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Introduction

Let G be a compact abelian group and \Gamma_{0} be a fixed subsemigroup of the
dual group \Gamma=\hat{G} of G. It is well known that in the case when G is the unit
circle S^{1} and \Gamma_{0}=Z_{+} any complex Borel measure d\mu on G with zero

nonpositive Fourier-Stieltjes coefficients c_{-n}= \int_{0}^{2\pi}e^{int}d\mu(t) , n\in Z_{+} , is abs0-

lutely continuous with respect to the Haar (i . e . Lebesgue) measure d\sigma on
G=S^{1} . This is exactly the famous F. and M. Riesz theorem for analytic
measures on the unit circle (e. g. [1]) . In the sequel we shall use the follow-
ing

DEFINITION 1. A pair (G, K) of a compact abelian group G and a
subset K of its dual group \Gamma=\hat{G} is said to be a Riesz pair if every finite Borel

measure d\mu orthogonal to K (i . e . \int_{G}\chi(x)d\mu(x)=0 for any \chi\in K ) is abs0-

lutely continuous with respect to the Haar measure d\sigma on G.
The F. and M. Riesz theorem says that (S^{1}, Z_{+}) is a Riesz pair. As

shown by S. Koshi and H. Yamaguchi [3] in the case when \Gamma_{0}\cup\Gamma_{0}^{-1}=\Gamma and
\Gamma_{0}\cap\Gamma_{0}^{-1}=\{1\} an analogue of F. and M. Riesz theorem for analytic measures
on a compact connected group G does not hold unless G=S^{1} and \Gamma_{0}=Z_{+} (or

Z_{-}) . A theorem by I. Glicksberg [2] says that (S^{1}, \Gamma_{0}) is a Riesz pair for
any subsemigroup \Gamma_{0} of Z, such that \Gamma_{0}-\Gamma_{0}=Z . Consequently any finite
complex Borel measure on S^{1} that is orthogonal to such \Gamma_{0}\subset Z and is singular
with respect to the Haar measure on S^{1} coincides with the zero measure on
S^{1} . On the other hand according to Bochner’s theorem (e. g. [1]) (T^{2}, K)

is a Riesz pair, where T^{2} is the two dimensional torus and K is the comple-

n ot in Z^{2}=\hat{T}^{2} of a plane angle less then 2\pi edged at the origin. Here we
extend Glicksberg’s theorem and give a general construction of Riesz pairs
that generalizes the Bochner’s one.

1. Low-complete subsets of partially ordered sets

Let G be a compact abelian group. If \Gamma_{0} is a subsemigroup of its dual
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group \Gamma=\hat{G} , such that \Gamma_{0}\cup\Gamma_{0}^{-1}=\Gamma then \Gamma can be provided in a natural way
with a partial \underline{ordering} (the so called \Gamma_{0}-0rdering), namely, by defining that
a follows b(a\succ b) iff ab^{-1}\in\Gamma_{0} , a, b\in\Gamma . This ordering possesses the fol-
lowing properties: ac\succ bc whenever a\succ b for any a, b, c from \Gamma ; for every
a\in\Gamma either a\succ 1 or 1\succ a , where both conditions can be fulfilled simultaneous-
ly. If in addition \Gamma_{0}\cap\Gamma_{0}^{-1}=\{1\} then the \Gamma_{0} ordering is \underline{complete}, i . e . a\succ b\succ

a implies always that a=b . As mentioned before if a \Gamma_{0} ordering of \Gamma=\hat{G} is
complete, then (S^{1}, Z_{+}) and (S^{1}, Z_{-}) are the only Riesz pairs of type (G,
\Gamma_{0}) .

DEFINITION 2 [6]. Let Z be a partially ordered set and let \Omega be a subset
of Z. \Omega is said to be low-complete with respect to the given ordering in Z iff
for any subset Y\subset Z that is bounded from below by some element of \Omega there
exists in \Omega\backslash Y a greatest among all lower boundaries of Y

EXAMPLE 1. Let Z=Z^{2} is the standard Z-lattice in R^{2} provided with
the partial ordering generated by the semigroup \Gamma_{0}=Z^{2}=\{(n, m)\in Z^{2} : n\geqq

0\} . Here \Gamma_{0}\cap\Gamma_{0}^{-1}=\{(0, n) : n\in Z\}\neq\emptyset . The set \Omega=\{(n, m) : n\leqq 0, m=0\}

is low-complete with respect to the \Gamma_{0} ordering in Z^{2} . Indeed, let Y be a
subset of Z^{2} that is bounded from below by some element (n, 0) of \Omega . This
simply means that Y\subset\{(n, m)\in Z^{2} : n\geqq rh\leqq 0\} and it is clear that in \Omega\backslash Y

there exists a greatest low boundary for Y , namely the point (n_{1},0) , where
n_{1}= \max\{n:(n, 0)\not\in Y\} .

