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The average of joint weight enumerators
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(Received May 24, 1988)

Abstract. Let C and D be binary linear codes of length n, and let S_{n} be
the symmetric group of degree n . We denote by W_{C,D} the joint weight
enumerator of C and D. The purpose of this paper is to represent the
average of joint weight enumerators

\frac{1}{n!}\sum_{\pi\in Sn}W_{C^{\pi},D}(a, b, c, d)

by using the ordinary weight distributions of C and D.

1. The statement of the main theorem

Let F:=GF(2) be the 2-element field and let V:=F^{n} be the row
vector space of n-dimension. Put N:=\{1, \cdots, n\} . The support and the
weight of a vector v\in V is defined by

supp(v):=\{i\in N|v_{i}\neq 0\}

|v|:=wt(v):=|supp(v)| .

A code (or more precisely binary linear code) C of length n is a subspace of
V The minimum weight d of C is

d := \min\{|u||0\neq u\in C\} .

When a code C of length n is of dimension k and has the minimum distance
d , the code is called a [n, k] -code or a [n, k, d] -code.

The dual code of C is defined by

C^{\perp}= { v\in V|\langle u , v\rangle=0 for all u\in C},

where \langle u, v\rangle is the ordinary scalar product.
Let \pi be a permutation on N. For v\in V . the vector v^{\pi} is the vector of

which i-th component is v_{\pi i} . Thus the symmetric group S_{n} acts on V as an
automorphism group of the vector space. The code

C^{\pi} :=\{u^{\pi}|u\in C\}

is called an equivalent code to C. When C^{\pi}=C , the pemutation \pi is called
an automorphism of C. The automorphism group Aut(C) of the code C is
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the subgroup of S_{n} consisting of all automorphisms of C. Under this action
of S_{n} , the weight and the scalar product on V are invariant. Clearly the
number of equivalent codes to C is |S_{n} : Aut(C)| .

The weight enumerator of a code C is

W_{C}(x, y):= \sum_{u\in C}xyn-|u||u|

= \sum_{r}A_{r}x^{n-r}y^{r} ,

where A_{r} is the number of te elements of C of weight r .
For any pair of row vectors u , v\in V . we define

I(u, v):=\#\{i\in N|u_{i}=0, v_{i}=0\} ,
J(u, v):=\#\{i\in N|u_{i}=0, v_{i}=1\} ,

K(u, v):=\#\{i\in N|u_{i}=1, v_{i}=0\} ,
L(u, v):=\#\{i\in N|u_{i}=1, v_{i}=1\} .

n=I(u, v)+J(u, v)+K(u, v)+L(u, v) ,
|v|=J(u, v)+L(u, v) ,
|u|=K(u, v)+L(u, v) .

Let C and D be codes of length n. Then the joint weight enumerator of C
and D is

W_{C.D}(a, b, c, d):= \sum_{u\in C}\sum_{v\in D}a^{I(u,v)}b^{f(u.v)}c_{d^{L(u,v)}}^{K(u,v)}

= \sum_{i,j,h,l}A_{i,j.h,l}^{C,D}a^{i}b^{j}c^{h}d^{l} ,

where a , b , c , d are indeterminates and A_{i,j,h,l}^{C,D} is the number of the pairs of
u\in C and v\in D such that

I(u, v)=i, J(u, v)=j, K(u, v)=k, L(u, v)=t .

It is proved in [MMS. 72] that a joint weight enumerator satisfies the follow-
ing generalized MacWilliams identities:

W_{C^{\perp},D}(a, b, c, d)= \frac{1}{|C|}W_{C,D}(a+c, b+d, a-c, d-d) .

W_{C,D} \perp(a, b, c, d)=\frac{1}{|D|}W_{C,D}(a+b, a-b, c+d, c-d) .

Now, the average joint weight enumerator of C and D is defined by

W_{C,D}^{av}(a, b, c, d):= \frac{1}{n!}\sum_{\pi\in s_{n}}W_{C^{\pi},D}(a, b, c, d) .

