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Introduction.

This paper is devoted to proving some fundamental results and general-
ized formulas in convex analysis. In Chapter 1, we will consider some
properties of pointwise convergent sequences of convex functions from the
viewpoint of convergences of infima. In [3], Heinz konig proved that inf
fr—inf f as n——co with some conditions where the sequence {f} con-
verges decreasingly to f, and each f.» and f belong to a certain class of
convex functions. In addition, the r-convergence of convex functions was
considered in [6], [7], and [13], and the equivalence between the -
convergence of {f»} and that of {f»*} was derived with some hypotheses. In
this paper, we deal with only the pointwise convergence, and prove some
results about the convergence of inf 7, and that of {/»*} with natural
hypotheses.

In Chapter 2, we deal with a type of convex integrands, and derive some
formulas for them. In our preceding paper [4], we considered convex opera-
tors f : RDOD(f)— S(Q) where R is the space of real numbers and S(Q)
is the linear space of finite valued measurable functions on a finite measure
space . We proved that f is represented by a convex integrand f(-,): R
X Q—— RU{+c0} such that (f(a))(:)=f(a, ) in LYQ) for every a=R.
Moreover, we proved that (f*(&)(-)=f*(&, -) in LY(Q) for every £ER
where 7* in the conjugate operator of 7 and each f*(-, t) is the conjugate
function of (-, £). Now, we are interested in further properties of f when
the range of f is contained in L'(Q). From this viewpoint, we will define a
class of convex integrands which represent some convex operators from
convex subsets of R? to L'(Q). The aim of this chapter is to prove some
fundamental formulas which are valid in such a class of convex integrands.
Some of our results are considered to be extensions of the following well-
known formulas:

o(fi+ fo)(x)=0f(x)+df(x)  ([1], Theorem I-28)
(AVA)*=A*+1* ([1], Proposition 1-19)
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where fi and f2 are convex functions, and fiV/, is the infimum convolution of
fi and f.. General studies of convex integrands are given in , , ,
and some other articles. We will use some of them to apply the theory of
normality of convex integrands.

I would like to express special thanks to Prof. Koshi for his valuable
suggestions.

Chapter 1. Pointwise convergent sequences of convex functions.

Let f, fu: X— RU{+0} be convex functions where X is a real vector
space. The sequence {f»} is said to converge pointwise to f on X, if lim

n—0

fa(x)=f(x) for all x€X. We denote the effective domain of f by D(¥),
1.e,

D(f)={x= X|f(x) is finite}.

In addition, we adopt the following notations in this paper. For a subset C
of a topological space, we write C for the set of all interior points of C.
For a sequence {a.}CR, we denote the upper limit and the lower limit of
{ax} by lnifrgan and lim a. respectively, i.e., lim a.=lim supa: and lima,=

P n-ow n-ow n<i n—00

llm inf a;.

Nn-oo NSt

§ 1.1

THEOREM 1.1. Let X be a real Banach space, and let f, fn: X— RU
{+00} be lower-semicontinuous convex functions such that {f.} converges
pointwise to f on X. Suppose that D(f) has nonempty intevior and let KC
D°(f) be a compact set. Then fn converges uniformly to f on K.

RERARK. Through this chapter, we do not assume any relation
between D(f) and each D(f»).

PrROOF. For each »=1,2, ---, we put
Fn(.x):S'lliIl_)fi(X).

We will prove that F is locally bounded on K for some ». We define the
level sets of f; as follows:

Lu(f)={x€D(f)lf(x)=m},

where m=1,2, -, =12, .
Since each f; is lower-semicontinuous, L(f;) is a closed convex set
which is possibly empty. Let x be an interior point of D(f), and let V be a
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closed convex symmetric neighborhood of x such that V CD(¥).
We consider the sets Ann» defined by :

An,m=n@ (La(f)N V)

where n=1,2, -, m=1,2, ---.

Each Ann is a closed covex set, and since {f:(x)} converges to f(x),
Anm is nonempty for sufficiently large » and m. Moreover, AnnCAn,m
holds whenever n<#" and m<wm’. It is easy to see that

DE)N V= Anpn
U (DEINV)=V.

Hence We have

Cs

v=U U Apn.
n=1 1

m

1l

By the Baire’s theorem, there exist indices 7o and # such that Ano,mo has
an interior point u. If we put

v=2x—u,

then the neighborhood V includes v, because V is symmetric. Hence there
exist indices 71 and # such that A, ».,2v. Thus we have

Ang,mZBU, Aﬂzymzau

where n:=max {no, n1}, m:=max {m,, m).
Since An,n, is convex,

x:%(u + U)Elinz,mh

and this implies that there exists a neighborhood U, of x such that fz-l(‘ y)<
m2 holds for any /=#, and y€ U.. In other words, F; is bounded on U,
whenever #n=#n,. Now we assume that {f,} does not converge uniformly to
f on K. Then there exist €>0 and a sequence {x,}CK such that

|fn(xﬂ) _f(xn)| =€

for n=1,2,---. By taking a subsequence, we can assume that {x.} tends to
a limit point: xe&K. We note that xED°(f), and that f is continuous at
xo. (cf. p.31) Hence there exists an index #’ such that
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(o) = F(n)l =5
| f2(x0) — £ (x0)| é%

for n=#'. Hence for any n=#»', we have
Ifn(xn)_fn(xo)l ;|fn(xn)_f(xn)| - \fn(XO)"“f(an
= & — (| (x0) — £ ()| + | fu(ow0) — £ (x0)])

AN
ze~(§+5)=5

Using the convexity of each f., we can easily see that this inequality implies
the unboundedness of F,. on any neighborhood of xo. This contradicts the
previous argument, and hence the theorem is proved.

§ 1.2

In Theorem 1.1, the assumption that K is contained in the interior of
D(f) is essential. The following theorem gives a similar result without this
assumption in the case where X is a finite dimensional Euclidean space R
In the proof, we will use the fact that every l.s.c. (lower-semicontinuous)
convex function f defined on R? is continuous on D(f) if d=1. At the end

of this section, we will give an example which shows that this statement is no
longer valid if d =2.

