
Hokkaido Mathematical Journal Vol. 18 (1989) p. 45–77

The Finsler geometry of certain covering groups
of operator groups

C. J. ATKIN
(Received September 7, 1987, Revised December 14, 1987)

In a previous paper [1], I have investigated the Finsler geometry, in a
natural Finsler structure, of both the full and the Fredholm unitary, orth0-
gonal, and symplectic groups of a Hilbert space E. In this sequel I shall
discuss similar questions for the associated non-trivial covering groups, the
Fredholm spinor group SpinC(E) (the universal cover of the special
Fredholm orthogonal group SOC(E)) and the coverings of the Fredholm
unitary group UC(E) .

There is no evident relation between the global Finsler geometry of a
covering group and that of the original group, unless one remains sufficiently
close to the identity. Thus some of my results, whilst not deep, are perhaps
a little unexpected. The most striking are these:

(i) The universal cover of UC(E) is bounded when, and only when,
E is of infinite dimension (see (6.7), (7.5) (b)). This seems contrary to
intuition, but the intuition is perhaps founded on the fact that the n-fold
cover of the finite-dimensional group U(n) is the product of SU(n) with
the circle group, and its universal cover is therefore just SU(n)xR. When
E is infinite-dimensional, UC(E) admits no determinant homomorphism,
and its universal cover cannot be so explicitly represented.

(ii) In the same universal cover of UC(E) , the exponential map is
onto (see (6.8) (a), (7.6) (a)). However, if E is separably infinite-
dimensional, and only then, there exist pairs of points in this group which
cannot be joined by a minimising path (see (6.9)). The curious dependence
on dimension arises because, when E is non-separable, there is great free-
dom to construct paths in UC(E) , and, when E is finite-dimensional, there
are relatively few points to consider.

(iii) The properties of SpinC(E) are largely independent of the
dimension of E, provided that it is greater than 2. However, a point in
SpinC(E) may be joined to the identity either by exactly one minimising
one-parameter subgroup, if it is close enough; or by infinitely many; or,
surprisingly, by exactly two (see (5.8) (c)).

Except for minor changes of notation, the arguments here follow, and
occasionally presuppose, those of [1]. In \S 1, the topics and methods are
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introduced. In \S \S 2,3, spectral theory is used to derive a homotopy
classification (the ‘twist’) of loops in SOC(E); an intuitive interpretation
is given at (3. 12), and makes the computation of the twist easy wherever it
is needed subsequently. The analogous concept for UC(E) is the ‘degre\’e,
presented in \S 4. Then \S 5 studies the Finsler geometry of SpinC(E) and
6 that of the universal cover of UC(E) for infinite-dimensional E . Finally,
\S 7 discusses (rather cursorily) the finite coverings of UC(E) and the case
of finite-dimensional E .

Throughout the paper, minimising paths are understood to be uniformly
parametrised. As in [1], no attempt is made to study the qualitative behav-
iour of geodesies, but it is worth noting that, whenever I say there are
infinitely many minimising geodesies, there is clearly a continuous family of
them.

\S 1. Preliminaries.

(1.1) Let E be a complex Hilbert space (usually of infinite dimension),
furnished with a real structure J-that is, in the terminology of [1], an
involutive conjugate-isometry of E , which in effect represents complex
conjugation. The Fredholm unitary group UC(E) of E\dot{1}S the group of all
unitary operators T in E such that T-I is a compact operator (where I is
the identity in E). The Fredholm orthogonal group of E, here denoted
OC(E) , is the subgroup of UC(E) consisting of operators which commute
with J. Both UC(E) and OC(E) are Banach Lie groups, and are fur-
nished with left-and right-invariant Finsler structures as in \S \S 1, 2 of [1].

Most of the arguments in this paper do not require that E be infinite-
dimensional; see (7.4) and (3. 12) for indications.
(1.2) There is a homotopy equivalence between OC(E) and O= \lim_{narrow\infty}O(n) .

For a proof which does not require separability of E , see [2]. It follows
that OC(E) has two components: the principal component is the spec\dot{l}al

Fredholm orthogonal group SOC(E), and an element T of OC(E) belongs
to SOC(E) if and only if ker(T+I) is of even dimension (see \S 5 of [1]).
The fundamental group of SOC(E) is isomorphic to Z_{2} , and its un\dot{l}versal

cover is the Fredholm spinor group SpinC(E). Since the covering map \pi :
SpinC(E)\rightarrow SOC(E) is a local isomorphism, SpinC(E) inherits both a
Banach Lie group structure and a unique Finsler structure such that the
tangent map of \pi is an isometry of each tangent space. This Finsler struc-
ture, which is clearly both left- and right-invariant, is the one assumed
henceforth.

As in [1], the Finsler length of a rectifiable path will be denoted by l .
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and the induced metric by d , irrespective of the group under consideration.
Write also B(T;\epsilon) for the set of elements of the group whose distance from
the given element T is less than \epsilon .

(1.3) No satisfactory explicit construction of SpinC(E) has to my
knowledge been discovered (for some closely related groups, see [3] or
[5] ) , and I shall therefore base my investigation on the standard construction
of covering spaces (see, for instance, [4], pp. 253 et seqq.)

Let P(SOC(E)) denote the class of rectifiable paths p : [0, 1]
arrow SOC(E) for which p(0)=e , the identity element of SOC(E), and let

\tau:P(SOC(E))arrow SOC(E): p-arrow p(1) .

In the same way, one has the terminal evaluation
\tilde{\tau}:P(SOC(E)). SpinC(E)

Composition with \pi defines a bijection

\pi_{*}: P(SpinC(E))arrow P(SOC(E))

(with lifting as its inverse), which is length-preserving, by (1.2). Certainly
\pi\tilde{\tau}=\tau\pi_{*} , and \tilde{\tau}(p_{1})=\tilde{\tau}(p_{2}) if and only if \pi_{*}p_{1} and \pi_{*}p_{2} are homotopic
modulo {0, 1}, that is, homotopic with fixed end-points.

(1.4) The points of SpinC(E) will be represented as homotopy equiva-
lence classes modulo {0, 1} of elements of P(SOC(E)) . The projection \pi

corresponds to the quotient mapping induced from \tau ; and the rectifiable
paths from the identity \tilde{e} of SpinC(E) to a given point \tilde{x}\in SpinC(E) are
the lifts of paths in the homotopy class representing \tilde{x} . Thus the Finsler
metric d in SpinC(E) is characterised by the assertion that d(\tilde{e},\tilde{x}) is the
infimum of the lengths of paths in P(SOC(E)) representing \tilde{x} . There is a
minimising path from \tilde{e} to \tilde{x} in SpinC(E) if and only if that infimum is
attained, and there is a minimising geodesic from \tilde{e} to \tilde{x} if and only if it is
attained by a segment of a one-parameter subgroup in SOC(E). In short, I
must study here the minimisat\overline{l}on of length over homotopy classes, instead of
over all paths as in [1].

It follows that the core of this paper must be an investigation of the
homotopy relation for paths in terms of spectral theory (which decides
distances–see [1] ) . As far as I know, this has not been done before. The
method is to associate to certain paths a sort of holonomy transformation,
and it may be developed much further, but it would be inappropriate to
discuss that here.
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(1.5) The Fredholm unitary group UC(E) of E consists of all the
complex-linear isometries T of E for which T-I is compact. Its homotopy
type (see [2]) is that of U= \lim_{narrow\infty}U(n) , so that it is connected, with funda-
mental group isomorphic to Z. The remarks (1.3) and (1.4) have obvi-
ous extensions to UC(E) and its covering groups.

\S 2. Coupled subspaces.

Suppose in what follows that F_{i} is a closed subspace of E, for i=1,2,3 ,
and that P_{i} is the orthogonal projection on F_{i} .

(2.1) Say that F_{1} and F_{2} (or P_{1} and P_{2} ) are coupled if P_{1}|F_{2} : F_{2}arrow F_{1}

and P_{2}|F_{1} : F_{1}arrow F_{2} are both isomorphisms. Thus F_{1} and F_{2} must have the
same dimension. When F_{1} and F_{2} are finite-dimensional, as they usually
will be in this paper, F_{1} and F_{2} will be coupled if and only if F_{1}\cap F_{2}^{\perp}=0=

F_{1}^{\perp}\cap F_{2} . Indeed, F_{1}\cap F_{2}^{\perp}=0 means that P_{2}|F_{1} is one-0ne, whilst F_{1}^{\perp}\cap F_{2}=

0 means that P_{2}|F_{1} is surjective.

(2.2) Next, suppose that each F_{i} is a real subspace of E-that is, invar-
iant under J. This is equivalent to saying P_{i} is a real operator (commuting
with J ). Now, \dot{1}fF_{1} and F_{2} are also coupled and finite-dimensional, they
may be oriented, and any orientation \omega of F_{1} induces, via the real isomor-
phism P_{2}|F_{1} : F_{1}arrow F_{2} , an orientation P_{2}\omega of F_{2} . This notation is un-
ambiguous, since \omega orients the specific subspace F_{1} .

(2.3) Let F be any nonzero complex finite-dimensional subspace of E .
Then F+J(F) is a real finite-dimensional subspace: and, when F\cap J(F)=

0 , there is a canonical orientation for F+J(F) . Indeed, take any ordered
basis (over C) for F:x_{1} , x_{2} , \cdots 7x_{m} . The associated ordered real basis for
F+J(F) given by x_{1}+Jx_{1} , i(x_{1}-Jx_{1}) , x_{2}+Jx_{2} , i(x_{2}-Jx_{2}) , \cdots determines the
required orientation: it is easily verified that the initial choice of basis in F
does not influence the result, and even that, when F and J(F) are interchan-
ged, the orientation of F+J(F) will be reversed only if F is of odd dimen-
sion.

(2.4) As in (3.3) of [1], \delta denotes the metric on the complex unit circle
S : \delta(\exp(i\theta), \exp(i\varphi))=\min\{|\theta-\varphi+2n\pi| : n\in Z\} ;

and P_{T} is the spectral measure associated to the bounded normal operator T.
For the moment, let \mathfrak{G} denote any of the groups considered in [1] (see (1.6),
(2.2) of that paper), with Finsler metric d . Given \mu\in S , \beta\geq 0 , and U\in \mathfrak{G} ,
set
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Q_{U}(\mu, \beta)=P_{U}(\{z\in S:\delta(z, \mu)\leq\beta\}) and
K_{U}(\mu, \beta)=Q_{U}(\mu, \beta)E .

(2. 5) PROPOSITION. Let T\in \mathfrak{G} , \mu\in S, \beta\geq 0,6\epsilon\in(0, \pi] . Suppose that
\{z\in S:\delta(z, \mu)\leq\beta+6\epsilon\}\cap\sigma(T)=\{z\in S:\delta(z, \mu)\leq\beta\}\cap\sigma(T) . (1)

Then (a) for U\in \mathfrak{G} , Q_{U}(\mu, \rho)\dot{\iota s} independent of \rho for
\beta+d( T_{f}U)\leq\rho\leq\beta+6\epsilon-d(T. U) ;

(b) for U\in B(T:3\epsilon) , Q_{U}(\mu, \beta+d(TU)) is C^{\omega} operator-valued
function of U with respect to the operator-norm;

(c) if U, V\in \mathfrak{G} and

\min(d( T, U) , d( TV))+d(U, V)\leq 3\epsilon,
d(T, U)+d( U, V)+d( T_{J}V)\leq 6\epsilon,

then Q_{U}(\mu, \beta+d( T, U)) and Q_{V}(\mu, \beta+d(T_{I}V)) are coupled.

PROOF. When d( T. U) <6\epsilon\leq\pi , (7.2) of [1] gives a rectifiable path
p in \mathfrak{G} with p(0)=Tp(1)=U, \swarrow (p)=d(T. U) . Thus, by (4.7) of [1], for
any \rho\geq 0

K_{U}(\mu, \rho+d(T. U))^{\perp}\cap K_{T}(\mu, \rho)=0 . (2)

By hypothesis (1), however,

K_{T}(\mu, \beta)=K_{T}(\mu, \rho)=K_{T}(\mu, \beta+6\epsilon) (3)

for \beta\leq\rho\leq\beta+6\epsilon . Applying (4. 7) of [1] again,

K_{U} ( \mu , \rho+d ( T. U)) \cap K_{T}(\mu, \rho+2d( T, U))^{\perp}

=K_{U}(\mu, \rho+d(T. U))\cap K_{T}(\mu, \beta)^{\perp}=0 (4)

when \beta\leq\rho\leq\beta+6\epsilon-2d ( T. U). But (2) and (4) prove that
Q_{U}(\mu, \rho+d(TU)) and Q_{T}(\mu, \rho) are coupled, for

\beta\leq\rho\leq\beta+6\epsilon-2d(T. U) . (5)

The projection Q_{U}(\mu, \rho+d(T_{-}U)) increases with \rho :
K_{U}(\mu, \rho_{1}+d( TU))\subseteq K_{U} ( \mu , \rho_{2}+d ( T. U) ) when \rho_{1}\leq\rho_{2} .

Suppose \beta\leq\rho_{1}\leq\rho_{2}\leq\beta+6\epsilon-2d ( T. U), and

x\in K_{U}(\mu, \rho_{2}+d(T. U))\cap K_{U}(\mu, \rho_{1}+d(T, U))^{\perp} . (6)

From (5), there is a unique y\in K_{T}(\mu, \rho_{2}) such that

x=Q_{U}(\mu, \rho_{2}+d(TU))y ;
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consequently

0=\langle Q_{U} ( \mu , \rho_{2}+d ( T. U))y , Q_{U}(\mu, \rho_{1}+d(T . U))y\rangle

=\langle Q_{U}(\mu, \rho_{1}+d(TU))Q_{U}(\mu, \rho_{2}+d(TU))y, Q_{U}(\mu, \rho_{1}+d(TU))y\rangle

=\langle Q_{U} ( \mu , \rho_{1}+d ( T. U))y , Q_{U}(\mu, \rho_{1}+d( T_{-}U))y\rangle .
Hence Q_{U}(\mu, \rho_{1}+d(TU))y=0 and

y\in K_{T}(\mu, \rho_{2})\cap K_{U}(\mu, \rho_{1}+d(T, U))^{\perp} .

