Remarks on manifolds which admit locally free nilpotent Lie group actions

Yoichi MORIYAMA (Received April 24, 1987, Revised September 24, 1987)

0. Introduction

Let $\phi: G \times M \longrightarrow M$ be a smooth action of a connected Lie group G on a compact orientable manifold M. If for every point z of M the isotropy subgroup G_z is discrete, ϕ is said to be *locally free*. If the orbits of ϕ have codimension one, we call ϕ a *codimension one* action. Suppose that G is nilpotent and ϕ is a locally free codimension one action. Some dynamical properties of such an action ϕ and topological properties of M are stated in the paper [**HGM**]. We will consider this in detail. The object of this paper is to prove the following

THEOREM. Let M be a connected closed orientable manifold. Suppose that M admits a locally free codimension one smooth action ϕ of a connected nilpotent Lie group G such that $i \ \phi$ has no compact orbits and $ii \ the$ dimension of the commutator <math>[G, G] is one. Then M is homeomorphic to a nilmanifold *i*. *e*. the homogeneous space of a connected nilpotent Lie group.

REMARK. (1) A compact nilmanifold always admits a locally free codimension one smooth action of a connected nilpotent Lie group which satisfies the above conditon i). (2) A Heisenberg group is a good example of a nilpotent Lie group which satisfies the above condition ii).

The theorem is a finer version of theorem (2.7) of [HGM] under the assumption ii).

Unless otherwise specified, we consider in the smooth (C^{∞}) category.

1. Unipotent flows on the space of lattices

Our method of proving the theorem is deeply concerned with characterization of a compact minimal set of a unipotent flow on the space of lattices. We describe it here.

Denote by $\mathscr{L}(k)$ the space of lattices in k-dimensional euclidean space E (cf. [C]). Fix a basis v_1, \dots, v_k of E. Then every element b of a lattice Λ has a expression $b = \sum_i (\sum_j b_{ij} m_j) v_i$ where m_j 's are integers and (b_{ij}) is

nonsingular matrix. Thus lattices can be represented as non-singular matrices, but this representation is not unique. If *A* and *B* are two matrix representations of the same lattice, the coefficients of $A^{-1}B$ are integers and its determinant is ± 1 . That is, $\mathscr{L}(k)$ can be regarded as $GL(k, \mathbf{R})/\{\pm 1\} \times SL(k, \mathbf{Z})$.

Let $f: E \longrightarrow E$ be a nilpotent linear map, exp *tf* be the exponential of *tf* and $U_t: \mathcal{L}(k) \longrightarrow \mathcal{L}(k)$ be a map induced by exp *tf*. We say the action $U: \mathbb{R} \times \mathcal{L}(k) \longrightarrow \mathcal{L}(k)$ the *unipotent flow* on $\mathcal{L}(k)$ defined by *f*. Recall that a *minimal set* of *U* is a nonempty, closed, *U*-invariant set which is also minimal with respect to these properties. Assume that there exists a compact minimal set \mathcal{M} . Then we obtain the following result for an element of \mathcal{M} .

(1.1) LEMMA. If the dimension of Im(f) is one, then there exist a basis $\mathbf{v}_1, \dots, \mathbf{v}_k$ of \mathbf{E} and an integer $p(1 \le p \le k)$ such that $\mathbf{v}_2, \dots, \mathbf{v}_k$ spans Ker(f), $f(\mathbf{v}_1) = \mathbf{v}_k$ and to the basis $\mathbf{v}_1, \dots, \mathbf{v}_k$ every element of \mathcal{M} is represented by a matrix (a_{ij}) which satisfies $a_{ij} = 0$ for $1 \le i \le p$ and $p+1 \le j \le k$.

PROOF: Choose a basis v_1, \dots, v_k such that v_2, \dots, v_k spans $\operatorname{Ker}(f)$ and $f(v_1) = v_k$ and fix an element Λ of \mathscr{M} . Let (b_{ij}) be a matrix representation of Λ . Without loss of generality, we may assume that $|\operatorname{det}(b_{ij})|=1$ because $\operatorname{det}(U_t)=1$. And we suppose that an element of E is expressed by its coefficient to the basis v_1, \dots, v_k , that is, $b = \sum_i b_i v_i$ is expressed to (b_1, \dots, b_k) . Thus $U_t(b) = (b_1, \dots, b_{k-1}, tb_1 + b_k)$ where $b = (b_1, \dots, b_k)$ and $b_1 = (b_{11}, \dots, b_{k1}), \dots, b_k = (b_{1k}, \dots, b_{kk})$ is a basis of Λ .

