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Combinatorial analysis of point obstructions to local
factorizability in three-folds
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Abstract : The paper introduces formally the concept of local factor-
izability used in earlier factorizability work, identifies the basic form of
obstructions to local factorizability of birational morphisms, and outlines
a combinatorial technique for analyzing such obstructions. As an applica-
tion and illustration, two open cases in the classification of birational
morphisms with small canonical divisors are settled.

0. Introduction

If f : Xarrow Y is a birational morphism of algebraic spaces we will say
that

f is \underline{directly}factorizable if it is a composition of blowings-up
with nonsingular centers.

f is \underline{strongly}factorizable if it is a composition of the form
g_{1}\circ g_{2}^{-1} . for g_{1} and g_{2} directly factorizable morphisms.

f is weakly factorizable if it is an alternating composition
\overline{g_{1^{\circ}}g_{2}^{-1_{\circ}}g_{3^{\circ}}g_{4}^{-1_{\circ\circ}}\ldots g_{n}}of directly factorizable morphisms and
their inverses.

There is a conjecture that every birational morphism is strongly
factorizable. It is true for surfaces, and no counterexample has yet been
adduced in any higher dimension, but the combinatorial complexities, even
in the case of three-folds, have discouraged work in that direction. Even
very simple test cases have not yielded a general method.

The prospects of proving a weaker conjecture that every birational
morphism is weakly factorizable look much brighter, particularly for
threefolds, in light of the success of the “ Mori program ” for contracting
birational morphisms (see Kollar’s expository article [5] for an introduc-
tion to this theory). Since it is not directly relevant to this work we will
give only a brief description.

Starting with a projective algebraic scheme, one can reach a simpler
scheme called a “ convenient model ” by a finite sequence of two opera-
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tions: divisorial contractions and “ curve flips” The div\dot{l}sorial contrac-
tions are allowed to introduce certain mild singularities called terminal
singularities. The “ flips ” are isomorphisms outside of one irreducible
curve, which is exchanged for another curve. We will have occasion in
this work to investigate a particularly simple kind of “ flip ” which is
called a “ flop ” In a flop, a curve of self-intersection 0 \dot{1}S blown up and
then contracted along a section to produce another curve of self intersec-
tion 0.

To explain the connection between the contraction theorem and the
weak factorization conjecture, we will first describe Danilov’s proof of the
weak factorization theorem for toroidal schemes of dimension 3, beginning
from the definition of a toroidal scheme for A n.

Fix a set of transversal parameters x_{1}\ldots x_{n} . An affine toroidal scheme
of dimension n is a scheme f : Tarrow A^{n} with a birational morphism to A n,
such that all components of the exceptional divisor are defined locally by
the vanishing of monomials (with positive and negative exponents) in x_{1}\ldots

x_{n} . The simplest examples of toroidal schemes can be obtained by a
sequence of blowings up whose centers are intersections of coordinate
planes and exceptional divisors. The toroidal scheme can be described
combinatorially by a dual graph of the coordinate planes and the excep-
tional divisors. A brief description of the construction of the dual graph
can be found in [9] : Because they can be treated combinatorially via the
dual graph, toroidal schemes have become the “ white mice ” of the geom-
etry laboratory.

Shortly after Mori’s first work on contractibility (which did not serve
as a general induction step because the scheme being contracted was non-
singular), Danilov used Mori’s methods to prove that every toroidal mor-
phism of 3-folds could be contracted to A^{3} by a finite sequence of divisor-
ial contractions and flips. However, Danilov went further. Choosing a
fixed resolution for each of the terminal singular\dot{l}ties appearing in this
sequence of contractions, he then showed that each flip was weakly factor-
izable. By Hironaka’s resolution of singularities it is possible to find
directly factorizable toroidal morphisms g_{1} : \tilde{X}_{1}arrow X_{1} and g_{2} : \overline{X}_{2}arrow X_{2} such
that \overline{X}_{1} and \overline{X}_{2} are projective. The Danilov theorem proves that the
canonical morphisms h_{1} : \overline{X}_{1}arrow A^{3} and h_{2} : \overline{X}_{2}arrow A^{3} are weakly factorizable,
and thus the total composition g_{2}h_{2}^{-1}h_{1g_{1}}^{-1} : X_{1^{->}}X_{2} is weakly factorizable.

If the “ convenient models ” in the Mori program are not contractable
to a lower d_{\dot{1}}mensiona1 variety, then they can be transformed into each
other by a sequence of flops or their inverses. Thus in this case it is rea-
sonable to hope that they could \dot{p}lay th\circ

, role of A^{3} in a general weak
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factorization theorem for three-folds. In the successful complet\overline{l}on of the
Mori program for three-folds, it is thus reasonable to see the completion
of the global framework for a weak factorization theorem for three-folds.
The portion remaining would be to choose fixed resolutions of the termi-
nal singularities and to show that the resulting “ small steps ”- correspond-
ing to a single divisor\overline{l}al contraction or flip, are weakly factorizable.

This article belongs to a different and more modest line of work on
the factorization problem, but one which has produced methods well-suited
to an attack on the remaining local steps in a weak factorization theorem.

Two decades ago, shortly after Hironaka’s work on resolution of sin-
gularities had cleared away one great question mark in the theory of bir-
ational morphisms, Moishezon embarked on a program, later pursued by
his students, to classify birational morphisms with small canonical d\dot{l}vi-

sors. He felt that the entire subject would benefit if there would be more
information on which phenomena “ occur in nature ”. and which do not.
In the following summary of results to date, all spaces are nonsingular
algebraic spaces (not necessarily schemes), and all exceptional divisors
have normal crossings.

1) (1967) Moishezon proved that every birational morphism whose
exceptional divisor contained a single irreducible component was a blow-
ing up with nonsingular center.

2) (1976) Schaps [8] showed that every birational morphism of
three-folds collapsing two irreducible components was directly factoriza-
ble.

3) (1981) Teicher [10] demonstrated that every birational morphism
of four-folds collapsing two components was directly factorizable.

4) (1981) Crauder [1] proved that every birational mor_{1}phism of
three-folds collapsing three components to a point was “ locally factoriza-
ble ” and Schaps [9] obtained the same result for birational morphisms of
three-folds collapsing three components to a nonsingular curve.

During this period of the work (2)\cdot(4) described above, there was
also work in various directions by Danilov, Kullikov, Pinkham, and Pers-
son, summarized in Pinkham’s expository article [7]. Of these efforts the
one most directly relevant to this paper was Danilov’s result in [2] that a
birational morphism with one dimensional fibers is locally factorizable.

At each stage pushing the classification further was diffiffifficu1t_{l} and
required the introduction of more sophisticated techniques, designed to
show that the morphism under consideration was in some sense locally
toroidal. These techniques have been carried further and put on a general
footing in the current paper. As an illustration of how the general tech-
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niques can be applied in practice to analyze a birational morphism, we
then settle the next two cases in the classification of birational morphisms
of three-folds with small canonical divisor: four components collapsing to
a point and three components collapsing to a singular curve.

Although these techniques were developed for nonsingular algebraic
spaces, the combinatorial analysis depends only on the generic point of
each exceptional divisor and is thus indifferent to possible isolated singu-
lar points. Furthermore, the “ quasi-blowings up ” introduced to get
around singularities in the fundamental locus could as well be applied to
get around singularities in the space, so the main formulae, like the “ ad-
ditivity formula ”. should hold just as well for spaces with terminal singu-
larities.

In \S 1 and \S 2 we develop the new tools and notation required to
efficiently use large quasi-factorization sequences. The application of
these tools is then illustrated in \S 3 and \S 4, showing that with one excep-
tion a birational morphism of algebraic spaces which collapses four com-
ponents to a point is locally factorizable. In order to aid the reader in
fitting these methods into the context of previous work on the subject, we
give a brief introduction to the various methods.
A. Local factorizability (1. 1-1. 4) : This is a transposition into the cate-
gory of algebraic spaces of a long standard analytic technique of creating
nonprojective morphisms by blowing-up a smooth branch of a singular
curve in a small neighborhood of the singularity. The operation of taking
an etale neighborhood in which the branches of a curve are irreducible
will substitute for the analytic operation of taking a small neighborhood.

Historically, the standard example of a locally factorizable morphism
is obtained by blowing-up one branch of a double node before the other.
Crauder [1] and the author [9] came upon examples of morphisms col-
lapsing three normally crossing components without self-intersections,
called the “ wagon wheel ” in [1] and the “ bow-ti\"e ” in [9]. For the
four component case there were so many different types of examples that
it was simpler to define a general class of such examples than to enumer-
ate them.
B. Point Obstructions (1.5-1. 8) : We make a slight extension of
Dan\overline{ilov’ s}theorem in[2] about the factorizability of morphisms with one
dimensional fiber, requiring only the “ generic ” part of the fiber to be one
dimensional. The change is made possible by the application of the
“ transversal test curve ” lemmas in [9] to Danilov’s basic lemma.

Together with a double induction on the number of curve and point
components in the fiber over a point, this permits us to show that all
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obstructions to local factorizability are of the type we call “ point obstruc-
tions”- in which the “ generic ” fiber over a bad point y is two dimen-
sional but the morphism does not factor through the blowing-up of y. The
set on which the morphism does not factor is called the pinch locus. In
[1] and [9] it was necessary to show that the pinch locus was empty.
Here the pinch locus is blown-up and a combinatorial analysis of the
resulting components restricts the types of components of the canonical
divisor in which the pinch locus can lie.
C. \underline{Quasi}-factorization (1. 11-1. 13): In [1], [2], [8], [9], and [10], the
work of factoring a morphism f : Xarrow Y proceeds by proposing a quasi-
factorization g:Y_{1}arrow Y . generally a blowing-up with non-singular center,
and trying to analyse or eliminate the set on which the induced correspon-
dence f_{1} : X->Y_{1} is not welldefined. As f becomes more complicated, it
is necessary to use a sequence of blowings-up for the quasi-factorization,
and to permit non-singular centers, creating problems which are solved
here by the introduction of quasi-blowings-up and accessible components.
D. The weight vector: The multiplicities r_{i} of the components D_{i} of the
relative canonical divisor K_{f} of a morphism f have played a crucial role
in all attempts to factor f. Crauder, in extending a method pioneered by
Kullikov, also introduces the multiplicities s_{i} of the D_{i} in f^{*}(H) for a
generic hyperplane H. In this work we must consider the multiplicities in
f^{*}(H) for special H as well, mimicking a “ toroidal ” analysis of the
components. We also convert the “ excess ” defined in [9] into a mea-
sure of the extent to which a component of K_{f} fails to be toroidal.
E. The additivity formula (2. 4-2. 5): The central idea of Danilov’s [2]
is to decompose a morphism into composition of correspondences and to
compare the multiplicities obtained on the two sides of the formula

K_{f\circ p}=p^{*}(K_{f})+K_{p}

This procedure is formalized in the add_{\overline{1}}tivity formula and extended to
include the other components of the weight vector. In 2.5 it is generalized
to quasifactorization sequences with a number of factors.
F. Well-definedness (2. 6-2. 7, 2. 12) : Earlier lemmas on the well-defin-
edness of a map f_{1} to a blowing-up are extended to a map f_{m} to a quasi-
factorization sequence of length m.
G. \underline{Analysis}of pointobstructions (2. 8-2. 11) : The major working tools
used in this paper for the analysis of point obstructions are the inequalities
in lemmas 2.9 and 2.11, which restrict the possible values of r_{i} and s_{i} for
components D_{i} of K_{f} containing the pinch locus. These lemmas represent
a considerable strengthening of the lemmas in \S 2 of [9]
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We will use K_{f} to denote the canonical divisor of a birational mor-
phism f : Xarrow Y . and S_{f} for the fundamental locus in Y. the closed subql-
gebraic space on which f^{-1} is not an isomorphism. Points of K_{f} will be
referred to as singleton points, double points and triple points according to
the number of components of K_{f} containing the point. Since we are work-
ing with three-folds and will assume that the canonical divisor has normal
crossings, no more than three divisors can come together at one point.
The support of a divisor D will be denoted by |D| .

Let Y be an algebraic space, obtained by patching together schemes
via an etale equivalence relation. Let y be a closed point of Y. Assume
that the ground field k is algebraically closed. An etale neighborhood of
y is an algebraic scheme together with an etale morphism e:Warrow Y such
that the inverse image of y is a single point w. (If k were not alge-
braically closed, we would also have to require that the residue fields at y
and w be the same.) Since e is etale, the completion of the structure
sheaf at y is isomorphic to the completion of the structure sheaf at w. An
\underline{etale}cover \{e_{i} : W_{i}arrow Y\} is a set of etale morphisms into Y such that for
any morphism g:Zarrow Y with Z an affine scheme, the images of W_{i}\cross YZ

in Z form a Zariski cover of Z.
If f : X—>Y is a birational correspondence which is well-defined at

the generic point of an irreducible subspace W of X , then we denote by
f[W] the closure of the image of the generic point of W_{-} and call this
the \underline{strict}image of W. If in place of f we have an inverse correspondence
g^{-1} : X–>Y then we will call g^{-1} [ W] the strict preimage. A \underline{test}curve
\Gamma\subset Y for f : X–>Y is an irreducible curve intersecting the set S_{f} on
which f is not an isomorphism in a single point y and having a unique
analytic branch at y. The point x at which the strict preimage f^{-1}[\Gamma] in
X intersects the set on which f is not an isomorphism is called the \underline{closure}

\underline{point} of the test curve.
The following four lemmas from [9] will be used repeatedly in \S 3

and \S 4, so we quote them here for convenient reference:

Lemma 1. 1 (of [9]). Let f : Xarrow X’ be a birational morphism of non-
singular algebraic spaces of dimension n , and let W be a nonsingular sub-
space in the complement of the set on which f is an isomorphism. Let g :
X_{1}’arrow X’ be the blowing-up whose center is the ideal I_{W} of W. Let x_{1}\in X_{1}’

be a point on the fiber g^{-1}(x’) , and let \Gamma_{1} be a closed curve which inter-
sects this fiber only at x_{1} and has a single analytic branch there. Let \Gamma’=

g(\Gamma_{1}) , and \Gamma=f^{-1}[\Gamma’] . Let H be a generic hyperplane containing W

and suppose
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(a) that \Gamma contains a point x of f^{-1}(x’) , which we will call the c10-
sure point of \Gamma_{1} ,

(b) x lies on components E_{1} , \ldots , E_{r} , each E_{i} having multiplicity m_{i} in
f^{-1}(I_{W})O_{X,X} , and

(c) m_{1}+,\cdots, +m_{r}\geq dg(T’\cdot H)=dg(p_{1g}*(H)) .
Then \Gamma is nonsingular at x , transversal to each of E_{1} , \cdots . E_{r} , and

f^{-1}(I_{W})O_{X,X} is invertible at x , being generated by t_{1}^{m_{1}}\cdots t_{r}^{m_{r}} , for t_{i} a local
equation of E_{i} . Thus f_{1} : X—>X_{1}’ is well defined in a neighborhood of x
and f_{1}(x)=x_{1}

\underline{Lemmal.2} (of [9]). Let f : Xarrow X’ be a proper birational morphism
of n-folds. Let W be a nonsingular subspace of D’. the set on which f^{-1}

is not an isomorphism, and define the blowing up g and W_{1}=g^{-1} ( W) as in
lemma 1.1 with f_{1}=g^{-1} of the induced correspondence. Let D_{1} , \ldots , D_{m} be
the components of the exceptional divisor of f , with D_{1} , \ldots . D_{r} contained
in f^{-1} ( W) .

(i) Suppose f_{1}^{-1} [ W_{1}] is a divisor D_{1} . Then f_{1}^{-1} is an isomorphism
on the set

W_{1}- \bigcup_{l<j\leq r}f_{1}[D_{j}]-\bigcup_{j>r}f_{1}(D_{j}\cap f^{-1}(W))

(ii) If f^{-1}( W) is a union of divisors, and in particular if W=D’-
then f_{1}^{-1}

[ ^{W_{1}}] is a divisor, and on W_{1}- \bigcup_{j\neq 1}f_{1}[D_{j}] , f_{1}^{-1} is an isomorphism.

\underline{Notation}([9]) . Let f : Xarrow X’ be a birational map of nonsingular
n-folds, collapsing a divisor D with normal crossings to a subspace D’ of
X’. of codimension c_{:}’ greater than 1. Let z_{1}’ , \ldots , z_{\acute{n}} be local parameters
centered at x’ in X’ Let z_{1} , \ldots , z_{n} be the liftings to regular functions on
X. We define the canonical divisor K_{f} of f by K_{f}=divU^{*}(\omega_{X’})\otimes\omega_{X}^{-1}) .
Locally at a point of f^{-1}(x’) this is the divisor of the form dz_{1}\wedge\ldots\wedge dz_{n} .

Let x be a point on the intersection of components D_{1} , ... , D_{s} of D.
Letting t_{i} be a local equation for D_{i} , we extend this to a set t_{1} , \ldots . t_{n} of
local parameters of X at x. Suppose that the order of z_{i} on D_{j} is at least
a_{ij} , so that we can write

z_{i}=t_{1}^{a_{i1}}\cdots t_{S}^{a_{iS}}q_{i} .

