Operator $\Delta-a K$ on surfaces

Shigeo Kawai
(Received April 9, 1986)

§ 1. Introduction

Let M be an oriented 2-dimensional complete non-compact Riemannian manifold. Let denote by $\Delta=\operatorname{trace} \nabla \nabla$ and K the laplacian and the Gauss curvature respectively. In this note, we assume that K does not vanish identically, and consider the operator $\Delta-a K$ acting on compactly supported function on M where a is a positive constant.
D. Fischer-Colbrie and R. Schoen [2] noted that the existence of a positive function f on M satisfying $\Delta f-q f=0$ is equivalent to the condition that the first eigenvalue of $\Delta-q$ be positive on each bounded domain in M where q is a function on M. This fact has many interesting applications to stable minimal immersions and some sort of surfaces of constant mean curvature.

They also showed the following fact: For every complete metric on the disc, there exists a number a_{0} depending on the metric satisfying $0 \leqq a_{0}<1$ so that for $a \leqq a_{0}$ there is a positive solution of $\Delta-a K$, and for $a>a_{0}$ there is no positive solution ([2] Corollary 2). They remarked that the value a_{0} is $1 / 4$ for the Poincare metric on the disc and that possible values of a_{0} are not known for metrics of variable curvature.

Though not stated explicitly, it was proved in M. do Carmo and C. K. Peng [1] that $a_{0} \leqq 1 / 2$ for every complete metric on the disc. A. V. Pogor. ELov [4] proved the same result under the assumption $K \leqq 0$. He did not state this explicitly either.

We show in this note that $a_{0} \leqq 1 / 4$ for metrics of non-positive curvature.
Theorem. Let M be an oriented 2 -dimensional complete non-compact Riemannian manifold of non-positive curvature $K \equiv 0$. Suppose that a is greater than $1 / 4$. Then there is no positive solution of $\Delta-a K$, i.e., there exists a function f with compact support which satisfies the inequality

$$
\int_{M}\left(|d f|^{2}+a K f^{2}\right) * 1<0
$$

We use the method of A. V. Pogorelov and choose a slightly different function f from that of [4].

As an application, we show that a theorem of M. J. Micallef [3] concerning stable degenerate minimal surfaces in \boldsymbol{R}^{4} can be improved.

§ 2. Proof of the theorem

By the result of [2] mentioned in § 1, we can assume that M is simply connected. As in [4], we take a polar geodesic coordinate (u, v) for which the line element is $d s^{2}=d u^{2}+g(u, v)^{2} d v^{2}$ where $g(u, v)$ is a positive function.

Let $l(\rho)$ denote the length of the boundary of the geodesic disc of radius ρ centered at the origin. Then one of the following two cases occurs ([4] p . 276).
(1) There exists a constant c with $l(\rho) / \rho \longrightarrow c(\rho \longrightarrow \infty)$.
(2) $l(\rho) / \rho \longrightarrow \infty(\rho \longrightarrow \infty)$.

In the first case, the proof is quite the same as that of [4]. In the second case, we consider a function f depending only on u with $f(0)=1$ and $f(u)=$ 0 for $u \geqq \rho$. Then we can rewrite the expression

$$
\begin{aligned}
\int_{M}\left(|d f|^{2}+a K f^{2}\right) * 1 & =\int_{0}^{2 \pi} \int_{0}^{\rho}\left[(d f / d u)^{2}+a K f^{2}\right] g d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{\rho}\left[(d f / d u)^{2} g-a\left(\partial^{2} g / \partial u^{2}\right) f^{2}\right] d u d v,
\end{aligned}
$$

because $K=-\left(\partial^{2} g / \partial u^{2}\right) / g$.
Integrating the second term by parts twice, and considering the facts $g(0, v)=0, \partial g / \partial u(0, v)=1, f(\rho)=0$ and $f(0)=1$, we have
(*) $\int_{M}\left(|d f|^{2}+a K f^{2}\right) * 1=2 a \pi-2 a \int_{0}^{2 \pi} \int_{0}^{\rho} f\left(d^{2} f \mid d u^{2}\right) g d u d v$

$$
+(1-2 a) \int_{0}^{2 \pi} \int_{0}^{o}(d f / d u)^{2} g d u d v
$$

Now we define a family of functions $f_{n, \rho}$ as follows:

$$
f_{n, \rho}(u)= \begin{cases}(1-u / \rho)^{n} & (0 \leqq u \leqq \rho) \\ 0 & (\rho \leqq u) .\end{cases}
$$

Then we have

$$
\begin{aligned}
& \left(d f_{n, \rho} / d u\right)^{2}=\left(n^{2} / \rho^{2}\right)(1-u / \rho)^{2 n-2}, \\
& f_{n, \rho}\left(d^{2} f_{n, \rho} / d u^{2}\right)=\left[n(n-1) / \rho^{2}\right](1-u / \rho)^{2 n-2} .
\end{aligned}
$$

Hence the right hand side of (*) is

$$
2 a \pi+\left(n / \rho^{2}\right)[2 a+(1-4 a) n] \int_{0}^{2 \pi} \int_{0}^{\rho}(1-u / \rho)^{2 n-2} g d u d v .
$$

Since $a>1 / 4$, we can choose a sufficiently large number n so that $2 a$ $+(1-4 a) n<0$. To prove that the right hand side of (*) is negative for some $f_{n, \rho}$, it suffices to show that

$$
\left(1 / \rho^{2}\right) \int_{0}^{2 \pi} \int_{0}^{\rho}(1-u / \rho)^{2 n-2} g d u d v \longrightarrow \infty
$$

as ρ tends to infinity. This quantity equals to

$$
\begin{aligned}
& \left(1 / \rho^{2}\right) \int_{0}^{\rho}\left[(1-v / \rho)^{2 n-2} 1(u)\right] d u \\
& \quad=\left(1 / \rho^{2}\right) \int_{0}^{\rho}(1-u / \rho)^{2 n-2} u(1(u) / u) d u .
\end{aligned}
$$

