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0. Introduction

Let \phi:G\cross M– M be a smooth action of a connected Lie group G on
a compact orientable manifold M. If for every point z of M the isotropy
subgroup G_{z} is discrete, \phi is said to be locally free. If the orbits of \phi have
codimension one, we call \phi a codimension one action. Suppose that G is
nilpotent and \phi is a locally free codimension one action. Some dynamical
properties of such an action \phi and topological properties of M are stated in
the paper [HGM]. We will consider this in detail. The object of this paper
is to prove the following

THEOREM. Let M be a connected closed orientable manifold. Suppose
that M admits a locally free codimension one smooth action \phi of a connected
nilpotent Lie group G such that i ) \phi has no compact orbits and ii ) the
dimension of the commutator [G, G] is one. Then M is homeomorphic to a
nilmanifold i. e. the homogeneous space of a connected nilpotent Lie group.

REMARK. (1) A compact nilmanifold always admits a locally free
codimension one smooth action of a connected nilpotent Lie group which
satisfies the above conditon i ). (2) A Heisenberg group is a good example
of a nilpotent Lie group which satisfies the above condition ii ).

The theorem is a finer version of theorem (2. 7) of [HGM] under the
assumption ii ).

Unless otherwise specified, we consider in the smooth (C^{\infty}) category.

1. Unipotent flows on the space of lattices

Our method of proving the theorem is deeply concerned with characteri-
zation of a compact minimal set of a unipotent flow on the space of lattices.
We describe it here.

Denote by \mathscr{L}(k) the space of lattices in k-dimensional euclidean space
E (cf. [C]). Fix a basis v_{1} , \cdots , v_{k} of E . Then every element b of a lattice
\Lambda has a expression b= \sum_{i}(\sum_{j}b_{ij}m_{j})v_{i} where m_{j}’s are integers and (b_{ij}) is
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nonsingular matrix. Thus lattices can be represented as non-singular
matrices, but this representation is not unique. If A and B are two matrix
representations of the same lattice, the coefficients of A^{-1}B are integers and
its determinant is \pm 1 . That is, \mathscr{L}(k) can be regarded as GL(k, R)/\{\pm 1\}\cross

SL(k, Z) .
Let f:Earrow E be a nilpotent linear map, exp tf be the exponential of

tf and U_{t} : \mathscr{L}(k)– \mathscr{L}(k) be a map induced by exp tf. We say the action
U:R\cross \mathscr{L}(k)-arrow \mathscr{L}(k) the unipotent flow on \mathscr{L}(k) defined by f. Recall that
a minimal set of U is a nonempty, closed, U-invariant set which is also
minimal with respect to these properties. Assume that there exists a com-
\mathscr{M}pa.ct

minimal set \mathscr{M} . Then we obtain the following result for an element of

(1. 1) LEMMA. If the dimension of {\rm Im}(f) is one, then there exist a

basis v_{1} , \cdots , v_{k} of E and an integer p(1\leqq p\leqq k) such that v_{2} , \cdots , v_{k} spans
Ker(f) , f(v_{1})=v_{k} and to the basis v_{1} , \cdots , v_{k} every element of \mathscr{M} is re-
presented by a matrix (a_{ij}) which satisfies a_{ij}=0 for 1\leqq i\leqq p and p+1\leqq j\leqq k.

PROOF: Choose a basis v_{1} , \cdots , v_{k} such that v_{2} , \cdots , v_{k} spans Ker(f)
and f(v_{1})=v_{k} and fix an element \Lambda of \mathscr{M} . Let (b_{ij}) be a matrix representa-
tion of \Lambda . Without loss of generality, we may assume that |\det(b_{ij})|=1

because \det(U_{t})=1 . And we suppose that an element of E is expressed by
its coefficient to the basis v_{1} , \cdots , v_{k} , that is, b= \sum_{i}b_{i}v_{i} is expressed to (b_{1} ,

\ldots , b_{k}) . Thus U_{t}(b)=(b_{1}, \cdots, b_{k-1}, tb_{1}+b_{k}) where b=(b_{1}, \cdots, b_{k}) and b_{1}=