The canonical divisor at x of the map f is given by

tf^{\Sigma a_{i1)-1}}\cdots t^{(\Sigma a_{iS})-1}s\det(J’) (^{*})

for some matrix J’
Let r_{j} be the multiplicity of D_{j} in the canonical divisor of the map f ,
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and set e_{j}=r_{j}-(\Sigma a_{ij})+1 , which by (^{*}) is nonnegative. We will call it
the excess of r_{j} . Let e=e_{1}+\ldots+e_{s} .

Lemma 2. 2 [9] Let x be a point lying on a unique component D_{1} of D ,

and suppose that f(D_{1})\subset W . the subspace defined by the vanishing of
z_{1}’ , \ldots , Z_{\acute{C}’} . Let I_{W} be the reduced ideal of W_{j} and suppose that the multi-
plicity of D_{1} in f^{-1}(I_{W}) is at least b. Let f_{1}\cdot. X– >X_{1}’ be the map to the
blowing up of W. It is well defined at x if

(i) r_{1}=bc’-1 , so that e=0 , or
(ii) r_{1}=bc’ , and f_{1}^{-1} doesn’t collapse the exceptional divisor.

Lemma 2. 3 [9] Let x be a point lying on only two components D_{1} and D_{2}

of D. Suppose that f(D_{i})=W_{i} is defined by the vanishing of local coordi-
nates z_{1}’ , \ldots , z_{\acute{c}_{i}} , for i=1,2 , and c_{2}\geq c_{1} . Suppose that D_{i} has multiplicity b_{i}

in the lifting of the ideal of W_{i} to X. Let f_{i} be the map to the blowing-up
of W_{i} .

(i) If e_{1}=e_{2}=0 , then f_{1} and f_{2} are both well defined.
(ii) If e=e_{1}+e_{2}=1 , then either f_{1} or f_{2} is well defined at x.
(iii) If c_{2}=c_{1}+1 , and e=1 , and f_{1}^{-1} does not collapse the exceptional

divisor, then f_{1} is well defined at the generic point of D_{1}\cap D_{2} .
For ease of reference, before beginning the new definitions and lem-

mas, we append a list of the terms which will be defined in the body of the
paper, and the number of the corresponding definition: root tree, 1.1; par-
tial factorization tree, 1.2 ; local factorization tree, 1.3 ; locally factoriza-
ble morphism, 1.4: point obstruction, 1.5; strict preimage f^{-1}[y] of a
point, 1.7: pinch locus, P_{y}(f) , 1.9: quasi-blowing-up, 1.11 : quasi-
factorization sequence, 1.13; dominated by f_{r}1.13;r_{f}(F) , 2.1; w_{f}(F) ,

2.1: s_{f}(F, H) , 2.1; u_{f}(F; H_{1}, \ldots, H_{r}) , 2.1; excess, ex_{f}(F; H_{1}, \ldots.H_{r}) , 2.2 :
total excess at x , 2.10.

\S 1. Local factorizability.

We wish to call a morphism of algebraic spaces locally factorizable if
it “ locally ” factorizable by blowings-up with nonsingular centers. There
are two factors complicating this basically simple idea. The first is that
we must work in the etale topology so that the maps from our local neigh-
borhoods are not injective; the second is the process of localization pr0-

ceeds in fibers over the original base.

EXAMPLE: Local factorization: Suppose Y is a smooth 3-dimensi0nal
scheme. First we blow up a point y , giving a space Y_{1}’ with exceptional
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divisor M_{1} . We now want to blow up a curve C in M_{1} with a unique
nodal singularity at a point y_{1} . We choose an etale cover of Y_{1}’ , consist-
ing of two Zariski open affine subsets Y_{11} , Y_{12} of Y_{1}’ not containing y_{1} ,
and an etale neighborhood Y_{13} of y_{1} in which the preimage of one branch
of the node is irreducible. In Y_{11} and Y_{12} we just blow up the curve C
getting Y_{11}’ and Y_{12}’ . In Y_{13} we first blow-up one branch of the node to
get Y_{13}’ , then cover this with Zariski open affine neighborhoods Y_{13i} and
blow up the remaining branches of C to get schemes Y_{13i}’ . Then Y_{11}’ ,
Y_{12}’ and the Y_{13i}’ patch together to form an algebraic space X.

For our purposes we may assume the algebraic space X and the mor-
phism f : Xarrow Y to be given, so that we avoid arguments about etale pat-
ching. Showing that f is locally factorizable means constructing a tree of
successively simpler morphisms f_{\acute{a}} : X_{a}arrow Y_{\acute{a}}, such that if f_{\acute{a}} is not an
isomorphism, then Y_{\acute{a}} has an etale covering \{e_{\beta} : Y_{\beta}arrow Y_{\acute{\beta}}\} by schemes Y_{\beta}

with the following property: Let X_{\beta}=X_{aY\text{\’{a}}}\cross Y_{\beta} be the pullback of the
pair of morphisms (f_{\acute{a}}, e_{\beta}) . Let f_{\beta} : X_{\beta}arrow Y_{\beta} be the projection onto the sec-
ond factor. Then f_{\beta} can be factored as the composition of a blowing up
g\beta .. Y_{\beta’}-arrow Y_{\beta} with nonsingular center and a morphism f_{\beta}’ : X_{\beta}x_{Y\acute{a}}Y_{\beta}arrow Y_{\acute{\beta}} .
An obstruction to locally factoring f is a morphism f_{\acute{a}} : X_{a}arrow Y_{\acute{a}} for which
no such covering exists. If there are no such obstructions, then we will
show in lemma 1.6 below that after a finite number of steps all terminal
morphisms f_{\acute{a}} : X_{a}arrow Y_{\acute{a}} will be isomorphisms. These X_{a} will form an
etale cover of X.

DEFINITION 1. 1. : A connected tree will be called aroot tree if it has
a distinguished initial vertex v_{\mathfrak{g}} . The choice of v_{\mathfrak{g}} implies a unique direc-
tion away from v_{\mathfrak{g}} on each edge t , and every other vertex v has a unique
entering edge, the last step on the unique path connecting v_{\mathfrak{g}} to v. If the
branches leaving each vertex are numbered by natural numbers, then each
path of length m out from v_{\mathfrak{g}} is uniquely determined by an m tuple \beta=

(\beta_{1}, \ldots, \beta_{m}) of numbers listing the branch chosen at each step. We index
each vertex v_{\beta} and its entering edge t_{\beta} by the m tuple of the unique path
connecting it to v_{\mathfrak{g}} . We define the predecessor \beta^{-}= (\beta_{1}, \ldots, \beta_{m-1}) of a
non-empty multi-index \beta , and the length t(\beta)=m . A vertex with no
edges leaving it will be called terminal.

Let us now suppose that we have a morphism f : Xarrow Y of smooth
algebraic spaces, and we wish to discover if it can be factored locally.
Blowing-up commutes with etale base extension. If Y has an etale cover
\{e_{i} : Y_{i}arrow Y\} in which the base extensions f_{i} : X\cross YY_{i}arrow Y_{i} of f all factor
locally through blowings-up with smooth centers, then the base extension
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\tilde{f} : X\cross Y\overline{Y}arrow\tilde{Y} by the Henselization \overline{Y} will also factor through a
blowing-up with nonsingular center. Conversely, if f factors locally at
each point, then since the number of possible centers is limited by the
number of smooth points or branches in the fundamental locus S_{f} , it will
be possible to find a finite etale cover \{ Y_{i}\} of Y such that each f_{i} factors.
We could, therefore, give a recursive definition of local factorizability by
requiring that the f factor locally at each point of Y. and that the factored
ed morphism be locally factorizable. Instead we take the less canonical
approach of choosing etale covers and constructing a factorization tree.

DEFINITION 1. 2: A partial factorization is a root tree with
a) Each vertex v_{\beta} labelled by a morphism f_{\beta}’ : X_{\beta}arrow Y_{\acute{\beta}}

b) Each edge t_{\beta} labelled by a pair of morphisms (g_{\beta}, e_{\beta}) , where g_{\beta} : Y_{\beta}’arrow

Y_{\beta} is a blowing-up with nonsingular center B_{\beta} , and e_{\beta} : Y_{\beta}arrow Y_{\beta}’-is etale
such that, for \beta\neq\emptyset , the space X_{\beta} is the fiber product X_{\beta}-\cross Y_{\acute{\beta}^{-Y}}\beta induced
by the pair of morphisms (f_{\beta-}’, e_{\beta}) , and the composition f_{\beta}=f_{\beta}’\circ g_{\beta} is the
base extension of f_{\acute{\beta}}-by e_{\beta}

X_{\beta^{-}}

\pi_{\beta}

X_{\beta} = X_{\beta}

f_{\beta^{-}}’Y_{\acute{\rho}-}\downarrow-Y_{\beta}f_{\beta}\downarrow\underline{g\beta f}_{\beta}’\downarrow Y_{\beta}’

DEFINITION 1. 3: A vertex v_{a} in a partial factorization tree will be
called \underline{covered} if \{e_{\beta} : Y_{\beta}arrow Y_{\beta^{-}}’\}_{\beta^{-}=a} is an etale cover of Y_{\acute{a}} . The tree will
be called a \underline{local}\underline{factorization}\underline{tree} if every non-terminal vertex v_{a} is cov-
ered, and if for every terminal vertex v_{\beta} , f_{\beta}’ is an isomorphism.

REMARK: If Va is a covered vertex, then \{\pi_{\beta} : X_{\beta}arrow X_{\beta^{-}}\}_{\rho-=a} is the
pullback to X_{a} of an etale cover of Y_{a} , and is therefore an etale cover of
X_{a} . By an induction on path length, a local factorization tree provides
an etale cover \{p_{\beta} : X_{\beta}arrow X\} , where the \beta are the indices of the terminal
vertices, and the p_{\rho} are compositions of morphisms \pi_{\gamma} : X_{\gamma}arrow X_{\gamma}-for the
various predecessors \gamma=\beta^{-}\beta^{--}\ldots \{\beta_{1}\} of \beta .

DEFINITION 1. 4: A birational morphism f : Xarrow Y of algebraic
spaces which can be associated to the initial vertex of a local factorization
tree will be called locally factorizable.

REMARK. This is a local property, and thus for all practical pur-
poses we may assume that Y is a scheme.

EXAMPLE. Let Y be affine three-space, A^{3} , with coordinates x, y, z.
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x

\nearrow

\searrow

Y_{\phi}’ Y_{1}’ Y_{11}’ Y_{111}’

Fig. 1

We construct a smooth non-projective morphism f : Xarrow Y as follows.
First blow up the origin, getting a space Y_{1}^{7} . It can be covered by three
neighborhoods Y_{11_{J}} Y_{12} , Y_{13} obtained by removing the strict preimages of
the three coordinate planes, respectively. Each Y_{1i} is again isomorphic to
A^{3} , with two of the coordinate axes contained in the exceptional divisor of
the induced morphism from Y_{1i} to Y. Blow up the coordinate axes in
cyclic order, getting first Y_{1i}’=Y_{1i1} and then Y_{1i1}’ . Set X_{1i1}=Y_{1i1}’ , and
patch together X_{111} , X_{121} and X_{131} to get X. (See figure 1.)

This morphism is strongly factorizable, so it can be obtained without
recourse to local neighborhoods, but the local description has the advan-
tage of being symmetrical, and not introducing extraneous components
which must later be removed.

We are interested in determining the obstructions to constructing a
local factorization tree for a morphism f_{1} in the case of three-folds.

DEFINITION 1. 5. Let f : Xarrow Y be a proper birational morphism of
algebraic spaces. A point y\in Y will be called a \underline{point}\underline{obstruction} if,
when \tilde{Y} is the Henselization at y,\tilde{f} : X\cross\tilde{Y}arrow\tilde{Y} does not factor through
the blowing up of any smooth subscheme of \overline{Y}

LEMMA 1. 6. If f : Xarrow Y is a proper birational morphism of three-
folds which is not locally factorizable, then any partial factorization tree for
f can be extended until it encounters a vertex morphism f’ : X’arrow Y’

containing a point obstruction at a point y’\in Y’

PROOF: We first show that any uncovered vertex Va with morphism
\overline{f}_{\acute{a}} : X_{a}arrow Y_{a} can be covered unless Y_{\acute{a}} has a point obstruction. The funda-
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mental locus S_{\acute{f_{a}}} in Y_{a^{r}} has dimension \leq 1 . Over the generic point of each
curve component of S_{\overline{f_{a}}}’ , we have unique factorization, from the factoriza-
tion theorem for surfaces. After removing a finite number of points
\{y_{1}, \ldots, y_{r}\} , we can find an etale cover \{e_{j} : W_{j}arrow Y_{\acute{a}}\}_{j=r+1}^{s} of Y-\{y_{1}, \ldots, y_{r}\}

such that for each j=r+1 , \ldots , s, W_{j}\cross Ya^{\prime S_{\mathcal{F}_{a}’}} is smooth and the base exten-
sion of \overline{f}_{\acute{a}} by W_{j} is directly factorizable. Either \overline{f}_{\acute{a}} has a point obstruction
at one of the Y_{i} , or else for each y_{i} we can find an etale neighborhood e_{i} :

W_{i}arrow Y_{\acute{a}} , such that the image of W_{i} in Y_{\acute{a}}conta\overline{l}ns none of the other points
y_{j} , j\neq i , and such that \overline{f}_{\acute{a}} factors locally through some blowing up.

It remains only to show that this process of covering uncovered ver-
tices cannot continue indefinitely. Since f : Xarrow Y is not locally factoriza-
ble, we then see that at some point we must encounter a point obstruction.

For each birational morphism f : Xarrow Y of 3-folds, and each point y\in

S_{f} , we define N_{fy},=(N_{0}, N_{1}) , where N_{0} is the number of irreduc\overline{l}ble sur-
faces in f^{-1}(y) , and N_{1} is the number of irreducible curves. We order
these pairs lexicographically, denoting the order relation by e’\leq ” and let

N_{f}= \max_{y\in S_{f}}N_{fy},

It suffices to show that as one proceeds outward along any branch in a
partial factorization tree, N_{f} decreases. In fact, by applying induction, it
suffices to show this for one step.

We proceed from a vertex labelled by f_{\acute{a}} : X_{a}arrow Y_{\acute{a}} to the following

vertex f_{\beta}’ : X_{\beta}arrow Y_{\beta} , with \beta^{-}=\alpha , in two steps: first we take an etale mor-
phism e_{\beta} : Y_{\beta}arrow Y_{a} , then we factor through a blowing-up g\beta : Y_{\beta}arrow Y_{\beta} . The
first step replaces the morphism f_{\acute{a}} : X_{a}arrow Y_{\acute{a}} by a morphism f_{\beta} : X_{\beta}arrow Y_{\beta} ,

with X_{\beta}=X_{a} \cross Y\text{\’{a}} Y_{\beta} . If \hat{y}\in Y_{\beta} is such that e_{\beta}(\hat{y})=y , then f_{\beta}^{-1}(\hat{y})arrow-f_{a}^{\prime-1}(y) .
This follows from the fact that the Henselization ( \overline{Y}_{\beta})_{9} of Y_{\beta} at \hat{y} is
isomorphic to the Henselization ( \overline{Y}_{a})_{y} of Y_{\acute{a}} at y , and that f_{a}^{\prime-1}(y) and

f_{\beta}^{-1}(\hat{y}) are the closed fibers, respectively, of X_{aY\text{\’{a}}}\cross( Y_{\acute{a}})_{y} and of
X_{\beta Y\rho}\cross(Y_{\beta})_{y} . Thus N_{f_{\beta},f}=N_{f\acute{a}\mathcal{Y}} , whenever e_{\beta}(\hat{y})=y , and we conclude that
N_{f\beta}=N_{f’a} .

If remains to show that N_{f_{\acute{\beta}}}<N_{f_{\beta}} . Let \hat{y} be a point of Y_{\beta} for which
N_{f\rho}=N_{f_{\beta},j} , and let y’ be a point of the blown-up scheme Y_{\beta}’ at which
g\beta(y’)=ff . Then f_{\beta}^{\prime-1}(y’)\subset f_{a}^{r-1}(y) , so N_{f_{\acute{\beta}},y^{r}}\leq N_{f\acute{a},\mathcal{Y}}=N_{f_{\beta},\overline{y}} . At least one
component of f_{a}^{\prime-1}(y) must map onto g_{\beta}^{-1}(\hat{y}) under f_{\acute{\beta}} . Thus f_{\beta}^{\prime-1}(y’) is a
proper subset of f_{a}^{r-1}(y) . f_{\beta}^{r-1}(y’) either has fewer surface components, or,
if it has the same number of surface components, then it has fewer curve
components.

EXAMPLE: In Fig. 2 we give the dual graph of the minimal toroidal
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Fig. 2

example of a po\overline{l}nt obstruction, given by Oda in [6].
In view of lemma 1.6, the only obstructions to local factorizability are

point obstructions. We wish to give some restrictions on these obstruc-
tions.

DEFINITION 1. 7. Let f : Xarrow Y be a birational morphism, and let y

be a point of Y. Let Y_{1} be the blowing up of y , with exceptional divisor
M_{1} , and induced correspondence f_{1} : X–>Y_{1} . We define the \underline{strict}

\underline{preimage}f^{-1}[y] to be the strict preimage f_{1}^{-1}[M_{1}] of M_{1} . We can simi-
larly define f^{-1} [ W] for any subalgebraic space W. by blowing up at the
generic point and taking the image.