In view of (3), this means y\in K_{T}(\mu, \rho_{1})\cap K_{U}(\mu, \rho_{1}+d(T. U))^{\perp} , and there-
fore, by (2), y=0. Thus x=0. Recalling (6),

Q_{U}(\mu, \rho_{2}+d(T. U))=Q_{U}(\mu, \rho_{1}+d(T-U))

for \beta\leq\rho_{1}\leq\rho_{2}\leq\beta+6\epsilon-2d(T. U) ; this in effect is (a). It follows that, for
U\in B(T,\cdot 3\epsilon) ,

\{z\in S:\delta(z, \mu)\leq\beta+d(T. U)\}\cap\sigma(U)

=\{z\in S:\delta(z, \mu)<\beta+6\epsilon-d(T-U)\}\cap\sigma(U) . (7)

Choose \gamma>0 so that

\{z\in S:\delta(z, \mu)\leq\beta+3\epsilon\}=\{z\in S:|z-\mu|\leq\gamma\} .
Then, by (7), \{z\in C:|z-\mu|=\gamma\}\cap\sigma(U)=\phi ; this holds for any U\in B(T :
3\epsilon) , so it follows that for such U

Q_{U}( \mu, \beta+d(T. U))=(2\pi i)^{-1}\int_{|z-\mu|=\gamma}(zI-U)^{-1}dz ,

which is a C^{\omega} function of U. This is (b).
In turn, (7) means that, when d(T. U)<3\epsilon , (5) may be applied with

U in place of T. \beta+d(TU) in place of \beta , and 6\epsilon-2d(TU) in place of
6e. One infers that, given V\in \mathfrak{G} , Q_{U}(\mu, \tau) and Q_{V}(\mu, \tau+d(U, V)) are
coupled when

\beta+d(TU)\leq\tau\leq\beta+d(TU)+6\epsilon-2d(TU)-2d(U, V) .

In particular, Q_{U}(\mu, \beta+d(TU)) and Q_{V} ( \mu, \beta+d(T.U)+d(U,V)) are
coupled provided that

2d(TU)+2d(U, V)\leq 6\epsilon . (8)

On the other hand, Q_{V}(\mu, \rho) is independent of \rho for
\beta+d(T. V)\leq\rho\leq\beta+6\epsilon-d(T-V) , by (a) ; so
Q_{V}(\mu, \beta+d(T. V))=Q_{V}(\mu, \beta+d(T. U)+d(U, V))
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provided that

d ( T. U) +d( U, V)+d(T. V)\leq 6\epsilon . (9)

The two conditions (8), (9) are in effect those stated in (c), since U and V
appear symmetrically in the conclusion.

(2. 6) PROPOSITION. Suppose in (2. 5) that \mathfrak{G}=SOC(E) , \mu=-1 .
Let V, U, W\in B( T;\epsilon) , where \beta+\epsilon<\pi. Then Q_{U}(-1, \beta+d(T. U)) ,

Q_{V}(-1, \beta+d(T, V)) , Q_{W}(-1, \beta+d(T, W)) are real operators of fifinite
rank. If \omega is an orientation of K_{U}(-1, \beta+d(T, U)) , then

Q_{V}(-1, \beta+d(T. V))Q_{W}(-1, \beta+d( T, W))\omega

=Q_{V}(-1, \beta+d( T, V))\omega .

PROOF. Since \beta+\epsilon<\pi , U|K_{U}(-1, \beta+d(T. U)) has spectrum bounded
ed away from 1 in S , and therefore consisting of finitely many eigenvalues of
finite multiplicity; so K_{U}(-1, \beta+d(TU)) is of finite dimension, and simi-
larly for V and W. The reality of the subspaces and of the associated
projections is obvious.

Now let q:[0,1]arrow B(T;\epsilon) be a continuous path such that q(0)=V\tau

q(1)=W. Such paths exist, for instance as the concatenation of rectifiable
paths between T and V, W respectively, whose lengths approximate
d(T. V) , d(TW) sufficiently closely. By (2.5) (b), Q_{q(t)}(-1, \beta+d(q(t), T))

is continuous in t in the norm-topology. Ergo,

r(t)=Q_{V} ( -1 , \beta+d ( T. V)) Q_{q(t)}(-1, \beta+d(q(t), T))

is continuous in t , and by (2.5) (c) it constitutes, for each t\in[0,1] , an
isomorphism of K_{U}(-1, \beta+d(T. U)) with K_{V}(-1, \beta+d(T. V)) . Thus
r(0)\omega=r(1)\omega , and this is precisely the assertion of the Proposition.

(2. 7) COROLLARY. With the hypotheses of (2. 6),
(a) Q_{U}(-1, \beta+d(T, U))Q_{V} ( -1, \beta+d(T. V)) \omega=\omega,
(b) Q_{U}(-1, \beta+d(T, U))Q_{V}(-1, \beta+d(T, V))\cdot Q_{W}(-1, \beta+d(T_{J}W))\omega=\omega .

PROOF. For (a), read U for V and V for W, in (2.6). For (b),
apply Q_{U}(-1, \beta+d(T-U)) on both sides in (2.6), and use (a). (In fact
(a) may be proved far more generally than this.)

(2.8) Again let \mathfrak{G}=SOC(E) , U\in \mathfrak{G} , 0\leq\eta\leq\theta<\pi . Then

P_{U}(\{z\in S:\eta<\delta(-1, z)\leq\theta\})=Q_{U}(-1, \theta)-Q_{U}(-1, \eta)

is real and of finite rank (as in (2.6)). Its image K_{U}(-1, \theta)\cap K_{U}(-1, \eta)^{\perp}
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is the orthogonal direct sum of
F(\eta, \theta, U)=P_{U} ( \{z\in S:\eta<\delta(-1, z)\leq\theta and {\rm Im}(z)>0\} )E ,
J(F(\eta, \theta, U))=P_{U} ( \{z\in S:\eta<\delta(-1, z)\leq\theta and {\rm Im}(z)<0\} )E .

As such, it is either zero, or has a specific orientation, which I call the
standard orientation, determined as in (2.3). (If F(\eta, \theta, U) is of odd
dimension, it is essential to observe that it involves the inequality {\rm Im}(z)>0.)

Now, say that orientations on K_{U}(-1, \eta) and on K_{U}(-1, \theta) are coherent if
either K_{U}(-1, \theta)=K_{U}(-1, \eta) and the orientations are the same, or the
orientation on K_{U}(-1, \theta) is the product of that on K_{U}(-1, \eta) with the stan-
dard orientation on K_{U}(-1, \theta)\cap K_{U}(-1, \eta)^{\perp} . Coherence is easily seen to be
an equivalence relation.

(2. 9) PROPOSITION. Suppose T_{J}U\in SOC(E) , 0\leq\alpha<\beta : let \epsilon>0 be
such that \beta+3\epsilon<\pi, and assume that

\{z\in S : \delta(z, -1)\leq\beta+6\epsilon\}\cap\sigma(T)=\{z\in S : \delta(z, -1)\leq\beta\}\cap\sigma(T) , (1)
\{z\in S : \delta(z, -1)\leq\alpha+6\epsilon\}\cap\sigma(T)=\{z\in S : \delta(z, -1)\leq\alpha\}\cap\sigma(T) . (2)

Then, if d(T, U)<3\epsilon and \omega_{1} , \omega_{2} are coherent orientations of K_{T}(-1, \alpha) and of
K_{T}(-1, \beta) respectively, Q_{U}(-1, \alpha+d(T, U))\omega_{1} and Q_{U}(-1, \beta+d(T, U))\omega_{2} are
coherent orientations of K_{U}(-1, \alpha+d( T, U)) and of K_{U}(-1, \beta+d ( T. U)).

(See (2.2) and (2.5) (c) for the admissibility of these claims.)

PROOF. If \alpha+6\epsilon\geq\beta , it follows from (1) and(2) that

Q_{T}(-1, \alpha)=Q_{T}(-1, \beta)=Q_{T}(-1, \beta+6\epsilon) .

Apply (2.5) (a) with \beta-\alpha+6\epsilon in place of 6e, noting that
\alpha+\beta-\alpha+6\epsilon-d ( T-U)>\mbox{\boldmath $\beta$}+d ( T-U); thus

Q_{U}(-1, \alpha+d( TU))=Q_{U}(-1, \beta+d( TU)) .

So in this case there is nothing to prove, and we may assume that \alpha+6\epsilon<\beta .
As \sigma(T) is compact, there exists \alpha_{1}\in(\alpha, \beta-6\epsilon) such that

\{z\in S:\delta(z, -1)\leq\alpha_{1}+6\epsilon\}\cap\sigma(T)=\{z\in S:\delta(z, - 1)\leq\alpha\}\cap\sigma(T) . (3)

Take \gamma=(\alpha_{1}+6\epsilon+\beta)/2 , \nu=\exp\{i(\pi-\gamma)\} , \zeta=(\beta-\alpha_{1}-6\epsilon)/2 . Thus
\sigma(T)=\sigma(T)\cap(\{z\in S:\delta(z, -1)\leq\alpha\}\cup\{z\in S:\delta(z, \iota\nearrow)\leq\zeta\}

\cup\{z\in S:\delta(z,\overline{\nu})\leq\zeta\}\cup\{z\in S:\delta(z, 1)\leq\pi-\beta-6\epsilon\}) , (4)

where each of the sets in braces is \delta-distant at least 6\epsilon from each of the
others. Recalling (7) of (2.5), one sees that, since d(T. U)<3\epsilon ,
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\sigma(U)=\sigma(U)\cap ({ z\in S:\delta ( z, -l)\leq \mbox{\boldmath $\alpha$}+d ( T. U) }
\cup\{z\in S:\delta(z, -1)\geq\alpha+3\epsilon\})

=\sigma(U)\cap ({ z\in S:\delta (z, 1\nearrow)\leq\zeta+d( T-U)}
\cup\{z\in S:\delta(z, \nu)\geq\zeta+3\epsilon\}) ,

and likewise for the other centres \overline{\nu} and +1, with corresponding radii \zeta and
\pi-\beta-6\epsilon . Hence I may express \sigma(U)\cap\{z\in S:\delta(z, - 1)\leq\beta+d(TU)\} as
the disjoint union

\sigma(U)\cap ({ z\in S : \delta (z , - 1)\leq\alpha+d( T-U)}\cup {z\in S : \delta(z, \nu)\leq\zeta+d(T . U) }
\cup { z\in S:\delta(z,\overline{\nu})\leq\zeta+d( T. U) } ) . (5)

On the other hand, set U=V in (2.5) (c). So Q_{U}(-1, \alpha+d(T. U))

and Q_{T}(-1, \alpha) , Q_{U}(\nu, \zeta+d(TU)) and Q_{T}(\nu, \zeta) , Q_{U}(\overline{\nu}, \zeta+d(TU)) and
Q_{T}(f_{J}^{-}, \zeta) , Q_{U}(-1, \beta+d(TU)) and Q_{T}(-1, \beta) , are coupled pairs of projec-
tions. (6)

Hence, by (5),

R_{U}=Q_{U}(-1, \alpha+d(TU))|K_{T}(-1, \alpha)\oplus Q_{U}(\iota/, \zeta+d(TU))|K_{T}(\nu, \zeta)

\oplus Q_{U}(\iota_{J}^{-}, \zeta+d(TU))|K_{T}(_{1/}^{-}, \zeta) (7)

is an isomorphism of K_{T}(-1, \beta) with K_{U}(-1, \beta+d(T. U)) , which restricts
to \dot{1}somorphisms of the summands K_{T}(-1, \alpha) with K_{U}(-1, \alpha+d(T. U))

and so on. However,

K_{T}(\iota/, \zeta)\oplus K_{T}(\overline{\nu}, \zeta)=K_{T}(-1, \beta)\cap K_{T}(-1, \alpha)^{\perp} and
Q_{U}(\iota/, \zeta+d(TU))J=JQ_{U}(\overline{\nu}, \zeta+d(T. U)) ;

that is, Q_{U}(\nu, \zeta+d(TU)) and Q_{U}(\overline{\nu}, \zeta+d(TU)) are complex conju-
gates of each other. Consequently (see (2.3)) Q_{U}(\nu, \zeta+d(TU))\oplus Q_{U}(f_{J}^{-} ,
\zeta+d(TU)) transfers the standard orientation on K_{T}(-1, \beta)\cap K_{T}(-1, \alpha)^{\perp}

to the standard orientation on K_{U}(-1, \beta+d(TU))\cap K_{U}(-1, \alpha\dagger d(T. U))^{\perp} .

Thus R_{U}\omega_{2} and Q_{U}(-1, \alpha+d(T. U))\omega_{1} are coherent. (8)
Let p(t) , 0\leq t\leq 1 , be a path from T to U in B(T;3\epsilon) . For each f ,

read p(t) instead of U in (7), (8). By (2.5) (6) Q_{ptt)}(\nu, \zeta+d(T-p(t))) ,
Q_{p(t)}(\overline{\nu}, \zeta+d(T_{7}p(t))) , Q_{p(t)}(-1, \alpha+d(T, p(t))) are continuous in t , so
that R_{p(t)} also is, and Q_{T}(-1, \beta)R_{p(t)} , for 0\leq t\leq 1 , is a continuous family
of isomorphisms of K_{T}(-1, \beta) with itself (see (2.5) (c)). Now R_{p(0\rangle}=

Q_{T}(-1, \beta) , by virtue of (5) : so
Q_{T}(-1, \beta)R_{U}\omega_{2}=Q_{T}(-1, \beta)\omega_{2}=\omega_{2} . (9)

Take V=T in (2.7) (a). It follows that
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R_{U}\omega_{2}=Q_{U}(-1, \beta+d(T. U))Q_{T}(-1, \beta)R_{U}\omega_{2}

=Q_{U}(-1, \beta+d ( T. U)) \omega_{2} .

