A Bochner type theorem for compact groups*)

Toma TONEV (Received July 9, 1987, Revised June 15, 1988)

Introduction

Let G be a compact abelian group and Γ_0 be a fixed subsemigroup of the dual group $\Gamma = \hat{G}$ of G. It is well known that in the case when G is the unit circle S^1 and $\Gamma_0 = \mathbb{Z}_+$ any complex Borel measure $d\mu$ on G with zero nonpositive Fourier-Stieltjes coefficients $c_{-n} = \int_0^{2\pi} e^{int} d\mu(t)$, $n \in \mathbb{Z}_+$, is absolutely continuous with respect to the Haar (i. e. Lebesgue) measure $d\sigma$ on $G = S^1$. This is exactly the famous F. and M. Riesz theorem for analytic measures on the unit circle (e.g. [1]). In the sequel we shall use the following

DEFINITION 1. A pair (G, K) of a compact abelian group G and a subset K of its dual group $\Gamma = \hat{G}$ is said to be a <u>Riesz pair</u> if every finite Borel measure $d\mu$ orthogonal to K (i. e. $\int_{G} \chi(x) d\mu(x) = 0$ for any $\chi \in K$) is absolutely continuous with respect to the Haar measure $d\sigma$ on G.

The F. and M. Riesz theorem says that (S^1, \mathbb{Z}_+) is a Riesz pair. As shown by S. Koshi and H. Yamaguchi [3] in the case when $\Gamma_0 \cup \Gamma_0^{-1} = \Gamma$ and $\Gamma_0 \cap \Gamma_0^{-1} = \{1\}$ an analogue of F. and M. Riesz theorem for analytic measures on a compact connected group G does not hold unless $G = S^1$ and $\Gamma_0 = \mathbb{Z}_+$ (or \mathbb{Z}_-). A theorem by I. Glicksberg [2] says that (S^1, Γ_0) is a Riesz pair for any subsemigroup Γ_0 of \mathbb{Z} , such that $\Gamma_0 - \Gamma_0 = \mathbb{Z}$. Consequently any finite complex Borel measure on S^1 that is orthogonal to such $\Gamma_0 \subset \mathbb{Z}$ and is singular with respect to the Haar measure on S^1 coincides with the zero measure on S^1 . On the other hand according to Bochner's theorem (e.g. [1]) (T^2, K) is a Riesz pair, where T^2 is the two dimensional torus and K is the complement in $\mathbb{Z}^2 = \hat{T}^2$ of a plane angle less then 2π edged at the origin. Here we extend Glicksberg's theorem and give a general construction of Riesz pairs that generalizes the Bochner's one.

1. Low-complete subsets of partially ordered sets

Let G be a compact abelian group. If Γ_0 is a subsemigroup of its dual

^{*)} Partially supported by Committee for Science, Bulgaria, under contract No. 386.

group $\Gamma = \hat{G}$, such that $\Gamma_0 \cup \Gamma_0^{-1} = \Gamma$ then Γ can be provided in a natural way with a partial <u>ordering</u> (the so called Γ_0 -ordering), namely, by defining that *a* follows *b* ($\overline{a > b}$) iff $ab^{-1} \in \Gamma_0$, *a*, $b \in \Gamma$. This ordering possesses the following properties : ac > bc whenever a > b for any *a*, *b*, *c* from Γ ; for every $a \in \Gamma$ either a > 1 or 1 > a, where both conditions can be fulfilled simultaneously. If in addition $\Gamma_0 \cap \Gamma_0^{-1} = \{1\}$ then the Γ_0 -ordering is <u>complete</u>, i. e. a > b >*a* implies always that a = b. As mentioned before if a $\overline{\Gamma_0}$ -ordering of $\Gamma = \hat{G}$ is complete, then (S^1, \mathbb{Z}_+) and (S^1, \mathbb{Z}_-) are the only Riesz pairs of type (G, Γ_0) .

DEFINITION 2[6]. Let Z be a partially ordered set and let Ω be a subset of Z. Ω is said to be <u>low-complete</u> with respect to the given ordering in Z iff for any subset $Y \subset Z$ that is bounded from below by some element of Ω there exists in $\Omega \setminus Y$ a greatest among all lower boundaries of Y.

