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Introduction.

This paper is devoted to proving some fundamental results and general-
ized formulas in convex analysis. In Chapter 1, we will consider some
properties of pointwise convergent sequences of convex functions from the
viewpoint of convergences of infima. In [3], Heinz k\"onig proved that inf
f_{n} arrow\inf f as narrow\infty with some conditions where the sequence \{f_{n}\} con-
verges decreasingly to f, and each f_{n} and f belong to a certain class of
convex functions. In addition, the \tau-convergence of convex functions was
considered in [6], [7], and [13], and the equivalence between the \tau -

convergence of \{f_{n}\} and that of \{f_{n}^{*}\} was derived with some hypotheses. In
this paper, we deal with only the pointwise convergence, and prove some
results about the convergence of inf f_{n} and that of \{f_{n}^{*}\} with natural
hypotheses.

In Chapter 2, we deal with a type of convex integrands, and derive some
formulas for them. In our preceding paper [4], we considered convex opera-
tors \overline{f} : R\supset D(\tilde{f})arrow S(\Omega) where R is the space of real numbers and S(\Omega)

is the linear space of finite valued measurable functions on a finite measure
space \Omega . We proved that \tilde{f} is represented by a convex integrand f(\cdot, \cdot) : R
\cross\Omegaarrow R\cup\{+\infty\} such that ( \tilde{f}(a))(\cdot)=f(a, \cdot) in L^{1}(\Omega) for every a\in R .
Moreover, we proved that ( \tilde{f}^{*}(\xi))(\cdot)=f^{*}(\xi, \cdot) in L^{1}(\Omega) for every \xi\in R

where \overline{f}^{*} in the conjugate operator of \tilde{f} and each f^{*}(\cdot, t) is the conjugate
function of f(\cdot, t) . Now, we are interested in further properties of \tilde{f} when
the range of \overline{f} is contained in L^{1}(\Omega) . From this viewpoint, we will define a
class of convex integrands which represent some convex operators from
convex subsets of R^{d} to L^{1}(\Omega) . The aim of this chapter is to prove some
fundamental formulas which are valid in such a class of convex integrands.
Some of our results are considered to be extensions of the following well-
known formulas:

\partial(f_{1}+f_{2})(x)=\partial f_{1}(x)+\partial f_{2}(x)

(f_{1}\nabla f_{2})^{*}=f_{1}^{*}+f_{2}^{*}

([1], Theorem 1-28)
([1], Proposition 1-19)
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where f_{1} and f_{2} are convex functions, and f_{1}\nabla f_{2} is the infimum convolution of
f_{1} and f_{2} . General studies of convex integrands are given in [1], [8], [11],
and some other articles. We will use some of them to apply the theory of
normality of convex integrands.

I would like to express special thanks to Prof. Koshi for his valuable
suggestions.

Chapter 1. Pointwise convergent sequences of convex functions.

Let f, f_{n} : Xarrow R\cup\{+\infty\} be convex functions where X is a real vector
space. The sequence \{f_{n}\} is said to converge pointwise to f on X, if \varliminf_{narrow\infty}

f_{n}(x)=f(x) for all x\in X . We denote the effective domain of f by D(f) ,
i . e. ,

D(f)= {x\in X|f(x) is finite}.
In addition, we adopt the following notations in this paper. For a subset C
of a topological space, we write [mathring]_{C} for the set of all interior points of C.
For a sequence \{a_{n}\}\subset R , we denote the upper limit and the lower limit of
\{a_{n}\} by \varlimsup_{narrow\infty}a_{n} and \varliminf_{narrow\infty}a_{n} respectively, i . e. , \varlimsup_{narrow\infty}a_{n}=\lim_{narrow\infty}\sup_{n\leqq i}a_{i} and \varliminf_{narrow\infty}a_{n}=

\lim_{narrow\infty}\inf_{n\leq i}a_{i} .

\S 1. 1

THEOREM 1. 1. Let X be a real Banach space, and let f, f_{n} : Xarrow R\cup

\{+\infty\} be lower-semicontinuous convex functions such that \{f_{n}\} converges
pointwise to f on X. Suppose that D(f) has nonempty interior and let K\subset

D^{o}(f) be a compact set. Then f_{n} converges uniformly to f on K.

RERARK. Through this chapter, we do not assume any relation
between D(f) and each D(f_{n}) .

PROOF. For each n=1,2 , \cdots , we put

F_{n}(x)= \sup_{n\leqq i}f_{i}(x) .

We will prove that F_{n} is locally bounded on K for some n . We define the
level sets of f_{i} as follows:

L_{m}(f_{i})=\{x\in D(f_{i})|f_{i}(x)\leqq m\} ,

where m=1,2 , \cdots , i=1,2 , \cdots .
Since each f_{i} is lower-semicontinuous, L_{m}(f_{i}) is a closed convex set

which is possibly empty. Let x be an interior point of D(f) , and let V be a
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closed convex symmetric neighborhood of x such that V\subset D(f) .
We consider the sets A_{n,m} defined by:

A_{n,m}= \bigcap_{n\leqq i}^{\infty}(L_{m}(f_{i})\cap V)

where n=1,2 , \cdots , m=1,2 , \cdots .
Each A_{n,m} is a closed covex set, and since \{f_{i}(x)\} converges to f(x) ,

A_{n,m} is nonempty for sufficiently large n and m. Moreover, A_{n.m}\subset A_{n’,m’}

holds whenever n\leqq n’ and m\leqq m’ . It is easy to see that

D(F_{n}) \cap V=\bigcup_{m=1}^{\infty}A_{n,m}

\bigcup_{n=1}^{\infty}(D(F_{n})\cap V)=Vr

Hence We have

V= \bigcup_{n=1}^{\infty}\bigcup_{m=1}^{\infty}A_{n,m} .

By the Baire’s theorem, there exist indices n_{0} and m_{0} such that A_{n_{\theta},m_{0}} has
an interior point u . If we put

v=2x-u ,

then the neighborhood V includes v , because V is symmetric. Hence there
exist indices n_{1} and m_{1} such that A_{n_{1},m_{1}}\exists v . Thus we have

A_{n_{2}} , m_{2}\ni v , \angle[mathring]_{n_{2},m_{2}}_{4}\ni u

where n_{2}= \max\{n_{0}, n_{1}\} , m_{2}= \max\{m_{0}, m_{1}\} .
Since A_{n_{2},m_{2}} is convex,

x= \frac{1}{2}(u+v)\in[mathring]_{n_{2},m_{2}}_{A} ,

and this implies that there exists a neighborhood U_{\chi} of x such that f_{i}(y)\leqq

m_{2} holds for any i\geqq n_{2} and y\in U_{\chi} . In other words, F_{n} is bounded on U_{x}

whenever n\geqq n_{2} . Now we assume that \{f_{n}\} does not converge uniformly to
f on K. Then there exist \epsilon>0 and a sequence \{x_{n}\}\subset K such that

|f_{n}(x_{n})-f(x_{n})|\geqq\epsilon

for n=1,2 , \cdots . By taking a subsequence, we can assume that \{x_{n}\} tends to
a limit point: x_{0}\in K . We note that x_{0}\in D^{o}(f) , and that f is continuous at
x_{0} . (cf. [10] p. 31) Hence there exists an index n’ such that
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|f(x_{0})-f(x_{n})| \leqq\frac{\epsilon}{3}

|f_{n}(x_{0})-f(x_{0})| \leqq\frac{\epsilon}{3} ,

for n\geqq n’ . Hence for any n\geqq n’ , we have

|f_{n}(x_{n})-f_{n}(x_{0})|\geqq|f_{n}(x_{n})-f(x_{n})|-|f_{n}(x_{0})-f(x_{n})|

\geqq\epsilon-(|f(x_{0})-f(x_{n})|+|f_{n}(x_{0})-f(x_{0})|)

\geqq\epsilon-(\frac{\epsilon}{3}+\frac{\epsilon}{3})=\frac{\epsilon}{3} .

Using the convexity of each f_{n} , we can easily see that this inequality implies
the unboundedness of F_{n} on any neighborhood of x_{0} . This contradicts the
previous argument, and hence the theorem is proved.

\S 1. 2

In Theorem 1. 1, the assumption that K is contained in the interior of
D(f) is essential. The following theorem gives a similar result without this
assumption in the case where X is a finite dimensional Euclidean space R^{d} .
In the proof, we will use the fact that every 1. s . c . (lower-semicontinuous)
convex function f defined on R^{d} is continuous on D(f) if d=1 . At the end
of this section, we will give an example which shows that this statement is no
longer valid if d\geqq 2 .

THEOREM 1. 2. Let f_{n}, f : R^{d}arrow R\cup\{+\infty\} be convex functions such
that \{f_{n}\} converges pointwise to f on R^{d} . If K\subset D(f) is a compact convex
set, then

\inf_{x\in K}f_{n}(x)arrow\inf_{x\in K}f(x) ,

as narrow\infty .