In view of (8), this establishes the Proposition.

(2. 10) COROLLARY. Suppose in (2.9) that V, W\in B(T_{J}\epsilon) . Then
Q_{W}(-1, \alpha+d(T, W)) and Q_{W}(-1, \beta+d(TW)) transform coherent orien-
follows of K_{V}(-1, \alpha+d(T, V)) and K_{V}(-1, \beta+d(T, V)) into coherent ori-
entations of K_{W}(-1, \alpha+d( T, W)) and K_{W}(-1, \beta+d( TW)) respectively.

PROOF. Apply (2.9) twice (with V. and then W, in place of U) and
(2.6) twice (for \beta itself and for \alpha).

\S 3. Paths in SOC(E) .
Throughout this section \mathfrak{G} denotes SOC(E).

(3. 1) LEMMA. Let H : [0, 1]\cross[0,1]arrow \mathfrak{G} be continuous, and let \mathscr{U} be
an open cover of H([0,1]\cross[0,1]) in \mathfrak{G} . Then there exist fifinite sequences of
numbers, 0=t_{0}<t_{1}<\cdots<t_{n}=1 and 0=s_{0}<s_{1}<\cdots<s_{m}=1 , and of triples ( T_{k},
\beta_{k}, \epsilon_{k}) , 1\leq k\leq l, where, for each k, T_{k}\in \mathfrak{G} , \beta_{k}\geq 0 , \epsilon_{k}>0 , \beta_{k}+3\epsilon_{k}<\pi, and

\sigma(T_{k})\cap\{z\in S:\delta(-1, z)\leq\beta_{k}\}

=\sigma(T_{k})\cap\{z\in S:\delta(-1, z)\leq\beta_{k}+6\epsilon_{k}\} , (1)

such that, for 0\leq i<n, 0\leq j<m, there exists k, with 1\leq k\leq l, and there
exists U\in \mathscr{U}, for which

H([t_{i}, t_{i+1}]\cross[s_{j}, s_{j+1}])\subseteq B(T_{k} : \epsilon_{k})\subseteq U. (2)

PROOF. For any T\in \mathfrak{G} , \sigma(T) is closed under complex conjugation
and has 1 as its only cluster point. Thus there are many possible choices of
\epsilon>0 and \beta\geq 0 such that \beta+3\epsilon<\pi and (2.9) (1) is satisfied–for instance
\beta may be 0 and 6 \epsilon=\inf\{\delta(z, -1):z\in\sigma(T), z\neq-1\} . Let \chi be a Lebesgue
number for the covering \mathscr{U} of H([0,1]\cross[0,1]) , and, for each T\in \mathfrak{G} , choose
values \epsilon_{T} and \beta_{T} for \epsilon and \tau so that \epsilon_{T}\leq x and (2.9) (1) is satisfied.
Now one has an open cover \{B(T-\cdot\epsilon_{T}):T\in \mathfrak{G}\} of \mathfrak{G} , and the result follows
by compactness.

(3.2) Given T\in \mathfrak{G} , write \mathscr{B}(T\rangle =ker(T+I) . This is a real subspace of
E of even finite dimension (see (1.2)). Let p(t) , 0\leq t\leq 1 , be a cont\overline{l}nuous

path in G.
(1) The path p will be described here as admissible if it satisfies the
conditions that
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(a) (\forall t\in[0,1])\mathscr{B}(p(t))\neq 0 ,
(b) \mathscr{B}(p(0))=\mathscr{B}(p(1)) .

(2) By an admissible cover of p, refining an open cover of p([0,1]) , I shall
mean a finite sequence of quadruples \{(T_{i}, \beta_{i}, \epsilon_{i}, t_{i}) : 1\leq i\leq n\} , where
0=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=1 and, for 1\leq i\leq n , T_{i}\in \mathfrak{G} , \beta_{i}\geq 0 , \epsilon_{i}>0 , \beta_{i}+3\epsilon_{i}<\pi ,
\sigma(T_{i})\cap\{z\in S:\delta(-1, z)\leq\beta_{i}\}=\sigma(T_{i})\cap\{z\in S : \delta(-1, z)\leq\beta_{i}+6\epsilon_{i}\} and
p([t_{i-1}, t_{i}])\subseteq B(T_{i}, \epsilon_{i})\subseteq U for some U\in \mathscr{U} .

(3.3) LEMMA. Any admissible path has an admissible cover.

PROOF. In (3. 1), take H(t, s)=p(t) for each s , t .

(3.4) Let p be an admissible path; suppose that \{(T_{i}, \beta_{i}, \epsilon_{i}, t_{i}):1\leq i\leq n\}

is an admissible cover of p. Take an orientation \omega=\omega(0) of \mathscr{B}(p(0)) .
These data induce an orientation \omega(t) on \mathscr{B}(p(t)) for each t , as follows.

Let \omega(t) be defined for 0\leq t\leq t_{i}<1 (where i\geq 0). Then \omega(t_{i}) orients
\mathscr{B}(p(t_{i}))=K_{p(t_{i}\rangle}(-1,0) (see (2.4)). Let \omega_{i} denote the coherent orientation
(see (2.8)) of K_{p(t_{i})}(-1, \beta_{i}+d( T_{i}, p(t_{i})) . For a given t\in[t_{i}, t_{i+1}] ,
Q_{p(t)}(-1, \beta_{i}+d(T_{i}, p(t)))\omega_{i} is an orientation on K_{p(t)}(-1, \beta_{i}+d(T_{i}, p(t))) ;
define \omega(t) to be the coherent orientation on \mathscr{B}(p(t))=K_{p(t\rangle}(-1,0) . By
(2.5) (c), this does indeed extend the definition of \omega(t) for t_{i}\leq t\leq t_{i+1} . In
these circumstances, one has

(3.5) LEMMA. The or\dot{\iota}entation\omega(t) on \mathscr{B}(p(t)) does not depend on the
choice of admissible cover of the admissible path p (but only on the orienta-
tion \omega of \mathscr{B}(p(0))) .

PROOF. Say that an admissible cover \{(T_{i}, \beta_{i}, \epsilon_{i}, t_{i}):1\leq i\leq n\} of p is
refined by another, \{(T_{j}’, \beta_{j}’, \epsilon_{j}’, t_{j}’):1\leq i\leq n’\} , when, for each j , there is an i

such that
B(T_{j}’ : \epsilon_{j}’)\subseteq B(T_{i} ; \epsilon_{i}) , \epsilon_{j}’\leq\epsilon_{i} , [t_{j-1}’, t_{j}’]\subseteq[t_{i-1}, t_{i}] . (1)

Suppose in these circumstances that the or\dot{l}entation\omega on \mathscr{B}(p(0)) induces via
\{(T_{i}, \beta_{i}, \epsilon_{i}, t_{i}):1\leq i\leq n\} the orientation \omega(t) on \mathscr{B}(p(t)) , and via the
refinement \{(T_{j}’, \beta_{j}’, \epsilon_{j}’, t_{j}’):1\leq i\leq n’\} induces \omega’(t) . Assume \omega(t)=\omega’(t)

for 0\leq t\leq t_{j-1}’ , and [t_{j-1}’, t_{j}’]\subseteq[t_{i-1}, t_{i}] . It follows from (2.9) and (2.6),

applied to B(T_{i}, \epsilon_{i}) , that \omega(t)=\omega’(t) for t_{j-1}’\leq t\leq t_{j}’ also.
To complete the proof, note that any two admissible covers possess a

common admissible refinement, by (3. 1).

NOTE. The requirement that \epsilon_{j}’\leq\epsilon_{i} in (1) is superfluous. Since
3\epsilon_{i}<\pi , 3\epsilon_{j}’<\pi (by definition), (7.2) of [1] ensures that, if \epsilon_{j}’>\epsilon_{i} , there
exists a minimising geodesic segment in B(T_{j}’ ; \epsilon_{j}’) of length greater than 2\epsilon_{i}
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but less than \pi . Such a geodesic segment cannot exist in B(T_{i} : \epsilon_{i}) .
Observe too that, to use (2.6) here, I had to allow nonzero values of \beta and
prove (2.9).

(3.6) Given.an admissible path p in \mathfrak{G} , take an orientation \omega of \mathscr{B}(p(0)) ,
and construct the induced orientation \omega(1) on \mathscr{B}(p(1))=\mathscr{B}(p(0)) , as in
(3.4). Define the twist \rho(p) of p to be +1 if \omega(0)=\omega=\omega(1) , and to be -1
if \omega\neq\omega(1) . The choice of \omega is evidently irrelevant. As for the condition
(3.2) (1) (a), it is needed for the technical purpose of “remembering” the
orientation, and may be circumvented as follows.
(3.7) Suppose p\cdot. [0, 1]arrow \mathfrak{G}\overline{1}S a path which satisfies the condition (3.2)
(1) (b). Let C^{2n} be given its usual complex conjugation, where n\geq 1 .
Take the Hilbert direct sum E_{n}=E\oplus C^{2n} . with the conjugate-isometry
Jn : (x, y) – (Jx,\overline{y}) for x\in E , y\in C^{2n}- Thus (E_{n}, J_{n}) is a real Hilbert
space; set, for 0\leq t\leq 1 ,

p_{n}(t)=p(t)\oplus(-I_{2n}) ,

where I_{2n} denotes the identity of C^{2n} Now p_{n} is evidently a continuous
path in OC(En) , and indeed in SOC(E_{n}) (see (1.2); this is the reason for
taking the extra summand to be even-dimensional), and it satisfies both
(3.2) (1) (a) and (3.2) (1) (b). Hence \rho(p_{n}) is defined, and it is easily
verified from the definition that it is independent of n\geq 1 , and agrees with
\rho(p) when p satisfies (3.2) (1) (a). Therefore I define \rho(p) to be the com-
mon value of \rho(p_{n}) for positive n ; this is the desired extension of the
previous definition.

It is clear that the domain of parameters for p (so far taken to be [0, 1])
is irrelevant to these arguments.

(3.8) LEMMA. If \mathscr{B}(p(t))=\mathscr{B}(p(0))=\mathscr{B} for all t\in[0,1] , then \rho(p)=0 .

PROOF. As in (3.7), one may assume \mathscr{B}\neq 0 . Then take, as is evi-
dently possible, an admissible cover of p such that (in the notation of (3.2)
(2) ) T_{i}=p(t_{i}) and \beta_{i}=0 for each i . The projections Q_{p(t)}(-1, \beta_{i}+d(p(t_{i}) ,
p(t_{i+1})) of (3.4) are all the orthogonal projection on \mathscr{B} . It follows that
\omega(1)=\omega(0) .

(3.9) PROPOSITION. Suppose a, b\in \mathfrak{G} , and \mathscr{B}(a)=\mathscr{B}(b) . Let p and q

be paths from a to b which are homotopic in the class of such paths. Then
\rho(p)=\rho(q) .

PROOF. Let H be a homotopy, as in the hypothesis. As in (3.7), I
may assume \mathscr{B}(H(s, t))\neq 0 for all (s, t) , by taking the Hilbert direct sum
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with -I2 if necessary. In the conclusion of (3.1), put p_{i}(t)=H(t, s_{i}) for
0\leq i\leq m . Then p_{0}=p , p_{m}=q . Take an orientation \omega on \mathscr{B}(a) ; given i ,
with 0\leq i<m , and l , with 0\leq l\leq n , define r_{il}(t) , 0\leq t\leq 1+s_{i+1}-s_{i} , by the
prescription:

r_{il}(t)=p_{i}(t) for 0\leq t\leq t_{n-1} ,
r_{il}(t)=H(t_{n-1}, s_{i}+t-t_{n-1}) for t_{n-1}\leq t\leq t_{n-1}+s_{i+1}-s_{i} ,
r_{il}(t)=p_{i+1}(t-s_{i+1}+s_{i}) for t_{n-1}+s_{i+1}-s_{i}\leq t\leq 1+s_{i+1}-s_{i} .

Now r_{il}(t) and r_{i,l+1}(t) are the same for t\leq t_{n-l-1} , so r_{il} and r_{i,l+1} trans-
port \omega to the same orientation on \mathscr{B}(p_{i}(t_{n-l-1})) . For t_{n-l-1}\leq t\leq t_{n-1}+s_{i+1}-s_{i} ,

both r_{il} and r_{i,l+1} take values in the same B(T_{k} ; \epsilon_{k}) (in the notation of
(3.1) ) , and therefore (2.6) ensures that they both induce the same orienta-
tion on \mathscr{B}(p_{i+1}(t_{n-l})) . For the remain\dot{l}ng values of t , r_{il} and r_{i,l+1} once
again agree; thus both transport \omega to the same orientation of \mathscr{B}(b) , and
\rho(r_{il})=\rho(r_{i,l+1}) . Inductively, then, \rho(r_{i0})=\rho(r_{in}) . But it is trivial that
\rho(p_{i})=\rho(r_{i0}) , \rho(p_{i+1})=\rho(r_{in}) ; consequently \rho(p_{0})=\rho(p_{m}) by induction on i .

(3. 10) LEMMA. Let p, q : [0, 1]arrow \mathfrak{G} be paths such that p(1)=q(0) ,
\mathscr{B}(p(0))=\mathscr{B}(p(1))=\mathscr{B}(q(1)) . Then, if * denotes concatenation,
\rho(p*q)=\rho(p)\rho(q) .