(b_{11}, \cdots, b_{k1}) , \cdots , b_{k}=(b_{1k}, \cdots, b_{kk}) is a basis of \Lambda .
Assume that b_{11} , \cdots , b_{1k} are independent over Z where Z is the ring of

integers. We will show that this assumption contradicts to the compactness
of \mathscr{M} . Since \mathscr{M} is compact, there exists a ball B(\epsilon) centered at O with
radius \epsilon>0 such that every element of \mathscr{M} has no point in B(\epsilon) other than 0.
For this \epsilon and (b_{ij}) , from [C , Theorem III, page 73] it follows that there
exists a point b=m_{1}b_{1}+\cdots+m_{k}b_{k}=(b_{1}, \cdots, b_{k}) of \Lambda other than 0 such that
|b_{j}|\leqq\epsilon k^{-1} for 1\leqq j<k and |b_{k}|<\epsilon^{1-k}k^{k-1} . Since b_{11} , \cdots , b_{1k} are independent
over Z, b_{1}\neq 0 . It follows that there exists a real number t such that U_{t}(b)

=(b_{1}, \cdots, b_{k-1},0) and therefore ||U_{t}(b)||<\epsilon . Since U_{t}(\Lambda) is an element of
\mathscr{M} . this induces a contradiction.

Since b_{11} , \cdots , b_{1k} are not independent over Z, it follows that there exist
co-prime integers m_{1} , \cdots , m_{k} such that m_{1}b_{11}+\cdots+m_{k}b_{1k}=0 . If a point b of
\Lambda is of the form b=ud where u is real number and d=m_{1}b_{1}+\cdots+m_{k}b_{k} ,

then u is an integer because m_{j}’s are co-prime. From [C , Corollary 3,
page 14] we see that there exists a basis d_{1} , \cdots , d_{k}=d of \Lambda , that is, there
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exists an another matrix representation (d_{ij}) of \Lambda such that d_{1k}=0 . Again
by [C , Theorem III, page 73] there exists a point d=m_{1}d_{1}+\cdots+m_{k}d_{k}=(d_{1} ,
\ldots , d_{k} ) of \Lambda other than 0 such that |d_{j}|\leqq\epsilon k^{-1} for 1\leqq j<k and |d_{k}|<

\epsilon^{1-k}k^{k-1} .
(1) If d_{11} , \cdots , d_{1k-1} are independent over Z and d_{1}=0 , then d_{ik}=0 for

1\leqq i\leqq k-1 . In fact, \epsilon can be chosen such as \epsilon k^{-1}<|d_{ik}| for 1\leqq i\leqq k-1

with d_{ik}\neq 0 and d=m_{k}d_{k}=(0, m_{k}d_{2k}, \cdots, m_{k}d_{kk}) from the assumption.
(2) If d_{11} , \cdots , d_{1k-1} are independent over Z and d_{1}\neq 0 , by the same

argument as to b_{11} , \cdots , b_{1k} , we see that this case does not occur.
(3) If d_{11} , \cdots , d_{1k-1} are not independent over Z, by the same argument

as above we obtain new basis f_{1} , \cdots , f_{k-1} , f_{k}=d_{k} of \Lambda such that f_{1k-1}=f_{1k}=0

where (f_{ij}) is its new matrix representation. If necessary, by selecting an
another basis of E , we can assume that f_{ik}=0 for 1\leqq i\leqq k-2 . Therefore
by the same argument as in (1), we see that d_{ik-1}=0 for 1\leqq i\leqq k-2 .

In this way, this series of arguments and the minimality of \mathscr{M} induces a
complete proof of the lemma.

The following lemma is an easy consequence to lemma (1. 1).

(1. 2) LEMMA. Under the same assumption as in lemma (1. 1), there
exists a non-trivial proper subspace E_{1} of E such that E_{\acute{1}} contains {\rm Im}(f)

and therefore is invariant under U_{t} and every element \Lambda of \mathscr{M} is uniform in
E_{1}, i. e. , \Lambda\cap E_{1} is a lattice in E_{1} .