REMARK. For three-folds, f^{-1}[y] is in fact a component of f^{-1}(y) .
f^{-1}[y] is irreducible, being the strict preimage of an irreducible divisor,
so if dim f^{-1}[y]=2 it \overline{1}S clearly a component. The case dim f^{-1}[y]\leq 1

will be treated below, where we will show that it is a curve contained in a
unique exceptional divisor of f whose image is larger than y.

We now turn to the results of Danilov, which will give us additional
information about the structure of point obstructions. Given a morphism

f : Xarrow Y of algebraic spaces, we let K_{f} be the relative canonical divisor
of f, K_{f}=K_{X}-f^{*}(K_{Y}) , and we let \xi be the generic point of the strict
preimage f^{-1}[y] of a point y. Then Danilov proves, in Prop. 3.4 of [2],
the following

PROPOSITION :
Let f : Xarrow Y be a proper birational morphism of nonsingular schemes

of dimension r over an algebraically closed fifield K. Suppose Y is a local
Henselian scheme obtained by Henselization of a smooth K scheme at the
closed point y and dim f^{-1}(y)\leq 1 . Then

a) The codimension of \xi in X is equal to r-l, i. e . \xi is the generic
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point of a curve component of f^{-1}(y) .
b) K_{f} is non-singular at \xi.
c) The subscheme f^{-1}(y) is non singular at \xi.

REMARK. We allow X to be an algebraic space, and replace the
requirement dim f^{-1}(y)\leq 1 by dim f^{-1}[y]\leq 1 . The entire proof carries
over intact. We use this form of the lemma to prove the following varia-
tion of Danilov’s Theorem 3. 1:

Theorem 3.1 :
LEMMA 1. 8. Let f : Xarrow Y be a proper birational morphism of

smooth algebraic spaces of dimension 3. Suppose y\in Y is a point for
which f^{-1} is not an isomorphism and dim f^{-1}[y]\leq 1 . Then there is an
etale neighborhood W of y in which f_{W} : X\cross W -arrow W factors through the
blowing up of a smooth curve B\subset W.

PROOF: We follow the outline of the proof of Danilov’s theorem.
Lett\overline{l}ng\overline{Y} be the Henselization of Y at y , and \overline{f} : X\cross\overline{Y}arrow\overline{Y} we conclude

Y
from the proposition above that the generic point \xi of f^{-1}[y] lies in a
single component D_{1} of K_{f} and that f^{-1}(y) is non-singular there. Let c be
a general point of f^{-1}[y] , and let \tilde{Z} be a curve in \tilde{X}=X\cross\tilde{Y} which is
transversal to f^{-1}[y] at c. It intersects f^{-1}(y) at a finite number of
points. The morphism from \tilde{Z} to \tilde{Y} is quasifinite, \tilde{Y} is Henselian, and
hence \tilde{Z}=\overline{Z}’\cup\overline{Z} ” is a disjoint union with \overline{Z}’\cap f^{-1}(y)=c , a single point,
(EGA [4] 18.5.11). We replace \tilde{Z} by \tilde{Z}’ and let \overline{B}\subset\overline{Y} be the image of
\tilde{Z} The induced morphism \pi:\overline{Z}arrow\tilde{Y} is a finite morphism, and \pi^{-1}(y)=c

is an isomorphism, so by Nakayama’s lemma we conclude that \pi is a
closed embedding and thus \tilde{B}=\pi(\tilde{Z})arrow-\overline{Z} is non-singular. Since \tilde{Z}\subset D_{1} ,
\tilde{B}=\tilde{f}(\tilde{Z})\subset\tilde{f}(\tilde{D}_{1}) , and since both \tilde{B} and \tilde{f}(\tilde{D}_{1}) are irreducible curves,
\overline{B}=\tilde{f}(\overline{D}_{1}) .

For any etale neighborhood e:Warrow Y\circ fy , let f_{W} : X_{W}arrow W be the in-
duced b\overline{l}rational morphism. Let D_{1} be the unique component of K_{f_{W}}

containing f_{w^{-1}}[y],\overline{y}\in e^{-1}(y) and B=f_{W}(D_{1}) , an irreducible curve in W.
Since \overline{Y} is the inverse limit of the W. and \tilde{B} maps to B under the mor-
phism \overline{Y}arrow W . there must exist a neighborhood W in which \tilde{B} is the
unique preimage of B and thus B has a unique smooth branch at \overline{y}. We
choose the neighborhood sufficiently small that f_{W} has a unique factoriza-
tion over every other point of W. Let g:W’arrow W be the blowing-up of B ,
with exceptional divisor M , and induced morphism f_{1}’ : X_{W}arrow W’ By lemma
1.1 of [9], the strict preimage f_{1}^{r-1}[M] is a surface generically isomor-
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phic to M. We wish to show that it is D_{1} . Let H be a generic hyper-
plane in W containing B. Over the general point w of B , S\overline{l}nceg^{-1}[H]

intersects M at a point where it is isomorphic to f_{1}^{r-1} [M] , f_{W}^{-1}[H] must
intersect f_{W}^{-1} [ W] at a point of f_{1}^{r-1} [ M] . On the other hand, it must inter-
sect f^{-1}(y) at a generic point, i . e. , at a point of f^{-1}[y] .

Let \Gamma be a curve through y transversal to H. f^{-1}[y]\subset|f_{W}^{*}(\Gamma)| . By
the projection formula deg f_{W}^{*}(\Gamma)\cdot f_{W}^{-1}[H]=\deg\Gamma\cdot H=1 , so f_{W}^{-1}[H] is
transversal to f^{-1}[y] at c. It intersects D_{1} in a curve in a neighborhood
of the intersection point, so the remaining points of that curve must
belong to fibers of other points y’ of B. Thus D_{1}=f_{W}^{-1}[M] as desired.

By Lemma 1.2 of [9], f_{1}’ is an isomorphism at every singleton point of
D_{1} . Since f_{1} is well defined over every point of B except y , and on g^{-1}(y)

f_{1}^{r-1} is an isomorphism except at isolated points, we conclude by lemma
1.4 of [9] that f_{1}’ is well-defined, and thus we have the desired factoriza-
tion.

DEFINITION 1. 9. Let f : Xarrow Y be a morphism of 3-folds, and let y

be an element of Y. We let Y_{1} be the blowing-up of y , with f_{1} : X—>Y_{1} ,

the induced correspondence. The locus in X on which f_{1} is \underline{not} well
defined will be designated by P_{y\sigma}), and will be called the \underline{pinch}locus.

LEMMA 1. 10. In a 3-fold, we have the following alternative character-
\iota^{-}zations of the pinch locus :

(a): If H_{1} and H_{2} are two generic hyperplanes through y, then P_{y}(f)\cup

f^{-1}\overline{[H_{1}}\cap H_{2}]=f^{-1}[H_{1}]\cap f^{-1}[H_{2}] .
(b): Suppose y is a point obstruction. Let G_{f} be the graph of f_{1} , with

projection \pi_{1} on X and \pi_{2} the projection on Y_{1} . Then P_{y}\varphi ) =\cup\pi_{1}(S) ,

where S ranges over all the irreducible surfaces in G_{f} , such that dim
\pi_{1}(S)=\dim\pi_{2}(S)=1 .

PROOF: Teicher proved in [10] that P_{y}(f)=f^{-1} [H_{1}]\cap f^{-1} [ H_{2}]\cap

f^{-1}[H_{3}] for generic H_{1} , H_{2} , H_{3} . In (a) we strengthen that result by
eliminating the third hypersurface f^{-1}[H_{3}] .

(a): If H_{1} and H_{2} are not tangent at y , then if g:Y_{1}arrow Y is the blowing-
up of y, g^{-1}[H_{1}] and g^{-1}[H_{2}] do not intersect on the exceptional divisor
except at g^{-1}[H_{1}\cap H_{2}] . Thus if f_{1} : X–>Y_{1} is well-defined at x\in|K_{f}| , f^{-1}

[H_{1}] and f^{-1}[H_{2}] do not intersect there unless x\in f_{1}^{-1}(g^{-1}[H_{1}\cap H_{2}]) . For
generic choice of H_{1} and H_{2} , f_{1}^{-1} will be well-defined on g^{-1}[H_{1}\cap H_{2}] so
f_{1}^{-1}(g^{-1}[H_{1}\cap H_{2}]) will just be f^{-1}[H_{1}\cap H_{2}] . We conclude that f_{1}^{-1}[H_{1}]\cap

f_{1}^{-1}[H_{2}]=P_{y}(f)\cup f^{-1}[H_{1}\cap H_{2}] .
\underline{(b)} : Suppose y is a point obstruction, whence, by lemma 1.3, there is a
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component D_{1} of K_{f} generically isomorphic to the exceptional divisor M_{1}

of g:Y_{1}arrow Y- the blowing up of y. The set P_{y}(f) , on which f_{1} : X—>Y_{1}

is not well-defined, is the fundamental locus S_{\pi_{1}} of the first projection \pi_{1}

from the graph G_{f_{1}} . By Zariski’s main theorem each component of P_{y}(f)

is the image of a surface S in G_{f_{1}} . The image of S in Y_{1}\overline{1}S also of dimen-
sion less than 2, since S is not the unique surface D_{1} in G_{f_{1}} which is gener-
ically isomorphic to D_{1} in X and to M_{1} in Y. Since S\subset\pi_{1}(S)X\pi_{2}(S)Y ’

both pro\overline{]}ections must be of dimension 1. Q. E. D.
Our basic approach to analyzing the pinch locus will be to blow-up

bad curves on the Y_{1} side of the “ valley ”

X Y_{1}

\backslash _{\searrow} ’

Y

For this purpose regular blowings-up will not always suffice, and we will
occasionally need a slightly more general technique.

DEFINITION 1. 11 : A \underline{quasi}-blowing \underline{up} with \underline{center}B and \underline{accessible}

\underline{component}M is a locally factorizable morphism h:Varrow Y such that M\subset

Supp K_{n} is an irreducible divisor without self intersections, B=S_{h} is ir-
reducible, and h is generically the blowing up of B with exceptional divi-
sor M. Furthermore, for every singleton point v of M , i.e. every point
contained in no other component of K_{n} , we presume that after base exten-
sion by the Henselization \overline{Y} of Y at f(v) , h factors through the blowing
up of a smooth branch \tilde{B} of B , and is isomorphic to this blowing up at v.
The singleton points v of M are called \underline{accessible} points.

LEMMA 1. 12: Let h:Varrow Y be a quasi-blowing up, let f : Xarrow Y be
a birational morphism and let \tilde{B} be the local center in the henselizat\iota^{-}on\overline{Y}

of a point y. Let v be an accessible point of h^{-1}(y) . Let \Gamma be a nonsin-
gular curve intersecting h^{-1}(\tilde{B}) transversally at v, which we will call a
test curve. The closure point of \Gamma is x=f^{-1}(B)\cap\overline{(f^{-1}(h(\Gamma-\{v\}))}) . The
correspondence f_{1} : X–>V is well-defifined at x if and only if after base
extension \tilde{f}:\tilde{X}arrow\tilde{Y} we have \tilde{f}^{-1}(I_{\tilde{B}})O_{\overline{X},x} invertible.

PROOF: For any accessible point, V\cross\tilde{Y} is isomorphic to the blow-
ing up \overline{V} of \tilde{B} at y.\overline{f_{1}} : \tilde{X}arrow\overline{V} is well defined if and only if \overline{f}^{-1}(I_{\tilde{B}})O_{\overline{X},x}

is invertible. If \overline{f_{1}} is welldefined at x , then \overline{f_{1}}(x) is determined by the
test curve of which x\overline{1}S the closure point. Thus the image of x must be
the point of \overline{V} isomorphic to v,\dot{s}0 by composition \tilde{f}_{1} : \overline{X}arrow V\cross\tilde{Y} is well
defined. Similarly \overline{1}f\overline{f_{1}} is well-defined, so is \overline{f_{1}} . Finally, since the prop-
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erty of being well-defined is local, f_{1} is well-defined at x if and only if \tilde{f}_{1} is
well-defined there.

DEFINITION 1. 13: Let Y_{0} , \ldots . Y_{m} be a sequence of algebraic spaces
such that b_{j} : Y_{j}arrow Y_{j-1} is a quasi-blowing up with accessible component
M_{j} . The liftings M_{j}^{(k)} of these components to Y_{k} for k\geq j will also be
called accessible components. A point of Y_{k} which lies only in access\overline{l}ble

components will be called accessible. The sequence will be called a
\underline{quasifactorization}sequence if the generic point of the fundamental locus
S_{p_{i}} is accessible for each i. Letting h_{kj}=b_{j+1^{\circ\cdots\circ}}b_{k} , and h_{k}=h_{kO} , we will
say that h_{k} is dominated by f : Xarrow Y if each accessible component of Y_{k}

is generically isomorphic to a component of K_{f} .
To conclude this section, we outline an approach to checking the local

factorizability of a morphism f : Xarrow Y of smooth algebraic spaces of
dimension 3. This approach will be applied in \S 3 to analyze point
obstructions with four components collapsing to a point, and in \S 4 to ana-
lyze morphisms collapsing 3 components to a curve with a singular point.

By lemma 1.6 if f : Xarrow Y is not locally factorizable, then every pos-
sible local factorization tree for f can be extended until it encounters a
point obstruction. By lemma 1.8, this is a point at which the strict
preimage of the point is a surface, but the morphism does not factor
through the blowing up of the point. We replace the original morphism
by the morphism with the po\overline{l}nt obstruction, and replace the original
hypotheses about the morphism by hypothesis stable under progress out
the branches of a local factorization tree.

We then proceed to deduce the possible structures for the exceptional
divisor K_{f} of our new morphism f : Xarrow Y. We blow up the bad point y ,

obtaining a space y_{1} and a correspondence f_{1} . Xarrow Y_{1} which is not well
defined at the pinch locus P_{y}(f) . P_{y}(f) is a union of curves, each the
image of a surface S\overline{1}n the graph of f_{1}wh_{\overline{1}}ch collapses to a “ bad ” curve
in Y_{1} . By successively blowing-up such bad curves, first on the Y side
and then on the X side, we produce a diagram as in figure 3, in which the
generically isomorphic components N_{l} and M_{k}

“ bridge ” the gap between
the two towers.

In the diagram in Fig. 3, both X_{0} , \ldots-X_{l} and Y_{0} , \ldots . Y_{k} will be
quasifactorization sequences. The centers of the quasi-blowings up will
be the images N_{t} and M_{k} respectively. In \S 2 we will assign “ weights ” to
different components of the exceptional locus of the morphisms. By fol-
lowing the changes in these nu\eta bers as we go up the right tower to Y_{k} ,

across the bridge to X_{l} and down the left tower to X , we will obtain
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X_{1}\supset N_{1} M_{k}\subset Y_{k}

Fig. 3

information about those components of K_{f} containing components of the
pinch locus of f.

In order to carry out this program, we must be able to construct a
factorization sequence which blows up the successive images of a divisor
F under the correspondences induced by a morphism q:Warrow Y. When
the image is a po\overline{l}nt or a non-singular curve there is no problem. Thus
the only problem comes when the image B is a singular curve. To this
end we prove the following lemma:

LEMMA 1. 14: Let Y be an algebraic space which has a fifinite etale
cover, and let B\subset Y be an irreducible curve. Then there exists a quasi
blowing-up with center B, and we may specify that the quasi-blowing up
factors locally through designated smooth branches.

PROOF: Let \{y_{1}, \ldots, y_{m}\} be the set of singular points of B. Since
each member of the finite cover of Y is quasi-compact, we can find a finite
etale cover \{e_{j} : W_{j}arrow Y-\{y_{1}, , .., y_{m}\}\}_{j=m+1}^{m\prime} or Y-\{y_{1}, \ldots.y_{m}\} . For each
j=1 , \ldots . m , choose an etale neighborhood e_{j} : W_{j}arrow Y such that there is a
unique point w_{j} in e_{j}^{-1}(y_{i}) , and the image of W_{j} in Y does not contain any
of the other singular points of B. At those singular points y_{i} at which we
have designated a particular smooth branch of B , we choose W_{j}

sufficiently fine that W_{j} contains a subscheme which is smooth at W_{j} and
whose preimage in the Henselization \tilde{Y} of Y at Y_{i}\dot{1}S the desired branch.
It is possible to find such a W_{j} since ( \overline{Y}, y_{i}) is the direct limit of the etale
neighborhoods of y_{i} .
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For each j=1 , \ldots m’ we construct a blowing-up g_{j} : W_{j}’arrow W_{j} . For j>
m, e_{j}^{-1}(B) is nonsingular, and we let g_{j} be the canonical blowing up of
e_{j}^{-1}(B) . For ]-\leq m, e_{j}^{-1}(B) has a unique singular point at w_{1} . If there is
no designated branch at W_{j} , we blow up points until the strict preimage of
e_{j}^{-1}(B) is nonsingular, then blow up this nonsingular curve. If there is a
designated branch, we first blow it up, then blow up points until the
remaining branches of e_{j}^{-1}(B) are nonsingular and separated from the
exceptional divisor over the designated branch. We then blow up the
remaining branches of the curve.