PROOF. The orientation is transported from \mathscr{B}(p(0)) to \mathscr{B}(p(1)) and
thence to \mathscr{B}(q(1)) .

(3.11) When p:[0,1]arrow \mathfrak{G} is a loop (that is, p(0)=p(1)), define its trans-
late p^{s} . for 0\leq s\leq 1 , by p^{s}(t)=p(s+t) for t\leq 1-s , p^{s}(t)=p(s+t-1) for t

\geq 1-s . When x\in \mathfrak{G} , define xp by setting (xp)(t)=x\cdot p(t) for all t . In these
circumstances one has the following Lemma.

LEMMA. (a) \rho(p^{s})=\rho(p) for each s\in[0,1] .
(b) \rho(xp)=\rho(p) for each x\in \mathfrak{G} .

PROOF. (a) Define q_{s}(t)=p(t) for 0\leq t\leq s . Then q_{s}*p^{s}=p*q_{s} , and
the result follows by (3.10).

(b) \mathfrak{G} is pathconnected (see (1.2)). Let r(t) , 0\leq t\leq 1 , be a path
from p(0) to x\cdot p(0) ; the reverse path is \overline{r} . Then p and r*xp*\overline{r} are
homotopic with fixed end-points; so, by (3. 10), \rho(p)=\rho(r)\rho(xp)\rho(\overline{r})=

\rho(xp) .

(3.12) REMARKS. (1) The intuitive significance of the preceding argu-
ments is roughly this. When p(t) is a path in \mathfrak{G} , the eigenvalues of p(t)
vary continuously in t in the sense that, although they may coalesce or
bifurcate, they must do so with conservation of multiplicity. Suppose it
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were possible, as this might suggest, to construct a complete family of
continuously varying eigenvectors for p(t) , in complex-conjugate pairs.
When the eigenvalues corresponding to such a pair pass through -1, the
branch which previously had eigenvalue in the upper half-plane may subse-
quently also have eigenvalue above the real axis; in this case the passage
through -1 may be expected to be homotopically trivial. Alternatively,
each eigenvector branch may as it were change from one side to the other of
the real axis. This reverses the standard orientation (see (2.8)) and
inserts a factor -1 in \rho(p) .

This description is inadequate, partly because many eigenvalue
branches may coalesce simultaneously, but mainly because one cannot in
general construct continuously varying eigenvectors across junctions and
forks of eigenvalue branches. The formal arguments avoid these obstacles.

(2) As a specific example, consider SO(2). Here E=C^{2}- with the
usual conjugation; SO(2) consists of the matrices

T(\theta)=(\begin{array}{llll}cos\theta sin \theta-sin \theta cos \theta\end{array}) , for real parameters \theta .

The eigenvalues of T(\theta) are \exp(i\theta) , exp(-i\theta) , with corresponding

e\dot{l}genvectors (\begin{array}{l}1i\end{array}) , (\begin{array}{l}1-i\end{array}) respectively. It is easily checked that

d( T(\theta), T(\varphi))=\delta(\exp(i\theta), \exp(i\varphi)) .

Let p(t)=T(t) for 0\leq t\leq 2\pi . This is a loop at e . As in (3.7), one
works with p_{1}(t) , which also has constant eigenvectors; it follows that the
spectral projections used in (3.4) (and elsewhere) reduce in this case to

identities. For t<\pi , F(0, \pi-t, p_{1}(t))-see (2.8) –is the span of (\begin{array}{l}1i\end{array})\in E .

For t>\pi , F(0, t-\pi, p_{1}(t)) is the span of (\begin{array}{l}1-i\end{array}) . The standard orientation

on K_{p(t)}(-1, |t-\pi|)\cap K_{p(t)}(-1, 0)^{\perp} therefore reverses as t passes through \pi ,

and \rho(p)=-1 . The computation is unchanged if 50(2) is embedded in
SO(n), where n\geq 3 , or in SOC(E), in the customary way, by tak\dot{l}ng direct
sums with identity operators.

In fact the existence of constant eigenvectors for SO(2) enables one to
define the “degree” of any loop at e as the number of times (counted with

signs) that the eigenvalue associated with (\begin{array}{l}1i\end{array}) passes through -1 in the

anticlockwise direction. This integer completely class\overline{l}fifies the loop’s
homotopy type, and its parity gives the twist. However, this procedure is
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special to SO(2); compare \S 4.
(3) The loop p in SO(2), studied above, represents a generator of

\pi_{1}(SO(2))=Z ; on embedding in SO(n) for n\geq 3 , or in SOC(E), it repre-
sents a generator of \pi_{1}(SO(n))=Z_{2} or of \pi_{1}(SOC(E))=Z_{2} . Therefore, the
twist of any loop which represents a generator of \pi_{1}(SO(n)) , for n\geq 2 , or of
\pi_{1}(SOC(E)) , must be -1 (see (3. 9)).

(3. 13) THEOREM. Let a, b\in \mathfrak{G} , and \mathscr{B}(a)=\mathscr{B}(b) . Two paths p, q : [0, 1]
arrow \mathfrak{G} from a to b are homotopic with fifixed end-points if and only if \rho(p)=

\rho(q) .

PROOF. Necessity is given by (3.9). Suppose \rho(p)=\rho(q) . Then, if
r=a^{-1}(p*\overline{q}) (see (3.10) and (3.11) : \overline{q} is the reverse of q ), r is a loop at e
and, by (3. 11), (3. 10), \rho(r)=\rho(p)-\rho(q)=0 . Hence r does not represent a
generator of \pi_{1}(G) , by (3.12) (3), and must be nullhomotopic. This suffices
to prove the result.

\S 4. Paths in UC(E) .
For the Fredholm unitary group UC(E) , the arguments of \S \S 2, 3 have

very much simpler analogues, which I shall present only in outline. Take
\mathfrak{G}=UC(E) . For T\in \mathfrak{G} , define \mathscr{B}(T) as at (3.2), and say a path p:[0,1]
arrow \mathfrak{G} is admissible if \mathscr{B}(p(0))=\mathscr{B}(p(1)) . Admissible covers are defined as
at (3. 2) (2).

Given an admissible path p, with admissible cover \{(T_{i},\beta_{i},\epsilon_{i}, t_{i}):0\leq i\leq n\} ,

define for 1\leq i\leq n

a_{i}=rank P_{p(t_{i})} ( \{z\in S : Im z<0 and \delta(z, -1)\leq\beta_{i}+d(T_{i} , p(t_{i}))\} )

-rank P_{p(t_{i}}
- 1 )( \{z\in S : Im z<0 and \delta ( z, -1)\leq\beta_{i}+d(T_{i}, p(t_{i-1}))\} ),

and let the degree \Delta(p) of p, relative to the given admissible cover, be the

integer \sum_{i=1}^{n}a_{i} . One now finds, by arguments similar to those of \S \S 2, 3, that
\Delta(p) does not in fact depend on the choice of admissible cover, and is
invariant under homotopies with fixed end-points. (One may describe \Delta(p)

in intuitive terms as the total algebraic multiplicity of eigenvalues that have
passed downwards through -1.) In U(1)=SO(2) , the loop p of (3.12) (2)

has \Delta(p)=1 . So, as in (3.13), two admissible paths in \mathfrak{G} between the same
points are homotopic with fixed end-points if and only if they have the same
degree. More generally, two admissible paths from I to the same point in \mathfrak{G}

represent the same point of its n-fold cover if and only if their degrees are
congruent mod n .

An alternative construction of the degree was pointed out to me by E. N.
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Dancer. By a small deformat\dot{l}on of p, one may ensure that -1 is a simple
eigenvalue of p(t) for each t such that p(t)+I is not invertible. Now the
elements of \mathfrak{G} for which -1 is a simple eigenvalue form an oriented locally
closed C^{\omega} submanifold of codimension 1 \dot{1}n\mathfrak{G} ; so, by a second (smaller)
deformation of p, one may ensure its intersections with this submanifold are
all transversal, whilst preserving the property that -1 is never an
eigenvalue of multiplicity greater than 1. The degree is now the appropriate
sum of intersection numbers, which does not depend on the choice of the
small deformations used. Unfortunately, all the steps I have outlined
require technical justification, albeit of a rather familiar kind: such a proce-
dure seems more difficult for SOC(E), since there -1 cannot be a simple
eigenvalue; and the proof of (6.6) appears to require something closer to
my definition.

\S 5. The Finsler geometry of SpinC(E) .
In this section, let \mathfrak{G} denote SOC(E) and \tilde{\mathfrak{G}} stand for SpinC(E); the

canonical projection is \pi : \tilde{\mathfrak{G}}arrow \mathfrak{G} . Recall (1.3) and (1.4), and, in parti-
cular, the path space P(\mathfrak{G}) . (My treatment here will be much less formal).

As in [1], define, for T\in \mathfrak{G} ,

N(T)= \sup{ |\theta| : \theta\in[-\pi, \pi] and \exp(i\theta)\in\sigma(T) }.

(5. 1) LEMMA. If T. U\in \mathfrak{G} , then d( T, U)\geq|N(T)-N(U)| .

PROOF. By (6. 3) of [1], N(T)=d( T, I) , N(U)=d( U, I) .

(5.2) LEMMA. If \tilde{x},\tilde{y}\in\tilde{\mathfrak{G}} , then d(\tilde{x},\tilde{y})\geq d(\pi(\tilde{x}), \pi(\tilde{y})) .

PROOF. \pi preserves the length of paths (see (1.2)).

(5.3) Because d is both left-and right-invariant, it is easy to see that,
whenever p(t) , q(t) (for 0\leq t\leq 1 ) are rectifiable paths in \mathfrak{G} , the pointwise
composit\dot{l}on

(pq^{-1})(t)=p(t)q(t)^{-1}.0\leq t\leq 1 ,

is also rectifiable, with length not exceed\dot{l}ng\swarrow (p)+\swarrow(q) . Thus P(\mathfrak{G}) has
a group structure which makes both the terminal evaluation \tau:P(\mathfrak{G})arrow \mathfrak{G}

and its lifting \overline{\tau}\pi_{*}^{-1} : P(\mathfrak{G})–
\tilde{\mathfrak{G}} (see (1.3)) into group epimorphisms.

Furthermore, if p, q , pq\in P(\mathfrak{G}) all satisfy (3.2) (1) (b), then

\rho(pq)=\rho(p)\rho(q) . (1)

Indeed, pq and p*[\tau(p)q] are homotopic with fixed end-points, so (1) fol-
lows from (3.9), (3.10), (3.11).

A path p\in P(\mathfrak{G}) may be of three kinds. If \mathscr{B}(\tau(p))\neq 0 , no twist is
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defined for p ; whilst if \mathscr{B}(\tau(p))=0 , the twist may be either +1 or -1.
These three possibilities respect homotopy, and so define a partit\overline{l}on of \tilde{\mathfrak{G}} into
three disjoint subsets B, A_{1} , A_{-1} respectively. Evidently \tilde{e}\in A_{1} , B^{-1}=B ,
A_{1}^{-1}=A_{1} , A_{-1}^{-1}=A_{-1} .

The kernel of \pi (when E is of infinite or of odd finite dimension, this is
the whole centre of \tilde{\mathfrak{G}} ) has two elements \tilde{e} and \overline{f} where \tilde{f} is represented in
P(\mathfrak{G}) by any noncontractible loop at the identity I of \mathfrak{G} . Then, by (1) and
(3. 13), \tilde{f}A_{1}--A_{-1}=A_{1}\tilde{f} and \tilde{f}B--B=B\tilde{f} Consequently \pi is one-t0-0ne
on A_{1} and on A_{-1} , but tw0-t0-0ne on B. Of course

B=\pi^{-1}\{T\in \mathfrak{G}:-1\in\sigma(T)\}

=\pi^{-1}\{T\in \mathfrak{G}:N(T)=\pi\} .

(5.4) LEMMA. (a) A_{1} and A_{-1} are open and contractible in \tilde{\mathfrak{G}} , and
(6) their common frontier is B. Furthermore, (c) both A_{1} and A_{-1} are
mapped diffeomorphically by \pi on to \{ T\in \mathfrak{G}.\cdot-1\not\in\sigma(T)\}=Q.

PROOF. Certainly A_{1}\cup A_{-1}=\tilde{G}\backslash B=\pi^{-1}(Q) . But Q is open and con-
tractible in \mathfrak{G} (one may contract along geodesies; see (5.2) of [1]), so that
\pi^{-1}(Q) is the disjoint union of two open contractible subsets \tilde{Q}_{1},\tilde{Q}_{2} of \tilde{\mathfrak{G}} ,

each mapped diffeomorphically on Q by \pi . Any path in Q has twist+1 , by
(3.8) or (3.9) : thus every point of \tilde{Q}_{i} has the same twist for its representa-
tives in P(\mathfrak{G}) . It follows that \tilde{Q}_{1},\tilde{Q}_{2} must be A_{1} , A_{-1} in some order, and
this gives both (a) and (c).

Suppose T\in \mathfrak{G} and - 1\in\sigma(T) . Thus \mathscr{B}(T) is of non-zero even
dimension (see (1.2)) and has an orthonormal basis e_{1} , Je_{1} , e_{2} , Je_{2} , \cdots , e_{m} ,
Je_{m} . Define, for t\in R ,

q(t)|\mathscr{B}(T)^{\perp}=I|\mathscr{B}(T)^{\perp} ,
q(t)e_{j}=\exp(it^{2})e_{j} , q(t)Je_{j}=\exp(-it^{2})Je_{j} for 2\leq j\leq m ,
q(t)e_{1}=\exp(it)e_{1} , q(t)Je_{1}=\exp(-it)Je_{1} .

