
Hokkaido Mathematical Journal Vol. 18 (1989) p. 487-496

Singularities of the scattering kernel for several
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\S 1. Introduction.

Let \mathscr{O} be a compact set with a smooth boundary in R^{n}(n\geqq 2) such
that \Omega=R^{n}-\mathscr{O} is connected. Let us consider the scattering problem of
the following:

(1. 1)

’\coprod u(t, x)=(\partial_{t}^{2}-\Delta_{x})u(t, x)=0 in R^{1}\cross\Omega ,
\partial_{\nu}u(t, x)=0 on R^{1}\cross\partial\Omega ,

u(0, x)=f_{1}(x) on \Omega ,
\backslash \partial_{t}u(0, x)=f_{2}(x) on \Omega ,

where \nu is the unit inner normal to the boundary \partial\Omega . Denote by k_{-}(s, \omega)

(k_{+}(s, \omega))\in L^{2}R^{1}\cross S^{n-1}) the incoming (outgoing) translation representa-
tion of the initial data (f_{1}, f_{2}) . Then the scattering operator S:k_{-}(t, \omega)arrow

k_{+}(s, \theta) has a distribution kernel S(s-t, \theta, \omega) , where S(s, \theta, \omega) is called
the scattering kernel (cf. Lax and PHILLIPS [3], [4], SHENK II^{-}[9] ).

The relation between \mathscr{O} and S(s, \theta, \omega) has been studied by several
authors. SOGA [10] and YAMAMOTO [12] have characterized the convex-
ity of \mathscr{O} in terms of the singularities of S(s, -\omega, \omega) as follows:

\mathscr{O} is convex if and only if sing supp S(\cdot, -\omega, \omega)

consists of only one point for any \omega\in S^{n-1} .

NAKAMURA and SOGA [6] and NAKAMURA [7] have examined sing supp S
(\cdot, -\omega, \omega) precisely when \mathscr{O} consists of two disjoint convex obstacles.
Under suitable assumptions, they have established the relation between the
distribution of the singular points of S(\cdot, -\omega, \omega) and the distance of the
obstacles.

In this paper our purpose is to study the sing supp S(\cdot, -\omega, \omega) in case
\mathscr{O} consists of several disjoint convex obstacles \{\mathscr{O}_{j}\}_{j=1,\cdots,\int} . Owing to the
Neumann boundary condition, we can easily analyze the singularities of S
(s, -\omega, \omega) . Set r_{i}( \omega)=\min_{y\in}\cdot,yi\cdot\omega(1\leqq i\leqq J) , and take point x_{0}\in P=\{x:x .
\omega=\min_{1\leqq i\leqq f}r_{i}(\omega)-1\} . We consider the following broken ray:

(*) the ray starts at x_{0} in the direction \omega and reflects m times at the
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boundary \partial \mathscr{O}according to the law of the geometrical optics, or
more specifically, say at the points \{x_{1}, \cdots-x_{m}\}\in\partial \mathscr{O}_{j_{1}}\cross\cdots\cross\partial \mathscr{O}_{jm}

with j_{l}\in\{1, \cdots,J\} such that j_{l}\neq j_{l+1} and returns to the point x_{m+1}

on P in the direction -\omega . Set

(1.2) s^{f}= \sum_{j=0}^{m}|x_{j}-x_{j+1}|-2

where \vec{J}=\{j_{1}, \cdots j_{m}\}(\in\{1, \cdots,J\}^{m}) . We assume the followings on the
position \mathscr{O}_{j} :

(1.3) For all \{j_{1} , j_{2}, j_{3}\}\in\{1, \cdots,J\}^{3} with different indices to each other,
it holds that
every line going through both \mathscr{O}_{j_{1}} and \mathscr{O}_{j_{2}} does not intersect \mathscr{O}_{j_{3}}

and that

(1.4) s^{n-1}- \bigcup_{j_{1}\neq j_{2}}\{\pm\frac{x-y}{|x-y|}\in sn-1 ; \in\partial \mathscr{O}_{j_{1}}, y\in\partial \mathscr{O}_{j_{2}}\} .