We now wish to construct the quasi-blowing-up \overline{Y} as a quotient of the
disjoint union j-q_{-}’mW_{j}’ . We want to construct an appropriate etale equiva-

lence relation R which will “patch” the pieces together. Letting Y_{j}=

e_{j}(W_{j}) , and Y_{ij}=Y_{i}\cross Y_{j}-arrow YY_{i}\cap Y_{j}
, we claim that

W_{i}’\cross Y_{ij}arrow Y_{i}-W_{i}\cross Y_{ij}’
.

Y_{i}

The existence of morphisms in each direction are insured by the following
two commutative diagrams:

W_{i}’\cross Y_{ij}arrow Y_{ij}’W_{i}\cross Y_{ij}Y_{i}Y_{i}\downarrow\downarrow-Y_{ij} W_{i}’<-W_{i}\cross Y_{ij}’W_{i}<-W_{i}\cross Y_{ij}\downarrow\downarrow Y_{i}Y_{i}

where the dotted arrows are induced by the universal mapping property of
the blowing up. R must be a closed immersion with etale projections,
sat\overline{l}sfying reflexivity, symmetry and transitivity.

Now for i\neq J- , we define

R_{ij}=(W_{i}\cross Y_{ij}’)\cross(Y_{ij}’\cross W_{j})\approx(W_{i}\cross Y_{ij}’)\cross(Y_{ij}’\cross W_{j})

Y_{i} Y_{ij}’ Y_{j} Y_{i} Y_{ij} Y_{j}

arrow-(W_{i}’\cross Y_{ij})\cross(Y_{ij}\cross W_{j}’)

Y_{i} Y_{ij} Y_{j}

arrow-W_{i}’\cross Y_{ij}\cross W_{j’}

Y_{i} Y_{j}

arrow-W_{i}’\cross W_{j}’Y

The local properties of being a closed immersion, having etale projections
and symmetry are induced from the fact that it is the equivalence relat\overline{l}on

on two etale neighborhoods, W_{i}\cross Y_{ij}’ and Y_{ij}’\cross W_{j} of Y_{ij}’ .
Y_{i} Y_{j}

Before defining R_{ii} , we first note that in W_{i}\cross W_{i} we have a closed
Y_{i}
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subscheme W_{i}\cross W_{i} , since W_{i} is a scheme and thus separated. The closed
W_{i}

immersion \triangle : W_{i}\cross W_{i}\subsetarrow W_{i}\cross W_{i} gives a section of the etale projection
W_{i} Y_{i}

W_{i}\cross W_{i}arrow W_{i}\pi_{1} . Because \pi_{1} is a local isomorphism in the etale topology,
Y_{i}

the section \triangle is also an open immersion. Since the diagonal is both open
and closed, and W_{i} is connected, we conclude that the diagonal is a con-
nected component, whence W_{i}\cross W_{i}arrow-W_{i}\cross W_{i}\coprod D. Let \overline{W}_{i}=W_{i}-\{w_{i}\} ,

Y_{i} W_{i}

and \overline{Y}_{i}=Y_{i}-\{y_{i}\} . Then D\subset\overline{W}_{i}\cross\overline{W}_{i} , since w_{i} is the only point of W_{i}

Y_{i}

lying over y_{i} , and (w_{i}, w_{i})\in W_{i}\cross W_{i}W_{i}^{\cdot}

We now let \overline{W}_{i}’=W_{i}’-g_{i}^{-1}(w_{i}) , and set
R_{ii}=W_{i}’\cross W_{i}arrow-(W_{i}’\cross W_{i})\cup(\overline{W}_{i}’\cross W_{i})

Y_{i} W_{i} Y_{i}

W_{i}’\cross W_{i} is actually a component, and there is a complement D’\subset\overline{W}_{i}’\cross W_{i}

W_{i} Y_{i}

whose image in W_{i}\cross W_{i} is D. The immersion W_{i}’\cross W_{i}arrow-W_{i}’\cross W_{i^{\subset}}’arrow W_{i}’

Y_{i} W_{i} W_{i}’

\cross W_{i}’ , and the immersion \overline{W}_{i}’\cross W_{i}arrow-W_{i}’\cross\overline{W}_{i}

Y_{i} Y_{i} \overline{Y}_{i}

arrow-\overline{W}_{i}’\cross\overline{Y}_{i}’\cross W_{i}

\overline{Y}_{i}’ \overline{Y}_{i}

arrow-\overline{W}_{i}’\frac{\cross}{Y’}\overline{W}_{i^{c=}}’,\overline{W}_{i}’\frac{\cross}{Y}\overline{W}_{i}’ii

induce an immersionm R_{ii}\subsetarrow W_{i}’\cross W_{i}’ , since the images of W_{i}’\cross W_{i} and D’
Y_{i} Y_{i}

are disjoint. Since the composition with the proper morphism W_{i}’\cross W_{i}’arrow

Y_{i}

W_{i}’\cross W_{i} is an isomorphism, we conclude that R_{ii}\approx W_{i}’\cross W’ i is proper and
Y_{i} Y_{i}

thus must be a closed immersion.
The image of R_{ii} in W_{i}’\cross W_{i}’ is symmetric. The first projection R_{ii}arrow

Y_{i}

W_{i}’ is the base extension of an etale morphism and is thus etale. By sym-
metry the other project\overline{l}on is also etale. We have already shown that the
diagonal map factors through R_{ii} , giving reflexivity.

It remains to check the global property of transitivity. We need to
show that R_{ij}\cross R_{jk} factors through R_{ik} . We begin with the case i\neq J-\neq k

W_{j’}

\neq i , and let Y_{ijk}=Y_{ij}\cross Y_{jk} .
Y_{i}
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We will make frequent use of various versions of the isomorph_{\overline{1}}sm

W_{i}’\cross Y_{j}arrow YY-W_{i}\cross Y_{j}’
and of standard fiber product isomorphisms like W\cross YY

arrow-W.

R_{ij}\cross R_{ik}-arrow[(W_{i}\cross Y_{ij}’)\cross(Y_{ij}\cross W_{j}’)]

W_{j’} Y_{i} Y_{ij}’ Y_{j}

\cross[(W_{j}’\cross Y_{jk})\cross(Y_{jk}’\cross W_{k})]

W_{j’} Y_{j} Y_{jk}’ Y_{k}

arrow-W_{i}\cross[Y_{ij}\cross W_{j}’\cross Y_{jk}]\cross W_{k}

Y_{i} Y_{j} Y_{j} Y_{k}

arrow-W_{i}\cross[W_{j}\cross Y_{ijk}’]\cross W_{k}

Y_{i} Y_{j} Y_{k}

The etale morphism e_{j} : W_{j}arrow Y_{j} and the open immersion Y_{ijk}’-arrow Y_{ik}’ then
induce an etale morphism

R_{ij}\cross R_{jk}arrow W_{i}\cross Y_{ik}’\cross W_{k}

W_{j}’ Y_{i} Y_{k}

arrow-(W_{i}\cross Y_{ik}’)\cross,(Y_{ik}’\cross W_{k})_{arrow}Y_{i}Y_{ik}Y_{k}-R_{ik}

This gives the desired factorization.
The various degenerate cases follow the same general procedure, but

require more care because of the more complicated definition of R_{ii} . As
an example, in the case i=k , we have an isomorphism as before

R_{ij}\cross R_{ij}-arrow W_{j’}Y_{i}Y_{j}Y_{i}W_{i}\cross(W_{j}\cross Y_{ijk}’)\cross W_{i}

Applying the etale morphism e_{j} : W_{j}arrow Y_{j} and the isomorphism Y_{iji}^{\prime-}arrow Y_{ij}’

we get a morphism

R_{ij}\cross R_{ji}arrow W_{i}\cross(Y_{ij}’)\cross W_{i^{arrow}}^{-}(W_{i}’\cross W_{i})\cross Y_{j}W_{j}Y_{i}Y_{i}Y_{i}Y

The latter space is an open subset of R_{ii} .
We have a diagram

R_{ij}\cross R_{jk}arrow(W_{i}’\cross W_{j}’)\cross(W_{j}’\cross W_{k}’)W_{j}’YW_{j}’Y

\downarrow (\pi_{1}, \pi_{4}) \downarrow

R_{ik}
(W_{i}’\cross W_{k}’)Y
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At every stage in the transformation of R_{ij}\cross R_{jk} , the first and fourth
W_{j}’

projections can be defined via canonical isomorphisms of the type W_{i}’\cross Y_{ij}

Y_{i}

arrow-W_{i}\cross Y_{ij}’ . The d\overline{l}agram thus commutes, and the equivalence relation R
Y_{i}

is transitive. We define X to be the quotient of S=\coprod W_{j}’ by R , and the
induced morphism f : Xarrow Y to the base Yg_{\overline{1}}ves the desired quasi-
blowing-up.

\S 2 Combinatorial analysis of K_{f} .
We begin the quantitative analysis of the components of the excep-

tional divisor with definitions of a few of the basic functions we will be
using.

DEFINITION 2. 1: Let f : Xarrow Y be a birational morphism, let F be
an irreducible component of K_{f} , and let H_{1} , \ldots , H_{r} be divisors in Y i.e.,
integral combinations of irreducible d\overline{l}V\overline{l}sors . We denote by

r_{f}(F) , the multiplicity of F in K_{f}

w_{f}(F) , the number r_{f}(F)+1 , called the weight of F.
s_{f}(F, H_{i}) , the multiplicity of F in f^{*}(H_{i}) .
u_{f}(F,\cdot H_{1}, , .. H_{r})=(w_{f}(F) ; s_{f}(F, H_{1}), \ldots s_{f}(F, H_{r})) ,

called a weight vector.
For B a smooth irreducible subscheme of Y_{-} we can define the \underline{canonical}

B-\underline{pair}u_{f}(F, B)=(w_{f}(F), s_{f}(F, H)) for H a generic hyperplane contain-
ing B. When S_{f} , the fundamental locus of f , consists of a single point y ,

we will abbreviate u_{f}(F, y) by u_{f}(F) , and will simply call it the canonical
pair.

REMARK: Note that s_{f}(F, H) is an additive function of H.

REMARK: If \hat{f}:\hat{X}arrow Y is a birational correspondence, and F is a
component of K_{\hat{X}} , let f : Xarrow Y be a morphism obtained by resolving the
fundamental points of \hat{f.} Since \hat{f} is well-defined at the generic point of F .

we have X generically \overline{1}somorphic to \hat{X} at the generic point of F. Thus
the multiplicities given in u_{f}(F_{1} ; H_{1}, \ldots.H_{r}) will be independent of the
choice of f , We can define

u; (F ; H_{1}, \ldots H_{r})=u_{f}(F ; H_{1}, \ldots H_{r})

and this will be independent of the choice of f.
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EXAMPLE: If f : Xarrow Y is a toroidal morphism, with Y_{arrow}^{-}A^{n} , then

each component F of K_{f}\overline{1}S uniquely determined by an integral vector
(a_{1}, \ldots a_{n}) , where a_{i} is the order of f^{*}(x_{i}) on F. Choose a general point
x of F. and a set of local toroidal coordinates t_{1} , \ldots-t_{n} in a ne\overline{l}ghborhood

U\subset X , such that t_{1} is a local coordinate for F , and

x_{i}=t_{1}^{a_{i1}}\cdots t_{n}^{a_{in}} , with det [a_{ij}]=\pm 1

By 1.1 of [9], if r_{j}=( \sum_{i}a_{ij})-1

f^{*}(dx_{1}\wedge\ldots\wedge dx_{n})=t_{1}^{r_{1}}\ldots t_{n}^{r_{n}} det [a_{ij}]dt_{1}\wedge\ldots\wedge dt_{n}

=\pm t_{1}^{r_{1}}\ldots t_{n}^{r_{n}}dt_{1}\wedge\ldots\wedge dt_{n}

Thus r_{f}(F)=r_{1}=(\Sigma a_{ij})-1

w_{f}(F)=\Sigma a_{ij}

Letting H_{i} be the hyperplane determined by x_{i}=0 , we have

u_{f}(F ; H_{1f} \ldots-H_{n})=(\sum_{i=1}^{n}a_{i1} _{:} _{a_{11}}, \ldots a_{n1})

Let p:Warrow X be the blowing up of an intersect\overline{l}onE_{1}\cap\ldots\cap E_{r} of com-
ponents of K_{f} . The integral vector of the resulting exceptional divisor F
is just the vector sum of the integral vectors of the components E_{j} . We
thus have

u_{f\circ p}(F;H_{1} \ldots.H_{n})=\sum_{j=1}^{n}u_{f}(E_{j};^{H_{1}} ,\ldots ^{H_{n})}

Let us now consider the behavior of the weight vector under composi-
t\overline{l}on . We let p : Warrow X be a toro\overline{l}dal morphism, and let F be a comp0-

nent of the exceptional divisor. Let E_{1} , , .. -
E_{r} be the components of K_{f}

containing p(F) with local toroidal coordinates t_{1} , . . t_{r} and let q_{i} be a
local toroidal coordinate for f^{-1}[H_{i}] . Let t_{1} , \ldots

t_{n} be the complete set of
toroidal coord\overline{l}nates\overline{1}n a neighborhood of the general point of p(F) . If
f^{-1}[H_{i}]\overline{1}ntersects this neighborhood, then its local parameter is a toroidal
coordinate. Thus each q_{i} either equals some t_{j} for j>r or else is 1.

For each j=1 , \ldots , n let s_{j} be the order of p^{*}(t_{j}) on F , so that \overline{1}ft\overline{1}S a
local toro\overline{l}dal parameter for F .

p^{*}(t_{j})=t^{s_{j}}p_{j} , j=1 , \ldots . n
f^{*}(x_{i})=t_{1}^{a_{i1}}\ldots t_{r}^{a_{i\gamma}}q_{i}

Therefore, (f\circ p)^{*}(x_{i})=p^{*}(f^{*}(x_{i}))

= \prod_{j=1}^{r}(t^{s_{j}}p_{j})^{a_{iJ}}p^{*}(q_{i})
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By definition, s_{f\circ p}(F, H_{i}) is the multiplicity \nu(F, (f\circ p)^{*}(H_{i})) of F in the
divisor (f\circ p)^{*}(H_{i}) , defined locally by (f\circ p)^{*}(x_{i})=0 .
Thus

S_{f} \circ p(F, H_{i})=\sum_{j=1}^{r}s_{j}\cdot a_{ij} \dagger Sp(F, f^{-1}[H_{i}])

= \sum_{j=1}^{r}s_{p}(F, E_{j})s_{f}(E_{j}, H_{i}) sf(F, f^{-1}[H_{i}])

Taking the sum over all i=1 , \ldots , n we get

w_{f\circ p}(F)= \sum_{j=1}^{r}s_{p}(F, E_{j})w_{f}(E_{j})+\sum_{i=1}^{n}s_{p}(F, f^{-1}[H_{i}])

Comb\overline{l}ning these equations, we have

u_{f\circ p}(F ; H_{1} , ... . H_{n})= \sum_{j=1}^{k}s_{p}(F, E_{j})u_{f}(E_{j} ; H_{1}, \ldots H_{n})

+( \sum_{i=1}^{n}s_{p}(F, f^{-1}[H_{i}])’. s_{p}(F, f^{-1}[H_{1}]) , ..
s_{p}(F\cdot f^{-1}’[H_{n}])

We wish to use the best approximation possible to this formula in the
nontoroidal case. To this end we need a function wh_{\overline{1}}ch will measure the
extent to which a component fails to mimic the toroidal case, that is, to
be determined by the blowings-up of normally crossing hyperplanes.

DEFINITION 2. 2: Let f : Xarrow Y be a birational morphism, and let
H_{1} , \ldots.H_{c} be divisors in Y. Let H=H_{1}+\ldots+H_{c} . Then the \underline{excess} of a
component F with respect to H_{1} , \ldots . H_{c} will be

ex (F ; H_{1}, \ldots. H_{c})=w_{f}(F)-s_{f}(F, H)=w_{f}(F)-\sum_{i=1}^{c}s_{f}(F, H_{i})

REMARK: In a toroidal scheme, if c=n and H_{1} , .. H_{n} correspond
to the coordinates of the torus, ex(F;H_{1} , . . . H_{n})=0 . For any morphism,
if H_{1} , . . . H_{n} are irreducible and normally crossing, we have, by 2.1 of
[9], that, for c=n

ex(F ; H_{1} , , . ( H_{c})\geq 0 ,

and the inequality will surely still hold if we take c\leq n under the same
conditions.

LEMMA 2. 3 (the additivity formula) : Let p : Warrow X and f : Xarrow Y

be birational morphisms, with Y a scheme and let H be an irreducible
hypersurface. Then if F is an irreducible component of K_{f\circ p} , and E_{1} , , ..
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E_{r} are the components of K_{f} , all crossing normally, we have

u_{f\circ p}(F:H)= \sum_{j=1}^{r}s_{p}(F, E_{j})u_{f}(E_{j} ; H)+(ex_{p}(F;E_{1}, \ldots E_{r}) :
s_{p}(F, f^{-1}[H])) .