EXAMPLE 2. Let now Z=Z^{2} is provided with the partial ordering
generated by the semigroup \Gamma_{0}=\{(n, m)\in Z^{2} : m\leq\sqrt{2}n\} . Here \Gamma_{0}\cap-\Gamma_{0}=\{0\}

The set \Omega=\{(n, m)\in Z^{2} : n\leqq 0, |m|\leqq-n\} is low-complete with respect to
the \Gamma_{0} ordering in Z^{2} . Indeed let Y be a subset of Z^{2} that is bounded from
below by some element (n_{0}, m_{0})\in\Omega . This means that Y\subset\{(n, m)\in Z^{2} :
m\leqq\sqrt{2}(n-n_{0})+m_{0}\} , i . e . Y lies on the right hand side of the line \lambda : y=
\sqrt{2}(x-n_{0})+m . If \lambda_{1} is the rightest possible line parallel to \lambda , so that Y
lies on the right hand side of \lambda_{1} , then \lambda_{1}\cap\{(x, y)\in R^{2} : x\leqq 0, |y|=-x\} is a
finite segment from \lambda_{1} and it is easy to see that there are points from \Omega\backslash Y

that are closest to \lambda_{1} . That it will be only one closest to \lambda_{1} point in \Omega\backslash Y

follows from the fact that the line y=\sqrt{2}x contains only one point (namely
0) from Z^{2} .

EXAMPLE 3. In the previous example one can take Q to be any subset
of R^{2} , which intersections with every line parallel to y=\sqrt{2}x are bounded
segments and to define \Omega to be Q\cap Z^{2} , or, equivalently, all the sets \Omega-

(n, m) , where (n, m)\in\Omega , to be finite.
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2. Main results

The next theorem is an extension of the mentioned at the beginning
Glicksberg’s theorem.

THEOREM 1. Let G be a compact abelian group, let \Gamma_{0} be a fifixed
subsemigroup of the dual group \Gamma=\hat{G} of G, for which \Gamma_{0}\cup\Gamma_{0}^{-1}=\Gamma . \Gamma_{0}\cap\Gamma_{0}^{-1}=

\{1\} and let \Sigma be a nonempty subset of \Gamma\backslash \Gamma_{0} that is low-complete with respect
to the \Gamma_{0} -Ordering in \Gamma . Then every fifinite complex Borel measure d\mu on G

that is orthogonal to the set K=\Gamma\backslash \Sigma and is singular with respect to the Hoar
measure d\sigma on G coincides with the zero measure on G.

PROOF. Assume that d\mu\neq 0 . Then d\mu is not orthogonal to \Gamma by the
uniqueness theorem for Fourier-Stieltjes transforms. Let Y=\{\chi\in\Gamma :
\int_{G}\chi_{1}(g)d\mu(g)=0 for every \chi_{1}\succ\chi }. Note that Y contains every \chi\in\Gamma that

follows some element of Y Also Y contains the whole semigroup \Gamma_{0} . On
the other hand Y is bounded from below by some element of \Sigma because in the
opposite case every element of \Sigma will follow some element of Y and conse-
quently will belong to Y in contradiction with d\mu L\Gamma . Since \Sigma is a low
complete subset of \Gamma there will exist in \Sigma\backslash Y an element that is biggest among
all low boundaries of Y say \delta . Then we have \delta(\Gamma_{0}\backslash \{1\})\subset Y To see this
assume \delta\cdot\chi\not\in Y for some \chi\in\Gamma_{0}\backslash \{1\} . Therefore there exists a \chi_{1}\in\Gamma_{0} such

that \int_{G}\chi_{1}(g)\chi(g)\delta(g)d\mu(g)\neq 0 . Thus \chi_{1}\chi\delta\in\Sigma\backslash Y because d\mu is orthogonal

to \Gamma\backslash \Sigma and because of the definition of Y Since \chi_{1}\chi\delta\succ\chi\delta, \chi_{1}\chi\delta is not a low
boundary of Y Consequently \chi_{1}\chi\delta follows some element of Y and hence-
forth \chi_{1}\chi\delta\in Y by the definition of Y But this is a contradiction. Hence
\chi\delta\in Y for every \chi\in\Gamma_{0}\backslash \{1\} , i.e . \delta\Gamma_{0}\backslash \{1\}\subset Y wherefrom \int_{G}\chi(g)\delta(g)d\mu(g)=