Clearly if C’ is equivalent to C and D’ is equivalent to D, then W_{CD’}^{av},,(a, b , c ,
d)=W_{C,D}^{av}(a, b, c, d) .
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MAIN THEOREM. Let C and D be binary linear codes of length n.
Let A_{r}(resp. B_{r}) be the number of elements of C (resp. D) of weight r.
Then

W_{C,D}^{av}(a, b, c, d)= \sum_{r,s}A_{r}B_{s}a^{n-r-s}b^{s}c^{r}F_{n,r,s}(ad/bc) ,

where

F_{n,r,s}(z):= \Sigma_{i}\frac{(\begin{array}{l}si\end{array})(\begin{array}{l}n-sr-i\end{array})}{(\begin{array}{l}nr\end{array})} z^{i}

is the probability generating function of the hypergeometric distribution H(r,

s, n) .
Clearly, J(u, v)=K(u, v)=0 if and only if u=v . Thus

W_{C,D}^{av}(1, 0, 0, 1)= \frac{1}{n!}\sum_{\pi\in Sn}|C^{\pi}\cap D|(=:\Delta(C, D)) .

We call \Delta(C, D) the average intersection number of C and D. The follcw-
ing corollary follows directly from the main theorem.

COROLLARY 1. Under the same assumption,

\Delta(C, D)=\sum_{r}A_{r}B_{r}/(\begin{array}{l}nr\end{array}) .

2. Proof of the theorem

In this section we give the proof of the main theorem. For two codes C

and D of length n, define
B_{r,s,i}^{CD} :=\#\{(u, v)\in C\cross D||u|=r, |v|=s, L(u, v)=i\} .

Then we have that
A_{i,j,k,l}^{C,D}=B_{k}^{c}\dotplus^{D}l,j+l,l for i+j+k+l=n,

and so
(2-1) W_{C,D}(a, b, c, d)= \sum_{r,s,l}B_{r,s,l}^{C,D}a^{n-r-s+l}b^{r-e}c^{s-l}d^{l} .

Let C_{r}(resp. D_{r}) be the set of elements of C(resp. D) of weight r . In
order to calculate the sum of B_{r,s.l}^{C^{\pi},D} for all \pi\in S_{n} , we count the following
number in two ways:

\#\{(u, v, \pi)\in C_{r}\cross D_{s}\cross S_{n}|L(u^{\pi}. v)=l\}
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for r , s , l\in N . First of all, this number is equal to
(2-2) \sum_{\pi\in Sn}B_{r,s,l}^{C^{\pi},D} .

Next this number is also equal to

(2-3) \sum_{u\in Cr}\sum_{v\in D_{S}}\#\{\pi\in S_{n}|L(u^{\pi}. v)=l\} .

In order to calculate (2-3), let u\in C_{r} , v\in D_{s} and let A:=supp(u) , B:=
supp(z;) . Then

\#\{\pi\in S_{n}|L(u^{\pi}. v)=l\}=\#\{\pi\in S_{n}||A^{\pi}\cap B|=l\}

=r ! (n-r) ! \#\{A’\subseteq N||A’|=r, |A’\cap B|=l\}

=r ! (n-r) ! (\begin{array}{l}sl\end{array})(\begin{array}{l}n-sr-l\end{array})

=n ! (\begin{array}{l}sl\end{array})(\begin{array}{l}n-sr-l\end{array})/(\begin{array}{l}nr\end{array}) .

Remember that the subgroup of S_{n} which stabilizes a subset A with |A|=r
has the order r!(n-r) ! 1 Since (2-2) and (2-3) are equal, we have that

(2-4) \sum_{\pi\in sn}B_{r,s,l}^{C^{\pi}D}=A_{r}B_{n}n ! (\begin{array}{l}sl\end{array})(\begin{array}{l}n-sr-l\end{array})/(\begin{array}{l}nr\end{array}) .

By (2-1) and the definition of the average weight enumerator, we have that

W_{C,D}^{av}(a, b, c, d)= \sum_{r,s,l}A_{r}B_{s}\frac{(\begin{array}{l}sl\end{array})(\begin{array}{l}n-sr-l\end{array})}{(\begin{array}{l}nr\end{array})} a^{n-r-s+t}b^{s-l}c^{r-1}d^{l}

= \sum_{r,s,l}A_{r}B_{s}a^{n-r-s}b_{c}^{sr}F_{n,r,s}(ad/bc) .

The theorem in proved.

3. Numerical examples

In this section, we give some examples of the average joint weight
enumerators for some well-known self-dual codes.