PROOF: We calculate the components of u_{f}(F, H) , for H an irreduc-
ible hypersurface. We calculate w_{f}(F) and s_{f}(F, H) . Let \nu(F, D)

denote the mult\overline{l}plicity of a component F in a divisor D , and let r_{i}=

wf(F)-1=r/iEi)=(E,, K_{f})

w_{f}(F)=r_{f}(F)+1

=\nu(F, K_{f\circ p})+1

=\nu(F, p^{*}(K_{f})+K_{p})+1

= \nu(F, p*(\sum_{i=1}^{r}r_{i}E_{i})) \dagger \nu(F, K_{p})+1

= \sum_{i=1}^{r}r_{i}\nu(F, p*(E_{i}))+r_{p}(F)+1

= \sum_{i=1}^{r}r_{i}s_{p}(F, E_{i})+w_{p}(F)

= \sum_{i=1}^{r}w_{f}(E_{i})s_{p}(F, E_{i})+(w_{p}(F)-\sum_{i=1}^{r}s_{p}(F, E_{i}))

= \sum_{i=1}^{r}s_{p}(F, E_{i})w_{f}(E_{i})(exp(F ; E_{1} , .. . E_{r})

s_{f\circ p}(F;H)=\nu(F, (f\circ p)^{*}(H))

= \nu(F, p^{*}(\sum_{i=1}^{r}s_{f}(E_{i}, H)E_{i}+f^{-1}[H]))

=( \sum_{i=1}^{r}s_{p}(F, E_{i})s_{f}(E_{i}, H))+s_{p}(F, f^{-1}[H])

REMARK: We may note from the formula given in the toroidal
example, that in the toroidal case exp(F;E_{1}, \ldots.E_{r}) measures the contri-
bution to F of the lift\overline{l}ngsf^{-1}[H_{i}] of coordinate hyperplanes. We will
analyze this excess more carefully in lemmas 2.4 and 2.8.

LEMMA 2. 4 : If p : Warrow X, f : Xarrow Y are birational morphisms, such
that K_{f} has normal crossings, k’ is the codimension of p(F) , k is the num-
ber of components of K_{f} containing p(F) , and H is an irreducible hyper-
surface, then

ex_{p}(F; E_{1}, \ldots E_{r})\geq k’-k

If p is a blowing up with center p(F) , equality holds and the additivity
formula becomes

u_{f\circ p}(F,\cdot H) = \sum_{p(F)\subset E_{i}}u_{f}(E_{i}, H)+(k’-k, s_{p}(F, f^{-1}[H]))
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PROOF: Let the E_{i} be so numbered that E_{1} , \ldots . E_{k} are the comp0-
nents of K_{f} containing p(F) . Localizing we can assume that p(F) is
smooth, without affecting the quantities we are calculating. We can thus
add hypersurfaces E_{1}’ , . . E_{k’-k}’ crossing normally with E_{1} , . . . E_{k} such
that the intersection of all k’ hypersurfaces is p(F) .

0\leq ex_{p}(F;E_{1}, ’ .. E_{k}, E_{1}’, \ldots E_{k’-k}’)

=w_{p}(F)- \sum_{i=1}^{k}s_{p}(F, E_{i})-\sum_{i=1}^{k’-k}s_{p}(F, E_{i}’)

=ex_{p}(F;E_{1}, , .. - E_{k})- \sum_{i=1}^{-}s_{p}(F, E_{i}’)k’k

We have s_{p}(F, E_{i}’)\geq 1 for each i , and furthermore, we have equalities
when p is a blowing up. Since s_{P}(F, E_{i})=0 for i>k , ex_{p}(F;E_{1}, , .. E_{r})=

ex_{p}(F;E_{1}, \} .. . E_{k})\geq k’-k .
We now generalize a case of lemma 1.1 of [9] for quasiblowings-up,

in preparation for an investigation of the properties of quasi-factorization
sequences.

LEMMA 2. 5: Let f : Xarrow Y be a proper birational morphism, and let
h:Y_{1}arrow Y be a quasi-blowing-up dominated by f, i.e. such that every acces-
sible component is generically isomorphic to a component of K_{f} . Let y_{1} be
an accessible point of M_{1} , and let \Gamma_{1} be a test curve transversal to M_{1} at
y_{1} . Let x be the closure point in X. It there is a hypersurface H contained
ing the center B of h, such that

\sum_{x\in D_{t}}s_{f}(D_{i}, H)\geq\deg(h(\Gamma_{1})\cdot H)=1 ,

then x belongs to a unique component D_{i} of f^{-1}(H) , s_{f}(D_{i}, H)=1 , and f_{1} :
X–>Y_{1} is well-defifined at x if and only if after base extension by the
Henselization of Y at f(x) , f(\overline{D}_{i}) is contained in the local center \overline{B} of
h.

PROOF: Since H\supset B, I_{H}\subset I_{B} , so f^{-1}(I_{H})O_{X,x} . Let \Gamma=f^{-1} [ h(\Gamma_{1})] .
Letting s_{i}=s_{f}(D_{i}, H) , and letting t_{i} be a local equation for D_{i},at x , we
have

f^{-1}(I_{H})O_{X,X}=(\Pi_{t_{i}}^{s_{i}})J\chi,\chi ,

for some ideal J_{X,x} . Since \deg(\Gamma\cdot D_{i})\geq 1 for each i , we have

\Gamma\cdot f^{*}(H)=\sum_{x\in D_{i}}s_{i}(\Gamma\cdot D_{i})\geq(\sum_{x\in D_{i}}s_{i})x

By the projection formula, since f is proper, deg \Gamma\cdot f^{*}(H)=\deg f_{*}(\Gamma\cdot

H=\deg h_{*}(\Gamma_{1})\cdot H=1 . Thus 1\leq\Sigma s_{i}\leq 1 , whence all the s_{i} are 0 except for
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one s_{i}=1 . Thus

f^{-1}(I_{H})O_{X,X}=t_{i}J_{X,X} .

Since 1=\deg\Gamma\cdot f^{*}(H) is the order of the ideal induced by f^{-1}(I_{H})O_{X,X} in
O_{\Gamma} , we conclude that \Gamma intersects B_{i} transversally at x and that J_{X,x} is
trivial.

We will indicate by “–,, base extension by the Henselization of Y at
f(x) . It \tilde{f}(\tilde{D}_{i})\subset\overline{B} , where \overline{B} is the local center of the quasiblowing-up
h, then we have

(\tilde{t}_{i})O_{\overline{X},\overline{x}}=\tilde{f}^{-1}(I_{\tilde{H}})O_{\overline{X},\overline{x}}\subset f^{-1}(I_{\tilde{B}})O_{\overline{X},\overline{x}}\subset(\tilde{t}_{i})O_{\tilde{X},\overline{x}}

All the inclusions are then equalities, and since x is a closure point for
\overline{y}_{1} , we conclude from Lemma 1.12 that \overline{f}_{1} : \overline{X}--->\tilde{Y}_{1} is well-defined at \overline{x} .

Suppose, on the other hand, that \tilde{f}(\tilde{D}_{1}) (I \overline{B} . Since \tilde{D}_{i} is the only
component of K_{f} contained in \overline{f}^{-1}(H) which passes through \tilde{x} , we cen-
clude that \overline{f}^{-1}(B) is of codimension greater than one at \overline{X} . Since x\in
\tilde{f}^{-1}(\overline{B}) , it is non-empty. Thus \overline{f}^{-1}(I -) O_{\overline{X}}

,
- cannot be invertible, and we

conclude that \overline{f}_{1}.\cdot\tilde{X}arrow\overline{Y}_{1} is not well-defined at x , by applying lemma 1.12
again.

LEMMA 2. 6: Let Y_{0} , . . . Y_{k} be a quasi-factorization sequence of
three-folds suppose y_{k}\in Y_{k} is an accessible point. Suppose there is a hyper-
su?face H in Y_{0} such that \sum_{y_{k}\in Mf^{\rangle}}s_{h_{k}}(M_{j}^{(k)}, H)=1 . Then for any transversal

test curve \Gamma_{k} , with closure point x on a curve \Gamma in X, either f_{k} : Xarrow Y_{k} is
well defifined at x, or, if j<k is the largest index for which f_{1} is well
defifined at x, we have (^{*}) After base extension by the Henselization \tilde{Y}_{j} of
Y_{j} at y_{j} , x is contained in a component\sim\overline{D}_{i\sim}such that \tilde{f}_{j}(\tilde{D}_{i}) is not
contained in the local center of \tilde{b}_{j} at y_{j} , but y_{j} is contained in the local
center.

PROOF: We proceed by induction, showing that if (^{*}) does not hold,
then f_{j}\overline{1}S welldefined at x implies that f_{j+1} is well defined at x. We let
\Gamma_{j}=h_{kj}(\Gamma_{k}) . Each h_{kj} is proper, and thus by the projection formula

deg \Gamma_{0}\cdot H=\deg\Gamma_{j}\cdot h_{j}^{*}(H_{0})=\deg\Gamma_{k}\cdot h_{k}^{*}(H_{0})

=\deg\Sigma s_{h_{k}}(M_{j}^{(k)}, H_{0})\cdot(\Gamma\cdot M_{j}^{(k)})

= \sum_{ty_{k}\in My)}s_{h_{k}}(M_{j}^{(k)}, H_{0})

=1

We conclude that each y_{j} is contained in a unique M_{i}(j) for which
s_{h_{j}}(M_{i}^{(j\rangle}, C)=1 . If (^{*}) does not hold, either y_{j}\overline{1}S not contained in the cen-



424 M. Schaps

ter of b_{j} , in which case f_{j+1}=b_{j}^{-1}\circ f_{j} at x , or else y_{j+1} is contained in M_{j+1} ,

and we can apply lemma 2.5 with H_{j}=M_{i}^{(j)} as the hypersurface satisfying
deg \Gamma_{j}\cdot H_{j}=1 . Since deg \Gamma\cdot f_{j}^{*}(H_{j})=1 , we see that x is contained in some
component D_{i} with s_{fj}(D_{i}, H_{j})\geq 1 . We conclude that f_{j+1} is well-defined at
x , by lemma 2.5.

We wish to use this lemma in the specific case in which we are analyz-
ing the pinch locus of a morphism f : Xarrow Y.

LEMMA 2. 7 : Let Y_{0} , Y_{1} , . . Y_{k} be a quasifactorization sequence
dominated by a proper birational mo\uparrow phismf\cdot. Xarrow Y, such that Y_{1} is the
blowing-up of a point y_{0}\in Y_{0} , and each center B_{j} of b_{j+1} satisfifies dimh_{j1}

(B_{j})=1 . For each j<k, let \hat{C}_{k} be the fifinite set of singular points of the
locus on which f_{j}^{-1} is not well-defifined. Let \hat{C}=\hat{C}_{1}\cup h_{1}(\hat{C}_{2})\ldots\cup h_{k-11}(\hat{C}_{k-1}) .
Let y_{k} be any singleton accessible point of Y_{k} such that its unique accessible
component M_{j}^{(k)}, has order 1 in h_{k}^{*}(H) , for a generic H through y_{0} .
Then, for f_{k} : X–>Y_{k} , one of the following holds:

(1) f_{k}^{-1} is an isomorphism at y_{k} or
(2) there is a component D_{i} of K_{f} such that D_{i}\supset f_{k}^{-1}[y_{k}] and D_{i} is

generically isomorphic to the blowing up of f_{k}[D_{i}] , or
(3) for some j<k, f_{j}^{-1}[y_{j}] lies in a D_{i} which does not map locally to

the local center of b_{j+1} . ( h_{k1}(y_{k})\in\hat{C}, in this case.)

PROOF. Let \Gamma_{k} be a generic transversal test curve through y_{k} . Then
\Gamma_{k}\cdot h_{k}^{*}(H)=s_{h_{h}}(M_{j}^{(k)},, H)\Gamma\cdot M_{j}^{(k)},=1 . Let x\in f^{-1}[y_{k}] be the closure point of
\Gamma_{k} in X , with correspond\overline{l}ng curve \Gamma=f_{k}^{-1}[\Gamma_{k}] . We first suppose that f_{k} is
not well defined at x , and prove (3). By lemma 2.6, for some j, f_{j} is well
defined at x , and y_{j}\in B_{j} , but after base extension x is contained in a
unique component \tilde{D}_{i} , and \overline{f}_{i}(\overline{D}_{i}) is not contained in the local center.
Since we thus have two different branches of the fundamental locus of f_{j}

passing through y_{j} , we see that y_{j} is a singular point of the fundamental
locus of f_{j} , and thus y_{j}\in C_{j} , proving that (3) holds.

Let us now assume that (3) does not hold, and show that either (1)

or (2) then holds. From the previous paragraph, we can conclude that f_{k}

is well-defined at x. Since \Gamma_{k} was generic, x must lie on f^{-1}[y] . Con-
sider the possible dimensions of f^{-1}[y] . If it is zero dimensional, f_{k}^{-1} is
an isomorphism at x , so (1) holds. If f^{-1}[y] is a surface, then that sur-
face is the desired D_{i} in (2), being generically isomorphic to the blowing
up of y_{k} . If f^{-1}[y] is a curve, then by the modified Danilov result, lemma
1.8, D_{i} is gener\overline{l}cally isomorphic to the quasi-blowing up of its image in
Y_{k} , which contains y_{k} .

We now consider the case of p a quasifactorization, and try to ana-
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lyze the terms ex_{p}(F;E_{1}, \ldots E_{r}) and s_{f}(F, f^{-1}[H]) appearing in the ad-
ditivity formula. We assume that p=a_{l^{\circ}}\ldots\circ a_{1} , with a_{i} : X_{i}arrow X_{i-1} a quasi-
blowing-up, S_{b_{i}}=A_{i} . Over the generic point of A_{i} we assume that a_{i} is a
blowing up with exceptional divisor N_{i} and we assume that the generic
point of A_{i} is contained only in the liftings N_{i}^{(i\rangle}, of earlier N_{i’} .

We denote by g_{ii’} the composition a_{i’+1^{\circ\circ}}\ldots a_{i} as in Fig. 3 of \S 1.

LEMMA 2. 8: Let p:Warrow X be a quasifactorizable morphism with fac-

tors a_{i} , i=1 , \ldots . l, let F be an accessible component of K_{p} , and let f : Xarrow

Y be a birational morphism. Let k_{i}’ be the codimension of A_{i-1} , let k_{i} be
the number of exceptional components of f_{(i-1)0}=f\circ a_{1}\ldots\circ a_{i-1} containing the
generic point of A_{i-1} and let d_{i} be the multiplicity of f_{(i-1)0}^{-1}[H] along
A_{i-1} , which equals s_{a_{i}}(N_{i}, f_{(i-1)0}^{-1}[H]) . Then

u_{f\circ p}(F, H)= \sum_{i=1}^{k_{0}}s_{p}(F, E_{i})u_{f}(E_{i}, H)+\sum_{i=1}^{l}s_{gli}(F, N_{i})(k_{i}’-k_{i}, d_{i})

PROOF: Since we may replace f by f_{i0} , we can prove the theorem by
induction on l , assuming it is true for l-1 . We therefore assume that the
theorem is known to be true for g_{l1} : Warrow X_{1} , and f_{10} : X_{1}arrow Y. We want to
show it for p:Warrow X, f : Xarrow Y. By lemma 2.4 the additivity formula for
blowing up, we know that if the components are numbered so that E_{1} , \ldots

E_{k_{1}} are the components of K_{f} containing A_{0}

u_{f_{10}}(N_{1}, H)= \sum_{i=1}^{k_{1}}u_{f}(E_{i}, H)+(k_{1}’-k_{1} , d_{1})

Letting E_{i}^{(1)} be the lifting of E_{i} to X_{1} ,

s_{g\iota 0}(F, E_{i})=s_{gl1}(F, E_{i}^{(1)})+s_{gl1}(F, N_{1}) ,

since E_{i}^{(1)} and N_{1} are the only components of K_{b_{1}} , whose image is in E_{i} .
Finally u_{f_{10}}(E_{i}^{(1)}, H)=u_{f}(E_{i}, H) , since b_{1} is an isomorphism at the generic
point of E_{i} for each i.

u_{p\circ f}(F, H)=g_{g_{l1}\circ f_{10}}(F, H)

= \{\sum_{j=1}^{k_{1}}s_{gl1}(F, E_{j}^{(1)})u_{f_{10}}(E_{j}^{(1)}, H)

+s_{g1}(F, N_{1})u_{f_{10}}(N_{1}, H) \}+\sum_{i=2}^{l}s_{gli}(F, N_{i})(k_{i}’-k_{i}, d_{i})

= \sum_{j=1}^{k_{1}}s_{gl1}(F, E_{j}^{(1)})u_{f_{10}}(E_{j}^{(1)}, H)+\{s_{g1}(F, N_{1})(\sum_{j=1}^{k_{1}}u_{f}(E_{j}, H)

+s_{gl1}(F, N_{1})(k_{1}’-k_{1;}d_{1}) \}+\sum_{i=2}^{l}s_{gli}(F, N_{i})(k_{i}’-k_{i}, d_{i})

= \sum_{i=1}^{l}s_{g\iota 0}(F, E_{i})u_{f}(E_{i}, H)+\sum_{i=1}^{l}s_{gli}(F, N_{i})(k_{i}’-k_{i}, d_{i})
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This combined additivity formula and the resulting “ linear program-
ming problem” which will be defined in the following lemma from the
technical heart of the combinatorial analysis of the exceptional divisor.
We therefore pause to give an illustrative example which should provide
some orientation to both Lemmas 2.8 and 2.9.

