A Bochner type theorem for compact groups*)

Toma Tonev
(Received July 9, 1987, Revised June 15, 1988)

Introduction

Let G be a compact abelian group and Γ_{0} be a fixed subsemigroup of the dual group $\Gamma=\hat{G}$ of G. It is well known that in the case when G is the unit circle S^{1} and $\Gamma_{0}=\boldsymbol{Z}_{+}$any complex Borel measure $d \mu$ on G with zero nonpositive Fourier-Stieltjes coefficients $c_{-n}=\int_{0}^{2 \pi} e^{i n t} d \mu(t), n \in \boldsymbol{Z}_{+}$, is absolutely continuous with respect to the Haar (i. e. Lebesgue) measure $d \sigma$ on $G=S^{1}$. This is exactly the famous F . and M. Riesz theorem for analytic measures on the unit circle (e.g. [1]). In the sequel we shall use the following

Definition 1. A pair (G, K) of a compact abelian group G and a subset K of its dual group $\Gamma=\hat{G}$ is said to be a Riesz pair if every finite Borel measure $d \mu$ orthogonal to K (i. e. $\int_{G} x(x) d \mu(x)=0$ for any $\chi \in K$) is absolutely continuous with respect to the Haar measure $d \sigma$ on G.

The F. and M. Riesz theorem says that ($S^{1}, \boldsymbol{Z}_{+}$) is a Riesz pair. As shown by S. Koshi and H. Yamaguchi [3] in the case when $\Gamma_{0} \cup \Gamma_{0}^{-1}=\Gamma$ and $\Gamma_{0} \cap \Gamma_{0}^{-1}=\{1\}$ an analogue of F . and M . Riesz theorem for analytic measures on a compact connected group G does not hold unless $G=S^{1}$ and $\Gamma_{0}=\boldsymbol{Z}_{+}$(or \boldsymbol{Z}_{-}). A theorem by I. Glicksberg [2] says that (S^{1}, Γ_{0}) is a Riesz pair for any subsemigroup Γ_{0} of \boldsymbol{Z}, such that $\Gamma_{0}-\Gamma_{0}=\boldsymbol{Z}$. Consequently any finite complex Borel measure on S^{1} that is orthogonal to such $\Gamma_{0} \subset \boldsymbol{Z}$ and is singular with respect to the Haar measure on S^{1} coincides with the zero measure on S^{1}. On the other hand according to Bochner's theorem (e.g. [1]) (T^{2}, K) is a Riesz pair, where T^{2} is the two dimensional torus and K is the complement in $\boldsymbol{Z}^{2}=\hat{\boldsymbol{T}}^{2}$ of a plane angle less then 2π edged at the origin. Here we extend Glicksberg's theorem and give a general construction of Riesz pairs that generalizes the Bochner's one.

1. Low-complete subsets of partially ordered sets

Let G be a compact abelian group. If Γ_{0} is a subsemigroup of its dual

[^0]group $\Gamma=\hat{G}$, such that $\Gamma_{0} \cup \Gamma_{0}^{-1}=\Gamma$ then Γ can be provided in a natural way with a partial ordering (the so called Γ_{0}-ordering), namely, by defining that a follows $b(a>b)$ iff $a b^{-1} \in \Gamma_{0}, a, b \in \Gamma$. This ordering possesses the following properties: $a c>b c$ whenever $\mathrm{a}>\mathrm{b}$ for any a, b, c from Γ; for every $a \in \Gamma$ either $a>1$ or $1>a$, where both conditions can be fulfilled simultaneously. If in addition $\Gamma_{0} \cap \Gamma_{0}^{-1}=\{1\}$ then the Γ_{0}-ordering is complete, i. e. $a>b>$ a implies always that $a=b$. As mentioned before if a $\overline{\Gamma_{0} \text {-ordering of } \Gamma=\hat{G} \text { is }}$ complete, then $\left(S^{1}, \boldsymbol{Z}_{+}\right)$and ($S^{1}, \boldsymbol{Z}_{-}$) are the only Riesz pairs of type (G, Γ_{0}).

DEFINITION 2[6]. Let Z be a partially ordered set and let Ω be a subset of $Z . \Omega$ is said to be low-complete with respect to the given ordering in Z iff for any subset $Y \subset Z$ that is bounded from below by some element of Ω there exists in $\Omega \backslash Y$ a greatest among all lower boundaries of Y.