Now Tq(t) , for -\epsilon\leq t\leq+\epsilon (where 0<\epsilon<\sqrt{\pi} ), has \mathscr{B}(Tq(-\epsilon))=

\mathscr{B}(Tq(\epsilon))=0 and twist -1 (as in (3.12)). If p\in P(\mathfrak{G}) represents \tilde{x}\in B ,
where \pi(\tilde{x})=p(1)=T- then, concatenating p with Tq(t) and with Tq(-t)
for 0\leq t\leq\epsilon , one obtains paths for which twists are defined and opposite (by
(3.9), (3.10) ) . These paths therefore represent points in \tilde{\mathfrak{G}} of which one
belongs to A_{1} and one to A_{-1} ; by choice of \epsilon , these points may be made
arbitrarily close to \tilde{x} . This proves (b).

(5.5) THEOREM. If \tilde{x}\in A_{1}\cup B, then d( \tilde{x},\tilde{e})=d(\pi(\tilde{x}), I)=N(\pi(\tilde{x})) .
If \tilde{x}\in A_{-1} , then d(\tilde{x},\overline{e})=2\pi-N(\pi(\tilde{x})) .
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PROOF. Suppose \tilde{x}\in A_{1} . By (5.2), d(\overline{x},\tilde{e})\geq d(\pi(\tilde{x}), I) , and, by
(6.3) of [1], d(\pi(\tilde{x}), I)=N(\pi(\tilde{x})) . Conversely, the unique minimising
geodesic from I to \pi(\tilde{x}) (see (7.2), (7.3) of [1]) has length N(\pi(\tilde{x})) and
lifts to a geodesic from \tilde{e} to \tilde{x} , by virtue of (5.4) (c) ; thus, as required,
d(\tilde{x},\tilde{e})\leq N(\pi(\tilde{x})) also.

If \tilde{x}\in B , d(\tilde{x}.\overline{e})\geq N(\pi(\tilde{x}))=\pi . But, by (5.4) (b), \overline{x} may be
approximated by elements of A_{1} , whose distance from \overline{e} does not exceed \pi .
Thus d(\tilde{x},\tilde{e})=\pi .

Now suppose \tilde{x}\in A_{-1} . Any rectifiable path from \tilde{x} to \tilde{e} must pass
through B, by (5.4) (b) Let \tilde{b} be a point in B on the path. The length of
the path cannot be less than

d( \tilde{x},\tilde{b})+d(\overline{b},\tilde{e})\geq|N(\pi(\tilde{b}))-N(\pi(\tilde{x}))|+\pi

=2\pi-N(\pi(\tilde{x})) .

To establish the opposite inequality, let me suppose \pi(\tilde{x})=T. where
N(T)<\pi , and let \eta be a unit eigenvector for the eigenvalue \exp(iN(T)) of
T Let

S=\log(T|\{\eta, J\eta\}^{\perp}) (see (5. 1), (5.2) of [1]),

and define p(t) , for 0\leq t\leq 1 , by

p(t)|\{\eta, J\eta\}^{\perp}=\exp(tS) ,
p(t)J\eta=\exp(i(2\pi-N(T))t\}f\eta ,
p(t)\eta=\exp\{-i(2\pi-N(T))t\}\eta .

Thus p joins I to T in \mathfrak{G} , and has twist -1 (compare (3.12)). Hence it
represents \overline{x} . However, \swarrow(p)=2\pi-N(T) trivially. It follows (see
(1.4) ) that d(\tilde{x}.\overline{e})\leq 2\pi-N(T) , as required.

(5. 6) COROLLARY. For any \tilde{x},\tilde{y}\in\tilde{\mathfrak{G}} , d ( \overline{x},\overline{y})+d( \overline{x},\tilde{y}\tilde{f})=2\pi . In
particular, d(\tilde{x},\tilde{y})=2\pi if and only if \tilde{x}=\overline{y}\tilde{f}.

(5.7) For the statement and proof of the next theorem, it is helpful to
introduce a special notation. Given \tilde{x},\tilde{y}\in\tilde{\mathfrak{G}} , let F(\overline{x},\tilde{y}) denote the sum
of the eigenspaces in E of the operator \pi(\overline{y}^{-1}\tilde{x}) which correspond to the
eigenvalues \exp(\pm iN(\pi(\tilde{y}^{-1}\tilde{x}))) .

(5.8) THEOREM. (a) Any two points \tilde{x},\tilde{y}\in\tilde{\mathfrak{G}} may be joined by a
minimising geodesic.

(b) If p(t) , q(t) {for 0\leq t\leq 1 ) are minimising geodesies joining \tilde{x} to
\tilde{y}, then

(\forall t\in[0,1])\pi(p(t))|F(\overline{x},\tilde{y})^{\perp}=\pi(q(t))|F(\tilde{x},\overline{y})^{\perp}\sim
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{Compare (7.3) of [1].)
(c) There is only one minimising geodesic between \tilde{x} and \tilde{y} when

\tilde{y}^{-1}\tilde{x}\in A_{1} , or when \tilde{y}^{-1}\tilde{x}\in B and dim F(\overline{x},\overline{y})=2 . Whcn \tilde{y}^{-1}\overline{x}\in A_{-1}

and dim F(\tilde{x},\tilde{y})=2 , there are exactly two minimising geodesic between \overline{x}

and \tilde{y} . In all other cases there are infifinitely many.

PROOF. It suffices to assume \tilde{y}=\tilde{e} . In the proof of (5.5), I con-
structed minimising geodesic between \tilde{e} and \tilde{x} when \tilde{x}\in A_{1} and when \tilde{x}\in

A_{-1} . Suppose now that \tilde{x}\in B , and let \pi(\overline{x})=T Take an orthonormal
basis e_{1} , Je_{1} , \cdots , e_{m} , Je_{m} for \mathscr{B}(T)=\mathscr{B} , and define, for 0\leq l\leq 1 ,

r(t)|\mathscr{B}^{\perp}=\exp(t\log(T|\mathscr{B}^{\perp})) (see (5. 1) of [1]),

r(t)e_{j}=\exp(i\pi t)e_{j} , r(t)Je_{j}=\exp(-i\pi t)Je_{j}

for each j , 1\leq j\leq m : and similarly

s(t)|\{e_{1}, Je_{1}\}^{\perp}=r(t)|\{e_{1}, Je_{1}\}^{\perp} ,
s(t)e_{1}=\exp(-i\pi t)e_{1} , s(t)Je_{1}=\exp(i\pi t)Je_{1} .

Then r(t) and s(t) are both minimising geodesies from I to T in \mathfrak{G} (com-
pare (5.4), (6.2) of [1] ) . But r*\overline{s} is a loop at I whose twist is -1 (as in
(3.12) ) : thus, from (3.9), r and s must represent distinct points of \tilde{\mathfrak{G}} , and
one of them must represent \tilde{x} . The lifting of this path to \tilde{\mathfrak{G}} is the required
minimising geodesic from \overline{e} to \tilde{x} . This completes the proof of (a).

Suppose \tilde{x}\in A_{1} , and p(t) is a minimising geodesic from \tilde{e} to \tilde{x} . Then,
by virtue of (5.5), \pi(p(t)) is a minimising geodesic from I to \pi(\overline{x})=T in
\mathfrak{G} . Since N(T)<\pi , \mathscr{B} ( T)=0 , and \pi(p(t)) is uniquely determined, by
(7.3) of [1]. If \tilde{x}\in B , and p(t) , q(t) are minimising geodesies from \tilde{e} to
\tilde{x} , then \pi(p(t)) and \pi(q(t)) are in the same way minimising geodesies in

\mathfrak{G} ; and \pi(p(t))|F(\tilde{x},\overline{e})^{\perp}=\pi(q(t))|F(\overline{x},\tilde{e})^{\perp} by (7.3) of [1].
Thirdly, suppose that \tilde{x}\in A_{-1} and \pi(\tilde{x})=T as before. If p(t) , 0\leq t

\leq 1 , is a minimising geodesic from \tilde{e} to \tilde{x} in \tilde{\mathfrak{G}} , then there exists a compact
real skew-adjoint operator S in E such that \pi p(t)=\exp(tS) for 0\leq t\leq 1 and
||S||=2\pi-N(T) . Certainly S and T commute, so that F(\overline{x},\tilde{e})^{\perp}=H is
S-invariant, \exp(S|H)=T|H . Set \lambda=||S|H|| ; then i\lambda is an eigenvalue of
S|H and \exp(i\lambda) is an eigenvalue of T|H . Consequently either \lambda\leq

N(T|H) or \lambda\geq 2\pi-N(T|H) . But N(T|H)<N(T) , and \lambda=||S|H||\leq||S||=

2\pi-N(T) , so that in fact ||S|H||\leq N(T|H) . It follows that \exp(t(S|H)) ,

for 0\leq t\leq 1 , is a minimising geodesic in SOC(H) between I|H and T|H ,
and S|H=\log(T|H) (see (5.2) and (7.3) of [1]). This completes the
proof of (b). Now suppose in addition that F(\tilde{x},\tilde{e}) is of dimension 2.
Then S|F(\tilde{x},\overline{e}) must be real, skew-adjoint, with eigenvalues \pm i(2\pi-
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N(T)) (since, as I have shown, its eigenvalues on H have smaller absolute
values), and there are exactly two such operators in F(\tilde{x}.\tilde{e}) . If the dimen-
sion of F(\tilde{x},\tilde{e}) (which must of course be even) is greater than 2, there is an
infinite family of real skew-adjoint operators in F(\tilde{x},\tilde{e}) for which the
eigenvalues \pm i(2\pi-N(T)) have equal odd multiplicity and all other
eigenvalues are \pm iN(T). Each such operator is a candidate for S|F(\tilde{x},\tilde{e}) ,
so that, as stated, there are in this case infinitely many minimising geodesies
from \overline{e} to \tilde{x} in \tilde{\mathfrak{G}} .

If \tilde{x}\in B and F(\overline{x}, \tilde{e}) is of dimension 2, the same analysis as for the
previous case shows that any minimising geodesic from \overline{e} to \overline{x} must project
on to one of the paths r , s constructed previously; indeed, if the geodesic is
p(t) , then p(t)=\exp(tS) , where S is fixed on F(\tilde{x},\overline{e})^{\perp}=\mathscr{B}(T)^{\perp} (as before,
\pi(\tilde{x})=T) and S|F(\tilde{x},\overline{e}) is real skew-adjoint with eigenvalues \pm i\pi .
However, r and s represent different points of B, as above. So there is only
one minimising geodesic between \tilde{e} and \tilde{x} in \tilde{\mathfrak{G}} . On the other hand, if F(\tilde{x} ,
\tilde{e})\dot{1}S of dimension greater than 2, there are infinitely many bases in it which
may be used to construct paths r and s ; therefore there are infinitely many
minimising geodesies

(5.9) LEMMA. Between any two points in \tilde{\mathfrak{G}} there are infifinitely many
minimising paths which are not geodesies.

PROOF. It suffices to assume the points are close together, and then to
apply the analogous result in \mathfrak{G} (see (7.4) and (7.8) of [1]).

\S 6. The universal cover of UC(E) .
Henceforth, let \mathfrak{G} denote UC(E);\tilde{\mathfrak{G}}_{n} is its n-fold covering group and \tilde{\mathfrak{G}}

its universal covering group. The projections are \pi : \tilde{\mathfrak{G}}arrow \mathfrak{G} and \pi_{n} : \tilde{\mathfrak{G}}_{n}

arrow \mathfrak{G} , the identities are \tilde{e} and \tilde{e}_{n} . In this context, (5.1) remains true, and
so do the analogues of (5.2) for \tilde{\mathfrak{G}}_{n} and for \tilde{\mathfrak{G}} .

As before, P(\mathfrak{G}) has a group structure, and, if p, q , pq are admissible
elements of P(\mathfrak{G}) in the sense of \S 4, then

\Delta(pq)=\Delta(p)+\Delta(q) . \cdot ................. (*)

(Compare (5.3) and \S 4.) I shall discuss \tilde{\mathfrak{G}} first.
(6. 1) A path p\in P(\mathfrak{G}) for which \mathscr{B}(\tau(p))\neq 0 has no degree. If \mathscr{B}

(\tau(p))=0 , the degree may be any integer. Thus \tilde{\mathfrak{G}} is partitioned into disjoint
subsets: for any j\in Z , A_{j} consists of those points represented by paths of
P(\mathfrak{G}) which have degree j , and B consists of the points whose representative
paths are not admissible–that is
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B=\pi^{-1}\{T\in \mathfrak{G}:\mathscr{B}(T)\neq 0\} .

The kernel of \pi is isomorphic to Z , and the degree of representat\dot{l}ve

loops furnishes a specific isomorphism. Let \tilde{f}_{j} be that element of the kernel
represented by loops of degree j . Evidently (*) implies that \tilde{f}_{k}A_{j}=A_{j+k}

and that \tilde{f}_{k}B=B for all j , k\in Z . The elements \tilde{f}_{k} are central in \tilde{\mathfrak{G}} ;
when E is infinite-dimensional, they constitute the whole centre of \tilde{\mathfrak{G}} , since
the centre of \mathfrak{G} is trivial.

(6.2) THEOREM. (a) For each j\in Z, A_{j} is open and contractible as a
subset of \tilde{\mathfrak{G}} , and is mapped diffeomorphically by \pi on to \{ T\in \mathfrak{G}:-1\not\in\sigma(T)\} .

(b) \{A_{j} : j\in Z\} is a locally fifinite family of sets in \tilde{\mathfrak{G}} .
(c) Let \tilde{x}\in B. Then \{i:\tilde{x}\in\overline{A}_{i}\} is an interval [ \swarrow. \swarrow+k] in Z,

where k=\dim \mathscr{B}(\pi(\overline{x})) . {Note that this remains true for any element of \tilde{\mathfrak{G}} .)

PROOF. (a) Copy the proof of (5. 4) (a) (c).