REMARK. If f and \{f_{n}\} are 1. s . c . and D(f) has nonempty interior,
the conclusion of Theorem 1. 2 holds true for any compact K that is not
necessarily convex. In fact, D^{o}(f)\neq\phi implies f_{n}arrow^{\tau}f ( \tau-convergence)
(see [13], Cor. 2C), and the \tau-convergence implies the equi-lower
semicontinuity of \{f_{n}\} ([13], Lemma 3), from which \inf_{K}f_{n}arrow\inf_{K}f follows

immediately.

PROOF. By taking the restriction of f and f_{n} to the affine hull of K, we
can assume that K has nonempty interior. It is easy to see that

\varlimsup_{narrow\infty}(\inf_{x\in K}f_{n}(x))\leqq\inf_{x\in K}f(x) .
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Hense if the conclusion is not true, there exist a sequence \{x_{n}\}\subset K and \epsilon>

0 such that

f_{n}(x_{n}) \leqq\inf_{x\in K}f(x)-\epsilon .

Since K is compact, we can assume that [ x_{n}\}tends\circ to a point x_{0}\in K .
Theorem 1. 1 asserts that x_{0} does not belong to K\subset D^{o}(f) . We take inter-
vals I_{1} , I2, \cdots , I_{d}\subset K such that each of them starts from xo and that the
convex hull of them, co \{I_{1}, \cdots, I_{d}\} , contains an interior point of K. Let \overline{f}

be the closure of f which is defined by the relation epi(\overline{f})=\overline{epi(f)} where
epi(f)=\{(x, \alpha)\in R^{d+1}|f(x)\leqq\alpha\} and \overline{epi(f)} is its closure. ([1], p. 2) Since \overline{f}

is continuous on each interval I_{i} (i=1,2, \cdots, d) and 1. s . c . on K, there exists
r>0 satisfying the following (a) and (b).

(a) \overline{f}(x)\leqq\overline{f}(x_{0})+\frac{\epsilon}{4}

for all x\in I_{i}(r)=\{x\in I_{i}|||x-x_{0}||\leqq r\}(i=1,2, \cdots, d) ,

(b) \overline{f}(x)\geqq\overline{f}(x_{0})-\frac{\epsilon}{4}

for all x\in L(r)=co\{I_{1}(r), \cdots, I_{d}(r)\} . By the convexity of f, (a) implies
that

\overline{f}(x)\leqq\overline{f}(x_{0})+\frac{\epsilon}{4}

for all x\in L(r) . We take two points y , z\in L^{o}(r) such that z= \frac{1}{2}(x_{0}+y) .

For simplicity, we assume that z=0 and y=-x_{0} without losing generality.
Since \overline{f}=f on L^{o}(r) , it follows from (a) and (b) that

f_{n}(-x_{n})\geqq-f_{n}(x_{n})+2f_{n}(0)

\geqq\epsilon-\inf_{x\in K}f(x)+2f_{n}(0)

–

\epsilon-\inf_{x\in K}f(x)+2f(0)

\geqq\epsilon-\overline{f}(x_{0})+2(\overline{f}(x_{0})-\frac{\epsilon}{4})

\geqq\overline{f}(x_{0})+\frac{\epsilon}{2}

\geqq_{Px\in Lr)}su\overline{f}(x)-\frac{\epsilon}{4}+\frac{\epsilon}{2} .

Consequently,
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\varliminf_{narrow\infty}f_{n}(-x)_{n}\geqq_{Px\in Lr)}su\overline{f}(x)+\frac{\epsilon}{4} .

Since -x_{n}arrow-x_{0}\in L^{o}(r) and \overline{f}=f on L^{o}(r) , this implies that \{f_{n}\} does
not converge uniformly to f on any neighborhood of -

x_{0} . This contradicts
the assertion of Theorem 1. 1.

EXAMPLE 1. The following example shows that \{f_{n}\} does not always
converge uniformly to f on K under the conditions in Theorem 1. 2. For
every t>0 , we define convex functions f and f_{t} : R^{2}arrow R\cup\{+\infty\} as fol-
lows :

D(f.)=D(f_{t})=\{(x, y)\in R^{2}|y\geqq x^{2}\} :
f(x, y)= \frac{x^{2}}{y} (if y\neq 0 ) ;

f(0,0)=0 ;

f_{t}(x, y)= \frac{(|x|-t)^{2}}{y-2t|x|+t^{2}} (if |x|>t ) :

f_{t}(t, t^{2})=0 ;
f_{t}(x, y)=0 (if |x|\leqq t ).

One can easily check that f and f_{t} are midpoint convex and continuous on
D^{o}(f) . Hence they are convex functions. Although f and f_{t} are 1. s . c . on
D(f) , f is not continuous at (0, 0) . In fact, f(x, y)=1 whenever y=x^{2} and
y\neq 0 . It is easy to see that \{f_{t}\} converges pointwise to f as tarrow 0 . How-
ever,

f(t, t^{2})-f_{t}(t, t^{2})=1-0=1

holds for every t>0 , and this implies that the convergence of \{f_{t}\} is not
uniform on any neighborhood of (0, 0) . Next we define a compact set K=
\{(x, y)|y=x^{2},0\leqq x\leqq 1\} , and replace the values of f(0,0) and f_{t}(0,0) by 1.
Then we have

\inf_{(x,y)\in K}f_{t}(x, y)=0\neq\inf_{(x,y\rangle\in K}f(x, y)

for every t>0 . This fact shows that the conclusion of Theorem 1. 2 is not
valid if we do not assume the convexity of K.

\S 1. 3.

Let f:R^{d}arrow R\cup\{+\infty\} be a proper convex function, i . e , D(f)\neq\phi .
For \xi\in R^{d} we define the conjugate function f^{*} of f as follows:

f^{*}(\xi)=suPf)(\langle\xi, x\rangle-f(x))x\in D ’
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D(f^{*})=\{\xi\in R^{d}| _{D}^{su}x\in’ Pf)(\langle\xi, X\rangle-f(x))<+\infty\} .

In [5], U. Mosco proved the equivalence between a type of convergence of
\{f_{n}\} and that of \{f_{n}^{*}\} . However, pointwise convergence of \{f_{n}\} does not
imply the convergence of \{f_{n}^{*}\} in general. The following theorem shows
that this implication is partly true in finite dimensional cases.

THEOREM 1. 3. Let f, f_{n} : R^{d}arrow R\cup\{+\infty\} be convex functions such
that \{f_{n}\} converges pointwise to f on R^{d} If D(f) has nonempty interior,
then

f_{n}^{*}(\xi)arrow f^{*}(\xi)

holds whenever \xi\in D^{o}(f^{*}) , or \xi\not\in D(f^{*}) .

LEMMA 1. 4. Let f:R^{d}arrow R\cup\{+\infty\} be a l. s. c. proper convex func-
tion, and define a set:

K_{8}=\{x\in D(f)|f(x)-\langle\xi, x\rangle\leqq-f^{*}(\xi)+\delta\}

for a positive number \delta. If \xi\in D^{o}(f^{*}) , then K_{8} is a nonempty compact
convex set.

PROOF. Since f is a lower-semicontinuous convex function, K_{8} is a
closed convex set. It follows from the definition of f^{*} that K_{8} is not empty
for any \delta>0 . Therefore the only thing we nust prove is the boundedness of
K_{8} . Suppose that K_{8} is unbounded for some \delta>0 . Then there exists \eta\in

R^{d} such that \sigma(K_{8} : \eta)=\infty where \sigma(K_{8}:.) is the supporting functional of
K_{8} defined by

\sigma(K_{8} ; \eta)=\sup\{\langle\eta, x\rangle|x\in K_{8}\} .

Hence for all r>0 ,

f^{*}(\xi+r\cdot\eta)=suPf)\{\langle\xi+r\cdot\eta, x\rangle-f(x)\}x\in D

\geqq_{p_{\theta}x\in}su\{\langle\xi, x\rangle-f(x)+r\langle\eta, x\rangle\}

\geqq_{x\in}sfu_{f_{\delta}}\{f^{*}(\xi)-\delta+r\langle\eta, x\rangle\}=\infty .

This implies that \xi does not belong to the interior of D(f^{*}) , and the lemma
is proved.

PROOF of THEOREM 1. 3. In case when f^{*}(\xi)=\infty , it is easy to see that
f_{n}^{*}(\xi)arrow\infty . Therefore we consider only the case when \xi is an interior point
of D(f^{*}) . By taking the convex function g(x)=f(x)-\langle\xi, x\rangle , we can



N. Komuro

assume that \xi=0 without losing generality. In other words, it suffices to
show that

\inf_{x\in D(fn)}f_{n}(x)arrow\inf_{x\in D(f\rangle}f(x)

under the condition that D^{o}(f)\neq\phi and that O\in D^{o}(f^{*}) . For simplicity, we
denote \inf_{x\in D(fn)}f_{n}(x) and \inf_{x\in D(f)}f(x) by inf f_{n} and inf f respectively. It is easy

to see that

\varlimsup_{narrow\infty}\{i^{nf} f_{n}\} \leqq\inf f .

Hence, if inf f_{n} does not converge to inf f, there exist \epsilon>0 and a sequence
\{x_{n}\}\subset R^{d} such that

f_{n}(x_{n})< \inf f-\epsilon

for n=1,2 , \cdots . By virtue of Theorem 1. 1, we can see that the sequence \{x_{n}\}

does not have a cluster point in the interior of D(f) . Hence the following
cases are possible.