The first main result is the following theorem;

THEOREM 1. Let \{\mathscr{O}_{j}\}_{j=1,\cdots,f} satisfy the hypotheses (1. 3) and (1. 4).
Then for

\omega\in S^{n-1}-\bigcup_{j_{1}\neq j_{2}}\{\pm\frac{x-y}{|x-y|}\in S^{n-1}\cdot x\in\partial\prime \mathscr{O}_{j_{1}}, y\in\partial \mathscr{O}_{j_{2}}\} ,

there exist the broken rays satisfying the propert- (*) for any positive inte-
ger m and \{j_{1}, \cdots j_{m}\}\in\{1, \cdots,J\}^{m} with j_{t}\neq j_{l+1} , and the following equality
holds

(1.5) sing supp S(\cdot, -\omega, \omega)=\{s_{f} ; \vec{J}=\{1, \cdots,J\}^{m} with j_{t}\neq j_{l+1} , m=1,2 ,

\ldots\} , where s_{f}=-2 \min_{1\leqq i\leqq f}r_{i}(\omega)-s^{\vec{J}}
.

When each \mathscr{O}_{j} is strictly convex and the position \mathscr{O}_{j} satisfies some
hypothesis, then IKAWA [2] has shown that there exists a unique periodic
ray with the reflection points \{y_{1}, \cdots. y_{k}\}\in\partial \mathscr{O}_{j_{1}}\cross\cdots\cross\partial \mathscr{O}_{j_{k}} for any {j_{1} , \cdots

j_{k}\}\in\{1, \cdots,J\}^{k} such that j_{l}\neq j_{l+1} and j_{k}\neq j_{1} . A periodic ray means the
reflection points satisfy the relation:

y_{i}=y_{i+Nk} for i=1,2 , \cdots , k and N=1,2 , \cdots

Our hypotheses on the position \mathscr{O}_{j} imply the assumption in [2] : For all
\{j_{1}, j_{2}, j_{3}\}\in\{1,2, \cdots,J\}^{3} such that j_{t}\neq j_{l’} , if l\neq l’- the convex hull of \overline{\mathscr{O}}_{j_{1}}

and \overline{\mathscr{O}}_{j_{2}} has no intersection with \overline{\mathscr{O}}_{j_{3}} ( \overline{U} denotes the closure of U).

Now we set
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(1.6) \tilde{s}_{k,j_{1},\cdots,j_{k}}=\Sigma_{j=1}^{k}|y_{j}-y_{j+1}|(y_{k+1}=y_{1}) .

We want to know the distribution of all the points of \{s^{f}\} . In case
only two convex obstacles are concerned, the distance of those has been
characterized by the distribution of singular points of the scattering ker-
nel. However, in the case of several convex obstacles we may not expect
such a simple result as in the case of two convex obstacles. In this paper
we show that the broken ray behaving periodically, it can be character-
ized by its periodicity. Let us explain this fact. We say that 7=\{j_{1} , \cdots

j_{m}\} has a periodic part, when there exists a natural number h with 1\leqq h\leqq

m such that the set of a sequence \{j_{i}\}_{h\leq i\leqq m} has a period k\in N ;

for l=0,1 , 2, \cdots k-1 ,
(1.7) j_{h+l}=j_{h+l+Nk}

N=1,2 , \cdots

We note that an integer m-h-k+1 must be exactly divisible by k.
Especially, for this broken ray, we set

s_{m,j_{1},\cdots,j_{h+k-1}}=s^{\vec{J}}
.

Under the above notations we have the second main result:

THEOREM 2. Let \{|\mathscr{O}_{j}\}_{j=1,\cdots,f} satisfy the hypotheses in Theorem 1. If
each \mathscr{O}_{j} is strictly convex then

(1.8) \lim_{marrow+\infty}\{(Sm+k,j_{1},\cdots,j_{h+k-1}-s_{m,j_{1},\cdots,j_{h+k-1}})-\tilde{s}_{k,j_{h},\cdots,j_{h+k-1}}\}=0 .