For (b) and (c), let \tilde{x}\in B and T=\pi(\tilde{x}) . Thus there is an \epsilon\in(0, \pi)

such that \{z\in S: \delta(z, -1)<6\epsilon\}\cap\sigma(T)=\{-1\} . Hence, if \overline{y}\in B and
d(\tilde{x},\overline{y})<\epsilon , \pi(\tilde{y})=U , then, by (5.2) above, d(TU)<\epsilon , and (4.7) of
[1] (see also (2.5) above) gives

rank P_{U}(\{z\in S:\delta(z, - 1)\leq d(TU)\})=rankP_{T}(\{-1\})=k .

Consequently, if \tilde{y},\overline{z}\in B(\tilde{x} : \epsilon)\backslash B and p is a path from \tilde{y} to \tilde{z} lying in
B(\tilde{x} ; \epsilon) (such paths certainly exist, by the definition of d), then |\Delta(p)|\leq k .
In view of (*) , this means that, if \tilde{y}\in A_{j} and \tilde{z}\in A_{i} , |j-i|\leq k , which
establishes (b).

(A) Let e_{1} , e_{2} , \cdots , e_{k} be an orthonormal basis for \mathscr{B}(T) . Given n ,
with 0\leq n\leq k , and 0\leq t\leq\gamma , define

q_{n}(t)e_{j}=\exp(it)e_{j} for 1\leq j\leq n ,
q_{n}(t)e_{j}=\exp(-it)e_{j} for n<j\leq k , and
q_{n}(t)|\mathscr{B}(T)^{\perp}=I|\mathscr{B}(T)^{\perp} .

On compounding Tq_{m} , Tq_{n} respectively with a path p\in P(\mathfrak{G}) representing
\tilde{x} , one obtains paths p_{m} , p_{n} representing points \tilde{y}_{m},\tilde{y}_{n} of B(\tilde{x} ; \gamma) . The
paths p_{m} , p_{n} are clearly admissible in the sense of \S 4, and therefore \tilde{y}_{m}\in

A_{i} and \tilde{y}_{n}\in A_{j} for some i, j\in Z . Now
\Delta(p_{m})-\Delta(p_{n})=\Delta(p*Tq_{m})-\Delta(p*Tq_{n})

=\Delta(T\overline{q}_{n^{*}}\Phi^{*}p*Tq_{m})

=\Delta(T\overline{q}_{n}*Tq_{m}) (homotopy invariance)
=m-n,
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from the definitions of \Delta in \S 4 and of q_{m} , q_{n} above. Consequently

i-j=m-n ;

and, since \gamma may be arbitrarily small, this proves that x1\dot{1}es in the closure of
A\nearrow , A\swarrow+1 , \cdots , A,+k , where\swarrow is defined by the statement that \tilde{y}_{0}\in A_{l} . Since
it was proved above that B(x:\epsilon) meets at most k+1 of the sets A_{h} , this
completes the demonstration of (c).

(6.3) In view of (6.2), \tilde{\mathfrak{G}} is partitioned into subsets B_{r,s} , for r , s\in Z

and s\geq r , where \tilde{x}\in B_{r,s} if and only if it is in the closure of A_{r} , A_{r+1} , \cdots ,
A_{s} and of no other A_{h} . The \dot{1}nterval [r, s] is in some sense a generalised
degree of \tilde{x} , with indeterminacy s-r=\dim \mathscr{B}(\pi(\tilde{x})) . Now B_{r,r}=A_{r} and
is open. In general, it follows from (6.2) that, for given m, n\in Z with
n\geq m , the set

\bigcup_{[r,s]\subseteq[m,n]}B_{r,s}

is open.
(Whilst this partition of \tilde{\mathfrak{G}} is analogous to that given for SpinC(E) at

(5.3), it is less natural. For SpinC(E), the eigenvalue -1 has a certain
canonical status as the only real element of S\backslash \{1\} . For UC(E) , one might
use any \lambda\in S\backslash \{1\} instead of -1, both in \S 4 and in (6.2). This would
alter the class of admissible paths, and the new degree would in general
differ from the old when both were defined-they are both defined, and agree,
for loops at I . The corresponding change in the sets B_{r,s} would, however,
be a hindrance in what follows.)

(6.4) Given \theta\in[-2\pi, 2\pi] , define
I(\theta)=\{\exp[i(*\pi+t\theta)] : 0<t\leq 1\} .

Then, for 0\neq m\in Z and T\in UC(E) , set

N_{m}(T)= \inf{x>0 : rank P_{T}(I(mx/|m|))\geq|m| }.

(That is, for m>0 one considers spectral projections corresponding to seg-
ments of S of length \chi extending anticlockwise from -1 ,\cdot for m<0 , the
segments are to extend clockwise.) When E is of infinite dimension, rank
P_{T}(I(\theta)) is infinite for \theta>\pi , so that N_{m}(T)\leq\pi . Furthermore, N_{m}(T)

must be an attained infimum if it is strictly less than \pi ; if N_{m}(T)=\pi , it may
or may not be attained.

(6.5) Note. B_{\overline{r},s}^{1}=B_{-s,-r} and N_{m}(T)=N_{-m}(T^{-1}) .

(6.6) PROPOSITION. Let p(t) , 0\leq t<a, be a rectifiable path in \tilde{\mathfrak{G}} which
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starts at \overline{e} and is parametrised by arc-length. Suppose v is an odd positive
integer, and p(v\pi)\in B_{k,\swarrow} . Then, for any t\in[v\pi, \min(a, ( v+2)\pi)) , if
p(t)\in Br,s,

rank P_{\pi p(t)}(\{\exp(i\theta) : v\pi<\theta\leq t\})\geq r-k . (1)

In particular, if t\in[\pi, \min(a, 3\pi)) ,

rank P_{\pi p(t)}(\{\exp(i\theta):\pi<\theta\leq t\})\geq r . (2)

PROOF. First I prove (2) when t=\pi . By (5.2), d(\pi p(t), I)\leq

d(p(t),\overline{e}) ; when 0\leq t<\pi , then, (6. 1) of [1] shows that - 1\not\in\sigma(\pi p(t)) ,

and so, by (6.2) (a) above, the lift\dot{l}ngp(t) of \pi p(t) lies in A_{0} . By (6.3),
then, p(\pi)\in B_{r.s} where r\leq 0\leq s , and (2) holds for t=\pi (and for 0\leq t<

\pi) . It will now be sufficient to prove (1).

Suppose that \tau_{0} is the infimum of the values of t\in[v\pi, \min(a, (v+2)\pi))

for which (1) is untrue. Choose \epsilon>0 such that
\sigma(\pi p(\tau_{0}))\cap\{z\in S:\delta(z, -1)\leq 28\epsilon\}\subseteq\{-1\} (3)

and
\min(a, (v+2)\pi)-\tau_{0}\geq 5\epsilon . (4)

Take \tau\in[\max(v\pi, \tau_{0}-\epsilon), \tau_{0}] such that (1) holds for t=\tau . (If possible,
one may take \tau=\tau_{0}). In turn, suppose henceforth that \tau\leq t\leq\tau+2\epsilon . Thus

d(p(t), p(\tau_{0}))\leq 2\epsilon , d(p(t), p(\tau))\leq 2\epsilon , d(p(\tau), p(\tau_{0}))\leq\epsilon . (5)

At (6.1) (A), one sees how to approximate p(\tau)\in B_{i,j} and p(t)\in Bm,n

along paths of length less than \epsilon by \tilde{x}\in A_{i} and \tilde{y}\in A_{m} respectively, in such
a way that (see (6.4))

P_{\pi p(\tau)}(I(2\epsilon))=P_{\pi(\overline{x})}(I(2\epsilon)) (6)

and
P_{\pi p(\tau)}(I(2\epsilon+d(p(t), p(\tau))))=P_{\pi(\overline{y})}(I(2\epsilon+d(p(t), p(\tau)))) : (7)

for the construction (6.2) (A) moves the eigenvalue -1 a little clockwise
without changing the rest of the spectrum. From (5),

d(.\tilde{x}, p(\tau_{0}))<2\epsilon , d(\tilde{x},\overline{y})<4\epsilon . (8)

Now apply (2.5) (7), and (5.2), to (3) and (8). One finds
\sigma(\pi(\tilde{x}))\cap\{z\in S:\delta(z, -1)\leq 2\epsilon\}=\sigma(\pi(\tilde{x}))\cap\{z\in S:\delta(z, -1)\leq 26\epsilon\} . (9)

Since 26\epsilon-2\epsilon>6d(\pi(\tilde{x}), \pi(\tilde{y})) , apply \S 4 (as in the proof of (6.2) (c)),

and obtain, in view of (6) and (7),
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m-i=rankP_{\pi p\langle t)}(I(2\epsilon+d(p(t), p(\tau))))- rank P_{\pi p(\tau)}(I(2\epsilon)) . (10)

Again by (2.5) (7), with (3) and (5),

\sigma(\pi p(t))\cap\{z\in S:\delta(z, -1)\leq 2\epsilon\}=\sigma(\pi p(t))\cap\{z\in S:\delta(z, -1)\leq 26\epsilon\} , (11)

\sigma(\pi p(\tau))\cap\{z\in S:\delta(z, -1)\leq\epsilon\}=\sigma(\pi p(\tau))\cap\{z\in S:\delta(z, -1)\leq 27\epsilon\} . (12)

From (11) and (12) respectively, one deduces
P_{\pi p(t)}(I(2\epsilon+d(p(t), p(\tau))))=P_{\pi p(t)}(I(2\epsilon)) , (13)

P_{\pi p(\tau)}(I(2\epsilon))=P_{\pi p(\tau)}(I(\epsilon)) . (14)

Suppose t\geq v\pi+26\epsilon , so \tau\geq t-2\epsilon>v\pi+24\epsilon ; and set \alpha=(\tau-v\pi-24\epsilon)/2

and \mu=\exp[i(v\pi+24\epsilon+\tau)/2] . Thus
\{z\in S:\delta(z, \mu)\leq\alpha\}=\{\exp(i\theta):v\pi+24\epsilon\leq\theta\leq\tau\}

and
\{z\in S:\delta(z, \mu)\leq\alpha+t-\tau\}=\{\exp(i\theta):v\pi+24\in-t+\tau\leq\theta\leq t\} .

The length of \pi p between the parameter values \tau and t does not exceed
t-\tau . Hence one may use (4.9) of [1]:

rank P_{\pi p(\tau)}(\{\exp(i\theta):v\pi+24\epsilon\leq\theta\leq\tau\})

\leq rankP_{\pi p(t)}(\{\exp(i\theta):v\pi+24\epsilon-t+\tau\leq\theta\leq t\}) . (15)

However, v\pi+24\epsilon-t+\tau\geq v\pi+22\epsilon and, from (4), t+3 \epsilon\leq\min(a, (v+2)\pi) .
Consequently (11) and (12) yield

P_{\pi p\langle\tau)}(\{\exp(i\theta): v\pi<\theta\leq\tau\})

=P_{\pi p(\tau)}(I(\epsilon))+P_{\pi p(\tau)}(\{\exp(i\theta)\cdot. v\pi+24\epsilon\leq\theta\leq\tau\}) , (16)
P_{\pi p(t)}(\{\exp(i\theta):v\pi<\theta\leq t\})

=P_{\pi p(t)}(I(2\epsilon))+P_{\pi p(t)}(\{\exp(i\theta):v\pi+22\epsilon\leq\theta\leq t\}) , (17)

where the sums are direct. Between the second terms on the right, (15)

shows the rank does not decrease; (10), (13) and (14) prove that the first
terms increase in rank by m-i exactly. Since (1) holds for \tau , it follows
that it holds for t also. The same conclusion is valid if t\leq v\pi+26\epsilon : in that
case the second terms on the right of (16) and (17) do not appear, in view
again of (11) and (12), and (10), (13), and (14) deal with the first terms
as before. Now t was any point of [\tau, \tau+2\epsilon]\supseteq[\gamma_{0}, \tau_{0}+\epsilon] , so the definition
of \tau_{0} has led to a contradiction, and the Proposition is proved.

(6.7) THEOREM. Suppose E is of infifinite dimension, and \tilde{x}\in B_{k,\swarrow}\subseteq\tilde{\mathfrak{G}} .
Then

(a) if k\leq 0\leq\swarrow . d( \tilde{x},\tilde{e})=N(\pi(\tilde{x})) (see \S 5, or (3.3) of [1]) ;
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(b) if 0<k, d( \tilde{x},\tilde{e})=\pi+N_{k}(\pi(\tilde{x})) (see (6.4)) ;
(c) if l <0 , d( \tilde{x},\tilde{e})=\pi+N,(\pi(\tilde{x})) .

PROOF. Suppose first that k=0=\swarrow Then \tilde{x}\in A_{0} . Each path in A_{0}

is the lifting of a path of the same length in \{ T\in \mathfrak{G}:-1\not\in\sigma(T)\} , and a path
from \tilde{x} to \tilde{e} which leaves A_{0} must similarly be of length at least \pi (see
(6.3) of [1] ) . So d(\tilde{x},\tilde{e})=d(\pi(\tilde{x}), I)=N(\pi(\overline{x})) , as required.

If k\leq 0\leq\swarrow\neq k , then, again by (6.3) of [1], d(\tilde{x},\tilde{e})\geq d(\pi(\tilde{x}), I)=

N(\pi(\tilde{x}))=\pi ; however, by the definition (6.3), \tilde{x}\in\overline{A}_{0} and so d(\tilde{x},\tilde{e})\leq\pi

also. This proves (a). Next I prove (b), and (c) will follow by inversion
(as in (6. 5)).