2. Proof of the theorem

Let \phi:G\cross M- M be a locally free smooth action of a connected Lie
group G on a manifold M. The orbits of a locally free smooth action \phi are
leaves of a foliation. We call the foliation the orbit foliation of the action \phi .
In particular, if G is nilpotent, the orbit foliation is called a nilfoliation in
[HGM]. We shall quote the necessary facts from those of [HGM].

We assume that M is a connected, orientable closed manifold, G is a
connected, simply connected nilpotent Lie group such that dim G=\dim M

-1 and \phi is a locally free smooth action of G on M. Denote by \mathscr{F}_{\phi} the
orbit foliation of \phi . \mathscr{F}_{\phi} is a codimension one nilfoliation. For z\in M let
G_{z} denote the isotropy subgroup of \phi at z and \hat{G}_{z} denote the Malcev closure
of G_{z} in G(i. e . the unique closed connected subgroup \hat{G}_{z} of G such that G_{z}

is contained in \hat{G}_{z} and the homogeneous space \hat{G}_{z}/G_{z} is compact). The
following two results are in [HGM].

(2. 1) LEMMA. Supose that \mathscr{T}_{\phi} has no compact leaves. Then all
leaves are dense in M.
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(2. 2) LEMMA. Under the same assumption as above, \hat{G}_{z} is a fixed
normal subgroup of G which is independent of the choice of z.

Let N denote a fixed normal subgroup as in lemma (2. 2), that is, N=
\hat{G}_{z} . Now assume that \phi has no compact orbits (in other words, \mathscr{F}_{\phi} has no
compact leaves) and \phi is not free. Then we obtain the following

(2. 3) LEMMA. If the dimension of [G, G] is equal to one then there
exists a non-trivial closed connected normal subgroup K of G such that K is
contained in the center of G and K/K\cap G_{z} is compact (in this case we shall
say that G_{z} is uniform in K) for any z\in M.

If [N, N] is non-trivial, [N, N] satisfies the conditions of the lemma.
In fact a uniform subgroup of N is uniform in [N, N] (cf. [Ra]) and [N, N]
is contained in the center of G because G is 2-step. Now we consider the
case that N is abelian. Denote by \mathscr{L}(k) the space of lattices in N where
k=\dim N . Define a map \chi:Marrow \mathscr{L}(k) by \chi(z)=G_{z} and an action Ad: G
\cross \mathscr{L}(k)arrow \mathscr{L}(k) by Ad(g, \Lambda) =g\Lambda g^{-1} where \Lambda is a lattice. Then the follow-
ing lemma is easily proved.

(2. 4) LEMMA. \chi and Ad
are_{\emptyset}continuous

and the following diagram

id\cross x\downarrow G\cross \mathscr{L}(k)G\cross M\underline{Ad}\mathscr{L}(k)M\downarrow\chi

is commutative (where id:Garrow G is the identity map).

PROOF OF LEMMA (2. 3): We will apply the result of section one in
order to prove the lemma. Let \mathfrak{g} be the Lie algebra of G and \mathfrak{n} be the Lie
algebra of N such that \mathfrak{n}\subset \mathfrak{g} . Since N is abelian, we can identify N with \mathfrak{n} .
If \mathfrak{n} is not contained in the center of \mathfrak{g} , we can choose a basis X_{1} , \cdots , X_{n-k} , Y_{1} ,
\ldots , Y_{k} of \mathfrak{g} such that Y_{1} , \cdots , Y_{k} spans \mathfrak{n} , Y_{k} is a element of [\mathfrak{g}, \mathfrak{g}] , [X_{1}, Y_{1}]=

Y_{k} and [X_{1}, Y_{j}]=0 for 2\leqq j\leqq k . Setting f=adX_{1}|\mathfrak{n} , from lemmas (1. 2),