EXAMPLE: Let Y=A^{3} , and let H_{1} , H_{2} and H_{3} be three transversally
intersecting coordinate planes. Let f\cdot. Xarrow Y be the composite of the five
blowings-up p_{1} , \ldots

p_{5} with the following centers and compositions p_{ij}=p_{j^{\circ}}

...\circ p_{i}

(1) The line H_{2}\cap H_{3} , giving E_{1} in Xju_{f}(E_{1} ; H_{1}H_{2}H_{3})=(2;0,1,1)

(2) The line p_{52}(E_{1})\cap p_{1}^{-1}[H_{3}] , giving E_{2} in X:u_{f}(E_{2} ; H_{1}H_{2}H_{3})=(3;0,1.2)

(3) The line p_{53}(E_{1})\cap p_{53}(E_{2}) , giving E_{3} in X;u_{f}(E_{3} ; H_{1}H_{2}H_{3})=(5;0,2,3)

(4) The line p_{54}(E_{1})np_{31}^{-1}[H_{1}] , giving E_{4} in X;u_{f}(E_{4} ; H_{1}H_{2}H_{3})=(3:1,1,1)

(5) The line p_{5}(E_{2})np_{41}^{-1}[H_{1}] , giving E_{5} in X : u_{f}(E_{5} ; H_{1}H_{2}H_{3})=(4;1,1,2)

Let y\in Y be the origin and let h_{1} : Y_{1}arrow Y be the blowing-up of y.
(See Fig. 4) where antipodal points of each tube are identified.)

Now suppose that we were given f : Xarrow Y without being given its
factorization. Let h_{1} : Y_{1}arrow X be the blowing-up of the origin, with excep-
t\overline{l}onal divisor M_{1} . Let h_{1} : X–>Y_{1} be the induced correspondence. This
map is well-defined at every point of X except the irreducible curve A_{0}=

E_{3}\cap H_{1} , which is thus, by definition, the pinch locus P_{y}(f) . The question
then is, how much information can we obtain about the irreducible comp0-

nent of K_{f} containing A_{0} by constructing quasi-factorization sequences on
X and Y which form a br\overline{l}dge between A_{0} and its image ?

The image of each point of A_{0} is the irreducible curve B_{1}=M_{1}\cap h_{1}^{-1}

[H_{3}] . We construct a quasi- factorizat\dot{l}on sequence on the Y_{1} Frside by
blow\overline{l}ng up B_{1} to get Y_{2} with exceptional divisor which is the sum of M_{1}^{(2)}

and M_{2} . Under the correspondence f_{2} : X–>Y_{2} the general points of A_{0}

all correspond to the same curve B_{2}=M_{1}^{(2)}\cap M_{2} . The final blowing-up b_{3}

with center B_{2} will produce an exceptional component M_{3} which is the
image of A_{0} under f_{3} : X—>Y_{3} .

Fig. 4
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Now we build the quasi-factorization sequence over X by blowing up
A_{0} to get a space X_{1} with exceptional divisor N_{1} u_{f_{10}}(N_{1} : H_{1}, H_{2}, H_{3})=

(6 : 1, 2, 3 )

The image of M_{3} under the induced correspondence f_{13}^{-1} : Y_{3}--->X_{1} is
the curve A_{1}--N_{1}\cap f_{10}^{-1}[H_{1}] , where f_{10} : X_{1}arrow Y. Finally, by blowing up A_{1} ,

we get a space X_{2} with exceptional div\overline{l}sorN_{2} generically isomorphic to
M_{3} .

Having constructed the two quasi-factorization “ towers ” and the
bridge between them, we now consider a generic hyperplane through y ,

and calculate the canonical pair (w, s)=u_{fzo}(N_{2} ; H) from the two
different quasi-factorization sequences, using the additivity formula in
Lemma 2.8.

From the quasi-factorization sequence Y=Y_{0} , Y_{1} , Y_{2} , Y_{3} we calcu-
late the canonical pairs for the exceptional divisors M_{1} , M_{2} , M_{3} using the
additivity formula. For the first blow\overline{l}ng up b_{1} , the codimension k_{1}’ of the
center B_{0}=\{y\} is 3; there are no exceptional components, so k_{1}=0 , and H
is smooth at y , so d_{1}=1 . Therefore

u_{h_{1}}(M_{1}, H)=(k_{1}’-k_{1}, d_{1})=(3,1)

For the second blowing up b_{2} , the codimension k_{2}’ of B_{1}=M_{1}\cap b_{1}^{-1}[H] is 2,
B_{1} is contained in M_{1} , so k_{1}=1 , and h_{1}^{-1}[H] does not contain B_{1} , so d_{1}=0 .
Therefore

u_{h_{2}}(M_{2}, H)=u_{h_{1}}(M_{1}, H)+(k_{2}’-k_{2}, d_{2})

=(3,1)+(1,0)
=(4,1)

For the third blowing-up, the center B_{2} is again a curve so k_{3}’=2 , the cen-
ter is contained in two components, so k_{3}=2 , and again h_{2}^{-1}[H] does not
contain B_{2} , so d_{3}=0 . We conclude that

u_{h_{3}}(M_{3}, H)=u_{h_{2}}(M_{2}, H)+u_{h_{2}}(M_{1}^{(2)}, H)+(0,0)

=(4,1)+(3,1)
=(7,2)

We now g_{\overline{1}}ve a preview for this numerical example of the results of
the next lemma, 2.9. Suppose that we know only that some quasi-
factorization sequence X_{0}\ldots X_{l} leads to a component N_{l} generically isomor-
phic to M_{3} , and therefore having canonical pair (w, s)=(7,2) . We are
interested in determining as much information as possible about the canon-
ical pairs (w_{i}, s_{i}) of the components E_{1} , \ldots

E_{r} of k_{f} containing centers of
the quasi-factorization sequence. Let us denote S_{p}(M_{l}, E_{j}) by e_{j} and
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S_{p}(M_{l}, N_{i}) by c_{i} . Then the additivity formula in Lemma 2.8 becomes

(w, s)= \sum_{i=1}^{k_{0}}e_{i}(w_{i}, s_{i})+\sum_{i=1}^{l}c_{i}(k_{i}’-k_{l}\cdot, d_{i})

Now we note that in dimension 3, every center A_{i} had codimension k_{1}’. no
greater than 2, and is contained in at least one exceptional divisor, so that
k_{i}’-k_{i}\leq 1 . Furthermore, the pinch locus is chosen to lie in the strict
preimage of H so d_{i}\geq 1 .

Therefore, as will be deduced in the proof of lemma 2.9 below, we
conclude that

w-s \leq\sum_{i=1}^{k_{0}}e_{i}(w_{i}-s_{i})

On the other hand, since d_{i}\geq 1 for all i , we have
s \geq\sum e_{i}s_{i}+l

We now show how these inequalities can be used to analyse the \dot{1}mage

of M_{3} under f_{3}^{-1} . We have (w, s)=(7,2) , and since the image of M_{3} is in
the pinch locus, at least one blowing-up is required to resolve it, so l\geq 1 .
We substitute in the second inequality to get

2\geq\Sigma e_{i}s_{i}+1 ,

and conclude that 1 \geq\sum e_{i}s_{i} . If \sum e_{i}s_{i}=0 , then by the first inequality some
e_{i}\neq 0 , so some s_{i}=0 . If \sum e_{i}s_{i}=1 , and no s_{i}=0 , then k_{0}=1 , and we must
have 5=w-s\leq w_{i}-s_{i} , whence we conclude that w_{i}\geq 6 . Since in fact
\sum e_{i}s_{i}=1 would require l=1 , and d_{1}=1 , we can in fact conclude that the
image of M_{3} either lies in a component E_{i} with s_{i}=0 , or else lies in a
single component with canonical pair (6, 1) . For the particular map we
gave at the beginning of this example the pinch locus lay in a component
with canonical pair (5, 0) . as will be illustrated in the final section of this
paper, assembling a little more information about the map will allow one
to choose between alternative solutions to the equations.

We will now prove lemma 2.9.

LEMMA 2. 9: Let f : Xarrow Y_{0} be a proper birational morphism of n-
dimensional spaces with normally crossing exceptional divisor and let
X_{0} , \ldots . X_{l} with accessible components N_{i}\subset X_{i} , i=1 , \ldots , l, be a quasifactor-
ization sequence with p=g_{l0} : X_{t}arrow X. Let (w, s)=u_{f\circ p}(N_{t}, H) for generic
H through a point y\in Y_{0} , let E_{1} , \ldots-E_{r} be the components of K_{f} , and let
(w_{i}, s_{i}) be the canonical y pair u_{f}(E_{i}, H) . Let A_{i} be the center of the
quasi-blowing-up a_{i+1} , and defifine
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k_{i}’=codimA_{i-1}

k_{i}-- number of components of K_{f\circ g_{1i}}
-1)0 containing A_{i-1}

d_{i}=multiplicity of (f\circ g_{(i-1)0})^{-1}[H] along A_{i-1}

Then there exist non-negative integers e_{1} , \ldots . e_{r} and c_{1} , \ldots . c_{l} such that

(i) w= \sum_{j=1}^{r}e_{j}w_{j}+\sum_{i=1}^{l}c_{i}(k_{i}’-k_{i})

(ii) s= \sum_{j=1}^{r}e_{j}s_{j}+\sum_{i=1}^{l}c_{i}d_{i}

Suppose that each A_{i} , i=0 , \ldots l-1 , is in the pinch locus P_{y}\varphi_{i0} ) for f_{i0}=

f\circ g_{i0} : X_{i}arrow Y_{0} . Then for any number c with n \geq c\geq\max_{i}(k_{i}’-k_{i}) , and in

particular for c=n-1 ,
(iii) w- cs\leq\Sigma e_{j}(w_{j}-cs_{j})

Letting H_{1} , . .. H_{c} be a normally crossing generic set of hyperplanes
containing y, this may be restated as

(iv) ex_{f\circ p}(N_{l} ; H_{1}, \ldots H_{c})\leq\sum_{j=1}^{r}e_{j}ex_{f}(E_{i} ; H_{1}, \ldots H_{c})

If d= \min_{i}d_{i} , and A_{i}=g_{li}(N_{i}) for i=0 , \ldots l-1 ,

(v) s \geq(\sum_{n=1}^{r}e_{j}s_{j})+dl

PROOF: ( i) and ( ii) are simply restatements of lemma 2.8, with
e_{j}=s_{p}(N_{t}, E_{j}) and c_{i}=s_{p}(N_{t}, N_{i}) . For all i, c\geq k_{i}’-k_{i} and d_{i}\geq 1 , we have

w\leq\Sigma e_{j}w_{j}+c\Sigma c_{i}

s\geq\Sigma e_{j}s_{j}+\Sigma c_{i} .

Thus mult\overline{l}plyings by c and subtracting gives the desired inequality (iii).

Since each of the H_{i} in (iv) is generic, s_{f}(E_{j}, H_{i})=s_{j} , and thus ex_{f}(E_{j} ;
H_{1} , .. . H_{c}) =w_{f}(E_{j})-\Sigma s_{f}(E_{j} ; H_{i})=w_{j}-cs_{j} . Similarly ex_{f\circ p}(N_{t} ; H_{1} , , . .
H_{c})=w-cs . Finally, for ( v) if each A_{i-1}=g_{li-1}(N_{t}) , then g_{li}[N_{l}]\subset N_{i} ,

so c_{i}=s_{gli}(N_{l}, N_{i})\geq 1 for each i. Thus

\sum_{i=1}^{l}c_{i}d_{i}\geq\sum_{i=1}^{l}d_{i}\geq\sum_{i=1}^{l}d=l\cdot d.

REMARK. These last two equations provide a linear programm\overline{l}ng

problem for the values of the e_{j} , and thus provide restrictions on the com-
ponents which can contain p(F) if (w, s) is known.

DEFINITION 2. 10: Let the total excess of a point x of X be the sum
of excesses of each of the components of K_{f} with respect to a generic
coordinate system at f(x) .
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ex_{f}(x)= \sum_{x\in D_{i}}ex_{f}(D_{i }: ^{H_{1}}, \ldots-H_{n})

LEMMA 2. 11 : If x is a generic point of a curve component of the
pinch locus of a morphism of 3-folds over a point obstruction y, then

(a) if x is a singleton point, ex_{f}(x)\geq 3

(b) if x is a double point ex_{f}(x)\geq 4 .

PROOF: Let A be the component of P_{y}(f) of which x is a general
point, and let p.\cdot X_{1}arrow X be a quasi-blowing-up of A , with exceptional divi-
sor F_{1} . Then, if k components of K_{f} contain A ,

u_{f\circ p}(F_{1})= \sum_{i=1}^{k}u_{f}(D_{i})+(2- k, d) , d\geq 1

(w, s)= \sum_{i=1}^{k}(w_{i}, s_{i})+(2-k, d)

1 \leq w-3s=\sum_{i=1}^{k}w_{i}-3s_{i}+(2-3d-k)

\sum_{i=1}^{k}w_{1}-3s_{i}\geq 3d+k-1

\geq 2+k

Substituting k=1,2 gives the desired result.

REMARK: This lemma is an improvement on lemmas 2.2 and 2.3 of
[9].

We conclude with a generalization of 1.3 of [9] to quasi-factorization
sequences

LEMMA 2. 12: Let Y_{0} , \ldots . Y_{k} be a quasi-factorization sequence, let f :
Xarrow Y_{0} be a birational morphism and let y_{k} be an accessible point of Y_{k} .
Let x be the closure point of a transversal test curve \Gamma_{k} through y_{k} . If for
every accessible component M_{j}^{k} of Y_{k} containing y_{k} there is a generically
isomorphic component D_{j} of K_{f} containing x, then f_{k}\cdot. Xarrow Y_{k} is well
defifined at x. If these are the only components of K_{f} containing x, then f_{k}

is an isomorphism at x.

PROOF: As in lemma 1.3 of [9], if f_{k} can be shown to be well-
defined, and we can show that these are the only components of K_{f}

containing x , then because there are no components available which can
collapse, we can conclude from Zariski’s Main Theorem, that f_{k} is an
isomorphism. We proceed inductively on f_{0} , f_{1} , f_{2} , \ldots , f_{k} assuming f_{j} has
been shown to be well defined at x. We localize at y_{j} so that the local
center \overline{B}_{j} of the blowing up b_{j+1} is smooth. We let H_{j} , for j=0, \ldots . k-1 ,
be a generic hypersurface containing \overline{B}_{j} , and we let y_{j} and \Gamma_{j} be the
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images of y_{k} , \Gamma_{k} in Y_{j} . By the generic isomorphism M_{i}(k)_{-}D_{i} , we have
s_{f_{j}}(D_{i}, H_{j})=s_{h_{kj}}(M_{i}^{(k)}, H_{j}) . We will denote this number by s_{ij} . Let I\subset

\{1, \ldots, k\} be the subset of indices of accessible components containing y_{k} .
Let \Gamma be f_{k}^{-1}[\Gamma_{k}] . We assume f_{j} well-defined for j<k , and prove that f_{j+1}

is well-defined. f_{j} is proper, and thus by the project\overline{l}on formula

deg \Gamma\cdot f_{j}^{*}(H_{j})=\deg\Gamma_{j}\cdot H_{j}=\deg\Gamma_{k}\cdot h_{kj}^{*}(H_{j})

– \sum_{i\in 1}\Gamma_{k}\cdot s_{h_{kj}}(M_{i}^{(k\rangle}, H_{j})M_{i}^{(k)}+\Gamma_{k}\cdot h_{kj}^{-1}[H_{j}]

Since our H_{j} was generic, and h_{jk} is a composition of blowings up, we
may assume that h_{kj}^{-1}[H_{j}] does not contain y_{k} . Furthermore deg \Gamma_{k} .
M_{i}^{(k\rangle}=1 . Thus deg \Gamma\cdot f^{*}(H_{j})=\sum_{i\in 1}s_{ij} . Since \Gamma\cdot f^{*}(H_{j})=\Gamma\cdot

\sum_{x\in D_{i}}s_{f_{J}}(D_{i}, H_{j})

D_{i}+f_{j}^{-1}[H_{j}] , and deg \Gamma\cdot s_{ij}D_{i}\geq s_{ij} , for i\in I , we conclude that \Delta\cdot f_{j}^{-1}[H_{j}]=

0 , \Gamma\cdot D_{i}=1 for i\in I , and s_{fj}(D_{i}, H_{j})=0 if x\in D_{i} but i\not\in I . Since x\not\in f_{j}^{-1}[H_{j}]

for a generic hypersurface H_{j} containing the local center, we see that f_{j+1}

is well defined at x.

\S 3 Four components collapsing to a point.