Case 1: \{x_{n}\} has a cluster point xo which belongs to the boundary of
D(f) .

Case 2: \{x_{n}\} has a cluster point xo which is an exterior point of D(f) .
Case 3: \{x_{n}\} has no cluster point.

We will derive a contradiction to the assertion of Theorem 1. 1 in each case.
Let u\in D^{o}(f) be such that

f(u) \leqq\inf f+\frac{\epsilon}{2} .

The assumption that D(f) has nonempty interior guarantees the existence of
such u in the interior of D(f) .

In case 1, we can assume that \{x_{n}\} converges to a point xo of the bound-
ary of D(f) . It follows that

f_{n}( \frac{1}{2}(u+x_{n}))\leqq\frac{1}{2}(f_{n}(u)+f_{n}(x_{n}))

< \frac{1}{2}(f_{n}(u)+\inf f-\epsilon)

arrow\frac{1}{2}(f(u)+\inf f-\epsilon)

\leqq\frac{1}{2}(inf f+ \frac{\epsilon}{2}+\inf f-\epsilon)

= \inf f-\frac{\epsilon}{4} .
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Hence we have

\varlimsup_{narrow\infty}f_{n}(\frac{1}{2}(u+x_{n}))\leqq\inf f-\frac{\epsilon}{4}

\leqq f(\frac{1}{2}(u+x_{0}))-\frac{\epsilon}{4} .

Since \frac{1}{2}(u+x_{n})arrow\frac{1}{2}(u+x_{0})\in D^{o}(f) and f is continuous at \frac{1}{2}(u+x_{0}) , this

implies that \{f_{n}\} does not converge uniformly to f on any neighborhood of

\frac{1}{2}(u+x_{0}) . This contradicts the assertion of Theorem 1. 1, and we obtain

that the case 1 is impossible.
In case 2, we similarly assume that \{x_{n}\} converges to an exterior point

x_{0} of D(f) . Then there exists 0<\mathcal{A}<1 such that y_{0}=\lambda\cdot u+(1-\lambda)x_{0} is also
an exterior point of D(f) . Let \{u_{n}\} be a sequence such that

y_{0}=\lambda\cdot u_{n}+(1-\lambda)x_{n}

for n=1,2 , \cdots . Then \{u_{n}\} tends to u and
f_{n}(y_{0})\leqq \mathcal{A}\cdot f_{n}(u_{n})+(1-\lambda)\cdot f_{n}(x_{n})

< \mathcal{A}\cdot f_{n}(u_{n})+(1-\lambda)(\inf f-\epsilon)

Since f_{n}(y_{0})arrow\infty , this inequality shows that f_{n}(u_{n})arrow\infty . Thus we obtain
the same contradiction as in the case 1.

In case 3, we will apply Lemma 1. 4 to the closure \overline{f} of f. Since we are
assuming \xi=0 , K_{8} in Lemma 1. 4 is the set of all x\in D(f) such that \overline{f}(x)\leqq

inf \overline{f}+\delta=\inf f+\delta . Therefore, from Lemma 1. 4, there exists r>0 such
that

\overline{f}(x)\geqq\inf f+2\epsilon

holds whenever ||x-u||\geqq r . Since the sequence \{x_{n}\} is unbounded, we can
assume that ||u-x_{n}||arrow\infty . Hence each interval [u, x_{n}] includes a point y_{n}

such that ||u-y_{n}||=r , where
[u, x_{n}]=\{\lambda\cdot u+(1-\lambda)\cdot x_{n}|0\leqq\lambda\leqq 1\} .

From the convexity of each f_{n} , it follows that

f_{n}(y_{n})\leqq{\rm Max}\{f_{n}(u), f_{n}(x_{n})\}

=f_{n}(u)

arrow f(u)

\leqq\inf f+\frac{\epsilon}{2} . (1, 1)
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By taking a subsequence of the bounded sequence \{y_{n}\} , we can assume that
\{y_{n}\} tends to a point \mathcal{Y}0 . Since ||u-y_{0}||=r , it follows that

\overline{f}(y_{0})\geqq\inf f+2\epsilon . (1, 2)

If y_{0} belongs to the interior of D(f) , then the estimations (1, 1) and (1, 2)
yield a contradiction to Theorem 1. 1. Moreover, if \mathcal{Y}0 is an exterior point
of D(f) , we can also obtain a contradiction in the same way as in the case
2. Hence we suppose that \mathcal{Y}0 belongs to the boundary of D(f) . From the
lower-semicontinuity of \overline{f} and (1, 2) , we can choose v=\mathcal{A}\cdot u+(1-\mathcal{A})\cdot y_{0}

such that 0<\mathcal{A}<1 , and
\overline{f}(v)\geqq\inf f+\epsilon . (1, _{3})

On the other hand,

f_{n}(\mathcal{A}\cdot u+(1-\lambda)\cdot y_{n})\leqq \mathcal{A}\cdot f_{n}(u)+(1-\mathcal{A})\cdot f_{n}(y_{n})

\leqq \mathcal{A}\cdot f_{n}(u)+(1-\mathcal{A})\cdot f_{n}(u)

=f_{n}(u)

arrow f(u)

\leqq\inf f+\frac{\epsilon}{2} . (1, 4)

Since \overline{f}(v)=f(v) , it follows from (1, 3) and (1, 4) that

\varliminf_{narrow\infty}f_{n}(\mathcal{A}\cdot u+(1-\mathcal{A})\cdot y_{n})\leqq f(v)-\frac{\epsilon}{2} .

Since \mathcal{A} \cdot u+(1-\mathcal{A})\cdot y_{n}arrow v and v is an interior point of D(f) , this contra-
dicts Theorem 1. 1. Consequently, the case 3 is impossible, and the theorem
has been proved.

Chapter 2. Fundamental properties of a class of convex integrands.

DEFINITIONS. Let (\Omega, \mu) be a probability space. A function f:R^{d}\cross

\Omegaarrow R\cup\{+\infty\} is called a convex integrand if f(\cdot, t) is a proper convex
function for every t\in\Omega and if further f(a, \cdot) is measurable for every a\in
R^{d} . We will consider the integral of the form

F(a)= \int_{\Omega}f(a, t)d\mu(t)

for a convex integrand f(\cdot, \cdot) . The function F(\cdot) is obviously a convex
function. A convex integrand f(\cdot, \cdot) is said to represent a convex operator
\tilde{f}:R^{d}\supset D(\tilde{f})arrow L^{1}(\Omega) if ( \tilde{f}(a))(\cdot)=f(a, \cdot) in L^{1}(\Omega) for every a\in D(\tilde{f}) .
For such a convex integrand f(\cdot, \cdot) , it is natural to assume the following
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condition (A’) .

(A’) D(f(\cdot, t))=D(F)\neq\phi

for almost every t\in\Omega , where D(f(\cdot, t)) is the effective domain of f(\cdot, t) .
The condition (A’) implies that the function f(a, \cdot) is identically +\infty on \Omega

(in the a . e . sense), whenever a\not\in D(F) . In this paper, we adopt a slightly
weaker assumption for convex integrands as follows. We will say that a
convex integrand f(\cdot, \cdot) satisfies the condition (A) if

(A) \overline{D(f(\cdot,t))}=\overline{D(F)}\neq\phi

for almost every t\in\Omega , where D(f(\cdot, t)) and \overline{D(F)} are the closure of
D(f(\cdot, t)) and D(F) respectively. For a convex subset C\subset R^{d} , riC
denotes the relative interior of C which is the interior of C with respect to the
relative topology of the affine hull of C . It is easy to see that a convex
integrand f(\cdot, \cdot) satisfies the condition (A) if and only if riD(f(\cdot, t))=ri

D(F)\neq\phi . Moreover, F cannot take -\infty anywhere under the condition
(A).

\S 2. 1

In this section, we will give a proof of a measurable selection theorem
for the subdifferentials of convex integrands. For a multifunction T :
\Omegaarrow 2^{R^{d}}\int_{\Omega}T(t)d\mu(t) denotes the set of all the integrals of summable

selectors of T. i . e. ,

\int_{\Omega}T(t)d\mu(t)=\{\int_{\Omega}\zeta(t)d\mu(t)|\zeta:\Omegaarrow R^{d} is summable and

\zeta(t)\in T(t) for almost every t\in\Omega\} .

THEOREM 2. 1. Let f(\cdot, \cdot) be a convex integrand with the condition
(A). For every a\in D(F) with \partial F(a)\neq\phi, we have

\partial F(a)=\int_{\Omega}\partial f(a, t)d\mu(t)

where \partial f(a, t) is the subdifferential of f(\cdot, t) at a.

REMARK. If we remove the condition (A), this formula is not valid.
We will show a counterexample at the end of this chapter.

We will prepare some lemmas and notations for our proof of this the0-
rem. For x\in R^{d} with x\neq 0 , we denote the orthogonal space of x by N_{X} ,

i . e. ,
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N_{x}=\{y\in R^{d}|\langle x, y\rangle=0\} .