(2. 1) and (2. 4), it follows that there exists a non-trivial ideal \mathfrak{n}_{1} of \mathfrak{g} such
that \mathfrak{n}_{1}\subsetneqq \mathfrak{n} and a lattice G_{z} is uniform in \mathfrak{n}_{1} for all point z of M . And we
obtain a commutative diagram

id\cross \mathcal{X}_{1}G\cross M\downarrow

\phi Ad_{1} M\downarrow\chi_{1}

G\cross \mathscr{L}(k_{1}) \mathscr{L}(k_{1})
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where k_{1}=\dim(\mathfrak{n}_{1}) , \mathscr{L}(k_{1}) is the space of lattices in \mathfrak{n}_{1} , a continuous map \chi_{1} :
Marrow \mathscr{L}(k_{1}) is defined by the equation \chi_{1}(z)=G_{z}\cap \mathfrak{n}_{1} and Ad_{1} is an obvious
action. If \mathfrak{n}_{1} is not contained in the center, we apply the same argument as
above to \mathfrak{n}_{1} . In this way, we obtain a non-trivial ideal f (therefore normal
closed subgroup K) such that f (resp. K) is contained in the center of \mathfrak{g}

(resp. G) and G_{z} is uniform in f (resp. K).
By lemma (2. 3) we can prove the theorem.

(2. 5) THEOREM. Let M be a connected closed orientable manifold.
Suppose that M admits a locally free condimension one smooth action \phi of a
connected nilpotent Lie group G such that i ) \phi has no compact orbits and
ii) the dimension of the commutator [G, G] is noe. Then M is homeomor-
phic to a nilmanifold.

PROOF: By considering the universal covering projection p:\tilde{G}arrow G ,

we obtain a locally free action \tilde{\phi} of \tilde{G} on M which is compatible with \phi ,

that is, \overline{\phi}=\phi\circ(p\cross id) (where id:Marrow M is the identity map). Therefore
we may assume that G is always simply connected without loss of generality.
If the action \phi is free, all leaves of \mathscr{F}_{\phi} are homeomorphic to R^{n} where n=
dim G (in this case, G must be abelian, c . f. [HGM]). Therefore by [JM]
and [Ro], M is homeomorphic to an (n+1)- torus T^{n+1} . When \phi is not
free, we will apply the follwing result deduced from [N] (see also [Ra]).

(2. 6) LEMMA. If p:Earrow B is a principal T^{k} -bundle and B is
homeomorphic (resp. diffeomorphic) to a compact nilmanifold, then total
space E is homeomorphic (resp. diffeomorphic) to a compact nilmanifold.

According to lemma (2. 3), there exists a connected closed subgroup K
which is contained in the center of G . Denote by \phi_{K} the restriction of \phi to
K\cross M . Then the orbit foliation of \phi_{K} is without holonomy (cf. [HGM] or
[I] ) from lemma (2. 1) and all leaves are compact. It follows that there
exists a smooth fiber bundle p_{1} : Marrow M_{1} whose fibers are leaves of the orbit
foliation of \phi_{K} . Since K is contained in the center of G, the fibration p_{1} is
a principal T^{k} bundle and \phi induces a locally free codimension one smooth
action \phi_{1} of G/K on M_{1} such that \phi_{1} has no compact orbits. In the same way,
if \phi_{1} is not free, we obtain p_{2} , M_{2} and \phi_{2} . Thus we obtain a series of
fibrations

p_{1} p_{2} p_{r}

M=M_{0}arrow M_{1}arrow M_{2}arrow\cdotsarrow M_{r} ,

such that each p_{i} : M_{i-1}arrow M_{i} is a principal T^{k} -bundle, each M_{i} admits an
induced action \phi_{i} and the action \phi_{r} on M_{r} is free. Since M_{r} is homeomorphic
to an m-torus T^{m} . by lemma (2. 6), it follows that M is homeomorphic to a
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nilmanifold. This completes the proof of the theorem.

(2. 7) COROLLARY. If a connected closed orientable manifold M

admits a locally free codimension one smooth action of a Heisenberg group
such that all orbits are non-compact, then M is homeomorphic to a nil-

manifold.
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