(1) Let C=\{0,1\} be the repetition code of length n and let D be any
code of length n. Then

W_{C,D}^{av}(a, b, c, d)=W_{D}(a, c)+W_{D}(b, d) ,

where W_{D}(x, y) is the weight enumerator of D.
(2) Let H_{8} be the extended Hamming code of length 8. Then
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W_{H_{8},H_{8}}^{av}(a, b, c, d)=a^{8}+b^{8}+c^{8}+d^{8}+14(a^{4}+d^{4})(b^{4}+c^{4})

+ \frac{14}{5}(a^{4}d^{4}+b^{4}c^{4}+16ab^{3}c^{3}d

+16a^{3}bcd^{3}+36a^{2}b^{2}c^{2}d^{2})

Furthermore by the corollary, we have that

\Delta(H_{8}, H_{8})=1+14/5+1=4.8 .

(3) Let G_{24} be the binary Golay code of length 24. The weight distri-
butions of this code are A_{0}=A_{24}=1 , A_{8}=A_{16}=759 , A_{12}=2576 . Thus

\Delta(G_{24}, G_{24})=2+\frac{759^{2}}{(\begin{array}{l}248\end{array})}\cross 2+\frac{2576^{2}}{(\begin{array}{l}2412\end{array})}

=2^{8}\cdot 5\cdot 79/13\cdot 17\cdot 19

=6.02048 .

(4) Let H_{8}^{3} be the direct sum of three copies of the extended Hamming
code H_{8} . Then

\Delta(H_{8}^{3}, G_{24})=2+\frac{759\cdot 591}{(\begin{array}{l}248\end{array})}\cross 2+\frac{2576\cdot 2828}{(\begin{array}{l}24l2\end{array})}

=2^{8}\cdot 97/13\cdot 17\cdot 19 .
=5.91378 .

(5) Let C_{72} be a self-dual [72, 36, 16]-code in which the weight of each
codeword is a multiple of 4. It is unknown whether such a code exists or not.
The weight distribution of this code is found, for example, in [CP. 82] .
Then we have that

\Delta(C_{72}, G_{24}^{3})=28560387512926208/4760059542649555

=6.00000635643915940561 . . :

\Delta(C_{72}, C_{72})=2810910453382553600/4684850601875692031

=6.00000019692653239457 . .

4. Some remarks

(1) As is stated in Section 1, joint weight enumerators satisfy general-
ized MacWilliams identities. Thus average joint weight enumerators also
satisfy such identities. However they follow from the ordinary MacWil-
liams identity for weight enumerators, and hence we can not obtain any new
restrictions to weight distribution. This disappointing fact is shown as
follow : Let C and D be (binary linear) codes of length n. Let
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W_{C}(x, y)= \sum_{r=0}^{n}A_{r}x^{n-r_{\mathcal{Y}}r} , W_{D}(x, y)= \sum_{r=0}^{n}B_{r}x^{n-r}y^{r_{\wedge}}

be the weight enumerators of C, D, respectively. Then by the main the0-
rem, we have that

W_{C,D}^{av}(a, b, c, d)= \sum_{s}B_{s}\frac{(n-s)!}{n!}(b\frac{\partial}{\partial a}+d\frac{\partial}{\partial c})^{s}W_{C}(a, b) .

From the MacWilliams identity

W_{c\perp}(x, y)= \frac{1}{|C|}W_{C}(x+y, x-y) ,

we have the generalized MacWilliams identity

W_{C^{\perp}.D}^{av}(a, b, c, d)= \frac{1}{|C|}W_{C,D}^{av}(a+c, b+d, a-c, b-d) .

(2) If we use the general linear group \Gamma:=GL(n, 2) instead of the
symmetric group S_{n} , then the average intersection number of D, D is given
by the following:

\frac{1}{|\Gamma|}\sum_{\sigma\in\Gamma}|C^{\sigma}\cap D|=1+\frac{(|C|-1)\cdot(|D|-1)}{|V|-1} .

This is easily proved by counting in two ways. For example, if C and D are
self-dual of dimension k, then this value is equal to 2(2^{k}-1)/(2^{k}+1)\approx 2 .

(3) It seems provable that the average intersection numbers of doubly-
even self dual binary codes are asymptotically equal to 6.
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