THEOREM 1.2. Let fn, f: R*— RU{+0} be convex functions such
that {fa} converges pointwise to f on R%. If KCD(f) is a compact convex
set, then

inf fn(x)— inf f(x),
xeK xeK
as n—— 0,

REMARK. If f and {f»} are l.s.c. and D(f) has nonempty interior,
the conclusion of [Theorem 1.7 holds true for any compact K that is not
necessarily convex. In fact, D°(f)# ¢ implies /»—f (r-convergence)
(see [13], Cor. 2C), and the r-convergence implies the equi-lower
semicontinuity of {f»} ((13], Lemma 3), from which il;l{f fn—+ir11(f 7 follows

immediately.

PrROOF. By taking the restriction of f and f» to the affine hull of K, we
can assume that K has nonempty interior. It is easy to see that

H(iglf( Falx)) < inf f(x).

n—oo
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Hense if the conclusion is not true, there exist a sequence {x.}CK and &>
0 such that

fn(Xn)éiI;llf( flx)—e.

Since K is compact, we can assume that [x.} Otends to a point xEK.
[heorem 1. 1] asserts that xo, does not belong to KCD°(f). We take inter-
vals 1, I, -+, 4 K such that each of them starts from x, and that the
convex hull of them, co {Ii, --*, Iz}, contains an interior point of K. Let f
be the closure of f which is defined by the relation epi( f )=epi(f) where
epi(/)={(x, @) ER**'|f(x)<a} and epi(f) is its closure. ([1], p.2) Since f
is continuous on each interval I; (i=1,2, -, d) andl.s.c. on K, there exists
r >0 satisfying the following (a) and (b).

@  F=7)+y
for all xE[i(V)Z{xEM ”x—‘Xo||§7’} (izl, 2, Yy d),
b F=7)-

for all x€L(r)=co{Li(r), -+, I.(r)}. By the convexity of f, (a) implies
that

F(2)= Flw)+5

for all x&L(»). We take two points y, z&L°(7) such that z=—%—(xo+y).

For sim_plicity, we assume that z=0 and y= —xo without losing generality.
Since f=f on L°(»), it follows from (a) and (b) that

Sa(—=xn) Z = fa(x2) +2£2(0)
=e— inf f(x)+2/4(0)

—e—inf f(x)+2/(0)

>e— 7 <x0>+2< 7 (x())—f)

Consequently,
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: _ r £
}%rgf”( x)nz sup f(x)+
Since —xr— —xEL°(») and f=f on L°(»), this implies that {f,} does
not converge uniformly to f on any neighborhood of —x,. This contradicts

the assertion of [heorem 1. 1.

ExaMPLE 1. The following example shows that {f.} does not always
converge uniformly to f on K under the conditions in [Theorem 1.2. For
every t>0, we define convex functions f and f:: R*¥=—— RU{+} as fol-
lows :

D(f)=D(f)={(x, v)ER|y=x?},

fle, =% (i y+0);
£(0,0)=0;

ft(X, y):y£|)26|t|_x|t-)i—t2 (if |xl>t);
ft(t, tz):();

fe(x, y)=0 (if |x|<¢).

One can easily check that f and f: are midpoint convex and continuous on
D°(f). Hence they are convex functions. Although f and f: arel.s.c. on
D(f), f is not continuous at (0,0). In fact, f(x, v)=1 whenever y=x? and
y=0. It is easy to see that {f;} converges pointwise to f as t——0. How-
ever,

f(t, )= £, tH)=1—-0=1

holds for every ¢>0, and this implies that the convergence of {f:} is not
uniform on any neighborhood of (0,0). Next we define a compact set K=
{(x, y)ly=x% 0=x<1}, and replace the values of f(0,0) and f:(0,0) by 1.
Then we have

inf filx, v)=0% inf F(x,y)
(x,y)eK (x,y)eK

for every ¢t >0. This fact shows that the conclusion of [Iheorem 1.2 is not
valid if we do not assume the convexity of K.

§ 1.3

Let /: R“— RU{+c0} be a proper convex function, i.e, D(f)=¢.
For £ R*®, we define the conjugate function f* of f as follows:

f*(é)zxggpf) (K&, x>— f(x)),
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D(F)—=(€ R sup (<&, x)— f(x)) < +o0),

In [5], U. Mosco proved the equivalence between a type of convergence of
{f.} and that of {f¥}. However, pointwise convergence of {f.} does not
imply the convergence of {ff} in general. The following theorem shows
that this implication is partly true in finite dimensional cases.

THEOREM 1.3. Let f fa:R*— RU{+c0} be convex functions such

that {f»} converges pointwise to f on R®. If D(f) has nonempty interior,
then

fHE)— f*(&)
holds whenever E€D°(f*), or EED(f*).

LEMMA 1.4. Let f: R RU{+} be a [ s. c. proper convex func-
tion, and define a set :

Ks={xED()If(x)—<& x>=—f*(€)+ 0}

for a positive number 6. If EED°(f*), then K, is a nonempty compact
convex set.

PROOF. Since f is a lower-semicontinuous convex function, K is a
closed convex set. It follows from the definition of f* that K; is not empty
for any 6>0. Therefore the only thing we nust prove is the boundedness of
Ks. Suppose that Ks is unbounded for some 6>0. Then there exists 7E&
R? such that o(Ks; 7)=co0 where o(K;; ) is the supporting functional of
K5 defined by

o(Ks ; n)=sup {7, x>|xEK5}.
Hence for all » >0,
FHE+r-n)=sup {K&+7-7,x0—f(x)}
=sup (K& x>—F(x)+ <7, x>}
zigg {f¥(&)—=0+r<p, x>}=00.

This implies that £ does not belong to the interior of D(f*), and the lemma
is proved.