Example 1. Let $\boldsymbol{Z}=\boldsymbol{Z}^{2}$ is the standard \boldsymbol{Z}-lattice in \boldsymbol{R}^{2} provided with the partial ordering generated by the semigroup $\Gamma_{0}=\boldsymbol{Z}^{2}=\left\{(n, m) \in \boldsymbol{Z}^{2}: n \geqq\right.$ $0\}$. Here $\Gamma_{0} \cap \Gamma_{0}^{-1}=\{(0, n): n \in Z\} \neq \emptyset$. The set $\Omega=\{(n, m): n \leqq 0, m=0\}$ is low-complete with respect to the Γ_{0}-ordering in \boldsymbol{Z}^{2}. Indeed, let Y be a subset of \boldsymbol{Z}^{2} that is bounded from below by some element ($n, 0$) of Ω. This simply means that $Y \subset\left\{(n, m) \in Z^{2}: n \geqq n_{0} \leqq 0\right\}$ and it is clear that in $\Omega \backslash Y$ there exists a greatest low boundary for Y, namely the point ($n_{1}, 0$), where $n_{1}=\max \{n:(n, 0) \notin Y\}$.

EXAMPLE 2. Let now $Z=\boldsymbol{Z}^{2}$ is provided with the partial ordering generated by the semigroup $\Gamma_{0}=\left\{(n, m) \in \boldsymbol{Z}^{2}: m \leq \sqrt{2} n\right\}$. Here $\Gamma_{0} \cap-\Gamma_{0}=\{0\}$ The set $\Omega=\left\{(n, m) \in Z^{2}: n \leqq 0,|m| \leqq-n\right\}$ is low-complete with respect to the Γ_{0}-ordering in \boldsymbol{Z}^{2}. Indeed let Y be a subset of \boldsymbol{Z}^{2} that is bounded from below by some element $\left(n_{0}, m_{0}\right) \in \Omega$. This means that $Y \subset\left\{(n, m) \in \boldsymbol{Z}^{2}\right.$: $\left.m \leqq \sqrt{2}\left(n-n_{0}\right)+m_{0}\right\}$, i. e. Y lies on the right hand side of the line $\lambda: y=$ $\sqrt{2}\left(x-n_{0}\right)+m_{0}$. If λ_{1} is the rightest possible line parallel to λ, so that Y lies on the right hand side of λ_{1}, then $\lambda_{1} \cap\left\{(x, y) \in \boldsymbol{R}^{2}: x \leqq 0,|y|=-x\right\}$ is a finite segment from λ_{1} and it is easy to see that there are points from $\Omega \backslash Y$ that are closest to λ_{1}. That it will be only one closest to λ_{1} point in $\Omega \backslash Y$ follows from the fact that the line $y=\sqrt{2} x$ contains only one point (namely 0) from \boldsymbol{Z}^{2}.

EXAMPLE 3. In the previous example one can take Q to be any subset of \boldsymbol{R}^{2}, which intersections with every line parallel to $y=\sqrt{2} x$ are bounded segments and to define Ω to be $Q \cap \boldsymbol{Z}^{2}$, or, equivalently, all the sets Ω^{-} (n, m), where $(n, m) \in \Omega$, to be finite.

2. Main results

The next theorem is an extension of the mentioned at the beginning Glicksberg's theorem.

Theorem 1. Let G be a compact abelian group, let Γ_{0} be a fixed subsemigroup of the dual group $\Gamma=\hat{G}$ of G, for which $\Gamma_{0} \cup \Gamma_{0}^{-1}=\Gamma, \Gamma_{0} \cap \Gamma_{0}^{-1}=$ $\{1\}$ and let Σ be a nonempty subset of $\Gamma \backslash \Gamma_{0}$ that is low-complete with respect to the Γ_{0}-ordering in Γ. Then every finite complex Borel measure $d \mu$ on G that is orthogonal to the set $K=\Gamma \backslash \Sigma$ and is singular with respect to the Haar measure $d \sigma$ on G coinciues with the zero measure on G.