EXAMPLE 1. Let $Z = Z^2$ is the standard Z-lattice in \mathbb{R}^2 provided with the partial ordering generated by the semigroup $\Gamma_0 = Z^2 = \{(n, m) \in \mathbb{Z}^2 : n \ge 0\}$. Here $\Gamma_0 \cap \Gamma_0^{-1} = \{(0, n) : n \in \mathbb{Z}\} \neq \emptyset$. The set $\Omega = \{(n, m) : n \le 0, m = 0\}$ is low-complete with respect to the Γ_0 -ordering in \mathbb{Z}^2 . Indeed, let Y be a subset of \mathbb{Z}^2 that is bounded from below by some element (n, 0) of Ω . This simply means that $Y \subset \{(n, m) \in \mathbb{Z}^2 : n \ge n_0 \le 0\}$ and it is clear that in $\Omega \setminus Y$ there exists a greatest low boundary for Y, namely the point $(n_1, 0)$, where $n_1 = \max \{n : (n, 0) \notin Y\}$.

EXAMPLE 2. Let now $Z = \mathbb{Z}^2$ is provided with the partial ordering generated by the semigroup $\Gamma_0 = \{(n, m) \in \mathbb{Z}^2 : m \leq \sqrt{2}n\}$. Here $\Gamma_0 \cap \Gamma_0 = \{0\}$ The set $\Omega = \{(n, m) \in \mathbb{Z}^2 : n \leq 0, |m| \leq -n\}$ is low-complete with respect to the Γ_0 -ordering in \mathbb{Z}^2 . Indeed let Y be a subset of \mathbb{Z}^2 that is bounded from below by some element $(n_0, m_0) \in \Omega$. This means that $Y \subset \{(n, m) \in \mathbb{Z}^2 : m \leq \sqrt{2}(n-n_0)+m_0\}$, i.e. Y lies on the right hand side of the line $\lambda : y = \sqrt{2}(x-n_0)+m_0$. If λ_1 is the rightest possible line parallel to λ , so that Y lies on the right hand side of λ_1 , then $\lambda_1 \cap \{(x, y) \in \mathbb{R}^2 : x \leq 0, |y| = -x\}$ is a finite segment from λ_1 and it is easy to see that there are points from $\Omega \setminus Y$ that are closest to λ_1 . That it will be only one closest to λ_1 point in $\Omega \setminus Y$ follows from the fact that the line $y = \sqrt{2}x$ contains only one point (namely 0) from \mathbb{Z}^2 .

EXAMPLE 3. In the previous example one can take Q to be any subset of \mathbb{R}^2 , which intersections with every line parallel to $y = \sqrt{2} x$ are bounded segments and to define Ω to be $Q \cap \mathbb{Z}^2$, or, equivalently, all the sets Ω -(n, m), where $(n, m) \in \Omega$, to be finite.

2. Main results

The next theorem is an extension of the mentioned at the beginning Glicksberg's theorem.

THEOREM 1. Let G be a compact abelian group, let Γ_0 be a fixed subsemigroup of the dual group $\Gamma = \hat{G}$ of G, for which $\Gamma_0 \cup \Gamma_0^{-1} = \Gamma$, $\Gamma_0 \cap \Gamma_0^{-1} =$ {1} and let Σ be a nonempty subset of $\Gamma \setminus \Gamma_0$ that is low-complete with respect to the Γ_0 -ordering in Γ . Then every finite complex Borel measure $d\mu$ on G that is orthogonal to the set $K = \Gamma \setminus \Sigma$ and is singular with respect to the Haar measure $d\sigma$ on G coincides with the zero measure on G.