PROOF of THEOREM 1.3. Incase when f*(£)=co, itis easy to see that
fH(E)—o00. Therefore we consider only the case when £ is an interior point
of D(f*). By taking the convex function g(x)=r(x)—<&, x>, we can
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assume that £=0 without losing generality. In other words, it suffices to
show that

inf fu(x)— inf f(x)

xeD(fn) xXED(S)

under the condition that D°(f)# ¢ and that 0=D°(f*). For simplicity, we
denote i Ellrjl(ff )fn(x) and xg(ff) f(x) by inf £, and inf f respectively. It is easy

to see that

lim {inf fo}<inf /.

Hence, if inf f» does not converge to inf f, there exist €>0 and a sequence
{x-}) CR* such that

Fa(xn)<inf f—e

for n=1,2,+--. By virtue of Theorem 1. 1, we can see that the sequence {xx}
does not have a cluster point in the interior of D(f). Hence the following
cases are possible. ‘

Case 1:{x.} has a cluster point x, which belongs to the boundary of
D(f).

Case 2:{x.} has a cluster point x, which is an exterior point of D().

Case 3:{x»} has no cluster point.
We will derive a contradiction to the assertion of [[Theorem 1. 1l in each case.
Let u=D°(f) be such that

f(u)éinff+§.

The assumption that D(f) has nonempty interior guarantees the existence of
such # in the interior of D(f).

In case 1, we can assume that {x.} converges to a point x, of the bound-
ary of D(f). It follows that

ot 20) S o) + )
<L) +int F—e)
—»%(f(u)ﬂnff—e)
<>(inf f+-S+inf /—¢)

=inf f——4€—.
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Hence we have
]iﬂﬁf%%(u +xn)>§inf f—f
1 _£
éf(—z—(u'f‘Xo)) 4
Since %(u —I—x;;)—*%(u +x,)E€D°(f) and f is continuous at %(u +xo0), this

implies that {f.} does not converge uniformly to f on any neighborhood of

—%—(u +x,). This contradicts the assertion of [Theorem 1.1, and we obtain

that the case 1 is impossible.

In case 2, we similarly assume that {x»} converges to an exterior point
xo of D(f). Then there exists 0<A<1 such that yo=A-u+(1—A)x0 is also
an exterior point of D(f). Let {u.} be a sequence such that

Vo=A*un+(1—2A)xn
for n=1,2, . Then {u.} tends to « and

fn(yo)é/l'fn(un)+(1_/1)'fn(xn)
<A« falun)+(1—A)(inf f—¢)

Since fa(yo)— 0, this inequality shows that fz(u#,)——c0. Thus we obtain
the same contradiction as in the case 1.

In case 3, we will apply to the closure f of f. Since we are
assuming £=0, K, in is the set of all x€D(f) such that f(x)<
inf f +6=inf f+8. Therefore, from Lemma 1.4, there exists » >0 such
that

f(x)=inf f+2¢

holds whenever |x—u||=7. Since the sequence {x.} is unbounded, we can
assume that ||z —x.|——c0. Hence each interval [, x.] includes a point y»
such that ||z —y.|=7, where

From the convexity of each f», it follows that

falyn) =Max {fa(u), falxn)}
:fn(u)
— f(u)

sﬁf+§ (1,1)
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By taking a subsequence of the bounded sequence {v.}, we can assume that
{va} tends to a point v.. Since |u—yo|=7, it follows that

7 (y0) =inf f+2e. (1,2)

If yo belongs to the interior of D(f), then the estimations (1,1) and (1, 2)
yield a contradiction to [Theorem 1.1. Moreover, if y, is an exterior point
of D(f), we can also obtain a contradiction in the same way as in the case
2. Hence we suppose that y, belongs to the boundary of D(f). From the
lower-semicontinuity of f and (1,2), we can choose v=A:u+(1—A1)-y,
such that 0<A<1, and

f(v)2inf f+e. (1, 3)

On the other hand,

falAeu+ A=A y) S A ful ) +(1—2) fulvr)
é/lfn(u)'{'(l—/l)'fn(u)

:fn(u)

— f(u)

<inf f+-- (1,4)
Since f(v)=F(v), it follows from (1,3) and (1, 4) that

lim £,(- w0+ (1= 2)+ yu) < f(v) ~-

n— 00

Since A+u+(1—A)-y»,—v and v is an interior point of D(f), this contra-
dicts[I'heorem 1. 1. Consequently, the case 3 is impossible, and the theorem
has been proved.

Chapter 2. Fundamental properties of a class of convex integrands.

DEFINITIONS.  Let (£, #) be a probability space. A function f:R*X
QR—> RU{+o0} is called a convex integrand if f(-,t) is a proper convex
function for every t€82 and if further f(a, +) is measurable for every a€
R?. We will consider the integral of the form

F(a)= [ f(a, t)du1)

for a convex integrand f(-,-). The function F(-) is obviously a convex
function. A convex integrand f(-, +) is said to represent a convex operator

-~

fiRDOD(f)—LNQ) if (F(a)()=F(a,") in L) for every a=D(f).
For such a convex integrand f(-, -), it is natural to assume the following
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condition (A’).

(A) D(f(-, 1)=D(F)*¢

for almost every tERQ, where D(f(-, t)) is the effective domain of f(-, #).
The condition (A’) implies that the function f(a, ) is identically +<o on £
(in the a.e. sense), whenever ¢ D(F). In this paper, we adopt a slightly
weaker assumption for convex integrands as follows. We will say that a
convex integrand f(-, +) satisfies the condition (A) if

(A)  D(f(-, )=D(F)*¢

for almost every t€2, where D(f(-, t)) and D(F) are the closure of
D(f(-, 1)) and D(F) respectively. For a convex subset CCR® 7 C
denotes the relative interior of C which is the interior of C with respect to the
relative topology of the affine hull of C. It is easy to see that a convex
integrand f(-, +) satisfies the condition (A) if and only if »i D(f(-, ¢))=7i
D(F)=¢. Moreover, I cannot take —oco anywhere under the condition
(A).