Note that the hypotheses (1. 3) and (1. 4) on \mathscr{O}_{j} are satisfied when

\min_{i\neq j} dist ( \mathscr{O}_{i}, \mathscr{O}_{j})>\{(\sin\frac{\pi}{JU-1)})^{-1}-1\}\max_{1\leq j\leq\int}diam\mathscr{O}_{j} .

The main tasks in the proof of Theorem 1 and Theorem 2 are to show
that there exist actually the broken rays with the property (*) and to
obtain the equality (1. 8). Our proofs are essentially based on the ideas
used in [6] and [7]. Thus in the present paper we shall show that the
methods used in [6] and [7] are applicable to the case of several convex
obstacles.

PETKOV and STOJANOV [8] (without proofs) have extended the
results in [6] to the case of several disjoint strictly convex obstacles in R^{3}

under some assumptions. But to the author it seems that not all our
results can be obtained by their methods.
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\S 2. Properties of the broken rays.

First, we define the broken rays according to the law of the geometri-
cal optics. For x\in\partial\Omega , denote by l’(x) the unit inner vector normal to the
boundary. We suppose that

\{x=x_{0}+l\xi_{0} : l>0\}\cap\partial\Omega\neq\phi

for \eta\in\Omega and \xi_{0}\in S^{n-1} , and define l_{j-1} , x_{j} and \xi_{j} successively by

l_{j-1}= \inf\{l>0 ; x_{j-1}+l\xi_{j-1}\in\partial\Omega\} ,
x_{j}=x_{j-1}+l_{j-1}\xi_{j-1} ,
\xi_{j}=\xi_{j-1}-2(\xi_{j-1}\cdot 1\nearrow(x_{j}))_{1/}(x_{j}) ,

where l_{j-1}=\infty when x_{j-1}+l\xi_{j-1}\not\in\partial\Omega for any l>0 . We call the set

L(X_{0}, \xi_{0})=\bigcup_{j}\{x=x_{j}+l\xi_{j }

the broken rays starting at x_{0} in the direction \xi_{0} with the reflection points
\{x_{j}\} . When there exists an integer m\geqq 1 such that \{x=x_{m}+l\xi_{m} ; l>0\}\cap\partial

\Omega=\phi . We set

\#_{\Gamma efL(x_{)},\xi_{0})=m},
dir_{\infty}L(\chi_{)}, \xi_{0})=\xi_{m} .

Let us prove the following existence of the broken ray stated in Theorem
1.

THEOREM 2. 1. Let \{\mathscr{O}_{j}\}_{j=1,\cdots,f} satisfy the hypotheses (1. 3) and (1. 4).

We assume that

\omega\in s^{n-1}-\bigcup_{j_{1}\neq j_{2}}\{\pm\frac{x-y}{|x-y|}\in S^{n-1} ^{;} ^{x\in\partial \mathscr{O}_{j_{1}}} .

Then for any m and \{j_{1}, \cdots, j_{m}\}\in\{1, \cdots, J\}^{m}

(j_{k}\neq j_{k+1}, k=1,2, \cdots m-1) , there exists x) on P (stated in Introduction)

and the broken ray L(x) , \omega) such that

(i) \#ref L(x_{1}, \omega)=m, dir_{\infty}L(x) , \omega)=-\omega,

(ii) the reflection points \{x_{j}\} satisfy
\{x_{1}, \cdots x_{m}\}\in\partial(\mathscr{O}_{j_{1}}\cross\cdots\cross\partial \mathscr{O}_{jm} .

PROOF OF THEOREM 2. 1. Our proof is based on the following
thoughts. Let \omega be the direction given in Theorem 1. Suppose a plane
wave propagates in the direction \omega and hits a convex obstacle \mathscr{O}_{j_{l}} . Then
the wave front reflected by \mathscr{O}_{j\iota} will be no focal points and that there will
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be at least one broken ray reflected in the direction -\omega . Suppose the
wave front reflected by \mathscr{O}_{j_{l}} hits \mathscr{O}_{j\iota} subsequently and is reflected by \mathscr{O}_{j\iota} .
Then it also has no focal points and there exists at least one reflected ray
with the direction -\omega . Using Lemma 2.1 in [7], we can check that this
process is successively true. Without loss of generality, we may assume
that \omega= (0, 0, \cdots , 0, 1) . Let us consider the broken ray starting at the
point on P in the direction \omega . Set