Assume that b_{11}, \dots, b_{1k} are independent over \mathbb{Z} where \mathbb{Z} is the ring of integers. We will show that this assumption contradicts to the compactness of \mathscr{M} . Since \mathscr{M} is compact, there exists a ball $B(\varepsilon)$ centered at \mathbb{O} with radius $\varepsilon > 0$ such that every element of \mathscr{M} has no point in $B(\varepsilon)$ other than \mathbb{O} . For this ε and (b_{ij}) , from [C, Theorem III, page 73] it follows that there exists a point $\mathbf{b} = m_1 \mathbf{b}_1 + \dots + m_k \mathbf{b}_k = (b_1, \dots, b_k)$ of Λ other than \mathbb{O} such that $|b_j| \leq \varepsilon k^{-1}$ for $1 \leq j < k$ and $|b_k| < \varepsilon^{1-k} k^{k-1}$. Since b_{11}, \dots, b_{1k} are independent over \mathbb{Z} , $b_1 \neq 0$. It follows that there exists a real number t such that $U_t(\mathbf{b}) = (b_1, \dots, b_{k-1}, 0)$ and therefore $||U_t(\mathbf{b})|| < \varepsilon$. Since $U_t(\Lambda)$ is an element of \mathscr{M} , this induces a contradiction.

Since b_{11}, \dots, b_{1k} are not independent over Z, it follows that there exist co-prime integers m_1, \dots, m_k such that $m_1b_{11}+\dots+m_kb_{1k}=0$. If a point **b** of Λ is of the form $\mathbf{b}=u\mathbf{d}$ where u is real number and $\mathbf{d}=m_1\mathbf{b}_1+\dots+m_k\mathbf{b}_k$, then u is an integer because m_j 's are co-prime. From [C, Corollary 3, page 14] we see that there exists a basis $\mathbf{d}_1, \dots, \mathbf{d}_k = \mathbf{d}$ of Λ , that is, there exists an another matrix representation (d_{ij}) of Λ such that $d_{1k}=0$. Again by [C, Theorem III, page 73] there exists a point $d = m_1 d_1 + \cdots + m_k d_k = (d_1, \cdots, d_k)$ of Λ other than **O** such that $|d_j| \leq \varepsilon k^{-1}$ for $1 \leq j < k$ and $|d_k| < \varepsilon^{1-k} k^{k-1}$.

(1) If d_{11}, \dots, d_{1k-1} are independent over \mathbb{Z} and $d_1=0$, then $d_{ik}=0$ for $1 \leq i \leq k-1$. In fact, ε can be chosen such as $\varepsilon k^{-1} < |d_{ik}|$ for $1 \leq i \leq k-1$ with $d_{ik} \neq 0$ and $d = m_k d_k = (o, m_k d_{2k}, \dots, m_k d_{kk})$ from the assumption.

(2) If d_{11}, \dots, d_{1k-1} are independent over \mathbf{Z} and $d_1 \neq 0$, by the same argument as to b_{11}, \dots, b_{1k} , we see that this case does not occur.

(3) If d_{11}, \dots, d_{1k-1} are not independent over Z, by the same argument as above we obtain new basis $f_1, \dots, f_{k-1}, f_k = d_k$ of Λ such that $f_{1k-1} = f_{1k} = 0$ where (f_{ij}) is its new matrix representation. If necessary, by selecting an another basis of E, we can assume that $f_{ik}=0$ for $1 \le i \le k-2$. Therefore by the same argument as in (1), we see that $d_{ik-1}=0$ for $1\le i\le k-2$.

In this way, this series of arguments and the minimality of \mathscr{M} induces a complete proof of the lemma.

The following lemma is an easy consequence to lemma (1, 1).

(1.2) LEMMA. Under the same assumption as in lemma (1.1), there exists a non-trivial proper subspace E_1 of E such that E_1 contains Im(f) and therefore is invariant under U_t and every element Λ of \mathscr{M} is uniform in E_1 , i. e., $\Lambda \cap E_1$ is a lattice in E_1 .