Since $1(u) / u \longrightarrow \infty(u \longrightarrow \infty)$, for arbitrarily large N, there exists a number t so that $1(u) / u>N$ for every $u>t$. Hence for $\rho>t$, the above quantity is greater than

$$
\begin{aligned}
& \left(N / \rho^{2}\right) \int_{t}^{\rho}(1-u / \rho)^{2 n-2} u d u \\
& \quad=\left(N / \rho^{2}\right)\left[t \rho(1-t / \rho)^{2 n-1} /(2 n-1)+\rho /(2 n-1) \int_{t}^{\rho}(1-u / \rho)^{2 n-1} d u\right] \\
& \quad=-\left[t N(1-t / \rho)^{2 n-1}\right] /[(2 n-1) \rho]+\left[N\left(1-t / \rho^{2 n}\right] /[2 n(2 n-1)] .\right.
\end{aligned}
$$

When ρ tends to infinity, the first and the second terms tend to 0 and $N /$ $2 n(2 n-1)$ respectively. This shows that the right hand side of (*) is negative for some $f_{n, \rho}$. Approximating $f_{n, \rho}$ by smooth functions, we can complete the proof of the theorem.

§ 3. Application

M. J. Micallef [3] proved the following theorem.

ThEOREM (Micallef). Let $F: M \longrightarrow \boldsymbol{R}^{4}$ be an isometric stable minaimal immersion of a complete oriented surface M. If the Gauss map of F is at least $1 / 3$ degenerate (i.e., there exists a non-zero fixed vector $A \in C^{4}$ such that $|A \cdot A| \geqq(1 / 3)|A|^{2}$ and $\left.A \cdot F_{z} \equiv 0\right)$, then the image of F is a plane.

The proof roughly goes as follows: We take (1,0)-part of the normal component of A and denote it by s. Since $A \cdot F_{z} \equiv 0$ and $|A \cdot A| \geqq(1 / 3)|A|^{2}$, normal section s satisfies $D_{\bar{z}} s \equiv 0$ and is nowhere vanishing, where z is a holomorphic coordinate and D denotes the normal connection. The stability of F implies the following inequality for every real valued function h of compact support.

$$
\text { (**) } \quad \int_{M}|d h|^{2} * 1 \geqq \int_{M} h^{2}[(-K)+q] * 1,
$$

where

$$
q=\left[\left|\left(F_{z z}\right)^{1,0}\right|^{2} /\left|F_{z}\right|^{4}|s|^{2}\right]\left[|A \cdot A|-(1 / 2)|A|^{2}+(1 / 2)|s|^{2}+(1 / 8)|A \cdot A|^{2} /|s|^{2}\right]
$$

Concerning this inequality,see [3] p. $77-$ p. 78.
If $|A \cdot A| \geqq(1 / 3)|A|^{2}$, then we have

$$
\begin{aligned}
& q \geqq\left[\mid\left(\left.F_{z z}{ }^{1,0}\right|^{2} /\left|F_{z}\right|^{4}|s|^{2}\right]\left[-(1 / 6)|A|^{2}+(1 / 2)|s|^{2}+(1 / 8)|A \cdot A|^{2} /|s|^{2}\right]\right. \\
& =(1 / 2)\left[\left|\left(F_{z z}\right)^{1,0}\right| 2 /\left|F_{z}\right|^{4}| |^{4}\right]\left[|s|^{2}-(1 / 6)|A|^{2}\right]^{2} \geqq 0 .
\end{aligned}
$$

Hence some argument using the result of [2] shows that K vanishes identically.

We can weaken the assumption $|A \cdot A| \geqq(1 / 3)|A|^{2}$ by our previous result. The inequality ($* *$) is written as follows:

$$
\int_{M}|d h|^{2} * 1 \geqq \int_{M} h^{2}\left[(1 / 4+\varepsilon)(-K)+q^{\prime}\right] * 1,
$$

where

$$
\begin{aligned}
q^{\prime}= & q+(3 / 4-\varepsilon)(-K) \\
& \left.\geqq\left.\left[\mid F_{z z}\right)^{1,0}\right|^{2} /\left|F_{z}\right|^{4}|s|^{2}\right]\left[|A \cdot A|-(1 / 2)|A|^{2}+(5 / 4-\varepsilon)|s|^{2}+(1 / 8)|A \cdot A|^{2} /|s|^{2}\right]
\end{aligned}
$$

for any positive number ε. Here we used the relation

$$
-K=\left|\left(F_{z z}\right)^{N}\right|^{2} /\left|F_{z}\right|^{4} \geqq\left|\left(F_{z z}\right)^{1,0}\right|^{2} /\left|F_{z}\right|^{4}
$$

If $|A \cdot A| \geqq\{(4-\sqrt{10}) / 3\}|A|^{2}$, then q^{\prime} is non-negative. Hence the same argument as [3] and our theorem give the conclusion $K \equiv 0$.

References

[1] M. do Carmo and C. K. Peng, Stable minimal surfaces in \boldsymbol{R}^{3} are planes, Bull. Amer. Math. Soc., 1 (1977) 903-906.
[2] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature, Comm. Pure Appl. Math., 33 (1980) 199-211.
[3] M. J. Micallef, Stable minimal surfaces in Euclidean spaces, J. Diff. Geom., 19 (1984) 57-84.
[4] A. V. Pogorelov, On the stability of minimal surfaces, Soviet Math. Dokl., 24 (1981) 274-276.