N_{X} can be identified with R^{d-1} . Moreover, we represent every z\in R^{d} by
the form

z=(z_{1}, z_{2})_{x}

where z_{1}\in R , z_{2}\in N_{x}\simeq R^{d-1} . and z= \frac{z_{1}}{||x||}x+z_{2} . We can regard z_{2} as an
element of R^{d-1}- Now a function G:R^{d}arrow R\cup\{+\infty\} is said to be a sub-
linear function if

G(x+y)\leqq G(x)+G(y)

G(\mathcal{A}x)=\mathcal{A}G(x)

for every x , y\in R^{d} and \mathcal{A}>0 .

LEMMA 2. 2. Let G:R^{d}arrow R\cup\{+\infty\} be a sublinear function, and
let x\neq 0 be a fifixed element of R^{d} . We defifine \overline{G}:R^{d-1}arrow R\cup\{+\infty\} by
\overline{G}(y)=G(||x||, y)_{X} :=G((||x||, y)_{X}) . Then

( \frac{G(x)}{||x||}, \partial\overline{G}(0))_{x}=\partial G(x)\subset\partial G(0) .

PROOF. Let \eta be an arbitrary element of \partial\overline{G}(0) . For z=(z_{1}, z_{2})_{x}\in R^{d} .
we put

G_{1}(z_{1}, z_{2})_{x}=G(z)-G(x)- \langle(\frac{G(x)}{||x||}, \eta)_{X} , z-x\rangle

=G(z_{1}, z_{2})_{X}-G(||x||, 0)_{x}- \langle(\frac{G(x)}{||x||}, \eta)_{x} , (z_{1}-||x||, z_{2})_{X}\rangle

=F(z_{1}, z_{2})_{x}- \frac{G(x)}{||x||}z_{1}-\langle\eta, z_{2}\rangle .

It suffices to show that G_{1}(z_{1}, z_{2})_{X}\geqq 0 for any z\in R^{d} . G_{1} is clearly a sub-
linear function and

G_{1}(x)=G_{1}(||x||, 0)_{X}=0 .

Moreover, for every z_{2}\in R^{d-1}

G_{1}(||x||, z_{2})_{X}=G(||x||, z_{2})_{X}-G(||x||, 0)_{X}-\langle\eta, z_{2}\rangle

=\overline{G}(z_{2})-\overline{G}(0)-\langle \eta, z_{2}-0\rangle

\geqq 0 .

Hence, by the following lemma, we obtain G_{1}(z_{1}, z_{2})_{X}\geqq 0 , and this completes
the proof.
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LEMMA 2. 3. Let G:R^{d}arrow R\cup\{+\infty\} be a sublinear function, and
let x\neq 0 , N_{X} be as above. If G(x)=0, and G(x+u)\geqq 0 for every u\in N_{x},

then G(y)\geqq 0 for every y\in R^{d} .

PROOF. We put y=\lambda\cdot x+u , where \lambda\in R and u\in N_{x} . If \mathcal{A}>0 , then

G(y)=\mathcal{A}\cdot G( \frac{1}{\lambda}y)=\mathcal{A}\cdot G(x+ \frac{1}{\lambda}u)\geqq 0 .

If \mathcal{A}\leqq 0 , then

G(y)=G(\lambda\cdot x+u)

\geqq 2G(x+u)-G((2-\mathcal{A})x+u)

=2G(x+u)-(2- \mathcal{A})G(x+\frac{1}{2-\mathcal{A}}u)

\geqq 2G(x+u)-(2-\mathcal{A})(\frac{1-\mathcal{A}}{2-\lambda}G(x)+\frac{1}{2-\mathcal{A}}G(x+u))

=2G(x+u)-(1-\mathcal{A})G(x)-G(x+u)
=G(x+u)\geqq 0 .

Thus the lemma is proved.
We will prepare two more lemmas which are useful in general. The

following one gives the definition of recession functions of 1. s . c . convex
functions.

LEMMA 2. 4. Let f:R^{d}arrow R\cup\{+\infty\} be l. s. c. convex function.
For x_{0}\in D(f) , wefifine

f_{\infty}(x_{0} ; x)= shpu_{>},\frac{1}{h}(f(x_{0}+h\cdot x)-f(x_{0}))

Then f_{\infty}(x_{0} ; \cdot) is a 1. s. c. sublinear function, and this does not depend on
the choice of x_{0}\in D(f) , i. e. ,

f_{\infty}(x_{0} ; x)=f_{\infty}(x_{1} ; x)

for every \chi_{0} , x_{1}\in D(f) , and x\in R^{d} .

PROOF. It is easy to see that f_{\infty}(x_{0};.) is 1. s . c . and sublinear. We will

prove the last statenent. By the monotonicity of \frac{1}{h}(f(x_{0}+h\cdot x)-f(x_{0})) in h ,

it follows that

f_{\infty}(_{X_{0}} ; _{X})= \lim_{narrow\infty}\frac{1}{h}(f(x_{0}+h\cdot x)-f(x_{0}))

For every xOy x_{1}\in D(f) , and h>0 , it follows from the lower-semicontinuity
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of f that, for every x\in R^{d} .

\frac{1}{h}(f(x_{0}+h\cdot x)-f(x_{0}))\leqq\varliminf_{\lambdaarrow 0}\frac{1}{h}(f((1-\mathcal{A})x_{0}+\mathcal{A}x_{1}+h\cdot x)-f(x_{0}))

= \varliminf_{\lambdaarrow 0}\frac{1}{h}(f((1-\lambda)x_{0}+\mathcal{A}(x_{1}+\frac{h}{\lambda}x))-f(x_{0}))

\leqq\varliminf_{\lambdaarrow 0}\frac{1}{h}\{(1-\lambda)f(x_{0})+\lambda\cdot f(x_{1}+\frac{h}{\mathcal{A}}x)-f(x_{0})\}

= \frac{1}{h}\varliminf_{\lambdaarrow 0}\mathcal{A}\cdot f(x_{1}+\frac{h}{\mathcal{A}}x)

= \frac{1}{h}\varliminf_{\lambdaarrow 0}\mathcal{A}\{f(x_{1}+\frac{h}{\lambda}x)-f(x_{1})

= \frac{1}{h}f_{\infty}(_{\mathcal{X}_{1}} : h\cdot x)

=f_{\infty}(x_{1} ; x) .

This implies that f_{\infty}(x_{0} ; x)\leqq f_{\infty}(x_{1} ; x) for every x\in R^{d}- Similarly, we can
get that f_{\infty}(x_{1},\cdot x)\leqq f_{\infty}(x_{0},\cdot x) for every x\in R^{d} . and this completes the proof.

The function f_{\infty}(x_{0} ; x)=f_{\infty}(x) in called the recession function of f. We
will use this in proving the following lemma. The well known formula:
\sigma(\partial f(a);x)=f’(a;x) is not always true for a boundary point a of D(f) ,
where \sigma(A;x) denotes the supporting functional defined by

\sigma(A;x)=\sup_{\xi\in A}\langle\xi, x\rangle :

and

f’(a;x)= \lim_{harrow 0}\frac{1}{h}(f(a+h\cdot x)-f(a)) .

The following lemma shows that the formula is true whenever f’(a;.) is 1.
s . c . (To see this, let G(x)=f’(a;x) and use the fact that \partial f’(a:.)(0)=

\partial f(a).)

LEMMA 2. 5. Let G:R^{d}arrow R\cup\{+\infty\} be a l. s. c. sublinear function.
Then, for every x\in R^{d}

\sigma(\partial G(0) ; x)=G(x) .

PROOF. If x is an exterior point of D(G) , then there exists \eta\in R^{d}

such that \langle\eta, x\rangle>0 and that \langle\eta, y\rangle\leqq 0 for any y\in D(G) (since D(G) is a
closed cone). Now choose \xi\in\partial G(0) arbitrarily. Then \xi+\mathcal{A}\cdot \eta\in\partial G(0) for
any \mathcal{A}>0 , hence \sigma(\partial G(0);x)=\infty=G(x) . Next we suppose that x\in\overline{D(G)} .
Let x_{0} be a relative interior point of D(G) , and let x_{n}=x_{0}+n\cdot x for n=1,2 ,
\ldots . Since D(G) is a convex cone, every \chi_{n} belongs to the relative interior
of D(G) , and \partial G(x_{n})\neq\phi . If \xi_{n}\in\partial G(x_{n}) , then
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\langle\xi_{n}, n\cdot x\rangle\geqq G(x_{n})-G(x_{0}) .

Hence, we have

\langle\xi_{n}, x\rangle\geqq\frac{1}{n}(G(x_{n})-G(x_{0}))arrow G_{\infty}(x) as narrow\infty .

Since G is sublinear, \partial G(0)\supset\partial G(x_{n}) , and G_{\infty}(x)=G_{\infty}(0;x)=G(x) for every
x\in R^{d} Therefore,

\sigma(\partial G(0);x)\geqq\sigma(\partial G(x_{n});x)\geqq\langle\xi_{n}, x\rangle

for every n , and hence, \sigma(\partial G(0);x)\geqq G(x) for every x\in R^{d} . The converse
inequality is obvious, and the lemma is proved.