2. Proof of the theorem

Let $\phi: G \times M \longrightarrow M$ be a locally free smooth action of a connected Lie group *G* on a manifold *M*. The orbits of a locally free smooth action ϕ are leaves of a foliation. We call the foliation the *orbit foliation* of the action ϕ . In particular, if *G* is nilpotent, the orbit foliation is called a *nilfoliation* in **[HGM]**. We shall quote the necessary facts from those of **[HGM]**.

We assume that M is a connected, orientable closed manifold, G is a connected, simply connected nilpotent Lie group such that dim $G=\dim M$ -1 and ϕ is a locally free smooth action of G on M. Denote by \mathscr{F}_{ϕ} the orbit foliation of ϕ . \mathscr{F}_{ϕ} is a codimension one nilfoliation. For $z \in M$ let G_z denote the isotropy subgroup of ϕ at z and \hat{G}_z denote the *Malcev closure* of G_z in G (i. e. the unique closed connected subgroup \hat{G}_z of G such that G_z is contained in \hat{G}_z and the homogeneous space \hat{G}_z/G_z is compact). The following two results are in [**HGM**].

(2.1) LEMMA. Suppose that \mathcal{F}_{ϕ} has no compact leaves. Then all leaves are dense in M.

Y. Moriyama

(2.2) LEMMA. Under the same assumption as above, \hat{G}_z is a fixed normal subgroup of G which is independent of the choice of z.

Let N denote a fixed normal subgroup as in lemma (2.2), that is, $N = \hat{G}_z$. Now assume that ϕ has no compact orbits (in other words, \mathscr{F}_{ϕ} has no compact leaves) and ϕ is not free. Then we obtain the following

(2.3) LEMMA. If the dimension of [G, G] is equal to one then there exists a non-trivial closed connected normal subgroup K of G such that K is contained in the center of G and $K/K \cap G_z$ is compact (in this case we shall say that G_z is uniform in K) for any $z \in M$.

If [N, N] is non-trivial, [N, N] satisfies the conditions of the lemma. In fact a uniform subgroup of N is uniform in [N, N] (cf. **[Ra]**) and [N, N]is contained in the center of G because G is 2-step. Now we consider the case that N is abelian. Denote by $\mathscr{L}(k)$ the space of lattices in N where $k=\dim N$. Define a map $\chi: M \longrightarrow \mathscr{L}(k)$ by $\chi(z)=G_z$ and an action Ad: G $\times \mathscr{L}(k) \longrightarrow \mathscr{L}(k)$ by $\mathrm{Ad}(g, \Lambda)=g\Lambda g^{-1}$ where Λ is a lattice. Then the following lemma is easily proved.

(2.4) LEMMA.
$$\chi$$
 and Ad are continuous and the following diagram
 $G \times M \xrightarrow{\phi} M$
 $id \times \chi \xrightarrow{k} G \times \mathcal{L}(k) \xrightarrow{Ad} \mathcal{L}(k)$

is commutative (where $id: G \longrightarrow G$ is the identity map).

PROOF OF LEMMA (2, 3): We will apply the result of section one in order to prove the lemma. Let g be the Lie algebra of G and n be the Lie algebra of N such that $n \subseteq g$. Since N is abelian, we can identify N with n. If n is not contained in the center of g, we can choose a basis X_1, \dots, X_{n-k}, Y_1 , \dots, Y_k of g such that Y_1, \dots, Y_k spans n, Y_k is a element of $[g, g], [X_1, Y_1] =$ Y_k and $[X_1, Y_j] = 0$ for $2 \leq j \leq k$. Setting $f = \operatorname{ad} X_1 | \mathfrak{n}$, from lemmas (1.2), (2.1) and (2.4), it follows that there exists a non-trivial ideal \mathfrak{n}_1 of g such that $\mathfrak{n}_1 \subseteq \mathfrak{n}$ and a lattice G_z is uniform in \mathfrak{n}_1 for all point z of M. And we obtain a commutative diagram

$$\begin{array}{c|c} G \times M & \xrightarrow{\phi} & M \\ id \times \chi_1 & & & \chi_1 \\ G \times \mathscr{L}(k_1) & \xrightarrow{Ad_1} & \mathscr{L}(k_1) \end{array}$$

where $k_1 = \dim(\mathfrak{n}_1)$, $\mathscr{L}(k_1)$ is the space of lattices in \mathfrak{n}_1 , a continuous map $\chi_1 : M \longrightarrow \mathscr{L}(k_1)$ is defined by the equation $\chi_1(z) = G_z \cap \mathfrak{n}_1$ and Ad_1 is an obvious action. If \mathfrak{n}_1 is not contained in the center, we apply the same argument as above to \mathfrak{n}_1 . In this way, we obtain a non-trivial ideal \mathfrak{k} (therefore normal closed subgroup K) such that \mathfrak{k} (resp. K) is contained in the center of \mathfrak{g} (resp. G) and G_z is uniform in \mathfrak{k} (resp. K).