0 for every \chi\in\Gamma_{0}\backslash \{1\} . Denote by d\nu the complex measure d\nu=\delta d\mu on G.
We have:

(1) \int_{G}\chi(g)d\nu(g)=\int_{G}\chi(g)\delta(g)d\mu(g)=0

for every \chi\in\Gamma_{0}\backslash \{1\} . Put d\tilde{\nu}=\delta d\mu-d\sigma . Then \int_{G}\delta(g)d\mu(g)=0 by the

Helson-Lowdenslager theorem [6] because \int_{G}\chi(g)d\tilde{\nu}(g)=0 for each \chi\in

\Gamma_{0}\backslash \{1\} and d\tilde{\nu}_{s}=\delta d\mu . This implies \delta\in Y But this is a contradiction. The
theorem is proved.

The next theorem generalizes Bochner’s theorem.
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THEOREM 2. Let G be a fifixed compact abelian group, tet— be a family
of subsemigroups \{\Gamma_{a}\}_{a\in \mathfrak{A}} of its dual group \Gamma=\hat{G} such that \Gamma_{a}\cup\Gamma_{\overline{a}}^{1}=\Gamma for
eve\eta \alpha\in \mathfrak{A} and let \delta_{a}\in\Gamma_{\overline{a}}^{1} for eve\eta \alpha\in \mathfrak{A} . If the complement \Sigma=\Gamma\backslash K of
the set K= \bigcup_{\alpha\in \mathfrak{A}}\delta_{a}\Gamma_{a} is low-complete with respect to the \Gamma_{0} reordering, generated

by some semigroup \Gamma_{0} from — with \Gamma_{0}\cap\Gamma_{0}^{-1}=\{1\} , then every fifinite Borel
measure on G that is orthogonal to K is absolutely continuous with respect to
the Haar measure d\sigma on G.

Theorem 2 means simply that under above conditions (G, K) is a Riesz
pair.

PROOF. Let d\mu be a finite Borel measure on G that is orthogonal to the
set K . Then d\mu\perp\delta_{a}\Gamma_{a} for each \alpha\in \mathfrak{A} and thatswhy the measure d\nu_{a}=\delta_{a}d\mu

is orthogonal to the semigroup \Gamma_{a} for each \alpha\in \mathfrak{A} . As shown by Yamaguchi
[4] both absolutely continuous ((d\nu_{a})_{a}) and singular ((d\nu_{a})_{s}) components
of the measure d\nu_{a} with respect to d\sigma are orthogonal to \Gamma_{a} , i . e . (d\nu_{a})_{a}\perp\Gamma_{a},
(d\nu_{a})_{s}\perp\Gamma_{a} . If d\mu=d\mu_{a}+d\mu_{s} is the Lebesgue decomposition of d\mu , then
\delta_{a}d\mu_{s}\perp\Gamma_{a} since \delta_{a}d\mu_{s}=(\delta_{a}d\mu)_{s}=(d\nu_{a})_{s}\perp\Gamma_{a} . Hence d_{\mu_{s}}\perp\delta_{a}\Gamma_{a} for any \alpha\in \mathfrak{A}

and consequently d_{\mu_{S}}\perp K for K= \bigcup_{a\in \mathfrak{A}}\delta_{a}\Gamma_{a} . Now G, d\mu_{s}, \Sigma=\Gamma\backslash K and \Gamma_{0}

satisfy the conditions of Theorem 1 and thatswhy d\mu_{s}=0 . Hence d\mu=d\mu_{a} .
Q. E. D.

In the case when \Gamma_{a}\cap\Gamma_{a}^{-1}=\{1\} Theorem 2 is proved in[6]. Bochner’s
theorem and its n-dimensional version for Borel measures on the n-
dimensional torus T^{n} is a simple corollary from Theorem 2. Actually we
can obtain the following:

COROLLARY 1. Let L be a closed convex set in R^{n} that is contained
entirely in some half-space R of R^{n} with \lambda\cap Z^{n}=\{0\} , where \lambda is the
(n-l)-dimensi0nat boundary of fi and such that the intersections of L with
all (n-l)-dimensi0nat spaces parallel to \lambda are bounded. Then every fifinite
complex Borel measure on the n-dimensional torus T^{n} with vanishing outside
L Fourier-Stieltjes coefficients is absolutely continuous with respect to the Haar
measure d\sigma on T^{n} .