S_{\pm}^{n-1}=\{\theta\in S^{n-1} : \pm\theta\cdot\frac{a_{j_{l}}-a_{j\iota}-[(a_{j\iota}-a_{j\iota})\cdot\omega]\omega}{|a_{j_{l}}-a_{j_{l}}-[(a_{j_{l}}-a_{j_{l}})\cdot\omega]\omega|}>0 ,

dist ((\mathscr{O}_{j_{l}}, \mathscr{O}_{j\iota})--|a_{j_{l}}-a_{jp}|\}, U_{1,j_{k}}=\{x\in\partial \mathscr{O}_{j_{k}} : \nu(x)\cdot\omega<0\} for k–l, l’ . \xi_{1,j_{k}}=

\omega-2(\omega\cdot\nu(x))_{1\nearrow}(x) for x\in\overline{U}_{1,j_{k}} ; k=l, l’ .

Here, \overline{U} denotes the closure of the set U. By using Lemma 2.2 in [7]
inductively, for any m(m=2,3, \cdots) we have a connected open set U_{m,j_{k}}(\subset

\partial \mathscr{O}_{j_{k}} , k=l, l’) such that

\{

(2. 1)

(i) S_{+}^{n-1}\subset\{\xi_{m,j\iota}(x) : x\in U_{m,j\iota}\} ,

and
\overline{S_{-}^{n-1}}\subset\{\xi_{m,j_{l}}(x) : x\in U_{m,j_{l}}\} ,

[_{convexsurface}^{(ii)\nu(x)\cdot\xi_{m,j_{k}}(x)>0forx\in U_{m,j\Lambda}(k=l,l’)}(iii)fork=l,,l’.thewavefrontassociat’ ed with \xi_{m,j_{k}}(x) is

where \xi_{m,j_{k}}(x) denotes the m^{th} reflected direction by \mathscr{O}_{j_{k}}(k. =l, l’) (for
detailed definitions and notations see \S 2 in [7] ) . We put

S_{l,l’}= \bigcap_{mk}\bigcap_{=l,l’}\{\xi_{m,j_{k}}(x):^{x\in U_{m,j_{k}}\}} ,

M_{l,l’}= \bigcap_{mk}\bigcap_{=l,l’}\{x+l\xi_{m.l_{k}}(x) : ^{x\in Um,l_{k\prime}}l\geqq 0\} .

At this time, from the hypotheses (1. 3) and (1. 4) it holds that

\bigcup_{j\neq j_{l},j_{l}}\mathscr{O}_{j}\subset M_{l,l’} for any l, l’ .

and

(2.2) \omega=(0,0, \cdots , 0, ^{1})\in\bigcap_{l\neq l},S_{l,l’} .

We consider any broken ray L(x_{0}, \omega) with ,x_{0}\in P. Assume that the first
reflection point x_{1} of L(x) , \omega) belongs to \partial \mathscr{O}_{j_{1}} . We see that \omega\in S_{1,2} by (2.
2). From lemma 2.2 in [7] it follows that there exists U_{2,j_{2}} satisfying
(i)-(ii) in (2. 1) with l=1 and l’=2 when x_{0} moves some open set in
P. Repeating this process inductively, we have U_{m.jm} satisfying ( i)
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-(ii) in (2. 1) with l=m-1 , l’=m. Hence the existence of the broken
ray with \xi_{m.jm}=-\omega is proved. The proof is complete.

REMARK 2. 1. When each \mathscr{O}_{j} is strictly convex, Lemma 2.2 in [7]
shows that the Gaussian curvature of the m^{th} reflected wave front never
vanish, and so we have the uniqueness of broken ray stated in Theorem 2.
1.

