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Operator \triangle-aK on surfaces
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(Received April 9, 1986)

\S 1. Introduction

Let M be an oriented 2-dimensional complete non-compact Riemannian
manifold. Let denote by \triangle=trace\nabla\nabla and K the laplacian and the Gauss
curvature respectively. In this note, we assume that K does not vanish
identically, and consider the operator \triangle-aK acting on compactly supported
ed function on M where a is a positive constant.

D. Fischer-Colbrie and R. Schoen [2] noted that the existence of a
positive function f on M satisfying \Delta f-qf=0 is equivalent to the condition
that the first eigenvalue of \triangle-q be positive on each bounded domain in M
where q is a function on M. This fact has many interesting applications to
stable minimal immersions and some sort of surfaces of constant mean
curvature.

They also showed the following fact: For every complete metric on the
disc, there exists a number a_{0} depending on the metric satisfying 0\leqq a_{0}<1

so that for a\leqq a_{0} there is a positive solution of \Delta-aK , and for a>a_{0} there
is no positive solution ([2] COROLLARY 2). They remarked that the value a_{0}

is 1/4 for the Poincar\’e metric on the disc and that possible values of a_{0} are
not known for metrics of variable curvature.

Though not stated explicitly, it was proved in M. do CARMO and C. K.
PENG [1] that a_{0}\leqq 1/2 for every complete metric on the disc. A. V. POGOR-
ELOV [4] proved the same result under the assumption K\leqq 0 . He did not
state this explicitly either.

We show in this note that a_{0}\leqq 1/4 for metrics of non-positive curvature.

THEOREM. Let M be an oriented 2-dimensional complete non-compact
Riemannian manifold of non-positive curvature K\not\equiv 0 . Suppose that a is
greater than 1/4. Then there is no positive solution of \triangle-aK, i. e. , there
exists a function f with compact support which satisfies the inequality

\int_{M}(|df|^{2}+aKf^{2})*1<0 .

We use the method of A. V. Pogorelov and choose a slightly different
function f from that of [4].



148 S. Kawai

As an application, we show that a theorem of M. J. MiCALLEF [3] con-
cerning stable degenerate minimal surfaces in R^{4} can be improved.

\S 2. Proof of the theorem

By the result of [2] mentioned in \S 1, we can assume that M is simply
connected. As in [4], we take a polar geodesic coordinate (u, v) for which
the line element is ds^{2}=du^{2}+g(u, v)^{2}dv^{2} where g(u, v) is a positive func-
tion.

Let t(\rho) denote the length of the boundary of the geodesic disc of radius
\rho centered at the origin. Then one of the following two cases occurs ([4] p .
276).

(1) There exists a constant c with t(\rho)/\rhoarrow c(\rhoarrow\infty) .
(2) t(\rho)/\rhoarrow\infty(\rhoarrow\infty) .

In the first case, the proof is quite the same as that of [4]. In the second
case, we consider a function f depending only on u with f(0)=1 and f(u)=
0 for u\geqq\rho . Then we can rewrite the expression

\int_{M}(|df|^{2}+aKf^{2})*1=\int_{0}^{2\pi}\int_{0}^{\rho}[(df/du)^{2}+aKf^{2}]g dudv

= \int_{0}^{2\pi}\int_{0}^{\rho}[(df/du)^{2}g-a(\partial^{2}g/\partial u^{2})f^{2}] dudv,

because K=-(\partial^{2}g/\partial u^{2})/g .
Integrating the second term by parts twice, and considering the facts

g(0, v)=0 , \partial g/\partial u(0, v)=1 , f(\rho)=0 and f(0)=1 , we have

(*) \int_{M}(|df|^{2}+aKf^{2})*1=2a\pi-2a\int_{0}^{2\pi}\int_{0}^{\rho}f(d^{2}f/du^{2})g dudv

+(1-2a) \int_{0}^{2\pi}\int_{0}^{\rho}(df/du)^{2}g dudv.

Now we define a family of functions f_{n,\rho} as follows:

f_{n,\rho}(u)=\{
(1-u/\rho)^{n} (0\leqq u\leqq\rho)

0 (\rho\leqq u) .

Then we have
(df_{n,\rho}/du)^{2}=(n^{2}/\rho^{2})(1-u/\rho)^{2n-2} .
f_{n,\rho}(d^{2}f_{n,\rho}/du^{2})=[n(n-1)/\rho^{2}](1-u/\rho)^{2n-2} .