Proof. Assume that $d \mu \neq 0$. Then $d \mu$ is not orthogonal to Γ by the uniqueness theorem for Fourier-Stieltjes transforms. Let $Y=\{\chi \in \Gamma$: $\int_{G} \chi_{1}(g) d \mu(g)=0$ for every $\left.\chi_{1}>\chi\right\}$. Note that Y contains every $\chi \in \Gamma$ that follows some element of Y. Also Y contains the whole semigroup Γ_{0}. On the other hand Y is bounded from below by some element of Σ because in the opposite case every element of Σ will follow some element of Y and consequently will belong to Y in contradiction with $d \mu \searrow \Gamma$. Since Σ is a lowcomplete subset of Γ there will exist in $\Sigma \backslash Y$ an element that is biggest among all low boundaries of Y, say δ. Then we have $\delta\left(\Gamma_{0} \backslash\{1\}\right) \subset Y$. To see this assume $\delta \cdot \chi \notin Y$ for some $\chi \in \Gamma_{0} \backslash\{1\}$. Therefore there exists a $\chi_{1} \in \Gamma_{0}$ such that $\int_{G} \chi_{1}(g) \chi(g) \delta(g) d \mu(g) \neq 0$. Thus $\chi_{1} \chi \delta \in \Sigma \backslash Y$ because $d \mu$ is orthogonal to $\Gamma \backslash \Sigma$ and because of the definition of Y. Since $\chi_{1} \chi \delta>\chi \delta, \chi_{1} \chi \delta$ is not a low boundary of Y. Consequently $\chi_{1} \chi \delta$ follows some element of Y and henceforth $\chi_{1} \chi \delta \in Y$ by the definition of Y. But this is a contradiction. Hence $\chi \delta \in Y$ for every $\chi \in \Gamma_{0} \backslash\{1\}$, i. e. $\delta \Gamma_{0} \backslash\{1\} \subset Y$, wherefrom $\int_{G} \chi(g) \delta(g) d \mu(g)=$ 0 for every $\chi \in \Gamma_{0} \backslash\{1\}$. Denote by $d \nu$ the complex measure $d \nu=\delta d \mu$ on G. We have:

$$
\begin{equation*}
\int_{G} \chi(g) d \nu(g)=\int_{G} \chi(g) \delta(g) d \mu(g)=0 \tag{1}
\end{equation*}
$$

for every $x \in \Gamma_{0} \backslash\{1\}$. Put $d \tilde{\nu}=\delta d \mu-d \sigma$. Then $\int_{G} \delta(g) d \mu(g)=0$ by the Helson-Lowdenslager theorem [6] because $\int_{G} \chi(g) d \tilde{\boldsymbol{\nu}}(g)=0$ for each $\chi \in$ $\Gamma_{0} \backslash\{1\}$ and $d \tilde{\nu}_{s}=\delta d \mu$. This implies $\delta \in Y$. But this is a contradiction. The theorem is proved.

The next theorem generalizes Bochner's theorem.

THEOREM 2. Let G be a fixed compact abelian group, let Ξ be a family of subsemigroups $\left\{\Gamma_{\alpha}\right\}_{\alpha \in \mathfrak{M}}$ of its dual group $\Gamma=\hat{G}$ such that $\Gamma_{\alpha} \cup \Gamma_{\alpha}^{-1}=\Gamma$ for every $\alpha \in \mathfrak{A}$ and let $\delta_{\alpha} \in \Gamma_{\alpha}^{-1}$ for every $\alpha \in \mathfrak{H}$. If the complement $\Sigma=\Gamma \backslash K$ of the set $K=\bigcup_{\alpha \in \mathscr{A}} \delta_{\alpha} \Gamma_{\alpha}$ is low-complete with respect to the Γ_{0}-ordering, generated by some semigroup Γ_{0} from Ξ with $\Gamma_{0} \cap \Gamma_{0}^{-1}=\{1\}$, then every finite Borel measure on G that is orthogonal to K is absolutely continuous with respect to the Haar measure d σ on G.

Theorem 2 means simply that under above conditions (G, K) is a Riesz pair.