Suppose, now, that \tilde{x}\in B_{k,\swarrow} where 0<k . Take any \theta\in(N_{k}(\pi(\tilde{x})), 2\pi) ;
then rank P_{\pi(} - ) (I(\theta))\geq k , and one may select k orthonormal eigenvectors
e_{1} , e_{2} , \cdots , e_{k} of \pi(\tilde{x}) , corresponding to eigenvalues \exp[i(\pi+\nu_{1})] , \cdots ,
\exp[i(\pi+\nu_{k})] , where 0_{\backslash }^{\nearrow}\nu_{j}\leq\nu_{j+1}<\theta for 1\leq j<k . Let F be the span of
e_{1} , \cdots , e_{k} , and let \nu\in(0, \pi) be such that \exp[i(\pi+\tau)] is not an eigenvalue of
\pi(\tilde{x}) for \tau\in(0, \nu) . Now define a path p(t) , 0\leq t\leq 1 , in UC(E) :

p(t)|F^{\perp}=\exp[(1-t)\log(\pi(\overline{x})|F^{\perp})] and (1)
p(t)e_{j}=\pi(\overline{x}) . \exp[-it (\pi+\nu_{j}) ] \cdot

e_{j} for 1\leq j\leq k .

(See (5.1) of [1] for the meaning of \log(\pi(\tilde{x})|F^{\perp}). ) The length of p is \pi+\nu_{k} ,
since ||\log(\pi(\overline{x}))|F^{\perp})||<\pi .

Let \Phi denote the lifting of p to \tilde{\mathfrak{G}} which starts at \overline{x} . As at (6.2) (b),
one sees that, when 0<\tau<\nu/(\pi+\nu) , - 1\not\in\sigma(p(\tau)) and p(\tau)\in A_{k} (the
definition of p(t) is such that the eigenvalue -1 of \pi(\overline{x}) is moved clock-
wise). So p|[\tau, 1] has a degree, which is easily seen to be -k ; indeed,
only p(t)|F contributes to it. It follows that \Phi(1)\in A_{0} , and therefore that
\Phi(1)=\tilde{e} , since p(1)=I . One deduces that

d(\tilde{x},\tilde{e})\leq\swarrow(\Phi)=\swarrow(p)=\pi+\nu_{k}<\pi+\theta ,

and, in view of the arbitrariness of \theta , this shows
d(\tilde{x},\tilde{e})\leq\pi+N_{k}(\pi(\overline{x})) .

The converse inequality is an immediate consequence of (6.6).

NOTE. To reconcile the various formulae, observe that a direct proof
of (c) would require taking the logarithm of -1 to be - i\pi in (5.1) of [1]
and (1) above.

(6.8) THEOREM. Let E be infifinite-dimensional. Suppose \tilde{x},\tilde{y}\in \mathfrak{G} and
\tilde{z}=\overline{x}^{-1}\tilde{y}\in B_{k,\prime} . Then:
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(a) \tilde{x} and \tilde{y} may be joined by infinitely many geodesies. {In particular,
\tilde{\mathfrak{G}} is exponential).

(b) \tilde{x} and \tilde{y} may be joined by a minimising path \dot{\iota}f and only if either
k\leq 0\leq\swarrow : or 0<k\leq rankP_{\pi(} - ) (I(\pi)) ; or 0<-\swarrow\leq rankP_{\pi(\overline{z})}(I(-\pi)) . Such
a minimising path is unique \dot{\iota}f and only if \overline{x}=\tilde{y} .

(c) When \tilde{x} and \tilde{y} may be joined by a minimising path, they may also
be joined by a minimising geodesic.

(d) A minimising geodesic between \overline{x} and \tilde{y} is unique if and only if
either 0 is an end-point of [k, \swarrow] ; or, if 0<k, and rankP_{\pi(} - ) (I(N_{k}(\pi(\tilde{z}))))

=k ; or, if \swarrow <0 , and rank P_{\pi(\overline{z})}(I(-N,(\pi(\tilde{z}))))=|\swarrow| .

PROOF. It will suffice to suppose \swarrow\geq 0 , since the case \swarrow<0 may be
treated by inversion. Let \pi(\tilde{z})=T\in UC(E) , and let m be a nonnegative
integer. Suppose first that k\geq 0 , and choose orthonormal eigenvectors e_{1} ,
\ldots , e_{k+2m} for T. with corresponding eigenvalues \exp(i\lambda_{1}) , \cdots , \exp(i\lambda_{k+2m})

such that \pi<\lambda_{j}<3\pi for each j . This may be done in infifin\dot{l}tely many ways,
even if k=0 (by exploiting the choice of m). Let F be the span of e_{1} , \cdots ,
e_{k+2m} , and define a path r in UC(E) by setting, for 0\leq t\leq 1 ,

r(t)|F^{\perp}=\exp(t\log(T|F^{\perp})) ,
r(t)e_{j}=\exp(it\lambda_{j})e_{j} for 1<j\leq k and for

j=k+1 , k+3, \cdots , k+2m-1 ,
r(t)e_{k+2j}=\exp(it(\lambda_{k+2j}-4\pi))e_{k+2j} for 1\leq j\leq m .

Exactly as for the path p constructed in (6.7), r must lift to a path from \overline{e}

to \tilde{z} . Indeed, r(t)|F^{\perp} passes no eigenvalues through -1, and
approaches -1 anticlockwise: while r(t)|F has the appropriate degree k,

the eigenvectors e_{k+2j} , e_{k+2j-1} contributing -1, +1 respectively for 1\leq j\leq

m.
Now suppose k\leq 0\leq\swarrow: choose orthonormal eigenvectors e_{1} , \cdots , e\swarrow-k ,

e\swarrow-k+1 , \cdots , e,-k+2m for T such that e_{1} , \cdots , e\swarrow-k span \swarrow ( T) and the eigenvalue
corresponding to e\swarrow-k+j is \mu_{j}\in(-\pi, \pi) , for 1\leq j\leq 2m . Again this choice
may be made in infinitely many ways, even if k=0=\swarrow . Define

s(t)|F^{\perp}=\exp(t\log(T|F^{\perp})) ,
s(t)e_{j}=\exp(i\pi t)e_{j} for 1\leq j\leq\swarrow (1)
s(t)e_{j}=\exp(-i\pi t)e_{j} for \swarrow<j\leq\swarrow-k ,

s(t)e\swarrow-k+2j-1=\exp(it(2\pi+\mu_{2j-1}))e\swarrow-k+2j-1 for 1\leq j\leq m ,
s(t)e_{\nearrow-k+2j}=\exp(it(\mu_{2j}-2\pi))e\swarrow-k+2j for 1\leq j\leq m .

If \tilde{s} is the lifting of s which ends at \tilde{z} , then \tilde{s}(t)\in A_{0} for t close to 1.
This is clear, since, if (1) held for 1\leq j\leq\swarrow-k instead, one would have
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\overline{s}(t)\in A_{k} for t close to 1 (compare the proof of (6.2) (c) Hence \tilde{s} joins
\tilde{e} to \overline{z} . This completes the proof of (a), as both \tilde{r} and \tilde{s} are geodesies.

Since d(\overline{z},\overline{e})\leq\pi by (6.7), (6.6) shows that the condition stated in
(b) is necessary. If k\leq 0\leq\swarrow- take m=0 in the definition of \tilde{s} above to
obtain a minimising geodesic from \tilde{e} to \tilde{z} . If k>0 , the condition asserts
that N_{k}(T) is an attained infimum (see (6.4)) ; if it is satisfied, one may
therefore choose e_{1} , \cdots , e_{k} in the definition of r so that \pi<\lambda_{j}\leq N_{k}(T) for 1
\leq j\leq k , and set m=0. Then \tilde{r} is a minimising geodesic from \tilde{e} to \tilde{z} , as
required. When \tilde{x}\neq\tilde{y} , minimising paths between them cannot be unique;
even short segments may be altered in infinitely many ways, since the same
is true in \mathfrak{G} by (7.8) of [1]. Thus (b) and (c) are both established.

Suppose that k<0<\swarrow The above construction of the minimising
geodesic \tilde{s} from \overline{e} to \tilde{z} (with m=0) may then be modified by other choices
of e_{1} , \cdots , e_{r-k} . Similarly, if 0<k and rank P_{T}(I(N_{k}(T)))>k , the choice of
e_{1} , \cdots , e_{k} in the definition of \tilde{r} is non-unique. In both cases there are
infinitely many possible choices. So the conditions of (d) are necessary.
Suppose they are satisfied.

Let q(t)=\exp(tS) , 0\leq t\leq 1 , be the projection on \mathfrak{G} of a minimising
geodesic \tilde{q} from \tilde{e} to \tilde{z} in \tilde{\mathfrak{G}} . Here S is compact skew-adjoint (so is
completely determined by its eigenvalues and eigenvectors), ||S||=d(\tilde{e},\tilde{z}) ,

and exp S=T Each eigenspace F_{\theta}=ker(T-\exp(i\theta)) , for 0\leq\theta<2\pi , is
invariant under S , and the eigenvalues of S|F_{\theta} must be logarithms of
\exp(i\theta) . Take first the case k>0 . Since ||S||=\pi+N_{k}(T) by (6. 7), the
only admissible eigenvalues for S|F_{\theta} are:

i\theta when 0\leq\theta\leq\pi+N_{k}(T) , (1)
i(\theta-2\pi) when \pi-N_{k}(T)\leq\theta<2\pi , (2)

and, in addition, 2\pi i when \theta=0 and N_{k}(T)=\pi .
Should S|F_{\theta} have an eigenvalue -i\pi with multiplicity v , then, for \tau

sufficiently near to 1, \tilde{q}(\tau)\in A_{k+v} , and the degree of q|[0, \tau] must be k+v .

Each eigenvalue of S belonging to [-i\pi, i\pi] contributes zero to the degree;
an eigenvalue in (i\pi, i(\pi+N_{k}(T))] adds in its multiplicity, and one in
[- i(\pi+N_{k}(T)) , - i\pi ) subtracts off its multiplicity. By hypothesis, the
total multiplicity of all the eigenvalues of T which have logarithms in [i\pi ,
i(\pi+N_{k}(T))] is exactly k . So v=0 necessarily, and the eigenvalues of S
must satisfy (1) for all \theta\in[0, \pi+N_{k}(T)] (including 0 and \pi), and (2)

when \pi+N_{k}(T)<\theta . This fixes S .
When \swarrow=0 , d(\tilde{e},\tilde{z})=||S||\leq\pi and the possible eigenvalues of S|F_{\theta}

are: i\theta if \theta\in[0, \pi) , - i(2\pi-\theta) if \theta\in(\pi, 2\pi) , and, for \theta=\pi , i\pi and - i\pi .
Certainly \tilde{q}(t)\in A_{0} for all t\in[0,1) , as it must be at distance less than \pi
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from \tilde{e} : this is only possible if S|F_{\pi}=i\pi I|F_{\pi} (once more, see the proof of
(6.2) (c) ) . Similarly, if k=0, S|F_{\pi}=-i\pi I|F_{\pi} . So again S is uniquely
determined.

(6.9) REMARKS. I have shown that for infinite-dimensional E,\tilde{\mathfrak{G}} is
exponential and bounded, with diameter exactly 2\pi ; in fact d(\tilde{f}_{j},\overline{f}_{k})=2\pi

if j\neq k (see (6.1)). If E is of countable (Hilbert) dimension, there exist
pairs of points in \tilde{\mathfrak{G}} which cannot be joined by minimising paths. Suppose
that \tilde{z}\in B_{k,\swarrow} and n=rankP_{\pi(} - ) (I(\pi))<\infty . This condition means that 1 is
in the essential spectrum of \pi(\tilde{z}) only because it is a cluster point of
eigenvalues with positive imaginary part. Then \tilde{f}_{m}\tilde{z} cannot be joined to \tilde{e}

by a minimising path when m+k>n . If m+k\leq n , there is a minimising
path-for m+k<0 , this results from the observation that rankP_{\pi(\overline{z})}(I(-\pi))

must be infinite. Since all points for which there is no minimising path to \overline{e}

are obtained either in this way or by subsequent inversion, it is easy to see
that they form a set of first category in \tilde{\mathfrak{G}} . On the other hand, when E is
non-separable, 1 is an eigenvalue of uncountable multiplicity of every opera-
tor in \mathfrak{G} , and every point of \tilde{\mathfrak{G}} satisfies the conditions of (6.8) (c).

\S 7. Finite coverings and finite dimensions.
(7.1) The n-fold covering \tilde{\mathfrak{G}}_{n} of \mathfrak{G}=UC(E) may be treated as a quotient
of the universal cover \tilde{\mathfrak{G}} . The degree mod n of representative loops fur-
nishes a specific isomorphism of ker \pi_{n} with Z_{n}=Z/(nZ) , under which the
projection f_{k} of \tilde{f}_{k} (see (6.1)) corresponds to the residue class <k> of k
mod n . Describe a subset D of Z_{n} as an interval if, for any b , c\in D , there
exists a finite sequence d_{1} , \cdots , d_{j} of elements of D, such that d_{1}=b , d_{j}=c ,
and, for 1\leq i<j , d_{i+1}=d_{i}\pm<1> . Thus singletons and Z_{n} itself are inter-
vals. Let |D| denote the number of elements of D. One now has, after
(6. 1) and (6.2) :

(7.2) THEOREM. \tilde{\mathfrak{G}}_{n} is partitioned into disjoint subsets B_{D}, one for each
non-empty interval D in Z_{n} . If D=\{d\} , B_{D}=A_{d} consists of those points
whose representative paths in \mathfrak{G} are admissible {in the sense of \S 4) and have
degrees whose residue classes mod n are equal to d. Then A_{d} is open in \tilde{\mathfrak{G}}_{n} ,
and \pi_{n} maps A_{d} diffeomorphically on to \{ T\in \mathfrak{G}:-1\not\in\sigma(T)\} . When D is
not a singleton, B_{D} consists of those points which lie in the closure of A_{d} if
and only if d\in D : and \bigcup_{c\subseteq D}B_{C} is open (where C ranges over intervals).