PROOF of THEOREM 2. 1. It is easy so see the inclusion \partial F(a)\supset

\int_{\Omega}\partial f(a, t)d\eta(t) , and we will prove the converse inclusion. In one dimen-

sional case, i . e. , d=1 , \partial F(a) is a closed interval [\alpha, \beta]\subset R , and \alpha and \beta

are given by

\alpha=F’(a;-1)=\lim_{harrow 0}\frac{1}{h}(F(a)-F(a-h)) ;

\beta=F’(a;1)=\lim_{harrow 0}\frac{1}{h}(F(a+h)-F(a)) .

Similarly, \partial f(a, t)=[\alpha(t), \beta(t)] is given by

\alpha(t)=\lim_{harrow 0}\frac{1}{h}(f(a, t)-f(a-h, t)) ;

\beta(t)=\lim_{harrow 0}\frac{1}{h}(f(a+h, t)-f(a, t)) .

Since these are monotone with respect to h , \alpha(\cdot) and \beta(\cdot) are measurable
functions and

\int_{\Omega}\alpha(t)d\mu(t)=\int\lim_{\Omega harrow 0}\frac{1}{h}(f(a, t)-f(a-h, t))

= \lim_{harrow 0}\int_{\Omega}\frac{1}{h}(f(a, t)-f(a-h, t))

= \lim_{harrow 0}\frac{1}{h}(F(a)-F(a-h))

=\alpha :
\int_{\Omega}\beta(t)d\mu(t)=\beta .

We note that the hypothesis: \overline{D(F)}=\overline{D(f(\cdot,}t )) is used here in order to apply
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the monotone convergence theorem. (Refer to Example 2 at the end of this

chapter.) It is easy to see that \int_{\Omega}\partial f(a, t)d\mu(t) is a convex set. Thus we

obtain

[ \alpha, \beta]=\int_{\Omega}[\alpha(t), \beta.(t)]d\mu(t)

= \int_{\Omega}\partial f(a, t)d\mu(t) .

The proof for higher dimensional cases will be done by induction. We will
verify a fundamental fact concerning the convex integrands before continu-
ing the proof.

Let f:R^{d}arrow R\cup\{+\infty\} be a proper convex function. We recall that
\overline{f} (the closure of f) is defined by the relation:

epi(\overline{f})=\overline{epi(f)}

where epi(f) is the epigraph of f. and \overline{epi(f)} is its closure. We know that
\overline{f} is 1. s . c , and \overline{f}=f^{**} . Moreover, \overline{f}=f on the relative interior of D(f) .
By the definition of \overline{f} one can easily verify that

\partial\overline{f}(a)=\partial f(a)

for every a\in D(f) such that \partial f(a)\neq\phi .

PROPOSITION 2. 6. Suppose that f(\cdot ,\cdot ) satisfifies the condition (A),
then

(i) if f(\cdot, t) is l. s. c. for almost every t\in\Omega, then so is F(\cdot) ;

(ii) F-(x)= \int_{\Omega}\overline{f}(x, t)d\mu(t) holds for every x\in R^{d} .

PROOF. ( i ) . We denote the restriction of F to a linear line l\subset R^{d} by
F_{t} . If F_{l} is 1. s . c . for every linear line l\subset R^{d} . then \{x\in R^{d}|F(x)\leqq\alpha\} is
closed for every \alpha\in R , and this implies that F is 1. s . c . Hence ( i) can be
reduced to one dimensional case by considering F_{l} and f_{l}(\cdot, t) . Let a be
such that \partial F(a)\neq\phi . Since Therem 2. 1 has been proved in the one dimen-
sional case, we can take a summable function \zeta:\Omegaarrow R^{d} such that

\int_{\Omega}\zeta(t)d\mu(t)=\xi\in\partial F(a) ,

and that \zeta(t)\in\partial f(a, t) . We put

H(x)=F(x)-\langle\xi, x\rangle ,
h(x, t)=f(x, t)- \langle \zeta(t), x\rangle .
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Then it suffices to show that H is 1. s . c . Since
\partial h(a, t)=\partial f(a, t)-\zeta(t)\ni 0 ,

we have h(x, t)\geqq h(a, t) for every x\in R and t\in\Omega . Note also that h(a^{ }, \cdot )

is summable. Let xO be an arbitrary point of R, and let \{x_{n}\} be a sequence
converging to xo . Since each h(\cdot, t) is 1. s . c ,

h(x, t)\leqq\varliminf_{narrow\infty}h(x_{n}, t) .

According to the Fatou’s Lemma,

\int_{\Omega}\varliminf_{narrow\infty}h(x_{n}, t)d\mu(t)\leqq\varliminf_{narrow\infty}\int_{\Omega}h(x_{n}, t)d\mu(t) .

Hence, we get

H(x)\leqq\varliminf_{narrow\infty}H(x_{n}) ,

and this implies the lower-semicontinuity of H.
(ii). In ( ii) , we do not assume that f(\cdot, t) is 1. s . c . for almost every

t\in\Omega . However, if x belongs to the relative interior of D(F),\overline{f}(x, t)=f(x ,
t) holds for every t\in\Omega . Hence

F(x)= \int_{\Omega}\overline{f}(x, t)d\mu(t)

for every relative interior point x . Thus, ( ii) follows from ( i ) .

PROOF of THEOREM 2. 1, for d dimensional case. We suppose that this
theorem is valid in d-1 dimensional case, and consider the d dimensional
case. For the first step, we will prove that

\xi\in\int_{\Omega}\partial f(a, t)d\mu(t)

when \xi belongs to the boundary of \partial F(a) .
\cdot

Since \partial F(a) is closed, \xi\in

\partial F(a) . By \iota taking the convex functions:

H(y)=F(y)-\langle\xi, y\rangle :
h(y, t)=f(y, t)-\langle\xi, y\rangle ,

we can assume that \xi=0 without losing generality. Let x be a nonzero
point in R^{d} such that

\sigma(\partial F(a);x)=\langle\xi, x\rangle=0 . (2. 1)

By Lemma 2. 5,
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\sigma(\partial F(a);x)=\sigma(\partial F’(a;\cdot)(0);x)

=\sigma(\partial\overline{F’(a,\cdot\cdot)}(0);x)

=\overline{F’(a,\cdot x)} (2, 2)

where \partial F’(a;.)(0) is the subdifferential of F’(a;.) at 0, and \overline{F’(a}\cdot. \cdot ) is
the closure of F’(a ; \cdot ) . Let N_{\chi} and (\cdot, \cdot)_{X} be the notations defined in
Lemma 2. 2, and define F_{1} : N_{x}arrow R\cup\{+\infty\} by

F_{1}(y)=\overline{F’(a\cdot,x+y)}

where y\in N_{x} . From (2, 1) and (2, 2) , we have
F_{1}(0)=\overline{F’(a,\cdot x)}=0 ,

and it follows from \partial F(a)\ni 0 that

F_{1}(y)=F’(a; x+y)\geqq 0 .

This implies that \partial F_{1}(0)\ni 0 , and by Lemma 2. 2,

(0, \partial F_{1}(0))_{X}\ni\xi=(0,0)_{X} .

Similarly, we define
f_{1}(y, t)=f_{\acute{t}}(a ; x+y)

where f_{t}’(a;.) is the directional derivative of f(\cdot, t) at a , and \overline{f_{\acute{t}}(a,\cdot}\cdot) is
its closure. It is easy to see that a point z\in R^{d} belongs to the relative
interior of D(F’( a : \cdot ) ) if and only if there exists h>0 such that a+h\cdot z\in ri

D(F) . Hence, our assumption riD(F)=riD(f(\cdot, t)) implies that ri
D(F’( a : \cdot ) )=riD(f_{\acute{t}}(a ; \cdot ) ) . Moreover, for every z\in riD(F’(a:.)) , we can
apply the monotone convergence theorem to the following integral.

\int_{\Omega}f_{\acute{t}}(a;z)d\mu(t)=\int\lim_{\Omega harrow 0}\frac{1}{h}(f(a+h\cdot z, t)-f(a, t))d\mu(t)

= \lim_{harrow 0}\int_{\Omega}\frac{1}{h}(f(a+h\cdot z, t)-f(a, t))d\mu(t)

= \lim_{harrow 0}\frac{1}{h}(F(a+h\cdot z)-F(a))

=F’(a;z) .

Similarly, the same relation holds on the exterior of D(F’(a,\cdot.)) . Hence,

1_{\Omega}^{f_{\acute{t}}(a};_{z)d\mu(t)=\overline{F’(a.z)}}.

holds for every z\in R^{d}- By Proposition 2. 6, we have
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\int_{\Omega}\overline{f_{\acute{t}}(a;z)}d\mu(t)=\int_{\Omega}f_{\acute{t}}(a;z)d\mu(t)

=\overline{F’(a,\cdot z)}

for every z\in R^{d} Therefore,

\int_{\Omega}f_{1}(y, t)d\mu(t)=\int_{\Omega}\overline{f_{\acute{t}}(a,\cdot x+y)}d\mu(t)

=\overline{F’(a,\cdot x+y)}

=F_{1}(y)

holds for every y\in N_{x} . Moreover,

riD(\overline{F’(a.\cdot}\cdot) ) =riD(F’(a:.))
=riD(f_{\acute{t}}(a;\cdot))

=riD(\overline{f_{\acute{t}}(a;}\cdot) ).