Proof. Let $d \mu$ be a finite Borel measure on G that is orthogonal to the set K. Then $d \mu \perp \delta_{\alpha} \Gamma_{\alpha}$ for each $\alpha \in \mathfrak{H}$ and thatswhy the measure $d \nu_{\alpha}=\delta_{\alpha} d \mu$ is orthogonal to the semigroup Γ_{α} for each $\alpha \in \mathfrak{A}$. As shown by Yamaguchi [4] both absolutely continuous $\left(\left(d \nu_{\alpha}\right)_{a}\right)$ and singular $\left(\left(d \nu_{\alpha}\right)_{s}\right)$ components of the measure $d \nu_{\alpha}$ with respect to $d \sigma$ are orthogonal to Γ_{α}, i. e. $\left(d \nu_{\alpha}\right)_{a} \perp \Gamma_{\alpha}$, ($\left.d \nu_{\alpha}\right)_{s} \perp \Gamma_{\alpha}$. If $d \mu=d \mu_{a}+d \mu_{s}$ is the Lebesgue decomposition of $d \mu$, then $\delta_{\alpha} d \mu_{s} \perp \Gamma_{\alpha}$ since $\delta_{\alpha} d \mu_{s}=\left(\delta_{\alpha} d \mu\right)_{s}=\left(d \nu_{\alpha}\right)_{s} \perp \Gamma_{\alpha}$. Hence $d \mu_{s} \perp \delta_{\alpha} \Gamma_{\alpha}$ for any $\alpha \in \mathfrak{A}$ and consequently $d \mu_{s} \perp K$ for $K=\bigcup_{\alpha \in \mathscr{A}} \delta_{\alpha} \Gamma_{\alpha}$. Now $G, d \mu_{s}, \Sigma=\Gamma \backslash K$ and Γ_{0} satisfy the conditions of Theorem 1 and thatswhy $d \mu_{s}=0$. Hence $d \mu=d \mu_{a}$.
Q. E. D.

In the case when $\Gamma_{\alpha} \cap \Gamma_{\alpha}^{-1}=\{1\}$ Theorem 2 is proved in[6]. Bochner's theorem and its n-dimensional version for Borel measures on the n dimensional torus T^{n} is a simple corollary from Theorem 2. Actually we can obtain the following :

Corollary 1. Let L be a closed convex set in \boldsymbol{R}^{n} that is contained entirely in some half-space E_{0} of \boldsymbol{R}^{n} with $\lambda \cap \boldsymbol{Z}^{n}=\{0\}$, where λ is the (n-1)-dimensional boundary of E_{0} and such that the intersections of L with all ($n-1$)-dimensional spaces parallel to λ are bounded. Then every finite complex Borel measure on the n-dimensional torus T^{n} with vanishing outside L Fourier-Stieltjes coefficients is absolutely continuous with respect to the Haar measure d σ on T^{n}.

Proof. As a closed convex set, L is an intersection of certain family of closed half-spaces $E_{\alpha}, \alpha \in \mathfrak{A}$, i. e. $L=\bigcap_{\alpha \in \mathfrak{Z}} E_{\alpha}$. Without loss of generality we can assume that the boundary of E_{α} contains some point (say Z_{α}) from \boldsymbol{Z}^{n} for every α and that E_{0} belongs to this family. For semigroups $\Gamma_{\alpha}=$ $\left(Z_{\alpha}-E_{\alpha}\right) \cap \boldsymbol{Z}^{n}$ we have : $0 \in \Gamma_{\alpha}, \Gamma_{\alpha} \cap-\Gamma_{\alpha}=\{0\}$ for each $\alpha \in \mathfrak{A}$. For $K=\boldsymbol{Z}^{n} \backslash$ $(-L)$ we get : $K=-\left(\boldsymbol{Z}^{n} \backslash L\right)=-\left(\boldsymbol{Z}^{n} \backslash \bigcap_{\alpha \in \mathscr{R}} E_{\alpha}\right)=-\bigcup_{\alpha \in \mathscr{R}}\left(\boldsymbol{Z}^{n} \backslash E_{\alpha}\right)=-\bigcup_{\alpha \in \mathscr{R}}\left(\boldsymbol{Z}^{n} \backslash\right.$
$\left.\left.\left(Z_{\alpha}-\Gamma_{\alpha}\right)\right)=\bigcup_{\alpha \in \mathscr{A}}\left(\boldsymbol{Z}^{n} \backslash \Gamma_{\alpha}-Z_{\alpha}\right)\right)$. The set $\boldsymbol{\Sigma}=\boldsymbol{Z}^{n} \backslash K=\boldsymbol{Z}^{n} \cap L$ is low complete with respect to the Γ_{0}-ordering on Γ. Indeed, let Y be a bounded from below subset of \boldsymbol{Z}^{n}. This means that $Y \subset-E_{0}+Z_{1}$ for some point $Z_{1} \in \boldsymbol{Z}^{n}$. Let Z_{2} $\in Z^{n}$ be such that $Y \subset-E_{0}+Z_{2}$, but $Y \not \subset-E_{0}+Z, Z \in Z^{n}, Z>Z_{2}$. From the hypotheses it follows that $-\left(E_{0}+Z_{2}\right) \cap Z^{n}$ is a finite set and consequently, since $\lambda \cap \boldsymbol{Z}^{n}=\{0\}$, there exists a unique elment $Z_{3} \in\left(\boldsymbol{Z}^{n} \cap L\right) \backslash Y$ that is closest to $\left(\lambda+Z_{2}\right) \cap L$ amongst all elements of $\boldsymbol{Z}^{n} \cap L, \lambda$ being the boundary of E. It is clear that Z_{3} is the biggest amongst all low boundaries of Y belonging to $\left(\boldsymbol{Z}^{n} \cap L\right) \backslash Y$. The proof now terminates by applying Theorem 2.