§ 2.1

In this section, we will give a proof of a measurable selection theorem
for the subdifferentials of convex integrands. For a multifunction 7 :

Q—2F ’[3 T(t) du(t) denotes the set of all the integrals of summable

selectors of T, i.e,,
[ du(t)———{ [0 du()lt: @R is summable and
¢(t)e T(t) for almost every tE.Q}.

TUEOREM 2.1. Let f(+, *) be a convex integrand with the condition
(A). For every a=D(F) with 0F(a)¥ ¢, we have

OF(a)= [3(a, 1) du(?)

where 0f(a, t) is the subdifferential of f(:, t) at a.

REMARK. If we remove the condition (A), this formula is not valid.
We will show a counterexample at the end of this chapter.

We will prepare some lemmas and notations for our proof of this theo-
rem. For x€R? with x=0, we denote the orthogonal space of x by Nx,
i.e.,
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N.={yERx, y>=0}.

Nx can be identified with R*"'. Moreover, we represent every zER? by
the form

:(21, Zz)x

_ z
where 21ER, 2EN,~R*", and z=71-rx+2 We can regard z as an
]

element of R*"'. Now a function G: R*—— RU{+o0} is said to be a sub-
linear function if

Glx+y)LGx)+ G(y)
G(Ax)=AG(x)

for every x, vER? and A>0.

LEMMA 2.2. Let G:R*—— RU{+} be a sublinear function, and
let x*0 be a fixed element of R. We define G:R*'— RU{+} b
G(y)=G(Ixl, v)x: =Glxl, ¥)x). Then

(‘m) 3G(0)) =3G()ZIG(0).

PROOF. Let 7 be an arbitrary element of 0G(0). For z=(z;, )< R?,
we put

Gilar, 2)=G(2)= Gl —( (G5, 1) , =)
=Ga, 2= Gl 0= (G5 7) , (a=lal, ).
=F(z, Zz)x*%»a“(% 22).

It suffices to show that Gi(zi, 22)x=0 for any zER*. G, is clearly a sub-
linear function and

Gi(x)=Gi(llx], 0)x=0.
Moreover, for every zz&E R,

Gilllxl, z2)x=Glxll, 22)x— G(lxl, 0)x—<7, 22>
= G(Zz) - G(O)“(U, 2—0>

=0.

Hence, by the following lemma, we obtain Gi(z1, 22)x=0, and this completes
the proof.
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LEMMA 2.3. Let G:R*— RU{+} be a sublinear function, and
let x=0, Nx be as above. If G(x)=0, and G(x+u)=0 for every u<s Ny,
then G(y)=0 for every yER®.

PrROOF. We put y=A-x+u, where A&R and uEN,. If A>0, then
G(y)=/1-G(—}i—y)=A-G<x+%u>gO.
If A=0, then

GCy)=GA-x+u)
22G(x+u)—G(Q2—Ax+u)

=2G(x+u)~ 2= NG(x+525 u)

§2G(x—|—u)—(2—/1)<§—:j~G(x)+ﬁG(x+u))

=2G(x+u)—(1—A)G(x)—G(x+u)
=G(x+u)=0.

Thus the lemma is proved.

We will prepare two more lemmas which are useful in general. The
following one gives the definition of recession functions of 1.s.c. convex
functions.

LEMMA 2.4. Let f:R*— RU{+0} be a I s. c. convex function.
For x&D(f), wefine

foolx0; x)zshgg% (f(xo+ hx)— f(x0))

Then fo(x0;+) is a I s. c. sublinear function, and this does not depend on .
the choice of xo=D(f), i.e.,

feolx0 5 )= feol 21 5 )
for every x,, x1€D(f), and x<R*“
ProOF. Itiseasy to see that fu(xo; ) isl.s.c. and sublinear. We will
prove the last statenent. By the monotonicity of %( Flxo+hx)—Ff(x0)) in h,
it follows that

fool 0 ; x)=}1i{g%(f(xo+ b x)— f(x0))

For every xo, x1€D(f), and %2>0, it follows from the lower-semicontinuity
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of f that, for every x€R?,

(f(xo+ hex) = f(x)) li

(1= A)xo+ Axi+ A+ x) — f(x0))
_113)1 A f((1—,1)xo+/1<x1+7x))—f(xo>>

<lim L (1= D7 Go)+ 2+ (3142w )~ £)

_1y n

=7 dm f<9“+ Ax>
Z%ljf? A{f<x1+—x> f(x1)
:%fw x1; hex)

_foo(xl ; X)

This implies that fu(xo; x)< fol(x1; x) for every x€R% Similarly, we can
get that fu(x1; x)= fu(xo; x) for every xR? and this completes the proof.

The function fo(xo; x)=/w(x) in called the recession function of f. We
will use this in proving the following lemma. The well known formula :
0(df(a); x)=f"(a; x) is not always true for a boundary point a of D(f),
where o(A ; x) denotes the supporting functional defined by

0(A; x)=sup<é&, x> ;
€A

and
fa; 0)=lim(f(a+h-x)—F(a).

The following lemma shows that the formula is true whenever f(«;-) is 1.
s.c. (To see this, let G(x)=f"(a;x) and use the fact that 9/ (a; )(0)=
of(a).)

LEMMA 2.5. Let G: R*—— RU{+0} be a I s. c. sublinear function.
Then, for every xER?

0(0G(0) ; x)=G(x).

ProOF. If x is an exterior point of D(G), then there exists 7€ R
such that <7, x>>0 and that <7, y>=0 for any y&D(G) (since D(G) is a
closed cone). Now choose £9G(0) arbitrarily. Then &+A-7€0G(0) for
any A>0, hence 0(dG(0); x)=co=G(x). Next we suppose that xED(G).
Let xo be a relative interior point of D(G), and let x,=xo+#n-x for n=1, 2,

Since D(G) is a convex cone, every x. belongs to the relative interior
of D(G), and 0G(x»)=*¢. If £,€0G(x,), then
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En, mox> 2 G(xn)— G(x0).
Hence, we have
Eny x> %%(G(xn)— G(x0))— Gu(x) as n—— o,
Since G is sublinear, dG(0)D0G(xx), and Gu(x)=G«(0; x)=G(x) for every
xER? Therefore,
for every #, and hence, 0(9G(0); x)=G(x) for every x€R®. The converse

inequality is obvious, and the lemma is proved.