Hence we can easily see that riD(F_{1})=riD(f_{1}(\cdot, t)) , and thus the convex
integrand f_{1}(\cdot, \cdot) satisfies the conditions of this theorem in d-1 dimen-
sional case. Hence, we have

\partial F_{1}(0)=\int_{\Omega}\partial f_{1}(0, t)d\mu(t) .

Since \int_{\Omega}\overline{f_{\acute{t}}(a;x)}d\mu(t)=\overline{F’(a,\cdot x)}=0 , it follows from Lemma 2. 2 that

\xi=(0,0)_{x}\in(0, \partial F_{1}(0))

= \int_{\Omega}(\overline{\frac{f_{\acute{t}}(a,x)}{||x||}.}’\partial f_{1}(0, t))_{x}d\mu(t)

\subset\int_{\Omega}\partial\overline{f_{\acute{t}}(a;\cdot)}(0)d\mu(t)

= \int_{\Omega}\partial f_{\acute{t}}(a;.)(0)d\mu(t)

= \int_{\Omega}\partial f(a, t)d\mu(t) .

For the final step of the proof, we will consider the interior points of \partial F(a) .
Let \eta be an arbitrary interior point of \partial F(a) , and let l be the half line which
starts from \xi=0 , and includes \eta , i . e. ,

l=\{\xi+\mathcal{A}(\eta-\xi)|\lambda\geqq 0\}=\{\mathcal{A}\cdot\eta|\mathcal{A}\geqq 0\} .

If \partial F(a)\cap l is a bounded interval [\zeta, 0] for a boundary point \zeta of \partial F(a) ,

then \eta\in[\zeta, 0]\subset\int_{\Omega}\partial f(a, t)d\mu(t) , because \zeta belongs to \int_{\Omega}\partial f(a, t)d\mu(t) , and

the set \int_{\Omega}\partial f(a, t)d\mu(t) is convex. Thus it remains to prove that \eta\in
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\int_{\Omega}\partial f(a, t)d\mu(t) when \partial F(a)\cap l=l . Since \partial F(a)\supset l , it follows that

\langle \mathcal{A}\cdot\eta, b-a\rangle\leqq F(b)-F(a)

holds for any \mathcal{A}\geqq 0 and b\in R^{d} , and hence,

\langle \eta, b-a\rangle\leqq 0 (2, 3)

holds whenever b\in D(F) . Let \xi(t) be a summable selector such that
\xi(t)\in\partial f(a, t)

and that \int_{\Omega}\xi(t)d\mu(t)=0 . Then it follows that

\langle\xi(t)+\eta, b-a\rangle-(f(b, t)-f(a, t))\leqq\langle\eta, b-a\rangle

for every t\in\Omega . By (2, 3) , we can easily see that \langle\eta, b-a\rangle\leqq 0 for b\in

D(f(\cdot, t)) . Hence, we have
\langle\xi(t)+\eta, b-a\rangle-(f(b, t)-f(a, t))\leqq 0

for every t\in\Omega and b\in D(f(\cdot, t)) . This implies that
\xi(t)+\eta\in\partial f(a, t)

for every t\in\Omega . Moreover,

\int_{\Omega}(\xi(t)+\eta)d\mu(t)=\eta ,

and this completes the proof of Theorem 2. 1.

\S 2. 2

The aim of this section is to establish a relation between the conjugate
function F^{*} of F and the convex integrand f^{*}(\cdot, \cdot) , where f^{*}(\cdot, t) is the
conjugate function of f(\cdot, t) for each t\in\Omega . The recession function which
is defined in \S 2. 1 is useful for this problem. The following proposition
gives a fundamental property of recession functions.

PROPOSITION 2. 7. Let f : R^{d}arrow R\cup\{+\infty\} be a l. s. c. proper convex
function. Then

\partial f_{\infty}(0)=\overline{D(f^{*})}

holds, where \overline{D(f^{*})} is the closure of the effective domain of f^{*}

PROOF. For every \xi\in D(f^{*}) , the convex function g(x)=f(x)-\langle\xi, x\rangle

is bounded below. Therefore,
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g_{\infty}(x)\geqq 0

for every x\in R^{d} . and this implies that
f_{\infty}(x)\geqq\langle\xi, x\rangle

for every x\in R^{d} . Hence, \xi belongs to \partial f_{\infty}(0) , and we obtain D(f^{*})\subset\partial f_{\infty}(0) .
Since \partial f_{\infty}(0) is closed, this implies that \overline{D(f^{*})}\subset\partial f_{\infty}(0) . Thus it remains to
prove that

ri\partial f\infty(0)\subset D(f^{*}) .

Let \zeta be an arbitrary point of ri \partial f_{\infty}(0) , and let h(\cdot) be a convex function
defined by

h(x)=f(x)-\langle \zeta, x\rangle .

Then we can easily see that
\partial h_{\infty}(0)=\partial f_{\infty}(0)-\zeta ;
D(h^{*})=D(f^{*})-\zeta .

Hence, we can assume that \zeta=0 without losing generality. Let A be the
affine hull of \partial f_{\infty}(0) . Since A\ni 0 , A is a subspace of R^{d} . By A^{\perp} . we
denote the orthogonal space of A, i . e. , A^{\perp}=\{y\in R^{d}|\langle y, x\rangle=0 for every x\in

A\} . Since \partial f_{\infty}(0)\subset A , we have
\sigma(\partial f_{\infty}(0);y)=0

for every y\in A^{\perp} . By the lower-semicontinuity of f and by Lemma 2. 5,

\sigma(\partial f_{\infty}(0) ; \cdot)=f_{\infty}(\cdot)

on R^{d} . Hence we get f_{\infty}(y)=0 for every y\in A^{\perp} , and this implies that

f(x)=f(x+y)

for every x\in A , and y\in A^{\perp} . On the other hand,

f_{\infty}(x)=\sigma(\partial f_{\infty}(0) ; x)>0

for every x\in A with x\neq 0 , because 0 is an interior point of \partial f_{\infty}(0) with
respect to the relative topology of A. Hence, we can easily see that the set
A\cap L_{a}(f)=\{x\in A|f(x)\leqq\alpha\} is bounded for every \alpha\in R . This implies that f
is bounded below on A. Moreover, by the previous argument,

\inf_{x\in R^{d}}f(x)=\inf_{x\in A}f(x)>-\infty .

Thus we obtain O\in D(f^{*}) , and the proposition is proved.
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PROPOSITION 2. 8. Under the hypotheses in \S 2. 1, the function
\sigma(D(f^{*}(\cdot, t));x) is measurable with respect to t\in\Omega, for every x\in R^{d} . and

\int_{\Omega}\sigma(D(f^{*}(\cdot, t)):x)d\mu(t)=\sigma(D(F^{*});x) .

PROOF. We know that D(F^{*})=D(\overline{F}^{*}) and D(f^{*}(\cdot, t))=D(\overline{f}^{*}(\cdot, t))

hold in general. Therefore, by proposition 2. 6, we can assume that F(\cdot)

and f( . , t) are 1. s . c , without losing generality. From Lemma 2. 5 and
Proposition 2. 7, we have

\sigma(D(f^{*}(\cdot, t)) ; x ) =f_{\infty}(x, t)
. ;

\sigma(D(F^{*}) ; x)=F_{\infty}(x) .

Hence \sigma(D(f^{*}(\cdot, t));x) is measurable for every x\in R^{d}- By the monotone
convergence theorem,

\int_{\Omega}\sigma(D(f^{*}(\cdot, t):x)d\mu(t)=\int_{\Omega}f_{\infty}(x, t)d\mu(t)

= \int\lim_{\Omega_{harrow\infty}}\frac{1}{h}(f(x_{0}+h\cdot x, t)-f(x_{0}, t))d\mu(t)

= \lim_{harrow\infty}\int_{\Omega}\frac{1}{h}(f(x_{0}+h\cdot x, t)-f(x_{0}, t))d\mu(t)

= \lim_{harrow\infty}\frac{1}{h}(F(x_{0}+h\cdot x)-F(x_{0}))

=F_{\infty}(x)

=\sigma(D(F^{*});x) .

Thus the proposition is proved.

LEMMA 2. 9. Let \xi be a boundary point of D(F^{*}) , and let x\in R^{d} be
such that x\neq 0 and that

\langle\xi, x\rangle=\sigma(D(F^{*}) ; x) .

Then, for every x_{0}\in D(F) , the convex function
F(x_{0}+\mathcal{A}\cdot x)-\langle\xi, x_{0}+\lambda\cdot x\rangle

is non increasing with respect to \mathcal{A}\in R.

PROOF. From Lemma 2. 5 and Proposition 2. 7, we have
F_{\infty}(x)=\sigma(D(F^{*}) ; x)=\langle\xi, x\rangle .

We take a convex function F_{1} defined by

F_{1}(\cdot)=F(\cdot)-\langle\xi, \cdot\rangle ,



On basic properties of convex functions and convex integrands 23

then
(F_{1})_{\infty}(x)=F_{\infty}(x)-\langle\xi, x\rangle=0 .

