersurface of P_{n}C is at most three,
say \alpha , \lambda and \mu . Since any vector fields X_{a} (a=1,2, 3) orthogonal to E have
the direct sum decomposition X_{a}=X_{a1}+X_{a2} such that AX_{a1}=\lambda X_{a1} and
AX_{a2}=\mu X_{a2} , we have g(\nabla_{X1}A(X_{2}), X_{3})=\Sigma g(\nabla_{xab}A(X_{cd}), X_{ef}) . Since g
(\nabla_{X}A(Y), Z) is symmetric with respect to X, Y and Z orthogonal to E
because of (1. 12), we may consider without loss of generality that, in each
term g(\nabla_{X}A(Y), Z) of the right hand side of the above equation, Y and Z
are both principal vectors corresponding to the principal curvature \lambda .
Consequently, since the shape operetor is self-adjoint, we get

g(\nabla_{X}A(Y), Z)=g ( \nabla_{X} (A Y)-A\nabla_{X}Y, Z) =0

from which it follows that g(\nabla_{X1}A(X_{2}), X_{3})=0 for any vector fields X_{a}

orthogonal to E, and hence the condition
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\mathfrak{S}\nabla S|E^{\perp}=0

is satisfied. It yields that the homogeneous real hypersurface of type B
satisfies the above condition. For a real number t(0<t<1) we denote by N
(2n, t) a hypersurface of S^{2n+1} defined by |\Sigma_{j=1}^{n+1}z_{j}^{2}|^{2}=t and \Sigma_{j=1}^{n+1}|z_{j}|^{2}=1 for
(z_{1}, \ldots z_{n+1})\in C^{n+1} . Then it is seen by Takagi [13] that the hypersurface
has constant principal curvatures \lambda_{a}(a=1, \ldots. 4) with multiplicities 1, 1,
n-1 and n-1 , and that t=\sin^{2}2\theta . Thus, for the projection \pi of the Hopf
fibration of S^{2n+1} onto P_{n}C, M(2n-1, t)=\pi(N(2n, t)) is a compact real
hypersurface of type B and, since t=1/(3n-2) is equivalent to \alpha^{2}=12(n-

1) , the Ricci tensor of M(2n-1,1/(3n-2)) is cyclic-parallel, because of
\alpha=2\cot 20 . By means of Lemmas 3. 1, 5. 1 and 5. 2 we can prove the follow-
ing

THEOREM 5. 3. M_{0}(2n-1, r) , M(2n-1, m, s) and M(2n-1,1/(3n-
2)) are complete and connected real hypersurfaces of P_{n}C whose Ricci tensor
is cyclic-parallel and whose structure vector is principal.

REMARK 1. Let X, Y and Z be principal vectors orthogonal to E
associated with principal curvatures \lambda , \mu and \sigma , respectively. Then the
following equation is derived from (3. 8) :

\mathfrak{S}\nabla S(X, Y, Z)=\{3h-2(\lambda+\mu+\sigma)\}g(\nabla_{X}A(Y), Z) .

For the homogenous real hypersurface of type C, D or E of P_{n}C whose value
of \alpha^{2} is given by 24/(3n-8), 48/13 or 72/25, the above relationship means
that \mathfrak{S}\nabla S|E^{\perp}=0 if and only if g(\nabla_{X}A(Y), Z)=0 for any vector fields orth-
ogonal to E.

REMARK 2. Let M be a complete and connected real hypersurface of
H_{n}C. Montiel and Romero [9] proved that M is congruent to M_{p,q}(r) or
M_{n} provided that B=PA-AP=0. Accordingly it seems to be interesting
whether or not Theorem 5. 3 holds in the case of H_{n}C.
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