PRrROOF of THEOREM 2.1. It is easy so see the inclusion dF(a)D

/S;Bf(a, t) dn(t), and we will prove the converse inclusion. In one dimen-

sional case, i.e., d=1, dF(a) is a closed interval [, BS]CR, and ¢ and B
are given by

1
h

B=F'(a; l)ZIhigg%(F(a-i-h)—F(a)).

a=F'(a; —1)=lim—7(F(a)~F(a—h));

Similarly, of(a, t)=[a(t), 5(¢)] is given by
o()=lim4-(f(a, )= f(a—h, 1));
B(O)=lim+(f(a+h, 1)~ f(a, £)).

Since these are monotone with respect to %, a(+) and B(+) are measurable
functions and

[ att) dutt)= [ 1im4-(f(a, )= fla—h, )
=lim [ -(f(a, )= fla=h, 1)
=lim—(F(a)—F(a—h))

e

[ 8t dutr)=8.

We note that the hypothesis: D(F)=D(f(-, t)) is used here in order to apply




16 N. Komuro

the monotone convergence theorem. (Refer to Example 2 at the end of this

chapter.) It is easy to see that ‘/!;af(a, t)du(t) is a convex set. Thus we

obtain

[a, 81= [ [a(r), B(1)] die( )
— [[or(a, 1y du(v).

The proof for higher dimensional cases will be done by induction. We will
verify a fundamental fact concerning the convex integrands before continu-
ing the proof.

Let f: R*— RU{+co} be a proper convex function. We recall that
f (the closure of ) is defined by the relation :

epi( £ )=epi(f)

where epi(f) is the epigraph of f, and epi(f) is its closure. We know that
fisl.s.c, and f =fi"*. Moreover, f =f on the relative interior of D(f).
By the definition of f, one can easily verify that

df (a)=0df(a)
for every a=D(f) such that df(a)=*¢.

PROPOSITION 2.6.  Suppose that f(-, *) satisfies the condition (A),
then

Ci) if f(+, t) is L s. c. for almost every t< 8, then so is F(+);
(ii) F‘(x)z[)f(x, t)du(t) holds for every x<R°,

Proor. (i). We denote the restriction of F to a linear line /CR? by
F,. If F,is l.s.c. for every linear line /CR¢ then {x&RYF(x)<a} is
closed for every ¢ R, and this implies that Fisl.s.c. Hence (i) can be
reduced to one dimensional case by considering F; and fi(-, ). Let a be
such that dF(a)=¢. Since Therem 2.1 has been proved in the one dimen-
sional case, we can take a summable function ¢: Q2— R“ such that

[ewydun=ecor(a),

and that ¢(¢)€df(a, t). We put

H(x)=F(x)—<&, x>,
h(x, t)=Ff(x, t)—<&(t), x>.
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Then it suffices to show that H is l.s. ¢c. Since
oh(a, t)=0f(a, t)—¢(¢)>0,

we have h(x, t)=h(a, t) for every xR and t<£2. Note also that #(a, *)
is summable. Let xo be an arbitrary point of R, and let {x.} be a sequence
converging to xo. Since each A(-, ¢) is L.s.c.,

h(x, t)=lim h(xa, ).

n— 0

According to the Fatou’s Lemma,

[ tim e, D) Slim [ R, £)di)

n— oo n— oo
Hence, we get

H(x)<lim H(xx),

n—>0

and this implies the lower-semicontinuity of H.

(ii). In (ii), we do not assume that f(-,¢) is l.s.c. for almost every
t€R. However, if x belongs to the relative interior of D(F), f(x, t)=f(x,
t) holds for every t€8. Hence

Flx)= [ 7(x, )du1)

for every relative interior point x. Thus, (ii) follows from (i).

PROOF of THEOREM 2.1, for d dimensional case. We suppose that this
theorem is valid in d —1 dimensional case, and consider the d dimensional
case. For the first step, we will prove that

e [[of(a, (1)
when & belongs to the boundary of 0F(a). "Since 0F(a) is closed, £é€

0F(a). By taking the convex functions:

H(y)=F(y)—<& »>;
h(y, 1)=1(y, t)—<&, »,

we can assume that £=0 without losing generality. Let x be a nonzero
point in R? such that

0(dF (a) ; x)=<&, x>=0. (2.1)
By Lemma 2.5,
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o(0F(a) ; x)=0(oF (a; - )(0) ; x)
=0(dF (a; )(0); x)
=F(a;x) (2,2)

where 0F'(a; -)(0) is the subdifferential of F(a;+) at 0, and F'(a; ) is
the closure of F'(a;+). Let Ny and (-, *)x be the notations defined in
Lemma 2.2, and define Fi: Nv— RU{+o} by

Fl(y):ﬁm

where yEN.. From (2,1) and (2, 2), we have
F1(0)=m=0,

and it follows from 0F(a)=0 that
F(y)=F(a;x+y)20.

This implies that 0F(0)>0, and by Lemma 2. 2,
(0, 0F1(0))x2£=(0, 0)x.

Similarly, we define
Ay, )=Fla;x+y)

where f{(a;*) is the directional derivative of f(-,¢) at @, and fi(a;*) is
its closure. It is easy to see that a point z& R belongs to the relative
interior of D(F'(a;+)) if and only if there exists #>0 such that a+h-zE7i
D(F). Hence, our assumption »i D(F)=7i D(f(-, t)) implies that #7
D(F'(a;-))=riD(fi(a;-)). Moreover, for every zE€#i D(F'(a;+)), we can
apply the monotone convergence theorem to the following integral.