Before proving Theorem 2, we explain a key lemma. From now on
we assume that each \mathscr{O}_{j} is strictly convex. Let \{y_{l}\}_{l=1}^{k}(y_{l}\in\partial \mathscr{O}_{j_{l}}) be the
reflection points of the periodic ray (showed in [2]) stated in Introduc-
tion. Set

\mathscr{L}_{j}=\{ty_{j}+(1-t)y_{j+1} : t\in R\} for j=1 , \cdots , k-1 ,

U(\delta)=\{y\in\partial\Omega ; dist (y, \bigcup_{j=1}^{k-1}\mathscr{L}_{j})\leqq\delta.

We take points x_{1}\in\partial \mathscr{O}_{j_{1}} and x_{2}\in\partial \mathscr{O}_{j_{2}} such that

\delta<dist(x_{1}, \mathscr{L}_{1})\leqq dist(h, \mathscr{L}_{1}) ,

and consider the broken ray L(x_{1}, \xi_{1})(\xi_{1}=(n-x_{1})/|\ -x_{1}|) .

LEMMA 2. 1. Assume that

L(x_{1}, \xi_{1})\cap U(\delta)=\phi .

Then there exist N\in N and l(0\leqq l<k) such that

x_{Nk+l}\not\in \mathscr{O}_{j_{l}} and x_{Nk+l-1}\in \mathscr{O}_{j_{l- 1}} .

PROOF. It is enough to consider the case
(2.3) x_{1}\ \cap { z\in\partial\Omega : dist (z, \mathscr{L}_{1})<|x_{1}-y_{1}| } =\phi

(\overline{x_{1}x_{2}}=\{tx_{1}+(1-t)g:0\leqq t\leqq 1\}) .

The proof in the case that x_{1^{i}}h\cap { z\in\partial\Omega : dist (z, \mathscr{L}_{1})<|x_{1}-y_{1}| } \neq\phi can be
treated in the same way as in the case (2. 3), because it holds that

\delta<dist(h, \mathscr{L}_{2})\leqq dist(x_{3}, \mathscr{L}_{3})

and

x_{2}x_{3}\cap { z\in\partial\Omega : dist (z, \mathscr{L}_{2})<|\ -y_{2}| } =\phi .

It is easily seen that there exists a constant c_{0}\geqq 0 such that

dist (&, y_{2}) \geqq(1+\min_{i\neq j}dist(\prime \mathscr{O}_{i}, \mathscr{O}_{j})c_{0})dist(x_{1}, y_{1}) .

If we use the estimates of the Gaussian curvature of the wave front
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obtained in [7], there exists a constant c_{1}(>c_{0}) such that

dist (x_{3}, y_{3}) \geqq 1+\min_{i\neq j}dist(\mathscr{O}_{i}, \mathscr{O}_{j})c_{1})dist(x_{2}, y_{2}) .

Repeating this process inductively, we get

dist (x_{Nk+l}, y_{Nk+l}) \geqq(1+\min_{i\neq j}dist(\mathscr{O}_{i}^{ \prime},\mathscr{O}_{j},)c_{1})^{Nk+l-2}\delta.

Since y_{Nk+l}\in\partial \mathscr{O}_{j_{l}} , there exist N\in N and l(0\leqq l<k) such that x_{Nk+l}\not\in\partial \mathscr{O}_{j\iota}

and x_{Nk+1-l}\in\partial \mathscr{O}_{j\iota- 1} which proves our lemma.

REMARK 2. 2. Lemma 2.1 is also true when (x_{1} , x_{2})\in\partial \mathscr{O}_{j_{l}}\cross\partial \mathscr{O}_{j_{l+1}} .
From Lemma 2.1 we can choose \overline{N} such that

\overline{N}=\max\{N : (x_{Nk+1}, y_{1})\in\partial \mathscr{O}_{j_{1}}\cross\partial \mathscr{O}_{j_{1}}\} .