PROOF. As a closed convex set, L is an intersection of certain family
of closed half-spaces E_{a} , \alpha\in \mathfrak{A} , i . e . L= \bigcap_{a\in \mathfrak{A}}E_{a} . Without loss of generality

we can assume that the boundary of E_{a} contains some point (say Z_{a}) from
Z^{n} for every \alpha and that fi belongs to this family. For semigroups \Gamma_{a}=

(Z_{a}-E_{a})\cap Z^{n} we have: 0\in\Gamma_{a} , \Gamma_{a}\cap-\Gamma_{a}=\{0\} for each \alpha\in \mathfrak{A} . For K=Z^{n}\backslash

(-L) we get: K=-(Z^{n} \backslash L)=-(Z^{n}\backslash \bigcap_{\alpha\in \mathfrak{A}}E_{a})=-\bigcup_{\alpha\in \mathfrak{A}}(Z^{n}\backslash E_{a})=-\bigcup_{\alpha\in \mathfrak{A}}(Z^{n}\backslash
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(Z_{a}- \Gamma_{a}))=\bigcup_{\alpha\in \mathfrak{A}}(Z^{n}\backslash \Gamma_{a}-Z_{a})) . The set \Sigma=Z^{n}\backslash K=Z^{n}\cap L is low complete

with respect to the \Gamma_{0}-0rdering on \Gamma . Indeed, let Y be a bounded from below
subset of Z^{n} . This means that Y\subset-R+Z_{1} for some point Z_{1}\in Z^{n} . Let z
\in Z^{n} be such that Y\subset-R+Z , but Y\not\subset-fi+Z, Z\in Z^{n}, Z\succ Z . From the
hypotheses it follows that -(R+Z)\cap Z^{n} is a finite set and consequently,
since \lambda\cap Z^{n}=\{0\} , there exists a unique elment z\in(Z^{n}\cap L)\backslash Y that is
closest to (\lambda+z)\cap L amongst all elements of Z^{n}\cap L , \lambda being the boundary
of E . It is clear that z is the biggest amongst all low boundaries of Y
belonging to (Z^{n}\cap L)\backslash Y The proof now terminates by applying Theorem
2.

COROLLARY 2. Let F be a real linear functional of \bigoplus_{n=1}^{\infty}R and let L be

a closed convex set in \bigoplus_{n=1}^{\infty}R such that: (i) F(Z)\geqq 0 on L;(ii) Ker F\cap

\bigoplus_{n=1}^{\infty}Z=\{0\};(iii) the set L \cap\{Z\in\bigoplus_{n=1}^{\infty}Z:\alpha=F(Z)\} is fifinite for every positive

number \alpha . Then (T^{\infty}-( \bigoplus_{n=1}^{\infty}Z)\backslash L) is a Riesz pair.

EXAMPLE. Let \{y_{k}\}_{k=1}^{\infty} be a fixed sequence of linearly independent over

Z positive numbers and let F be the linear functional on \bigoplus_{n=1}^{\infty}R , defined as:

F(x_{1}, \ldots, x_{k}, \ldots)=\sum_{k=1}^{\infty}y_{k}x_{k} (note that at most finite many of x_{k} are different

from 0). Clearly Ker F \cap\bigoplus_{n=1}^{\infty}Z=(0, \ldots, 0, \ldots) and thatswhy each of the sets

\{Z\in\bigoplus_{n=1}Z:F(Z)=\alpha\} contains at most one po\dot{l}nt from \bigoplus_{n=1}^{\infty}Z , \alpha being a
positive number. Hence for any closed convex set L in \{Z\in\bigoplus_{n=1}R:F(Z)\geqq

0\} the set L \cap\{Z\in\bigoplus_{n=1}Z:F(Z)=\alpha\} is finite for each \alpha>0 . Therefore ( T^{\infty} .

( \bigoplus_{n=1}^{\infty}Z)L) is a Riesz pair, according to Corollary 2.
Note, that in the considered in [7] general case when \Sigma\subset\Gamma\backslash \Gamma_{0} and the

sets (\Sigma-\chi)\cap\Gamma_{0} are finite for all \chi\in\Sigma , the set \Sigma is low-complete with
respect to the given complete \Gamma_{0}-0rdering of \Gamma .
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