By lemma (2.3) we can prove the theorem.

(2.5) THEOREM. Let M be a connected closed orientable manifold. Suppose that M admits a locally free condimension one smooth action ϕ of a connected nilpotent Lie group G such that $i \ \phi$ has no compact orbits and $ii \ b$ the dimension of the commutator [G, G] is noe. Then M is homeomorphic to a nilmanifold.

PROOF: By considering the universal covering projection $p: \tilde{G} \longrightarrow G$, we obtain a locally free action $\tilde{\phi}$ of \tilde{G} on M which is compatible with ϕ , that is, $\tilde{\phi} = \phi \circ (p \times id)$ (where $id: M \longrightarrow M$ is the identity map). Therefore we may assume that G is always simply connected without loss of generality. If the action ϕ is free, all leaves of \mathscr{F}_{ϕ} are homeomorphic to \mathbb{R}^n where n =dim G (in this case, G must be abelian, c. f. [HGM]). Therefore by [JM] and [Ro], M is homeomorphic to an (n+1)-torus T^{n+1} . When ϕ is not free, we will apply the following result deduced from [N] (see also [Ra]).

(2.6) LEMMA. If $p: E \longrightarrow B$ is a principal T^* -bundle and B is homeomorphic (resp. diffeomorphic) to a compact nilmanifold, then total space E is homeomorphic (resp. diffeomorphic) to a compact nilmanifold.

According to lemma (2.3), there exists a connected closed subgroup K which is contained in the center of G. Denote by ϕ_K the restriction of ϕ to $K \times M$. Then the orbit foliation of ϕ_K is without holonomy (cf. **[HGM]** or **[I]**) from lemma (2.1) and all leaves are compact. It follows that there exists a smooth fiber bundle $p_1: M \longrightarrow M_1$ whose fibers are leaves of the orbit foliation of ϕ_K . Since K is contained in the center of G, the fibration p_1 is a principal T^k -bundle and ϕ induces a locally free codimension one smooth action ϕ_1 of G/K on M_1 such that ϕ_1 has no compact orbits. In the same way, if ϕ_1 is not free, we obtain p_2 , M_2 and ϕ_2 . Thus we obtain a series of fibrations

$$M = M_0 \xrightarrow{p_1} M_1 \xrightarrow{p_2} M_2 \longrightarrow \cdots \xrightarrow{p_r} M_r,$$

such that each $p_i: M_{i-1} \longrightarrow M_i$ is a principal T^k -bundle, each M_i admits an induced action ϕ_i and the action ϕ_r on M_r is free. Since M_r is homeomorphic to an *m*-torus T^m , by lemma (2.6), it follows that M is homeomorphic to a

nilmanifold. This completes the proof of the theorem.

(2.7) COROLLARY. If a connected closed orientable manifold M admits a locally free codimension one smooth action of a Heisenberg group such that all orbits are non-compact, then M is homeomorphic to a nilmanifold.

References

- [C] J. W. S. CASSELS: An Introduction to The Geometry of Numbers. Springer-Verlag, (1959).
- [HGM] G. HECTOR, E. GHYS and Y. MORIYAMA: On codimension one nilfoliations and a theorem of Malcev, preprint (1987).
- [I] H. IMANISHI: On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Ktyoto Univ. 14-3 (1974), 607-634.
- [JM] G. JOUBERT et R. MOSSU: Feuilletages sans holonomie d'une variété fermée, C. R. Acad. S. Paris, 270-A (1970), 507-509.
- [N] K. NOMIZU: On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531-538.
- [P] J. PLANTE: Foliations with measure preserving holonomy, Ann. of Math. 102 (1975), 327-361.
- [Ra] M. S. RAGUNATHAN: Discrete Subgroups of Lie Groups, Springer-Verlag (1972).
- [Ro] H. ROSENBERG: Foliations by planes, Topology 7 (1968), 131-141.

Department of Mathematics Faculty of Science Hokkaido University