Assume that $d\mu \neq 0$. Then $d\mu$ is not orthogonal to Γ by the PROOF. uniqueness theorem for Fourier-Stieltjes transforms. Let $Y = \{\chi \in \Gamma : \chi \in \Gamma \}$ $\int_{G} \boldsymbol{\chi}_{1}(g) d\boldsymbol{\mu}(g) = 0 \text{ for every } \boldsymbol{\chi}_{1} > \boldsymbol{\chi} \}. \text{ Note that } Y \text{ contains' every } \boldsymbol{\chi} \in \Gamma \text{ that}$ follows some element of Y. Also Y contains the whole semigroup Γ_0 . On the other hand Y is bounded from below by some element of Σ because in the opposite case every element of Σ will follow some element of Y and consequently will belong to Y in contradiction with $d\mu \perp \Gamma$. Since Σ is a lowcomplete subset of Γ there will exist in $\Sigma \setminus Y$ an element that is biggest among all low boundaries of Y, say δ . Then we have $\delta(\Gamma_0 \setminus \{1\}) \subset Y$. To see this assume $\delta \cdot \chi \notin Y$ for some $\chi \in \Gamma_0 \setminus \{1\}$. Therefore there exists a $\chi_1 \in \Gamma_0$ such that $\int_{\mathcal{C}} \chi_1(g) \chi(g) \delta(g) d\mu(g) \neq 0$. Thus $\chi_1 \chi \delta \in \Sigma \setminus Y$ because $d\mu$ is orthogonal to $\Gamma \setminus \Sigma$ and because of the definition of Y. Since $\chi_1 \chi \delta > \chi \delta$, $\chi_1 \chi \delta$ is not a low boundary of Y. Consequently $\chi_1 \chi \delta$ follows some element of Y and henceforth $\chi_1 \chi \delta \in Y$ by the definition of Y. But this is a contradiction. Hence $\chi \delta \in Y$ for every $\chi \in \Gamma_0 \setminus \{1\}$, i. e. $\delta \Gamma_0 \setminus \{1\} \subset Y$, where from $\int_C \chi(g) \delta(g) d\mu(g) =$ 0 for every $\chi \in \Gamma_0 \setminus \{1\}$. Denote by $d\nu$ the complex measure $d\nu = \delta d\mu$ on G. We have:

(1)
$$\int_{G} \chi(g) d\nu(g) = \int_{G} \chi(g) \delta(g) d\mu(g) = 0$$

for every $\chi \in \Gamma_0 \setminus \{1\}$. Put $d\tilde{v} = \delta d\mu - d\sigma$. Then $\int_c \delta(g) d\mu(g) = 0$ by the Helson-Lowdenslager theorem [6] because $\int_c \chi(g) d\tilde{v}(g) = 0$ for each $\chi \in \Gamma_0 \setminus \{1\}$ and $d\tilde{v}_s = \delta d\mu$. This implies $\delta \in Y$. But this is a contradiction. The theorem is proved.

The next theorem generalizes Bochner's theorem.

T. Tonev

THEOREM 2. Let G be a fixed compact abelian group, let Ξ be a family of subsemigroups $\{\Gamma_{\alpha}\}_{\alpha \in \mathbb{N}}$ of its dual group $\Gamma = \hat{G}$ such that $\Gamma_{\alpha} \cup \Gamma_{\alpha}^{-1} = \Gamma$ for every $\alpha \in \mathbb{N}$ and let $\delta_{\alpha} \in \Gamma_{\alpha}^{-1}$ for every $\alpha \in \mathbb{N}$. If the complement $\Sigma = \Gamma \setminus K$ of the set $K = \bigcup_{\alpha \in \mathbb{N}} \delta_{\alpha} \Gamma_{\alpha}$ is low-complete with respect to the Γ_{0} -ordering, generated by some semigroup Γ_{0} from Ξ with $\Gamma_{0} \cap \Gamma_{0}^{-1} = \{1\}$, then every finite Borel measure on G that is orthogonal to K is absolutely continuous with respect to the Haar measure $d\sigma$ on G.

Theorem 2 means simply that under above conditions (G, K) is a Riesz pair.