Hence the right hand side of (*) is

2a \pi+(n/\rho^{2})[2a+(1-4a)n]\int_{0}^{2\pi}\int_{0}^{\rho}(1-u/\rho)^{2n-2}gdudv .
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Since a>1/4 , we can choose a sufficiently large number n so that 2a
+(1-4a)n<0 . To prove that the right hand side of (*) is negative for some

f_{n,\rho} , it suffices to show that

(1/ \rho^{2})\int_{0}^{2\pi}\int_{0}^{\rho}(1-u/\rho)^{2n-2}gdudv- \infty

as \rho tends to infinity. This quantity equals to

(1/ \rho^{2})\int_{0}^{\rho}[(1-v/\rho)^{2n-2}1(u)]du

=(1/ \rho^{2})\int_{0}^{\rho}(1-u/\rho)^{2n-2}u(1(u)/u)du .

Since 1(u)/uarrow\infty(uarrow\infty) , for arbitrarily large N, there exists a
number t so that 1(u)/u>N for every u>t . Hence for \rho>t , the above
quantity is greater than

(N/ \rho^{2})\int_{t}^{\rho}(1-u/\rho)^{2n-2}u du

=(N/ \rho^{2})[t\rho(1-t/\rho)^{2n-1}/(2n-1)+\rho/(2n-1)\int_{t}^{\rho}(1-u/\rho)^{2n-1}du]

=-[tN(1-t/\rho)^{2n-1}]/[(2n-1)\rho]+[N(1-t/\rho^{2n}]/[2n(2n-1)] .

When \rho tends to infinity, the first and the second terms tend to 0 and N/
2n(2n-1) respectively. This shows that the right hand side of (*) is nega-
tive for some f_{n,\rho} . Approximating f_{n,\rho} by smooth functions, we can com-
plete the proof of the theorem.

\S 3. Application

M. J. MICALLEF [3] proved the following theorem.

THEOREM (Micallef). Let F:Marrow R^{4} be an isometric stable
minaimal immersion of a complete oriented surface M. If the Gauss map of
F is at least 1/3 degenerate ( i. e. , there exists a non-zero fixed vector A\in C^{4}

such that |A\cdot A|\geqq(1/3)|A|^{2} and A\cdot F_{z}\equiv 0 ), then the image of F is a plane.

The proof roughly goes as follows: We take (1, 0) -part of the normal
component of A and denote it by s . Since A\cdot F_{z}\equiv 0 and |A\cdot A|\geqq(1/3)|A|^{2} .

normal section s satisfies D -
s\equiv 0 and is nowhere vanishing, where z is a

holomorphic coordinate and D denotes the normal connection. The stability
of F implies the following inequality for every real valued function h of
compact support.

(**) \int_{M}|dh|^{2}*1\geqq\int_{M}h^{2}[(-K)+q]*1 ,
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where
q=[|(F_{zz})^{1,0}|^{2}/|F_{z}|^{4}|s|^{2}][|A\cdot A|-(1/2)|A|^{2}+(1/2)|s|^{2}+(1/8)|A\cdot A|^{2}/|s|^{2}] .

Concerning this inequality.see [3] p. 77-p. 78.
If |A\cdot A|\geqq(1/3)|A|^{2} . then we have

q\geqq[|(F_{zz})^{1,0}|^{2}/|F_{z}|^{4}|s|^{2}][-(1/6)|A|^{2}+(1/2)|s|^{2}+(1/8)|A\cdot A|^{2}/|s|^{2}]

=(1/2)[|(F_{zz})^{1,0}|2/|F_{z}|^{4}|s|^{4}][|s|^{2}-(1/6)|A|^{2}]^{2}\geqq 0 .

Hence some argument using the result of [2] shows that K vanishes identi-
cally.

We can weaken the assumption |A\cdot A|\geqq(1/3)|A|^{2} by our previous result.
The inequality (**) is written as follows:

\int_{M}|dh|^{2}*1\geqq\int_{M}h^{2}[(1/4+\epsilon)(-K)+q’]*1 ,

where

q’=q+(3/4-\epsilon)(-K)

\geqq[|F_{zz})^{1,0}|^{2}/|F_{z}|^{4}|s|^{2}][|A\cdot A|-(1/2)|A|^{2}+(5/4-\epsilon)|s|^{2}+(1/8)|A\cdot A|^{2}/|s|^{2}]

for any positive number \epsilon . Here we used the relation
-K=|(F_{zz})^{N}|^{2}/|F_{z}|^{4}\geqq|(F_{zz})^{1,0}|^{2}/|F_{z}|^{4} .

If |A\cdot A|\geqq\{(4-\sqrt{10})/3\}|A|^{2}- then q’ is non-negative. Hence the same argu-
ment as [3] and our theorem give the conclusion K\equiv 0 .
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