Hence F_{1}(x_{0}+\lambda\cdot x) is non increasing with respect to \lambda , and the lemma is
proved.

We will consider the function of the form f^{*}(\zeta(t), t) where \zeta:\Omegaarrow R^{d}

is a measurable function and f(\cdot, \cdot) is a convex integrand with the condition
(A). The theory of normal convex integrand is applicable to prove the
measurability of f^{*}(\zeta(t), t) . A convex integrand f(\cdot, \cdot) is said to be nor-
mal if f(\cdot, t) is proper 1. s . c . for each t , and if further there exists a count-
able collection Z of measurable functions \zeta from \Omega to R^{d} having the follow-
ing properties:

(a) for each \zeta\in Z , f(\zeta(t), t) is measurable in t :
(b) for each t\in\Omega , \{\zeta(t)|\zeta\in Z\}\cap D(f(\cdot, t)) is dense in D(f(\cdot, t)) .

The normality of a convex integrand f(\cdot, \cdot) guarantees the measurability of
f(\zeta(t), t) in t for every measurable function \zeta from \Omega to R^{d} Moreover, if
f(\cdot, \cdot) is normal, then f^{*}(\cdot, \cdot) is also normal. ([11], Corollary 2B and Prop-
osition 2S)

LEMMA 2. 10. Let f(\cdot, \cdot) be a convex integrand with the condition
(A). Then for every measurable function \zeta from \Omega to R^{d} . f^{*}(\zeta(t), t) is
measurable in t.

PROOF. We take the closures \overline{f}(\cdot, t) and \overline{F} of each f(\cdot, t) and F.
Then the convex integrand \overline{f}(\cdot, \cdot) also satisfies the condition (A), i . e. ,

\overline{D(\overline{f}(\cdot,t))}=\overline{D(\overline{F})}\neq\phi for almost every t\in\Omega .

Let \{z_{n}\}_{n=1}^{\infty} be a countable dense subset of D(\overline{F}) , and for each n , let \zeta_{n} :
\Omegaarrow R^{d} be a constant function with the value z_{n} . Then the collection
\{\zeta_{n}\}_{n=1}^{\infty} satisfies ( a) and ( b) in the definition of normality. Moreover the
lower-semicontinuity of \overline{f}(\cdot, t) is automatic. Hence the convex integrand
\overline{f}(\cdot, \cdot) is normal, and we have that ( \overline{f})^{*}(\cdot, \cdot)=f^{*}(\cdot, \cdot) is normal. Thus
we obtain the measurability of f^{*}(\zeta(t), t) .

We are ready to prove the following theorem wich represents the conju-
gate function F^{*} in terms of the convex integrand f^{*}(\cdot, \cdot) . For every \xi\in

R^{d} , we define S(\xi) as follows.

S(\xi)= { \zeta:\Omegaarrow R^{d}|\zeta is summable, and \int_{\Omega}\zeta(t)d\mu(t)=\xi}

THEOREM 2. 11. Let f(\cdot, \cdot) be a convex integrand with the condition
(A). Then
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F^{*}( \xi)=\min\{\int_{\Omega}f^{*}(\zeta(t), t)d\mu(t)|\zeta\in S(\xi)\}

holds for every \xi\in R^{d} .

REMARK. The right side of this formula is called the continuous infimal
convolution of f^{*}(\cdot, t) . In [2], this formula is shown with the condition
that f(\mathcal{X}^{ }, \cdot ) is summable for every x\in R^{d} . Our theorem shows that the
condition is not essential. However, this formula is no longer valid, if we
remove the condition (A). (See Example 2.)

PROOF. For every \zeta(\cdot)\in S(\xi) , we have

F^{*}( \xi)=\sup_{x\in D(F)}(\langle\xi, x\rangle-F(x))

= \sup_{x\in D(F)}\int_{\Omega}(\langle\zeta(t), x\rangle-f(x, t))d\mu(t)

\leqq\int_{\Omega}\sup_{x\in D(F)}(\langle\zeta(t), x\rangle-f(x, t))d\mu(t)

= \int_{\Omega}f^{*}(\zeta(t), t)d\mu(t) . (2, 4)

Hence it suffices to find a summable function \zeta\in S(\xi) such that

F^{*}( \xi)=\int_{\Omega}f^{*}(\zeta(t), t)d\mu(t) .

By Proposition 2. 6 ( ii) , we can assume that F and each f(\cdot, \cdot) are 1. s . c .
without losing generality. The following three cases are possible, and our
proof will be done in each case.

Case 1: \xi\in D^{o}(F^{*}) .
Case 2: \xi\not\in D(F^{*}) .
Case 3: \xi\in D(F^{*})\backslash D^{o}(F^{*}) .

Case 1. Applying Lemma 1. 4, we can easily see that the 1. s . c . con-
vex function F(\cdot)-\langle\xi, \cdot\rangle attains its minimum - F^{*}(\xi) , i . e. , there exists a
\in D(F) such that

F^{*}(\xi)=\langle\xi, a\rangle-F(a) .

In other words, \xi belongs to \partial F(a) for the same a . Hence from Theorem 2.
1, there exists a summable function \zeta\in S(\xi) such that

\zeta(t)\in\partial f(a, t)

for every t\in\Omega . Hence it follows that
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\int_{\Omega}f^{*}(\zeta(t), t)d\mu(t)=\int_{\Omega x\in D}suP_{F)}(\langle\zeta(t), x\rangle-f(x, t))d\mu(t)

= \int_{\Omega}(\langle\zeta(t), a\rangle-f(a, t))d\mu(t)

=\langle\xi, a\rangle-F(a)

=F^{*}(\xi) .

Case 2. From (2, 4) , F^{*}(\xi)=\infty implies that

\int_{\Omega}f^{*}(\zeta(t), t)d\mu(t)=\infty

for every \zeta\in S(\xi) .

Case 3. We can assume that \xi=0 without losing generality. Hence
the assertion of this theorem is equivalent to the following statement:

There exists \zeta\in S(0) such that

\inf_{z\in R^{d}}F(z)=\int\inf_{\Omega_{\mathcal{Z}}\in R^{d}}(f(z, t)- \langle \zeta(t), z\rangle)d\mu(t) . (2, 5)

Let x\in R^{d} be such that x\neq 0 and that

\sigma(D(F^{*});x)=\langle\xi, x\rangle=0 ,

and let N_{X}=\{z\in R^{d}|\langle z, x\rangle=0\} . Then N_{x} can be identified with R^{d-1} . We
define F_{x} : N_{x}arrow R\cup\{\pm\infty\} by

F_{x}(y)= \inf_{\lambda\in R}F(y+\mathcal{A}\cdot x)

for y\in N_{x} . One can easily see that F_{X} is a convex function. By Lemma
2. 9, F(y+\lambda\cdot x) is non increasing with respect to \mathcal{A} . Hence we have

F_{x}(y)= \lim_{\lambdaarrow\infty}F(y+\lambda\cdot x) .

Since F^{*}(0)<+\infty in case 3, F_{X} cannot take -\infty anywhere. Similarly,
we define f_{X} : N_{X}\cross\Omegaarrow R\cup\{\pm\infty\} by

f_{X}(y, t)= \inf_{\lambda\in R}(f(y+\lambda\cdot x, t)-\Phi(t)\cdot\lambda)

where \Phi(t)=\sigma(D(f^{*}(\cdot, t));x) . Then by Proposition 2. 8, \Phi(\cdot) is summa-
ble, and

\int_{\Omega}\Phi(t)d\mu(t)=\sigma(D(F^{*});x)=0 .

Let \eta(t)\in\overline{D(f^{*}(\cdot,t))} be such that
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\langle \eta(t), x\rangle=\sigma(D(f^{*}(\cdot, t);x)=\Phi(t) .

Then we have

f(y+\lambda\cdot x, t)-\Phi(t)\cdot\lambda=f(y+\mathcal{A}\cdot x, t)-\langle\eta(t), y+\mathcal{A}\cdot x\rangle+\langle\eta(t), y\rangle .

Hence by Lemma 2.9, this is non increasing with respect to \lambda , and we have
f_{x}(y, t)= \lim_{\lambdaarrow\infty}(f(y+\mathcal{A}\cdot x, t)-\Phi(t)\cdot\lambda) .