[ fia; )= [1im-(a+ ko2, )~ Fa, £)dutt)
=tim [ 5-(f(a+h-2, )= f(a, 1)du(1)

zlhigg%(F(a-i-h%)—F(a))
=F(a; z).

Similarly, the same relation holds on the exterior of D(F’(a; +)). Hence,
ﬁ,f{(a ;2)du(t)=F(a; 2)

holds for every zER®. By [Proposition 2.6, we have
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[ 7@ 2 dut)= [ filas ()
=F(a;z)

for every z&R®. Therefore,

JAG, Odt)= [ 7a; 2T 3 de )
=F'(a;x+y)
=F(y)

holds for every y&N,. Moreover,

riD(F'(a;))=riD(F(a:"))
=7 D(fi(a;+))
=7 D(ft((l ))

Hence we can easily see that »i D(F1)=#iD(£(-, t)), and thus the convex
integrand fi(-, +) satisfies the conditions of this theorem in d—1 dimen-
sional case. Hence, we have

OF(0)= L A0, £) duul ).

Since [Jf{(a ‘x)du(t)=F(a; x)=0, it follows from that

=(0, 0)x=(0, 9F:(0))
/(ft(a 1 X) 560, t)) 1(t)

I

C [[a7Ra s )0) i)
— [[o7:(a; )0)dut)
= [ 37(a, t)du(2).

For the final step of the proof, we will consider the interior points of 0F(a).
Let 7 be an arbitrary interior point of 0F(a), and let / be the half line which
starts from £=0, and includes 7, i.e.,

[={E+A(n—8)|A=0}={A-|A=0}.
If 0F(a)N [ is a bounded interval [&, 0] for a boundary point & of 0F(a),
then n<|¢, O]Cfgaf(a, t)du(t), because ¢ belongs to Aé’f(a, t)du(t), and

the set fg&f(a, 1)du(t) is convex. Thus it remains to prove that 7&
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L 3f(a, ) du(t) when aF(a)NI=1. Since dF(a)D1, it follows that

A, b—a>=F(b)—F(a)
holds for any A=20 and 4 R*, and hence,
{p,b—a>=<0 (2,3)
holds whenever 6&D(F). Let £(¢) be a summable selector such that
£(t)€df(a, t)

and that [) £(¢) du(#)=0. Then it follows that

)+, b—a>—(f(b, t)—f(a, )<<y, b—a>

for every t€2. By (2,3), we can easily see that <7, b—a>=0 for bE
D(f(-, t)). Hence, we have

CEW)+n,b—a>—(f(b, t)—f(a, 1))=0

for every t€Q and b=D(f(-, t)). This implies that
&(t)+n€adf(a, t)

for every t€. Moreover,

[(&+ndu)=n,

and this completes the proof of [['heorem 2. 1.
§ 2.2

The aim of this section is to establish a relation between the conjugate
function F* of F and the convex integrand f*(-, -), where f*(-, t) is the
conjugate function of (-, ¢) for each t8. The recession function which
is defined in § 2.1 is useful for this problem. The following proposition
gives a fundamental property of recession functions.

PROPOSITION 2.7. Let f:R*— RU{+} be a [ s. c. proper convex
function. Then

0f=(0)=D(f*)
holds, where D(f¥) is the closure of the effective domain of f*.

ProOF. For every £&D(f*), the convex function g(x)=r(x)—<&, x>
is bounded below. Therefore,
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go(x)=0
for every x€ R*%, and this implies that
folx) Z<E, x>

for every x€R®. Hence, & belongs to 9/-(0), and we obtain D(f*)C df.(0).
Since 0f.(0) is closed, this implies that D(f*)Cdf-(0). Thus it remains to
prove that '

71 0f(0)C D(f¥).

Let ¢ be an arbitrary point of ri df«(0), and let %(+) be a convex function
defined by

h(x)=f(x)—<&, x>.
Then we can easily see that

0he(0)=0f(0)— ¢ ;
D(r*)=D(f*)—¢.

Hence, we can assume that {=0 without losing generality. Let A be the
affine hull of 9/<(0). Since A=0, A is a subspace of R% By A*, we
denote the orthogonal space of A, i.e., A*={yE Ry, x>=0 for every x&
A}. Since 9f.(0)C A, we have

0(9f(0) ; ¥)=0

for every yEA*. By the lower-semicontinuity of f and by [Lemma 2. 5,
0(97(0) 5 - )=1u(+)

on R%. Hence we get fo(v)=0 for every y& A+ and this implies that
flo)=F(x+y)

for every x€ A, and y&A*. On the other hand,
fol)=0(3f(0) ; ) >0

for every x€A with x=0, because 0 is an interior point of 9/-(0) with
respect to the relative topology of A. Hence, we can easily see that the set
ANLf)={x€Alf(x)<a} is bounded for every a=R. This implies that f
is bounded below on A. Moreover, by the previous argument,

inf f(x)=inf f(x)> —o.
xER? xX€A

Thus we obtain 0 D(f*), and the proposition is proved.
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PROPOSITION 2.8.  Under the hypotheses in §2.1, the function
o(D(f*(+, t)); x) is measurable with respect to tEQ, for every xER?, and

LoD, 1) 0)du(D)=o(D(F); ).

PrROOF. We know that D(F*)=D(F*) and D(f*(-, t))=D(f*(-, 1))
hold in general. Therefore, by proposition 2.6, we can assume that F(-)

and f(-,t) are l.s.c, without losing generality. From and
IProposition 2.7, we have

o(D(f*(+, 8)); x)=foolx, t);
o(D(F*); x)=Fu(x).

Hence o(D(f*(-, t)); x) is measurable for every x€R?. By the monotone
convergence theorem,

S, £):0du )= [ fulw, D)

= [limL(F oot hex, £)— Flxo, £))di)

Qh—-oo h

—lim [ (Fxo+ hx, 1) F(xo, D)du(t)

h—oo
:Ihim%(F(onrh-x)—F(xo))

=F.(x)
=o(D(F*); x).