PROOF. Let $d\mu$ be a finite Borel measure on G that is orthogonal to the set K. Then $d\mu \perp \delta_{\alpha}\Gamma_{\alpha}$ for each $\alpha \in \mathfrak{A}$ and thatswhy the measure $d\nu_{\alpha} = \delta_{\alpha}d\mu$ is orthogonal to the semigroup Γ_{α} for each $\alpha \in \mathfrak{A}$. As shown by Yamaguchi [4] both absolutely continuous $((d\nu_{\alpha})_{a})$ and singular $((d\nu_{\alpha})_{s})$ components of the measure $d\nu_{\alpha}$ with respect to $d\sigma$ are orthogonal to Γ_{α} , i. e. $(d\nu_{\alpha})_{a} \perp \Gamma_{\alpha}$, $(d\nu_{\alpha})_{s} \perp \Gamma_{\alpha}$. If $d\mu = d\mu_{a} + d\mu_{s}$ is the Lebesgue decomposition of $d\mu$, then $\delta_{\alpha}d\mu_{s} \perp \Gamma_{\alpha}$ since $\delta_{\alpha}d\mu_{s} = (\delta_{\alpha}d\mu)_{s} = (d\nu_{\alpha})_{s} \perp \Gamma_{\alpha}$. Hence $d\mu_{s} \perp \delta_{\alpha}\Gamma_{\alpha}$ for any $\alpha \in \mathfrak{A}$ and consequently $d\mu_{s} \perp K$ for $K = \bigcup_{\alpha \in \mathfrak{A}} \delta_{\alpha}\Gamma_{\alpha}$. Now G, $d\mu_{s}$, $\Sigma = \Gamma \setminus K$ and Γ_{0} satisfy the conditions of Theorem 1 and thatswhy $d\mu_{s} = 0$. Hence $d\mu = d\mu_{a}$. Q. E. D.

In the case when $\Gamma_{\alpha} \cap \Gamma_{\alpha}^{-1} = \{1\}$ Theorem 2 is proved in[6]. Bochner's theorem and its *n*-dimensional version for Borel measures on the *n*-dimensional torus T^n is a simple corollary from Theorem 2. Actually we can obtain the following:

COROLLARY 1. Let L be a closed convex set in \mathbb{R}^n that is contained entirely in some half-space E_0 of \mathbb{R}^n with $\lambda \cap \mathbb{Z}^n = \{0\}$, where λ is the (n-1)-dimensional boundary of E_0 and such that the intersections of L with all (n-1)-dimensional spaces parallel to λ are bounded. Then every finite complex Borel measure on the n-dimensional torus T^n with vanishing outside L Fourier-Stieltjes coefficients is absolutely continuous with respect to the Haar measure $d\sigma$ on T^n .

PROOF. As a closed convex set, L is an intersection of certain family of closed half-spaces E_{α} , $\alpha \in \mathfrak{A}$, i. e. $L = \bigcap_{\alpha \in \mathfrak{A}} E_{\alpha}$. Without loss of generality we can assume that the boundary of E_{α} contains some point (say Z_{α}) from \mathbf{Z}^{n} for every α and that E_{0} belongs to this family. For semigroups $\Gamma_{\alpha} =$ $(Z_{\alpha} - E_{\alpha}) \cap \mathbf{Z}^{n}$ we have: $0 \in \Gamma_{\alpha}$, $\Gamma_{\alpha} \cap -\Gamma_{\alpha} = \{0\}$ for each $\alpha \in \mathfrak{A}$. For $K = \mathbf{Z}^{n} \setminus$ (-L) we get: $K = -(\mathbf{Z}^{n} \setminus L) = -(\mathbf{Z}^{n} \setminus \bigcap_{\alpha \in \mathfrak{A}} E_{\alpha}) = -\bigcup_{\alpha \in \mathfrak{A}} (\mathbf{Z}^{n} \setminus E_{\alpha}) = -\bigcup_{\alpha \in \mathfrak{A}} (\mathbf{Z}^{n} \setminus E_{\alpha})$ $(Z_{\alpha}-\Gamma_{\alpha})) = \bigcup_{\alpha \in \mathfrak{A}} (\mathbb{Z}^n \setminus \Gamma_{\alpha} - Z_{\alpha})).$ The set $\Sigma = \mathbb{Z}^n \setminus K = \mathbb{Z}^n \cap L$ is low complete with respect to the Γ_0 -ordering on Γ . Indeed, let Y be a bounded from below subset of \mathbb{Z}^n . This means that $Y \subset -E_0 + Z_1$ for some point $Z_1 \in \mathbb{Z}^n$. Let Z_2 $\in \mathbb{Z}^n$ be such that $Y \subset -E_0 + Z_2$, but $Y \not\subset -E_0 + Z$, $Z \in \mathbb{Z}^n$, $Z > Z_2$. From the hypotheses it follows that $-(E_0 + Z_2) \cap Z^n$ is a finite set and consequently, since $\lambda \cap \mathbb{Z}^n = \{0\}$, there exists a unique element $Z_3 \in (\mathbb{Z}^n \cap L) \setminus Y$ that is closest to $(\lambda + Z_2) \cap L$ amongst all elements of $\mathbb{Z}^n \cap L$, λ being the boundary of E. It is clear that Z_3 is the biggest amongst all low boundaries of Ybelonging to $(\mathbb{Z}^n \cap L) \setminus Y$. The proof now terminates by applying Theorem 2.