We are going to estimate the difference \Sigma_{j=1}^{\tilde{N}k}|x_{j}-x_{j-1}|-\tilde{N}\tilde{s}_{k,j_{1},\cdots,j_{k}}\sim
’ where x_{j}

denote the reflection point stated in Lemma 2.1 and s_{k,j_{1},\cdots,j_{k}} is the length of
the periodic ray stated in Introduction. We have

= \sum_{j=1}^{\overline{N}k}|x_{j}-x_{j+1}|-\sum_{j=1}^{\tilde{N}k}|y_{j}-y_{j+1}|\sum_{j=1}^{\overline{N}k}|x_{j}-x_{j+1}|-\overline{N}\tilde{s}_{k,j_{1},\cdots,j_{k}}

\leqq 2\sum_{j=1}^{\overline{N}k}|x_{j}-y_{j}| .

From lemma 2.1, there exists a constant \rho(0<\rho<1) such that

|x_{j}-y_{j}|\leqq\rho|x_{j+1}-y_{j+1}| for j\geqq 3 .

Hence we get

\Sigma_{j=1}^{\tilde{N}k}|x_{j}-x_{j+1}|-\overline{N}\tilde{s}_{k,j_{1},\cdots,j_{k}}

\leqq 2\Sigma_{j=1}^{\tilde{N}k}|x_{j}-y_{j}|

\leqq 6(\Sigma_{j=0}^{\infty}\rho^{j})|x_{\tilde{N}k+1}-y_{\overline{N}k+1}| .

If x -

k+1 belongs to U(\epsilon) , then there exists a positive constant C such that

(2.4) \Sigma_{j=1}^{\tilde{N}k}|x_{j}-x_{j+1}|-\tilde{N}\tilde{s}_{k,j_{1},\cdots,j_{k}}\leqq C\epsilon .

By the above consideration, we can estimate a difference between the
length of the part of a broken ray which has the reflection points belong-
ing to U(\epsilon) . Using these fact, let us prove Theorem 2 in Introduction.

PROOF OF THEOREM 2. Let \{x_{j}\} and \{z_{j}\}be the points defining
s_{m+k,j_{1},\cdots,j_{h+k- 1}} and s_{m,j_{1},\cdots,j_{h+k-1}} respectively. We show for any \epsilon>0

|s_{m+k,j_{1},\cdots,j_{h+k-1}}-s_{m,j_{1},\cdots,j_{h+k-1}}-\tilde{s}_{k.j_{1},\cdots,j_{h+k-1}}|<\epsilon
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if m is large enough. Lemma 2.1 shows that, for sufficently large m , the
number of the reflection points defining s_{m,j_{1},\cdots,j_{h+k- 1}} (s_{m+k,j_{1},\cdots,jh+k- 1}) which do
not belong to U(\epsilon) is finite. And the above consideration (below
Remark 2.2) shows that we can choose a part of \{x_{j}\} and \{z_{j}\} such that

\#\{j:j\geqq h, (x_{j}, x_{j+1})\in U(\epsilon)^{2}\}-\#\{j:j\geqq h(z_{j}, z_{j+1})\in U(\epsilon)^{2}\}=k,

and then the following estimate holds (cf. (2. 4)) :

(2. 5)
|\Sigma_{(x _{x_{+1})}j\geqq h\in U(\epsilon)^{2}|x_{j}-X_{j+1}|-},.,,

\#\{j:j\geqq h, (x_{j}, x_{j+1})\in U(\epsilon)^{2}\}\tilde{s}_{k.j_{h},\cdots,j_{h+k-1}}|\leqq C_{2}\epsilon

and
|\Sigma_{z},z,)

,

\#\{j:j\geqq h, (z_{j}, z_{j+1})\in U(\epsilon)^{2}\}\tilde{s}_{k.j_{h},\cdots,j_{h+k-1}}|\leqq C_{3}\epsilon,

where \#\{\circ \} denotes the number of elements of \{ \circ \} .
We have

s_{m+k,j_{1},\cdots.j_{h+k-1}}-s_{m,j_{1}\ldots.,j_{h+k-1}}-s_{k,j_{h},\cdots,j_{h+k- 1}}

=\Sigma_{(x_{i},z_{j},x_{j+1},z_{j+1})\not\in U(\epsilon)^{4}}(|x_{j}-x_{j+1}|-|z_{j-}z_{j+1}|)

+\Sigma_{(x,,x_{+1})\in U(\epsilon)^{2}},|x_{j}-x_{j+1}|-\Sigma_{(z,z_{+1})\in U(\epsilon)^{2}},|z_{j}-z_{j+1}|j\geqq hj’\geqq h

-s_{k,j_{h},\cdots,j_{h+k- 1}}

\equiv I_{1}+I_{2}-I_{3}-s_{k,j_{h},\cdots,j_{h+k- 1}} .