Thus the proposition is proved.

LEMMA 2.9. Let & be a boundary point of D(F*), and let xER® be
such that x=0 and that

& x>=0(D(F*); x).
Then, for every xo=D(F), the convex function
Fxo+A-x)—<E& xo+Ax>
1S non ncreasing with respect to A< R.
PrRoOF. From and [Proposition 2. 7, we have
Fo(x)=0(D(F*); x)=<(&, x.
We take a convex function Fi defined by

Fi(-)=F(-)—<&, -,
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then
(F)o(x)=Fo(x)—<E&, x>=0.

Hence Fi(xo+A-x) is non increasing with respect to A, and the lemma is
proved.

We will consider the function of the form f*(&(¢), ¢) where ¢: Q2— R*
is a measurable function and f(-, +) is a convex integrand with the condition
(A). The theory of normal convex integrand is applicable to prove the
measurability of £*(¢(¢), ¢). A convex integrand f(-, +) is said to be nor-
mal if f(+, t) is proper l.s.c. for each ¢, and if further there exists a count-
able collection Z of measurable functions ¢ from £ to R? having the follow-
ing properties :

(a) for each ¢€Z, f(&(t), t) is measurable in ¢
(b) for each t€Q, {¢(t)|t=Z}ND(f(+, t)) is dense in D(f(-, t)).

The normality of a convex integrand f(-, *) guarantees the measurability of
F(&(t), t) in t for every measurable function ¢ from £ to R®. Moreover, if
f(-,+) is normal, then f*(+,-) is also normal. ([11], Corollary 2B and Prop-
osition 2S)

LEMMA 2.10. Let f(+, *) be a convex integrand with the condition
(A). Then for every measurable function & from 2 to R f*(&(t), t) is
measurable in t.

PrOOF. We take the closures f(-,¢) and F of each f(-,¢) and F.
Then the convex integrand f (-, *) also satisfies the condition (A), i.e.,

D(f (-, t))=D(F)=¢ for almost every tE5.

Let {z.}%-1 be a countable dense subset of D(F), and for each #, let & :
22— R® be a constant function with the value z.. Then the collection
{&u)5-1 satisfies (@) and (b) in the definition of normality. Moreover the
lower-semicontinuity of (-, ¢) is automatic. Hence the convex integrand
f(-,+) is normal, and we have that ( f)*(-, -)=f*(-, +) is normal. Thus
we obtain the measurability of f*(&(¢), ¢).

We are ready to prove the following theorem wich represents the conju-
gate function F* in terms of the convex integrand f*(:, ). For every £€
R¢, we define S(&) as follows.

S(&)={¢: 2— R9¢ is summable, and ./!;i(t)dy(t)——“é}

THEOREM 2.11. Let (-, *) be a convex integrand with the condition
(A). Then
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FX(&)=min{ | f(5(1), D)€ S())

holds for every £ R°.

REMARK. The right side of this formula is called the continuous infimal
convolution of f*(+,t). In [2], this formula is shown with the condition
that f(x, +) is summable for every x&R? Our theorem shows that the
condition is not essential. However, this formula is no longer valid, if we
remove the condition (A). (See Example 2.)

PrROOF. For every ¢(-)€S(€), we have
F*(é)nggpF)Ké, x> —F(x))

= sup. | (E(8), 2> —f(x, £))dp(t)

xeD(F

éf;ngg)(@(t), x>—f(x, t))du(t)
= [ F(6(), o). 2,4)

Hence it suffices to find a summable function £ S(€) such that

F¥(&)= [ £4(5(0), (1),

By [Proposition 2.6 (ii), we can assume that F and each f(-, ) are l.s.c.
without losing generality. The following three cases are possible, and our
proof will be done in each case.

Case 1: £€D°(F*).
Case 2: EED(F™).
Case 3: £€D(F*\D°(F*).

Case 1. Applying [Lemma 1.4, we can easily see that the 1.s.c. con-
vex function F(-)—<&, +> attains its minimum — F*(&), i.e., there exists a
&D(F) such that

F*(&)=<&, a>—F(a).

In other words, £ belongsto 0F(a) for the same a. Hence from Theorem 2.
1, there exists a summable function {&S(€) such that

t((t)saf(a, t)

for every €. Hence it follows that
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[, Ddu(h)= [ sup (<&, x>—F(x, D)dult)

= [e(t), a>—F(a, £))d(1)

=<&, a>—F(a)
=F*(¢).

Case 2. From (2,4), F*(£§)=oo implies that

J ), Haut)=co

for every &€ S(&).

Case 3. We can assume that £€=0 without losing generality. Hence
the assertion of this theorem is equivalent to the following statement :
There exists £ S(0) such that

inf F(z)= gzigd(f(z, 1)—<&(t), 2>)dult). (2,5)

z2ER?
Let x€R® be such that x=0 and that
o(D(F*); x)=<&, x>=0,

and let Nx={zE Rz, x>=0}. Then N, can be identified with R*™'. We
define Fy: Nx— RU{£o} by

Fx(y)=}g£F(y+A-x)

for yENx. One can easily see that Fx is a convex function. By Lemma
2.9, F(y+A4-x) is non increasing with respect to A. Hence we have

Fx(y)=1/1ian(y+A-x).

Since F*(0)<+oo in case 3, Fx cannot take —oo anywhere. Similarly,
we define fx: NxX 2— RU{£ oo} by

f(y, t)=}21f?(f(y+/1-x, t)—@(t)-A)

where O(t)=o(D(f*(+,t));x). Then by [Proposition 2.8, @(:) is summa-
ble, and

L O()du(t)=o(D(F*) : x)=0.