COROLLARY 2. Let F be a real linear functional of $\bigoplus_{n=1}^{\infty} \mathbf{R}$ and let L be a closed convex set in $\bigoplus_{n=1}^{\infty} \mathbf{R}$ such that: (i) $F(Z) \ge 0$ on L; (ii) Ker $F \cap \bigoplus_{n=1}^{\infty} \mathbf{Z} = \{0\}$; (iii) the set $L \cap \{Z \in \bigoplus_{n=1}^{\infty} \mathbf{Z} : \alpha = F(Z)\}$ is finite for every positive number α . Then $(T^{\infty}, (\bigoplus_{n=1}^{\infty} \mathbf{Z}) \setminus L)$ is a Riesz pair.

EXAMPLE. Let $\{y_k\}_{k=1}^{\infty}$ be a fixed sequence of linearly independent over Z positive numbers and let F be the linear functional on $\bigoplus_{n=1}^{\infty} R$, defined as : $F(x_1, ..., x_k, ...) = \sum_{k=1}^{\infty} y_k x_k$ (note that at most finite many of x_k are different from 0). Clearly Ker $F \cap \bigoplus_{n=1}^{\infty} Z = (0, ..., 0, ...)$ and thatswhy each of the sets $\{Z \in \bigoplus_{n=1}^{\infty} Z : F(Z) = \alpha\}$ contains at most one point from $\bigoplus_{n=1}^{\infty} Z$, α being a positive number. Hence for any closed convex set L in $\{Z \in \bigoplus_{n=1}^{\infty} R : F(Z) \ge 0\}$ the set $L \cap \{Z \in \bigoplus_{n=1}^{\infty} Z : F(Z) = \alpha\}$ is finite for each $\alpha > 0$. Therefore $(T^{\infty}, (\bigoplus_{n=1}^{\infty} Z)L)$ is a Riesz pair, according to Corollary 2.

Note, that in the considered in [7] general case when $\Sigma \subset \Gamma \setminus \Gamma_0$ and the sets $(\Sigma - \chi) \cap \Gamma_0$ are finite for all $\chi \in \Sigma$, the set Σ is low-complete with respect to the given complete Γ_0 -ordering of Γ .

Acknowledgments. Thanks are due to the Department of Mathematics of Hokkaido University, where this article was written, for its hospitality, to T. Nakazi for drawing my attention on Shapiro's article [7] and to the referée for his useful remarks and suggestions.

References

- [1] T. GAMELIN, Uniform Algebras, Prentice-Hall, N. J., 1969.
- [2] I. GLICKSBERG, The strong conclusion of the F. and M. Riesz theorem on groups, Trans. Amer. Math. Soc. 285 (1984), 235-240.
- [3] S. KOSHI and H. YAMAGUCHI, The F. and M. Riesz theorem and group structures, Hokkaido Math. J. 8 (1979), 294-299.
- [4] H. YAMAGUCHI, A property of some Fourier-Stieltjes transforms, Pacific J. Math. 108 (1983), 243-256.
- [5] S. KOSHI, Generalizations of F. and M. Riesz theorem, In: Complex Analysis and Applications '85, Sofia, 1986, 356-366.
- [6] T. TONEV and D. LAMBOV, Some function algebraic properties of the algebra of generalized-analytic functions, Compt. rend. de l'Acad. bulg. des Sci., 31 (1978), 803-806 (Russian).
- [7] J. SHAPIRO, Subspaces of $L^{p}(G)$ spanned by characters: 0 , Israel J. Math., 29 (1978), 248-264.

Institute of Mathematics Bulgarian Academy of Sciences