Therefore f_{x}(y, \cdot) is measurable for every y\in N_{X} . If y\in D(F_{x}) , there
exists \mathcal{A}_{0}\in R such that f(y+\mathcal{A}_{0\mathcal{X}^{ }}\cdot,\cdot)-\Phi(\cdot)\cdot \lambda_{0} is summable. In addition, by
the condition (A), f(y+\lambda\cdot x, t)-\Phi(t)\cdot \mathcal{A}=\infty for every \mathcal{A}\in R and almost
every t\in\Omega , if y is an exterior point of D(F_{X}) . Hence by the monotone
convergence theorem,

\int_{\Omega}f_{x}(y, t)d\mu(t)=\int\lim_{\Omega\lambdaarrow\infty}(f(y+\mathcal{A}\cdot x, t)-\Phi(t)\cdot \mathcal{A})d\mu(t)

= \lim_{\lambdaarrow\infty}\int_{\Omega}(f(y+\lambda\cdot x, t)-\Phi(t)\cdot \mathcal{A})d\mu(t)

=F_{X}(y)

holds if y belongs to D(F_{x}) or the exterior of D(F_{x}) . Hence by taking the
closures of both sides and by Lemma 2. 6, we get

\int_{\Omega}\tilde{f}_{X}(y, t)d\mu(t)=\overline{F}_{\chi}(y) for every y\in N_{\chi} . (2, _{6})

If d=1 , N_{X}=\{0\} and (2, 5) follows from (2, 6) . Thus the theorem is proved
in one dimensional case. We assume that this theorem is valid in d-1
dimensional case where d\geqq 2 . By the condition (A), one can easily see that
\overline{f}_{x}(\cdot, t) cannot take -\infty anywhere for almost every t\in\Omega , and the convex
integrand \overline{f}_{x}(\cdot, \cdot) also satisfies the condition (A). Hence by identifying N_{x}

and R^{d-1} . we can apply this theorem in d-1 dimensional case to \overline{f}_{x}(\cdot, \cdot)

and \overline{F}_{X} . By (2. 5), there exists a summable function \tilde{\zeta} : \Omegaarrow N_{\chi}\simeq R^{d-1}

such that \int_{\Omega}\tilde{\zeta}(t)d\mu(t)=0 , and that

\inf_{y\in Nx}F_{x}(y)=\int_{\Omega}\inf_{y\in Nx}(f_{x}(y, t)-\langle\tilde{\zeta}(t), y\rangle)d\mu(t) .

Define \zeta : \Omega– R^{d} by \zeta(t)=\tilde{\zeta}(t)+\frac{\Phi(t)}{||x||^{2}}x . Then \zeta is summable and

\int_{\Omega}\zeta(t)d\mu(t)=0 . Moreover we have

\inf_{z\in D(F)}F(z)=\inf_{y\in Nx}F_{X}(y)



On basic properties of convex functions and convex integrands 27

= \int_{\Omega}\inf_{y\in N_{X}}(f_{X}(y, t)- \langle \tilde{\zeta}(t), y\rangle)d\mu(t)

= \int\inf_{\Omega y\in N_{X}}\{\inf_{\lambda\in R}(f(y+\mathcal{A}\cdot x, t)-\Phi(t)\cdot \mathcal{A})-\langle\tilde{\zeta}(t), y\rangle\}d\mu(t)

= \int\inf_{\Omega y\in N_{X}}\inf_{\lambda\in R}(f(y+\mathcal{A}\cdot x, t)- \langle \tilde{\zeta}(t)+\frac{\Phi(t)}{||x||^{2}}x, \mathcal{A} \cdot x\rangle

- \langle\tilde{\zeta}(t)+\frac{\Phi(t)}{||x||^{2}}x, y\rangle)d\mu(t)

= \int\inf_{\Omega y\in N_{X}}\inf_{\lambda\in R}(f(y+\mathcal{A}\cdot x, t)- \langle \zeta(t), y+\lambda\cdot x\rangle)d\mu(t)

= \int_{\Omega}\inf_{z\in R^{d}}(f(z, t)- \langle \zeta(t), z\rangle)d\mu(t) .

Thus we obtain (2, 5) in d dimensional case, and this completes the proof of
Theorem 2. 11.

\S 2. 3.

In this section, we will give two theorems which are derived from
Theorem 2. 11.

THEOREM 2. 12. Let f(\cdot, \cdot) be a convex integrand with the condition
(A). Then we have

D(F^{*})= \int_{\Omega}D(f^{*}(\cdot, t))d\mu(t) .

PROOF. The inclusion D(F^{*}) \supset\int_{\Omega}D(f^{*}(\cdot, t))d\mu(t) is obvious. On the

other hand, if F^{*}(\xi)<\infty , then there exists a summable function \zeta :
\Omegaarrow R^{d} such that

\int_{\Omega}\zeta(t)d\mu(t)=\xi

and that F^{*}( \xi)=\int_{\Omega}f^{*}(\zeta(t), t)d\mu(t)<\infty . Hence \zeta(t)\in D(f^{*}(\cdot, t)) for

almost every t\in\Omega , and this completes the proof.
For a proper convex function f : R^{d}arrow R\cup\{+\infty\} and a positive num-

ber \epsilon , the \epsilon-subdifferential of f at x_{0}\in D(f) is defined by

\partial_{\hat{C}}f(x_{0})=\{\xi\in R^{d}|\langle\xi, x_{0}\rangle-f(x_{0})\geqq\langle\xi, x\rangle-f(x)-\epsilon , for every x\in

D(f)\} .

The following is a well known formula.

\partial_{\epsilon}(f_{1}+f_{2})(x_{0})=\bigcup_{\epsilon_{2}^{2}\epsilon_{1}\dotplus=\epsilon}(\partial_{\epsilon_{1}}f_{1}(x_{0})+\partial_{\epsilon_{2}}f_{2}(x_{0}))\epsilon_{1}\epsilon\geqq 0
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where f_{1} and f_{2} are proper convex functions and x_{0}\in D(f_{1})\cap D(f_{2}) . Apply-
ing Theorem 2. 11, we can get the following theorem which is a natural
extension of this formula.

THEOREM 2. 13. Let f(\cdot, \cdot) be a convex integrand with the condition
(A). Then for x_{0}\in D(F) , we have

\partial_{\epsilon}F(x_{0})=\bigcup_{\epsilon(\cdot)\in S^{+}(\epsilon)}\int_{\Omega}\partial_{\epsilon(t)}f(x_{0}, t)d\mu(t)

where \partial_{\epsilon(t)}f(x_{0}, t) is the \epsilon(t) -subdifferential of f(\cdot, t) at x_{0} , and S^{+}(\epsilon) is
the set of summable functions \epsilon(\cdot) satisfying \int_{\Omega}\epsilon(t)d\mu(t)=\epsilon and \epsilon(t)\geqq 0

for every t\in\Omega.

PROOF. If \xi\in\partial_{\epsilon}F(x_{0}) , then
F^{*}(\xi)-(\langle\xi, x_{0}\rangle-F(x_{0}))\leqq\epsilon ,

By Theorem 2. 11, there exists a summable function \zeta\in S(\xi) such that

F^{*}( \xi)=\int_{\Omega}f^{*}(\zeta(t), t)d\mu(t) .

We put

\epsilon_{1}(t)=f^{*}(\zeta(t), t)-(\langle\zeta(t), x_{0}>-f(x_{0}, t)) .

Then \zeta(t)\in\partial_{\epsilon 1(t)}f(x_{0}, t) , and

\int_{\Omega}\epsilon_{1}(t)d\mu(t)=F^{*}(\xi)-(\langle\xi, x_{0}\rangle-F(x_{0}))=\epsilon-\alpha

where 0\leqq\alpha\leqq\epsilon . We define \epsilon(t) by \epsilon(t)=\epsilon_{1}(t)+\alpha for every t\in\Omega . Then
we have

\zeta(t)\in\partial_{\epsilon 1(t)}f(x_{0}, t)\subset\partial_{\epsilon(t)}f(x_{0}, t)

\int_{\Omega}\epsilon(t)d\mu(t)=\epsilon .

Hence the inclusion

\partial_{\epsilon}F(x_{0})\subset\bigcup_{\epsilon(\cdot)\in S^{+}(\epsilon)}\int_{\Omega}\partial_{\epsilon(t)}f(x_{0}, t)d\mu(t)

is obtained, and the converse inclusion is obvious.

EXAMPLE 2. We give a simple example which shows that the condition
(A) is essential for our theorems. Let \Omega be the interval [0, 1]\subset R with
Lebesgue measure, and consider the one dimensional case, i . e. , d=1 . We
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define a convex integrand f:R\cross[0,1]arrow R\cup\{+\infty\} to be

f(x, t)=\{
x if x\geqq-t

+\infty if x<-t .

Then

F(x)= \int_{0}^{1}f(x, t)dt=\{
x if x\geqq 0

+\infty if x<0 .

Since F(x)\geqq 0 , O\in\partial F(0) . However, \partial f(0, t)=\{1\} for every t\in(0,1] , and
hence

0 \not\in\int_{0}^{1}\partial f(0, t)dt .

Therefore the formula in Theorem 2. 1 does not hold in this case. Moreover,
we get by a simple computation that

f^{*}(\xi, t)=\{
t(1-\xi) if \xi\leqq 1

+\infty if \xi>1 ,

F^{*}(\xi)=\{
0 if \xi\leqq 1

+\infty if \xi>1 ,

and F^{*}(0)=0 in particular. Since f^{*}(\xi, t) is always non negative, only the
constant function \zeta(\cdot) whose value is 1 can satisfy

\int_{0}^{1}f^{*}(\zeta(t), t)dt=F^{*}(0)=0 .

On the other hand, we have

\int_{0}^{1}\zeta(t)dt=1 .

Consequently, there is no summable function \zeta(t) which satisfies the for-
mula in Theorem 2. 11.
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