Let 7(¢)eD(f*(-, t)) be such that
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(), x>=0(D(f*(+, ) ; x)=D(2).
Then we have
f+2x, )= O)-A=F(y+A-x, )= (L), y+ A 2> +<7(2), v>.
Hence by Lemma 2.9, this is non increasing with respect to 1, and we have
fly, =lm(f(y+2-x, 1) = O(£)- 2).

Therefore f«(y, +) is measurable for every yEN, If y&D(F), there
exists HWE R such that f(y+4-x, ©)—@(+): A is summable. In addition, by
the condition (A), f(y+A:x, t)— @(t)-A=co for every ASR and almost
every €%, if y is an exterior point of D(Fyx). Hence by the monotone
convergence theorem,

JA, D))= [1im(F(p+Aex, )= 0(1)- Dl

=tim [[(7(y-+4x, )= 0(0): Delu(t)
:Fx(y)

holds if y belongs to D(Fx) or the exterior of D(Fx). Hence by taking the
closures of both sides and by Lemma 2. 6, we get

/S;fx(y, t)du(t)=F«(y) for every yEN. (2,6)

If d=1, Nx={0} and (2,5) follows from (2,6). Thus the theorem is proved
in one dimensional case. We assume that this theorem is valid in d—1
dimensional case where d=2. By the condition (A), one can easily see that
Fx(+, ¢) cannot take —oo anywhere for almost every €8, and the convex
integrand f(, -) also satisfies the condition (A). Hence by identifying N
and R“"', we can apply this theorem in d—1 dimensional case to fa(-,*)
and Fx. By (2.5), there exists a summable function & :Q—> N,~R%!

such that Lg(t)du(t)=0, and that
inf Fx()’):./g yiengx(fx(y, 1= <CE(@), y))du(e).

Define {: 2— R® by &(t)=E(4)+ (HD(ITZ) x. Then ¢ is summable and

L§(t)du(t)=0. Moreover we have

inf F(z)— 1nf Fx(y)

ZeD(F
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Z[‘?yingx(fx(y, £ —<E), vD)du(t)
= [ inf {inf(f(y+2:x, )= O()- )= E(t), y>)du(t)

2yeNx IER
e N JF o(t) .
= leeanx}g(f(y-l-/i x, )—E(t)+ P X, A xd

< 5(z)+%x, vO)du(t)

:ﬁ inf inf(f(y+A-x, t)—<&(t), y+A-x>)du(t)

YENx AER

= [ inf (F(z, )=<E(1), )l ).

Thus we obtain (2,5) in d dimensional case, and this completes the proof of

'Theorem 2. 11l.
§ 2.3.

In this section, we will give two theorems which are derived from

[Iheorem 2. 11l

THEOREM 2.12.  Let f(-, *) be a convex integrand with the condition
(A). Then we have

D(F*)= [ DU, D)dut),

Proor. The inclusion D(F*)D'/QD(J‘*(-, t))du(t) is obvious. On the

other hand, if F*(£)<oo, then there exists a summable function ¢:
22— R? such that

[ewau)=¢

and that F*(@:Lf*(c(t), )du(t)<oo. Hence t(t)ED(f*(-, t)) for

almost every t< £, and this completes the proof.
For a proper convex function f: R*— RU{+} and a positive num-
ber &, the e-subdifferential of f at xo=D(f) is defined by

0ef (x0)={EE RKE, x0>— f(x0) 2<E, x>—f(x)—¢, for every xE
D(f)}.

The following is a well known formula.

0:(i+ fo)(x0)= el,Lnggo (0e, f1(xx0) + 0c,f2(x0))

€1t+€2=¢
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where fi and f. are proper convex functions and x€D(A)ND(f;). Apply-
ing [I'heorem 2. 11, we can get the following theorem which is a natural
extension of this formula.

THEOREM 2.13.  Let f(-, *) be a convex integrand with the condition
(A). Then for xo=D(F), we have

0F ()=, [ decw Flon, 1))

e(+)ES+(¢)
where Ocv f(xo, t) is the e(t)-subdifferential of f(-, t) at xo, and S*(e) is

the set of summable functions e(+) satisfying [2 e(t)du(t)=¢e and e(t)=0
for every tE L.

PROOF. If £€9.F(x), then
F*(&)— (K€, xo0— F(x0)) <,
By [Theorem 2. 11| there exists a summable function {€S(&) such that

F¥(&)= [ 7*(£(8), D))

We put

al(t)=r*(&(t), 1) —(K&(t), x> — F(x0, 1)).
Then §(#)E 0,y f(x0, ), and

L ex()du(t)=F*(&) — (<&, x> — Flxo)=¢—a

where 0=a<e. We define (¢) by e(t)=ei(t)+a for every t€2. Then
we have

E(4)E ey f(x0, )T Decey f(xo, t)
[e(t)aun)=e.

Hence the inclusion

oF(x)C U )/{;aeu)f(xo, t)du(t)

€(+)ESH(¢e
is obtained, and the converse inclusion is obvious.

EXAMPLE 2. We give a simple example which shows that the condition
(A) is essential for our theorems. Let £ be the interval [0, 1] R with
Lebesgue measure, and consider the one dimensional case, i.e., d=1. We
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define a convex integrand f: RX[0,1]— RU{+0} to be

_(x  ifx=2—t
flx, t)‘{+oo if x<—t.
Then
1 if x=0
Fl=[ £, t)dt:{)ioo if r<0

Since F(x)=0, 00F(0). However, 0f(0, t)={1} for every t<(0, 1], and
hence

0 £ "5£(0, )t

Therefore the formula in [Theorem 2. 1 does not hold in this case. Moreover,
we get by a simple computation that

oo o [t1—8) if £<1
&, t)_{+oo if £>1,
oo (0 if £<1
K (’5)—{+oo if £€>1,

and F*(0)=0 in particular. Since f*(&, t) is always non negative, only the
constant function ¢(+) whose value is 1 can satisfy

[ ey, Dat=F@)=0.
On the other hand, we have
Il (Dt =1.

Consequently, there is no summable function {(#) which satisfies the for-
mula in [['heorem 2. 11l
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