Let f : Xarrow Y be a proper birat\overline{l}onal morphism collapsing four nor-
mally crossing surfaces to a point. We will show, in this sect\overline{l}on and the
next, that with one exception such a morphism is locally factorizable. In
order for f to be locally factorizable, it would have to factor through the
blowing up of the point. The problem thus splits immediately into two
parts. In this section we will show that if \overline{1}t does not factor through the
blowing up of the point, then \overline{1}t is Oda’s [6] example of a point obstruc-
tion, given in \S 1 after lemma 1.6. In \S 4, we will show that \overline{1}f it does
factor through the blowing up, then the resulting morphism, collapsing
three surfaces, is locally factorizable.

PROPOSITION 1: If f\cdot. Xarrow Y is a proper birational morphism of
smooth algebraic spaces of dimension 3 collapsing four surfaces to a point
y_{0} , and f does not factor through the blowing up of y_{0} , then the S\mathcal{U}7faces

have canonical pairs (3, 1) , (4, 1) , (5, 1) and (6, 1) , and after blowing up
one smooth curve A_{0} in the (6, 1) component, the resulting morphism is
directly factorizable.

PROOF: In order to analyze K_{f} , we first build a bridge between X
and Y_{1} , the blowing up of the point y_{0} . We may assume that Y is a
scheme.

LEMMA 3. 1: Let f : Xarrow Y be a proper birational morphism of 3-
folds. Suppose Y_{1} is obtained by blowing-up a point y\in S_{f} for which
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f^{-1}[y] is a surface. If f_{1} is not well-defifined, then there is a curve B_{1}\subset M_{1} ,

and factorization sequences Y, Y_{1_{J}} . . . Y_{k} , and X, X_{1} , . . . X_{l} , with acces-
sible components M_{j} and N_{i} as in Fig. 3, such that for generic H through
y,

(i) M_{k} is generically isomorphic to N_{l} , B_{j}\subset M_{j} , and h_{j1}[B_{j}]=B_{1}

(ii) f_{j}^{-1} [ M_{j}] is a surface for j<k .
(iii) g_{ii’}(N_{i})\subset f_{i0}^{-1}[H] for i’<l.

PROOF: ( i) Let G_{01} be a desingularization of the graph of the cor-
respondence f_{1} : Xarrow Y_{1} . Let F\subset G_{01} be a surface of \min_{\overline{1}}ma1 weight col-
lapsing to a curve B_{1} in M_{1} , such that its image in X is contained in
f^{-1}[H] . Such a surface exists by lemma 1.10 above.

Let q_{1} : G_{01}arrow Y_{1} be the projection from the graph, with B_{1}=q_{1}(F) . By
Lemma 1.14, we can construct a quasi-blowing up b_{2} : Y_{2}arrow Y_{1} with center
B_{1} and accessible component M_{2} generically \overline{1}somorphic to the blowing-up
of B_{1} Let q_{2} : G_{01}– >Y_{2} be the induced b_{\overline{1}}rationa1 correspondence, and
let B_{2}=q_{2}[F] . Since q_{2} , being birational, is well-defined on points of
codimension 1, we have b_{2}\circ q_{2}[F]=q_{1}(F)=B_{1} , whence b_{2}(B_{2})=B_{1}tB_{2} ,
being the strict image of an irreducible divisor, is irreducible. Since, over
the generic point of B_{1} , b_{2}^{-1}(B_{1})\overline{1}S contained in M_{2} , we conclude that B_{2}\subset

M_{2} .
Let us now suppose that we have constructed steps Y_{0} , Y_{1} , \ldots . Y_{j} in

a factorization sequence, such that qj’ : G_{01}–>Y_{j’} is the induced birat\overline{l}onal

correspondence, and when j’<j, q_{j’}[F]=B_{j’} is the center of the following
quasi-blowing-up b_{j’+1} . As \overline{1}n the diagram in Fig. 3, we let h_{ij} : Y_{i}arrow Y_{j}

denote the composition of quasi-blowing-up and let h_{j}=h_{j0} . If q_{j}[F] is
not a surface, we define B_{j}=q_{j}[F] , and apply lemma 1.14 to construct a
quasi-blowing-up b_{j+1} : Y_{j+1}arrow Y_{j} with center B_{j} . As in the case j=2 above,
we find that b_{j}\circ q_{j}[F]=q_{j-1}[F]=B_{j-1} implies that B_{j}\subset M_{j} , since M_{j} is
generically isomorphic to the blowing-up of B_{j-1} Similarly, since
h_{j1}\circ q_{j}[F]=q_{1}[F]=B_{1} , we find that h_{j1}(B_{j})=B_{1} If d is the degree of B_{1} ,
then for any generic hyperplane H, h_{j+1}^{-1}[H] intersects M_{j+1} transversally
along md contractible curves, where m is the degree of B_{j} over B_{1} . We
need to show that after a fifin\overline{l}te number of such steps q_{k}[F] is the surface
M_{k} , and thus M_{k} is generically isomorphic to F. We surely have the
weight w_{h_{j}}(M_{j}) bounded above by the weight w_{q0}(F) , by lemma 2.3, since
q_{0} is equivalent to h_{j}\circ q_{j} , and q_{j}(F)\subset M_{k} . However, by lemma 2.4, since
B_{j’}\subset M_{j’} for each i’<k , we find that the sequence w_{h_{j}}(M_{j}) is strictly
increasing. We conclude that for some ky Whk(Mk)=w_{q0}(F) . From
lemma 2.3 we see that M_{k} is the only component of K_{h_{J}} containing q_{k}(F) ,
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with excess 0, and from lemma 2.4 we then conclude that the codimension
of q_{k}(F)=1 , i.e. that F is generically isomorphic to M_{k} .

To complete the proof of ( i) we construct a quasi-factorization
sequence X=X_{0} , X_{1} , X_{2} , \ldots . X_{l} , with accessible components N_{i} , and cen-
ters A_{i}\subset N_{i} which are the projections of F to X_{i} . The details and the
proof of finiteness proceed as in the construction of the Y_{j} sequence, the
only difference be\overline{l}ng that A_{0} , A_{1} , \ldots can be points. This can occur only
when the image of F in the non-desingularized graph of f_{1} is a singular
curve, projecting to A_{0} in X and to B_{1} in Y_{1} However, once one of the
A_{i} is a curve, all subsequent A_{i’} will also be curves.

We continue the sequence X_{0} , . . . X_{l} until N_{l} is generically isomor-
phic to F. and thus to M_{k} . This completes the proof of ( i ) .
\underline{(ii)} : Let j be the lowest number for which f_{j+1}^{-1} [M_{j+1}] is not a surface.
We want to use the minimality of the weight of F to show that j=k-1 .
Since q_{i}[F]\subsetneqq M_{i} , for i<k and thus the weight w_{q0}(F)>w_{h_{i}}(M_{i}) , it will
suffice to find a surface F’ in the desingularized graph G_{01} such that F’ is
generically isomorphic to M_{j+1} and the image of F’ in X is contained in
f^{-1}[H] .

Let \overline{Y}_{1} be the localization of the scheme Y_{1} along B_{1} in the Zariski
topolo\underline{g}y on Y_{1} . Using base extension by \overline{Y}_{1} , we get a morphism of sur-
spaces q_{1} : G_{01}\cross\overline{Y}_{1}arrow\overline{Y}_{1} . Let \overline{W}=G_{01}\cross\overline{Y}_{1} and let \overline{F} be the curve induced

Y_{1} Y_{1}

by F in \overline{W} .
By the Zariski factorization theorem for surfaces, q_{1} must factor into

a sequence of blowings up of points, and at each step we may choose an
arbitrary point of the fundamental locus as the center of the blowing up.
If we consistently choose the image of \overline{F} as our center, then we construct
a sequence of spaces \overline{Y}_{j} with \overline{Y}_{jarrow}-Y_{j}\cross\overline{Y}_{1} . These will actually all be

Y_{1}

schemes, since the special points at which etale neighborhoods were needed
ed will drop out \overline{1}n the process of localizing along B_{1} . The centers of the
blowings-up will be \overline{B}_{j}-arrow B_{j}\cross\overline{Y}_{1} , and each \overline{M}_{j}-arrow M_{j}\cross\overline{Y}_{1} will be generically

Y_{1} Y_{1}

isomorphic to a curve F_{j} in the exceptional divisor of q_{1} . Thus if F’ is
the surface in G_{01} which induces \overline{F}_{j+1} , F’ is generically isomorphic to
M_{j+1} Let p:G_{01}arrow X be the projection of the graph onto X. If we can
show that p(F’)\subset f^{-1}[H] , then we can conclude that F=F’ and j+1=k.

Let C=p(F’) , and suppose C\not\subset f^{-1}[H] for a generic hyperplane H.
If so, f_{1} : X—>Y_{1} is well defined at the generic point of C , and thus X is
isomorphic to G_{01} almost everywhere along C. This would imply that C

is a surface generically isomorphic to F’ and thus to M_{j+1} , contradicting
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the assumption that f_{j+1}^{-1} [M_{j+1}] is not a surface. We conclude, as desired,
that j+1=k , and thus that for each j<k, M_{j} is generically isomorphic to
a surface D_{j} in K_{f} , completing the proof of ( ii) .
(iii) \cdot. We want to show that if g_{ii’} : X_{i}arrow X_{i}’ , with i>i’ is a composition of
blowings-up from the factorization sequence, then g_{ii’}(N_{i}) lies in the pinch
locus fi’-1[0H] of f_{i0} . We first reduce to the case i=l by noting that
g_{i(i-1\rangle}(N_{i})=A_{i-1}=g_{t(i-1\rangle}(N_{t}) , since N_{l} is generically isomorphic to F. and
A_{i-1} is the image of F.

We now reduce further to the case i’=l-1 , by noting that f_{i’0}^{-1}[H]=

g_{(l-1)i’}U_{(t-1)0}^{-1}[H]) . It thus suffices to prove that g_{l(l-1)}(N)\subset f_{(t-1)0}^{-1}[H] .
Assuming this is not the case, we will show that N_{t-1} is generically
isomorphic to M_{k-1} and derive a contradiction.

By our assumption, the surfaces f_{(l-1)0}^{-1}[H] do not entirely contain
A_{t-1}=g_{ll-1}[N_{l}] , However, they must intersect A_{l-1} at some point, since f_{l0}^{-1}

[H] intersects N_{l} at a general point. We conclude that A_{l-1} is a curve,
and intersects f_{(t-1)0}-1[H] in isolated points. Furthermore, f_{\iota 0^{1}}- [H] is
obtained from f_{(l-1)0}^{-1}[H] by blowing up these points, with exceptional
curves C_{i} . f_{lk} gives an isomorphism at the generic point of each C_{i} , map-
p_{\overline{1}}ng it to some component C_{i}’ of M_{k}\cap h_{k}^{-1}[H] . As described in the
definition of the factorization sequence in ( i) above, h_{k}^{-1}[H] is smooth
and transversal to M_{k} along C_{i}’ . We conclude that f_{l0}^{1}[H] is smooth and
transversal to N_{t} along C_{i} , whence f_{(t-1)0}^{-1}[.H] is smooth and transversal to
A_{l-1} at each intersection point p_{i} . C_{i} is thus a contractable curve with
self intersection -1, isomorphic to C_{i}’ , another contractable curve with
self intersection -1. The complete image of p_{i} under the induced corre-
spondence f_{(t-1)(k-1)} is thus p_{i}^{r}=h_{k(k-1\rangle}(C_{i}’) , a single point, so f_{(l-1)(k-1)} is
well-defined at p_{i} . This induces, locally, a morphism from f_{(l-1)0}^{-1}[H] to
h_{k-1}^{-1}[H] which is a birational morphism of surfaces.

p_{i} lies in f_{(l-1)0}-1[H]\cap N_{l-1} and at most one other component of
f_{(l-1)0}^{-1}[H]\cap suppCA/) . If either of these components collapses to a point
under the morphism of surfaces then the total multiplicity (in the \underline{surface}

canonical class) of components containing p_{i} will be higher than the total
multiplicity of components containing p_{i}^{r} , whence C_{i} would not generically
be isomorphic to C_{i}’ . Thus we must have a local isomorphism of sur-
faces. We conclude that N_{l-1} cannot collapse under f_{(l-1\rangle(k-1)} . Since it is
the highest weight component of K_{f_{(l}}

-1)0 containing p_{i} , it must be isomor-
phic to the highest weight component of K_{h_{k}} containing p_{i}’ , which is M_{k-1} .
However, M_{k-1} is generically isomorphic to a component of D_{k-1} of K_{f} ,

while g_{(l-1)0}(N_{t-1})\subset A_{0} , of cod\overline{l}mension at least 2. Contradiction.

REMARK: M_{1} is isomorphic to a projective plane, so B_{1} is a projec-
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tive curve and therefore has a degree. If B_{1} is a curve of degree d’ . then
h_{1}^{-1}[H] intersects B_{1} in d’ points, and thus h_{k}^{-1}[H] will intersect M_{k} in d’
fibers, each of which maps onto A_{0} in X. We conclude that f^{-1}[H] has
at least d’ branches along A_{0} . The degree of B_{1} is thus bounded by the
multipl\dot{l}city of f^{-1}[H] along A_{0} . In fact, it is bounded by all the multi-
plicities d_{i} of f_{i0}^{-1}[H] along A_{i-}

To continue the proof of Prop. 1, we now divide into cases.
Let (w, s)=u_{h_{k}}(M_{k}, H) and let (w_{i}, s_{i})=u_{f}(D_{i}, H) for all comp0-

o nto D_{1_{J}} . . . D_{4} of K_{f} . Note that k\leq 5 , since K_{f} has at most four comp0-
nents. If B_{j}\subset M_{j}\cap M_{j}^{(j)} . then by lemma 2.4,

u_{h_{j+1}}(M_{j+1}, H)=(w_{j}, s_{j})+(w_{j’}, s_{j’})

If B_{j} is not contained in an intersection, then by the same lemma
u_{h_{j+1}}(M_{j+1}, H)=(w_{j}, s_{j})+(1,0) .

We note in particular that these cond_{\overline{1}}tions limit the possible increments in
the sequence s= (s_{1_{J}} , .. s_{k-1}, s) . For any j, if s_{j+1}\neq s_{j} , then s_{j+1}=s_{j}+s_{j’}

where s_{j}=s_{j-1}+s_{j’} or j’=j-1 . We now divide into cases according to the
various sequences s which can be built up this way, starting W\dot{l}ths_{1}=s_{2}=1 .
Since S_{f}\overline{1}S a point, each s_{i}\geq 1 , and thus since s_{g\iota}(N_{t}, f^{-1}[H])\geq 1 , we have,
from Lemma 2. 3 applied to f\circ g_{l} , that s\geq 2 .

We consider four vectors:
s=(s_{1_{J}}..1 s_{k-1}, s)

w=(w_{1}, , . _{y}w_{k-1}, s)

e_{2}=w-2s
\overline{e}_{3}=\overline{w}-3\overline{s}

Lemmas 2.9 and 2.11 give a number of restrictions on these vectors. We
now divide the problem \overline{1}nto cases. We will discover that the smaller k is,
the fewer cases there are and the harder they are to deal with.
\underline{k=5} : We want to eliminate all cases with k=5. Our main tool will be
lemma 2.11, saying that a component of the pinch locus must be in a sin-
gle surface of excess \geq 3 , or an intersection of excess \geq 4 . We generate the
vector e_{3} of excesses.

1 \overline{s}=(1,1,1,1,2),\overline{w}=(3,4,5,6,11),\overline{e}_{3}=(0,1,2,3,5)

2 s-=(1,1,1,2,2),\overline{w}=(3,4,5,9,10),\overline{e}_{3}=(0,1,2,3,4)

3 s-=(1,1,1,2,3),\overline{w}=(3,4,5,9,13) , e_{3}=(0,1, 2,3,4)
-

4 w= (3, 4, 5, 9, 14),e_{3}=-(0,1,2,3,5)
5 s-=(1,1,2,2,2),\overline{w}=(3,4, 7,8,9) , e_{3}=(0,1,1,2,3)

6 \overline{s}=(1,1,2,2,4),\overline{w}=(3,4,7,8,15),\overline{e}_{3}=-(0,1,1,2,3)

7 s-=(1,1,2,3,3),\overline{w}=(3,4,7,10,11) , e_{3}=(0,1,1,1,2)
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8 \overline{s}=(1,1,2,3,3),\overline{w}=(3,4,7,11, 12),\overline{e}_{3}=(0,1,1,2,3)

9 s-=(1, 1, 2, 3, 4) , \overline{w}=(3,4, 7,10, 13) , \overline{e}_{3}=(0,1,1,1,1)

10 s-=(1, 1, 2, 3, 4) , \overline{w}=(3,4,7,11,15),\overline{e}_{3}=(0,1,1,2,3)

11 s-=(1,1,2,3,5),\overline{w}=(3,4,7,10,17),\overline{e}_{3}=(0,1,1,1,2)

12 s-=(1,1,2,3,5),\overline{w}=(3,4,7,11,18),\overline{e}_{3}=(0,1,1,2,3)

Except in (1)-(5) we do not have, in D_{1} , \ldots
D_{4} , a component or pair

of components is K_{f} satisfying lemma 2.11. We now apply lemma 2.9(v)

to (1)-(5) , getting s< \sum_{A_{0}\subset D_{j}}e_{i}s_{i} . In cases 1,2, and 5 where s=2 , we would

have to have a single component D_{i} of excess \geq 3 , which doesn’t exist. In
cases 3 and 4, we don’t have an intersection D_{i}\cap D_{j} with s_{i}=s_{j}=1 and total
excess at least 4. Thus we would have A_{0}\subset D_{4} with excess 3, and e_{4}=1 .
However, by 2.9(iii), the excess of M_{k} , 4 or 5, would have to be smaller
than the excess of D_{4} , which is 3. Contradiction.
\underline{k<5} : Here we have other components in K_{f} whose canonical pairs are
not known from the factorization sequence. We will divide into four
cases according to s .