For each x\in B_{D} ,

|D|-1= \min(\dim \mathscr{B}(\pi_{n}(x)), n-1) .



Tl_{lC} Finsler geomet\gamma\gamma, ’ of certain covering groups of operator groups. 73

(7.3) THEOREM. Let E be of infifinite dimension: let x, y\in \mathfrak{G}_{n} , and
suppose that x^{-1}y\in B_{D} . Write T=\pi_{n}(x^{-1}y) . Then :

(a) if <0>\in D, d(x, y)=N(T), whilst, if <0>\not\in D,
d(x, y)= \pi+\min{N_{k}(T) : k\in Z and <k>\in D} : (1)

(b) x and y may be joined by infifinitely many geodesies;
(c) x and y may be joined by a minimising path if and only if either

<0>\in D, or, for some k\in Z realising the minimum of N_{k}(T) for <k>\in

D (see (I)),

|k|\leq rankP_{T}(I(k\pi/|k|)) ;

(d) if x and y may be joined by a minimising path, they may be joined
by a minimising geodesic :

(e) a minimising geodesic between x and y is unique if and only if
either <0> is an end-point of D, or if

0< rank P_{T}(I(N_{k}(T))) , (2)

where k is the least integer realising the minimum in (1), or if
0<-k=rankP_{T}(I(-N_{k}(T))) , (3)

where k is the greatest integer realising the minimum. If the minimum is
attained both for a negative and for a positive value of k, where the positive
value satisfifies (2) and the negative value satisfifies (3), there are exactly two
minimising geodesies between x and y. In all other cases there are infifinitely
many.

Note. Since N_{k}(T) increases for positive increasing k , and also for
negative decreasing k , the minimum in (1) is really over only two values of
k , which are determined by D. Which of them (if not both) gives the
minimum depends on T At most one positive integer can simultaneously
realise the minimum in (1) and satisfy (2), and similarly for (1) and (3).

Theorems (7.2), (7.3) follow from (6.2), (6. 7), (6.8).

(7.4) (a) When E is real and of finite dimension greater than 2, the
arguments of \S \S 2, 3, and 5 need no modification: the tw0-dimensional case
is adequately discussed at (3.12) (2)

(b) When E is complex and of positive finite dimension u , \S 4 applies
without alteration. In \S 6, however, infinite-dimensionality is often
assumed (1n particular from (6.7) onwards); and, in (6.4), N_{m}(T) is for
mally infinite when |m|>u , is always an attained infimum for |m|\leq u , and
may take any values in (0, 2\pi] .
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(7.5) THEOREM. Let E be complex of fifinite positive dimension u : let \tilde{x} ,
\tilde{y}\in\tilde{\mathfrak{G}} , where \tilde{z}=\tilde{x}^{-1}\tilde{y}\in B_{r,s}, and set T=\pi(\tilde{z}) .

(a) If r\leq 0\leq s, then d( \overline{x},\overline{y})=N(T) .
(b) If 0<r=ua+b, where a, b\in Z and 1\leq b\leq u, then

d( \tilde{x},\tilde{y})=(2a+1)\pi+N_{b}(T) .

(c) If 0<-s=ua’+b_{J}’ where a’ . b’\in Z and 1\leq b’\leq u, then
d( \tilde{x},\tilde{y})=(2a’+1)\pi+N_{-b’}(T) .

PROOF. Compare (6.5), (6.7): I need only prove (b).

Let e_{1} , \cdots , e_{u} be a complete orthonormal system of eigenvectors of T .

with corresponding eigenvalues \exp[i(\pi+\nu_{1})] , \cdots , \exp[i(\pi+\nu_{m})] , ordered so
that 0<\nu_{1}\leq\nu_{2}\leq\ldots\leq\nu_{b}=N_{b}(T)\leq\nu_{b+1}\cdots\leq\nu_{m}\leq 2\pi . Define a skew-adjoint
operator S in E as follows:

Se_{j}=i[(2a+1)\pi+\nu_{j}]e_{j} for 1\leq j\leq b ,
Se_{j}=i[(2a-1)\pi+\nu_{j}]e_{j} for b<j\leq m .

The path p(t)=\exp(tS) in \mathfrak{G} , for 0\leq t\leq 1 , has length (2a+1)\pi+N_{b}(T) .
For all \tau sufficiently close to 1, though perhaps not for \tau=1 , - 1\not\in\sigma(\exp(\tau S))

and p|[0, \tau] has degree au+b . Indeed, the eigenvalue of e_{j} passes a+1
times through -1 when 1\leq j\leq b , and a times when j>b . So, as in (6.7),
p represents \tilde{z} and

d( \tilde{x},\tilde{y})=d( \tilde{e},\tilde{z})\leq(2a+1)\pi+N_{b}(T) . (1)

Given h\in Z , let C_{h} denote the union of the sets B_{g,f} for h\geq g\in Z .
This set is closed, by (6.3). Take q to be any rectifiable path in \tilde{\mathfrak{G}} which
starts at \tilde{e} and is parametrised by arc-length: since such a path may be
indefinitely extended, one may assume q(t) is defined for all t\geq 0 . For 0\leq

t<\pi , certainly q(t)\in A_{0} , and therefore q(\pi)\in C_{0} . Suppose v is an odd
positive integer, and q(v\pi)\in C_{(v-1)u/2} . Therefore q(v\pi)\in B_{k,\swarrow} , where k\leq

(v-1)u/2 . If v\pi\leq t<(v+2)\pi and q(t)\in B_{m,j} , then

m-k\leq rankP_{\pi q(t)}(\{\exp(i\theta):v\pi<\theta\leq t\}) , (2)

from (6.6). Hence, in particular, m\leq k+u\leq(v+1)u/2 , and q(t)\in
C_{(v+1)u/2} , which is closed. So q((v+1)\pi)\in C_{(v+1)u/2} also, and, by induction,
q(t)\in C_{(v-1)u/2} for any odd positive integer v and any t\in[0, v\pi] . (3)

If q(t_{0})=\tilde{z} , where, by hypothesis, \overline{z}\not\in C_{au} , then (3) shows that t_{0}>

(2a+1)\pi . If t_{0}\leq(2a+3)\pi , then state (2), with v=2a+1 , i=r . t=t_{0} , in
the form

N_{b}(T)\leq N_{r-k}(T)\leq t_{0}-(2a+1)\pi ,
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so that t_{0}\geq(2a+1)\pi+N_{b}(T) . (Recall (7.4) (b) for the value of N_{b}(T) .)

The same holds when t_{0}>(2a+3)\pi . This establishes the converse inequal-
ity to (1).

(7. 6) THEOREM. Retain the hypotheses of (7. 5). Then :
(a) \overline{x} and \tilde{y} may be joined by a minimising geodesic.
(b) There is only one minimising geodesic between \overline{x} and \tilde{y} if and only

if either 0 is an end-point of [r, s] ; or, if 0<r, and rankP_{T}(I(N_{b}(T)))=b :
or, if 0<-s, and rank P_{T}(I(-N_{b’}(T)))=b’

(c) If u=1 , all minimising paths are geodesies. If u>1 , every
minimising path between \overline{x} and \tilde{y} is a geodesic if and only if either r\leq 0\leq

s and all elements of \sigma(T) have the same real part, or \overline{z} is central.

PROOF. The first paragraph of the proof of (7.5) demonstrates (a) :

and (b) only requires the obvious modifications in the proof of (6.8) (1).

Suppose r\leq 0\leq s . Then, by (7.5) (a), any minimising path q from \tilde{e} to \tilde{z}

in \tilde{\mathfrak{G}} projects to a minimising path \pi q in \mathfrak{G} . By (7.6) of [1], \pi q is neces-
sarily a geodesic (and therefore so is q ) if and only if all elements of \sigma(T)

have the same real part.
Now suppose u>1 , and 0<r . Let \tilde{z} be such that any minimising path

from \tilde{e} to \tilde{z} is a geodesic. Take a minimising geodesic p(t) from \tilde{e} to \tilde{z}

in \tilde{\mathfrak{G}} , and let 2t_{0} be the last value of the parameter such that p(2t_{0})\in\overline{A}_{0} . All
elements of \sigma(\pi p(t_{0})) have the same real part, since otherwise p|[0, t_{0}] may
be substituted by a minimising path which is not a geodesic (lifted from \mathfrak{G} ;
again, see (7.6) of [1] ) , to give a minimising path from \tilde{e} to \tilde{z} which is not
geodesic. As p(2t_{0})=(p(t_{0}))^{2} , all elements of \sigma(\pi p(2t_{0})) have equal real
parts, and so, in view of (7. 5) (a), \sigma(\pi p(2t_{0}))=\{-1\} and p(2t_{0})=-I . If
p|[0,2t_{0}] does not take only central values, conjugation in \mathfrak{G} gives many
other minimising paths between I and -I that are homotopic to it with fixed
end-point ; lifting to \tilde{\mathfrak{G}} and substituting for p|[0,2t_{0}] , one obtains non-
geodesic minimising paths between \overline{e} and \tilde{z} . Thus \pi p|[0,2t_{0}] , and con-
sequently p|[0,2t_{0}] , take only central values in \mathfrak{G} and \tilde{\mathfrak{G}} , and \tilde{z} must itself
becentral, T=\exp[i(\pi+\theta)]\cdot I , where \theta\in(0,2\pi] . Here N_{b}(T)=\theta , and
s=r , if \theta\neq 2\pi , or s=r+u , if \theta=2\pi . Let e_{1} , \cdots , e_{u} be an orthonormal
basis in E .

Suppose first that u\parallel r . Define a path in \mathfrak{G} as follows.

q(t)e_{j}=\exp(il) e_{j} for 0\leq t\leq(2a+1)\pi+\theta and 1\leq j\leq b ,

and for 0\leq t\leq 2a\pi and j>b :
whilst, if j>b and 2a\leq t\leq(2a+1)\pi+\theta ,

q(t)e_{j}=\exp[i(\theta-\pi)(t-2a\pi)/(\theta+\pi)]e_{j} .
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Then q is a path in \mathfrak{G} of length d(\tilde{e},\tilde{z}) ; it is uniformly parametrised, begins
at I , ends at T. and (if admissible) has degree r=au+b . It therefore lifts
to a minimising path from \tilde{e} to \tilde{z} in \tilde{\mathfrak{G}} , which is not a geodesic. (When q is
not admissible–that is, when \theta=2\pi-ar e as in (7.5) (b) )

As usual, the case when 0<-s may be settled by inversion. To con-
clude, therefore, suppose .that 0<r,\tilde{z} is central, and u|r , so that b=u .
Let p_{1}(t) , 0\leq t\leq\eta=d(\tilde{e},\tilde{z}) , be the unique minimising geodesic from \tilde{e} to \tilde{z}

(see (b)) : for each t , \pi p_{1}(t)=\exp(it)\cdot I . Suppose p(t) , 0\leq t\leq\eta , is a
minimising path from \tilde{e} to \tilde{z} in \tilde{\mathfrak{G}} , and define

t_{1}= \inf\{t\in[0, \eta] : p_{1}|[t, \eta]=p|[t, \eta]\} .

Evidently t_{1} is an attained infimum. As the degrees of restrictions of P_{1}

are sums in which each summand is either 0 or u , certainly p_{1}(t_{1})\in B_{i,j} ,
where u|i and u|j . If t_{1}\leq\pi , then p_{1}(t_{1})\in B_{0,0}\cup B_{0,\mathcal{U}} , and, by the previous
cases, p|[0, t_{1}] is necessarily a geodesic, and in turn (see (b)) necessarily
equal to p_{1}|[0, t_{1}] . So, if t_{1}\neq 0 , t_{1}>\pi .

Suppose t_{1}\equiv\pi+\theta_{1} (mod 2\pi), where 0<\theta_{1}\leq 2\pi , and let be (for
instance) \theta_{1}/7 . Take t\in[t_{1}-\epsilon, t_{1}] . Then

\sigma(\pi p(t_{1}))=\sigma(\pi p_{1}(t_{1}))=\{\exp(it_{1})\} .

The length of \pi p between parameters t and t_{1} is t_{1}-t , so that, by (4.7)
of [1],

\sigma(\pi p(t))\subseteq\{\zeta\in S:\delta(\zeta, \exp(it_{1}))\leq t_{1}-t\} . (1)

Hence, because of the choice of \epsilon , no eigenvalues of \pi p(t) can have passed
through -1 in the negative (clockwise) sense as compared with \pi p(t_{1}) ;
whilst, if any had moved downwards through or from -1, that would have
increased i and (by (7.5) (b)) d(\tilde{e}, p(t)) could not have decreased. Thus
in fact p(t)\in B_{i,k} still (for some k), and by (7.5) (b) again

t_{1}-t=d(\tilde{e}, p(t_{1}))-d(\tilde{e}, p(t))=N_{u}(\pi p(t_{1}))-N_{u}(\pi p(t)) .
So

\sigma(\pi p(t))\subseteq\{\exp[i(\tau+\pi)] : 0\leq\tau\leq\theta_{1}-t_{1}+t\} . (2)

Put (1) and (2) together: \sigma(\pi p(t))=\{\exp(it)\} , and thus \pi p(t)=\pi p_{1}(t) , for
any t\in[t_{1}-\epsilon, t_{1}] . This contradicts the definition of t_{1} : so the hypothesis
that t_{1}>0 must be false, and p coincides with p_{1} as required.

(7.7) It is easily seen that \tilde{x} and \tilde{y} (in (7.6)) may be joined by infinitely
many geodesies. One may also deduce from (7.5) and (7.’ 6) the analogous
results for \tilde{\mathfrak{G}}_{n} (compare (7.2), (7.3)).
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