Estimate (2. 5) gives the following:

(2.6) |I_{2}-I_{3}-\tilde{s}_{k,j_{h},\cdots,j_{h+k-1}}|\leqq C_{46} .

On the other hands, by using the same argument in the last part of \S 2 in
[6] or [7], we see that the points x_{j} and z_{j} with (x_{j}, z_{j})\not\in U(\epsilon)^{2} tend to
the same point as marrow+\infty . Hence we get

|I_{1}|\leqq C_{5}\epsilon

for sufficently large m. Combining this with (2. 6) yields the required in-
equality. This completes the proof.

\S 3. Sketch of the procedures in the proof of Theorem 1.
Taking Theorem 2.1 in \S 2 into consideration, it remains only to prove

(1. 5) in Theorem 1. To analyze the singularities of S(\cdot, -\omega, \omega) , we use
the following representation (cf. MAJDA [5] and SOGA [10]) :

(3. 1) S(s, \theta, \omega)=\int_{\partial\Omega}\{1’\cdot\theta\partial_{t}^{n-1}v(x\cdot\theta-s, x,\cdot \omega)-\partial_{t}^{n-2}\partial_{\nu}v(x\cdot\theta-s, x;\omega)\}dS_{X}
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(\theta\neq\omega) .

Here, f/ denotes the unit inner normal of \partial\Omega , and v (t, x, ; \omega) is the solu-
tion of the mixed problem

(3. 2) \{

\square v=0 in R^{1}\cross\Omega

\partial_{\mu}[ v+2^{-1}(-2\pi i)^{1-n}\delta(t-x\cdot\omega)]=0 on R^{1}\cross\partial\Omega ,
v=0 for t \leqq\min r_{i}(\omega) .

1\leqq i\leqq f

We expect that sing supp S(\cdot, -\omega, \omega) is determined by only the broken
rays with the property (*) . It has been proved in [6] and [7] this is true
when \mathscr{O} consists of two disjoint convex obstacles. The procedures in the
proof of (1. 5) are the same as those used in [6] (for details, see \S 3 in
[6] ) , so we only sketch them. We can construct asymptotic solution of
the equation (3. 2) near the broken rays with the property (*) in the
same way as in \S 7 in [1]. Using this asymptotic solution and the repre-
s olution (3. 1), we can reduce the proof of (1. 5) in Theorem 1 to show-
ing that the following integral does not decrease rapidly as |\sigma|arrow+\infty .

(3. 3) \int_{\partial\Omega}e^{\iota\sigma(x\cdot\omega+\phi_{m}^{\mathcal{F}}(x))}\alpha(-x\cdot\omega-\phi_{m}^{\vec{J}}(x)+2\min_{1\leqq i\leqq f}r_{i}(\omega)+s_{m}^{f})\beta^{f}(x)dS_{x}

where \beta^{\vec{J}}(x) is a C^{\infty} function, \alpha(s) is a cutt-0ff C^{\infty} function with small
support with \alpha(0)\neq 0 and \phi_{m}^{f} is a phase function associated with the br0-
ken ray defining s_{m}^{\vec{J}} . Generally it may happen that there exists another
pair (\tilde{m},\overline{J})arrow which is different from (marrow’\vec{J}) but s_{m}f=sm\angle\simarrow . By the
Neumann boundary condition, \beta^{f}\zeta x ) and \beta^{\tilde{J}}(x) have same sign. Hence
the integrals associated with (\tilde{m},\tilde{J}) and (m,\vec{J}) do not have influence to
each other. It is known that (3. 3) does not decrease rapidly as |\sigma|arrow\infty

alternatively using the stationary phase methods when \mathscr{O}_{i} is strictly con-
vex or using the results in [11] when \mathscr{O}_{i} is convex.
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