COROLLARY 2. Let F be a real linear functional of $\bigoplus_{n=1}^{\infty} \boldsymbol{R}$ and let L be a closed convex set in $\bigoplus_{n=1}^{\infty} \boldsymbol{R}$ such that: (i) $F(Z) \geqq 0$ on L; (ii) Ker $F \cap$ $\bigoplus_{n=1}^{\infty} \boldsymbol{Z}=\{0\}$; (iii) the set $L \cap\left\{Z \in \bigoplus_{n=1}^{\infty} \boldsymbol{Z}: \alpha=F(\boldsymbol{Z})\right\}$ is finite for every positive number α. Then $\left(T^{\infty},\left(\oplus_{n=1}^{\infty} \boldsymbol{Z}\right) \backslash L\right)$ is a Riesz pair.

EXAMPLE. Let $\left\{y_{k}\right\}_{k=1}^{\infty}$ be a fixed sequence of linearly independent over \boldsymbol{Z} positive numbers and let F be the linear functional on $\bigoplus_{n=1}^{\infty} \boldsymbol{R}$, defined as : $F\left(x_{1}, \ldots, x_{k}, \ldots\right)=\sum_{k=1}^{\infty} y_{k} x_{k}$ (note that at most finite many of x_{k} are different from 0). Clearly $\operatorname{Ker} F \cap \oplus_{n=1}^{\infty} \boldsymbol{Z}=(0, \ldots, 0, \ldots)$ and thatswhy each of the sets $\left\{Z \in \bigoplus_{n=1} \boldsymbol{Z}: F(Z)=\alpha\right\}$ contains at most one point from $\bigoplus_{n=1}^{\infty} \boldsymbol{Z}, \boldsymbol{\alpha}$ being a positive number. Hence for any closed convex set L in $\left\{Z \in \bigoplus_{n=1} \boldsymbol{R}: F(Z) \geqq\right.$ $0\}$ the set $L \cap\left\{Z \in \bigoplus_{n=1} Z: F(Z)=\alpha\right\}$ is finite for each $\alpha>0$. Therefore (T^{∞}, $\left.\left(\oplus_{n=1}^{\infty} \boldsymbol{Z}\right) L\right)$ is a Riesz pair, according to Corollary 2.

Note, that in the considered in [7] general case when $\Sigma \subset \Gamma \backslash \Gamma_{0}$ and the sets $(\Sigma-\chi) \cap \Gamma_{0}$ are finite for all $\boldsymbol{x} \in \Sigma$, the set Σ is low-complete with respect to the given complete Γ_{0}-ordering of Γ.

Acknowledgments. Thanks are due to the Department of Mathematics of Hokkaido University, where this article was written, for its hospitality, to T. Nakazi for drawing my attention on Shapiro's article [7] and to the referée for his useful remarks and suggestions.

References

[1] T. Gamelin, Uniform Algebras, Prentice-Hall, N. J., 1969.
[2] I. Glicksberg, The strong conclusion of the F. and M. Riesz theorem on groups, Trans. Amer. Math. Soc. 285 (1984), 235-240.
[3] S. Koshi and H. Yamaguchi, The F. and M. Riesz theorem and group structures, Hokkaido Math. J. 8 (1979), 294-299.
[4] H. Yamaguchi, A property of some Fourier-Stieltjes transforms, Pacific J. Math. 108 (1983), 243-256.
[5] S. Koshi, Generalizations of F. and M. Riesz theorem, In: Complex Analysis and Applications '85, Sofia, 1986, 356-366.
[6] T. TONEV and D. Lambov, Some function algebraic properties of the algebra of generalized-analytic functions, Compt. rend. de I'Acad. bulg. des Sci., 31 (1978), 803-806 (Russian).
[7] J. Shapiro, Subspaces of $L^{p}(G)$ spanned by characters: $0<p<1$, Israel J. Math., 29 (1978), 248-264.

Institute of Mathematics
Bulgarian Academy of Sciences

[^0]: ${ }^{*)}$ Partially supported by Committee for Science, Bulgaria, under contract No. 386.