A. \overline{s}=(1,1,1,2),\overline{w}=(3,4,5,9),\overline{e}_{3}=(0,1,2,3)

B. \overline{s}=(1,1,2,2),\overline{w}=(3,4,7,8),\overline{e}_{3}=(0,1,1,2)

C. \overline{s}=(1,1,2,3),\overline{w}=(3,4,7, 10),\overline{e}_{3}=(0,1,1,1)
-

w=(3, 4, 7, 11) , e_{3}=(0,1,1,2)

D. \overline{s}=(1,1,2) , \overline{w}=(3,4,7) , \overline{e}_{3}=(0,1,1)

\underline{CaseA} : \overline{s}=(1, 1, 1, 2) . M_{k} has canonical pair (9, 2) with excess 3, and
k=4 . Applying lemma 2.9(iii) with c=2 , we see that A_{0} is contained in a
single component D_{4} with s_{4}=1 , and 5=9- 2\cdot 2\leq w_{4}-2\cdot s_{4} . Thus w_{4}\geq 7 .
Furthermore, 2=s=e_{4}s_{4}+d_{1} , so e_{4}=s_{4}=d_{1}=1 . Thus, by the Remark after
Lemma 3.1, B_{1} is nonsingular, since d_{1}=1 . We now apply lemma 2.7 to
conclude that f_{3}^{-1} is an isomorphism at every accessible non-intersection
point of M_{1}^{(3)} , M\xi^{3)} and M_{3} except on f_{3}[D_{4}] . By this same lemma, we
conclude that D_{4} is the blowing up of f_{3}[D_{4}] . By lemma 2.4,

w_{4}=w_{i}+k’-1 .

Since w_{i}\leq 5 , and w_{4}\geq 7 , we conclude that k’ . the codimension f_{3}[D_{4}] , is 3,
indicating that f_{3}[D_{4}] is an isolated point. However this contradicts the
connectedness of f_{3}(D_{4}) which contains M\xi^{3)}\cap M_{3} .
\underline{CaseB} : Since s=2 , the component f_{k}^{-1} [M_{k}] of the pinch locus must lie
in D_{4} , with

2=s\geq e_{4}s_{4}+dl.

We conclude that e_{4}=l=d=s_{4}=1 , whence B_{1}=f_{1}[D_{2}] must have degree 1,
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and be isomorphic to P^{1} . Since B_{1} is nonsingular, and f_{2}[D_{3}]\subset M_{2}\cap M_{1}^{(2)} ,
we find that by lemma 2.7, f_{2}^{-1} is an isomorphism except on f_{2}[D_{4}] and M_{2}

\cap M_{1}^{(2)} . Since f_{2}(D_{4})\supset M_{2}\cap M_{1}^{(2)} and is connected, but must have generic
point in a single component of K_{h_{2}} so that s_{4}=1 will hold, we conclude
that f_{2}[D_{4}] is a curve. By lemma 2.7, D_{4} is generically isomorphic to the
blowing up of that curve, and thus has canonical pair (5, 1) . In that case,
however, the excess of D_{4} is 2, in contradiction to lemma 2.11.
Case C : This case is more difficult.

s=(1, 1, 2, 3) . Applying lemma 2.11 again, since the excesses of D_{1} ,
D_{2} and D_{3} are 0, 1, and 2 respectively, we see that A_{0} must lie in D_{4} .
Thus from lemma 2.9, s> \sum_{A_{0}\subset D_{i}}s_{i}) +1 , so we have s_{4}\leq 2 and A_{0}(ID_{3}\cap D_{4} .
S_{\overline{1}}nce the total excess along a “ bad ” curve lying in a single component
must be at least 3, and along an \dot{1}ntersecting curve must be at least 4, D_{4}

must have an excess of at least 3. Since S_{f} is a point, s_{4}\geq 1 , so w_{4}-3s_{4}\geq 3

implies that w_{4}\geq 6 .
\underline{C.1}\cdot. s_{4}=1 . Consider lemma 2.7 applied to the simple factorization
sequence Y_{0} , Y_{1} dominated by the morphism f : Xarrow Y. Every point y_{1} of
M_{1} is a singleton accessible point, and M_{1} has generic order 1. Thus,
except possibly at a finite number of points, either f_{1}^{-1} is an \overline{I}somorphism

at y , with f_{1}^{-1}(y_{1})\in D_{1} , or else there is a component D_{i} of K_{f} such that y_{1}

\in f_{1}[D_{i}] and D_{i} is generically isomorphic to the blowing up of f_{1}[D_{i}] .
Since only one component, D_{2} , has the canonical pair (4, 1) appropriate
to the blowing up of a curve, we see that B_{1}=f_{1}[D_{2}] is the only curve in
M_{1} on which f_{1}^{-1} is not an isomorphism. Since f_{1}(D_{4})\supset f_{1}(A_{0})=B_{1} , then
by the Zariski connectedness theorem, the strict image f_{1}[D_{4}] is connected
to B_{1}1 Since it cannot be connected by a curve intersecting B_{1} , and B_{1} is
irreducible, the only two possibilities for f_{1}[D_{4}] are a point of B_{1} or all of
B_{1} . We thus div\overline{l}de into subcases
\underline{C.1.a} : f_{1}[D_{4}] is point P_{1} . Consider f_{1}^{-1}[P_{1}] . It cannot be surface, for
then it would have canonical pair (5, 1) , with excess 2, which is not pos-
sible for D_{4} . Thus f_{1}^{-1}[P_{1}] has dimension no greater than 1. We now
apply the Danilov lemma [3], modified as in lemma 1.8, to conclude that
P_{1} has an etale neighborhood in which B_{1} has a smooth branch, such that
along the fiber over P^{1} in the blowing-up of this branch we have an
isomorphism of the exceptional divisor M_{2} with D_{2} . Let us assume that
the locally factorizable morphism b_{2} was chosen so that it factored
through such a blowing-up. Then f_{2}[D_{4}] would be a point on that fiber.
It could not be in the intersection, since s_{4}=1 . Thus it would be an is0-
lated point on the fiber. Over the general po\overline{l}nt of B_{1} , f_{2}^{-1} must be an
isomorphism on M_{2}-M_{1}^{(2)} , by lemma 2.7, since there are no components
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other than D_{1} and D_{2} with canonical pair (w’,-s’)\leq(5,1) . Thus f_{2}[D_{4}] is
an isolated point. Since M_{1}^{(2)}\cap M_{1}\subset f_{2}(A_{0})\subset f_{2}(D_{4}) , this contradicts the
connectedness of the image under a birational correspondence.
\underline{C.1.b} : Suppose f_{1}[D_{4}]=B_{1}t The same argument from lemma 2.7 used
above shows that f_{2}^{-1} is an isomorphism on the generic fiber of M_{2}-M_{1}^{(2\rangle} .
Thus f_{2}[D_{4}] could lie only in M_{2}\cap M_{1}^{(2)} . However, if so, by lemma 2.3 s_{4}

\geq s_{1}+s_{2}=2 , in contradiction to our assumption that s_{4}=1 .
\underline{C.2}\cdot. s_{4}=2 . From lemma 2.9 (v) , s\geq s_{4}+dl , whence, since s=3 and s_{4}=2 ,
we get l=1 and d=d_{1}=1 . As remarked after lemma 3.1, the degree of B_{1}

as a curve in M_{1}\cong P^{2} is bounded by d_{1}\tau We conclude that deg B_{1}=1 , i.e.
that B_{1}\cong P^{1} and is thus non-singular. Since every component of K_{f} has its
image at least connected to B_{1} , and there is only one component D_{2} with
the canonical pair (4, 1) appropriate to the blowing up of a curve, we
conclude, by applying 2.7 to Y_{0} , Y_{1} , that f_{1} is an isomorphism outside of
B_{1} . We now go one step further and apply 2.7 to Y_{0} , Y_{1} , Y_{2} , where we
can assume that b_{2} : Y_{2}arrow Y_{1} is simply the blowing up of B_{1} . Since B_{1} is
nonsingular, the set of bad points in lemma 2.7 is empty, and every point
of M_{2}-M_{1}^{(2)} is accessible of order one. Since (2) cannot hold because
there are no components in K_{f} with the canonical pairs (5, 1) or (6, 1)
appropriate to the blowing-up of a curve or point we conclude that at
every point y_{2} of M_{2}-M_{1}^{(2)} , f_{2}^{-1} is an isomorphism. Thus f_{2}[D_{4}]\subset M_{2}\cap

M_{1}^{(2\rangle}=B_{2} .
Y_{3} is obtained by blowing-up B_{2} . Let us show that f_{3}^{-1} is an isomor-

phism at every point of M_{3}-M_{1}^{(3)}-M\xi^{3)} . Let y_{3} be any such point, and let
\Gamma_{3} be a transversal test curve through y_{3} . Let H be a generic hyperplane
through y_{0}\in Y Then s_{h_{3}}(M_{3}, H)=2 , so \Gamma_{3}\cdot h_{3}^{*}(H)=2 . Letting y_{1} , \Gamma_{1} be
the images of y_{3} , \Gamma_{3} respectively in Y_{1} , we get \Gamma_{1}\cdot h1*(H)=2 . Let \Gamma=

f_{1}^{-1}[\Gamma_{1}]\subset X , and let x be the closure point.
We first show that the singleton points of D_{i}. are isomorphic to the

singleton points of M_{i}^{(2)} , for i=1,2 . Suppose \overline{x} is a singleton point of D_{1}

or D_{2} . Let \overline{\Gamma} be a transversal test curve through \overline{x}. Since s_{f}(D_{i}, H)=1 ,
for i=1,2 , and f_{1} is well defined at \overline{x}, so that \overline{x}\in f^{-1}[H] , we have \overline{\Gamma} .
f^{*}(H)=1 , whence by the projection formula 1=f(\overline{\Gamma})\cdot H=h1-1[f(\overline{\Gamma}] .
h_{1}^{*}(H)=h_{2}^{-1}[f(\overline{\Gamma})]\cdot h_{2}^{*}(H) . We conclude that h_{2}^{-1}[f(\overline{\Gamma})] intersects K_{h_{2}} at
a point of first order, i.e., at a point of M\{^{2)}\cup M_{2}-B_{2} . Since f_{2}^{-1} is an
isomorphism at these points, we find that D_{1}-(D_{2}\cup D_{3}\cup D_{4})-arrow M_{1}^{(2)}-M_{2}-arrow

M_{1}^{(3)}-M_{3} and D_{2}-(D_{1}\cup D_{3}\cup D_{4})arrow-M_{2}-M\{^{2)-}arrow M\xi^{3)}-M_{3} .
Returning to our original point x , since y_{3}\not\in M_{1}^{(3)}\cup M\S^{3)} , we find that x

\in D_{3}\cup D_{4} . We can thus apply lemma 1.1 of [9], which says that since
\sum_{x\in D_{f}}s_{f}(D_{i}, H)\geq\Gamma\cdot f^{*}(H)=2 , we actually have equality, f_{1} is well-defined at
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x , and x is a singleton point of D_{3} or D_{4} .

Now let H_{1} be a generic hypersurface in Y_{1} containing B_{1} . Since \Gamma_{3}

is transversal to M_{3} at a generic point, its image \Gamma_{2} is transversal to M_{1}^{(2)}

and M_{2} , and \Gamma_{1} is tangent to M_{1} , and transversal to B_{1}
‘ We thus have

\Gamma_{1}\cdot H_{1}=1 . Since f_{1}[D_{i}]\subset B_{1} for i=1,2 , we have s_{f_{1}}(D_{i}, H_{1})\geq 1 . Thus we
can again apply lemma 1.1 of [9], to conclude that f_{2} is well-defined at x.
Since we again have f_{2}[D_{i}]\subset B_{2} for i=1,2 , we can repeat this with a
generic hypersurface H_{2} through B_{2} , and conclude that f_{3} is well-defined at
x. If x is a singleton point of D_{3} , then since D_{3} , being generically isomor-
phic to M_{3} , does not collapse, we have an isomorphism. If x\in D_{4} , y_{3}\in

f_{3}[D_{4}] .
We have thus shown that f_{3}^{-1} is an isomorphism except on f_{3}[D_{4}] and

possibly on M_{i}^{(3}\cap M_{3} , for i=1,2 . According to our original hypotheses, f_{3}

(A_{0})=M_{i}^{(3)}\cap M_{3} for either i=1 or i=2 . Since f_{3}(D_{4}) must be connected,
and the generic point f_{3}[D_{4}] cannot have order greater than s_{4}=2 , we see
that f_{3}[D_{4}] must be a curve intersecting M_{i}^{(3)}\cap M_{3} properly. Blowing it
up, and applying lemma 1.1 one last time, for the same curve \Gamma_{3} , we con-
clude that D_{4} is generically ismorphic to the blow\overline{l}ng-up of f_{3}[D_{4}] . It
must, therefore, have canonical pair

(w_{4}, s_{4})=(w_{3}, s_{3})+(k’-k, d)

=(7,2)+(2-1,0)
=(8,2)

by lemma 2.4. However, if so, the excess w_{4}-3s_{4}=8-6=2 , which is too
small.

We have thus eliminated all but the last case:
Case D\cdot. This case is considerably more difficult than the previous ones,
for here, instead of reaching a contradiction, we must show that the mor-
phism f : Xarrow Y is one particular morphism. We therefore preface the
proof with an outline wh_{\overline{1}}ch we hope will serve for most readers as a satis-
factory substitute for the actual detailed proof.

(a) We show that in case D the pinch locus contains an irreducible
curve A_{0} whose general point is a singleton point of a component D_{4} with
canonical pair (6, 1) .

(b) We determine the nature of the var\overline{l}ous components of K_{f} : D_{1} is
generically isomorphic to the blowing-up M_{1} of the point y\in Y, D_{2} is
generically isomorphic to the blowing-up M_{2} of a curve B_{1}arrow-P^{1} in M_{1} , and
D_{3} with canonical pair (5, 1) is generically isomorphic to the blowing-up
M_{3} of a curve B_{2} in M_{2} . (See Fig. 5 for the two alternative possibil\overline{l}ties
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\Pi

Fig. 5

for M_{3} .)
(c) We build a quasi-factorization sequence Y_{0} , Y_{1r}Y_{2} , Y_{\acute{3}} , Y_{4}’ ,

show that D_{1}\cap D_{2}=\emptyset , and determine where the induced correspondence f_{4}’

is an isomorphism, thereby confining the accessible points is the image of
the pinch locus to intersections of accessible components.

(d) We prove that the only singleton points of the pinch locus P_{y}(f)

are contained in the irreducible curve A_{0} .
(e) The strict image of D_{3} in Y_{2} is fiber, so that the strict image of

D_{3} in Y_{1} is a point y_{1} .
(f) We then conclude that D_{2}\cap D_{3}=\emptyset .
(g) By blowing-up a singleton point x of A_{0} and considering its

multiplicity in the strict preimage of two transversal generic hyperplanes,
we show that x is a smooth point of A_{0} .

(h) In a similar manner, we demonstrate that A_{0} intersects D_{1} and
D_{2} transversally.

(i) We construct a strong factorization sequence for f by blowing
up A_{0} to get a component N_{1}-arrow P^{1}\cross P^{1} , then contracting N_{1} along its sec-
ond fibration to get a directly factorizable toroidal morphism.

We now carry out (a)-(i) .
(a) A_{0} lies in D_{1} with canonical pair (6, 1) :
\overline{s}=(1,1,2) . We have u_{h_{3}}(M_{3}, H)=(7,2) , and it is generically

isomorphic to the result of a single blowing-up in X , of a locus A_{0} lying in
a S\overline{l}ngle component D_{4} of K_{1} . We must have w_{4}<7 , s_{4}<2 , by lemma 2.9 (i ,

v) on the one hand, and on the other hand, by lemma 2.11, D_{4} must have
excess at least 3. Thus (w_{4}, s_{4})=(6,1) . Also, applying lemma 2.9, d_{1}=1 ,

so B_{1} is a P^{1} of degree one, and we may take b_{2} to be the blowing up of
B_{1} Similarly, b_{3} may be taken as the blowing-up of the smooth intersec-
tion.
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(b) D_{3} has canonical pair (5, 1) :
We first establish the canonical pair of the remaining component D_{3} .

Consider a general point y_{1}\in f_{1}[D_{4}] . f_{1}^{-1} is not an isomorphism at y_{1}

Since the set \hat{C}of possible bad points given in lemma 2.7 is empty for the
case of a single blowing-up of B_{1} , we conclude from lemma 2.7 that the
closure point x of a generic test curve through y_{1} , i.e., x\in f_{1}^{-1}[y_{1}] , must lie
in a component D_{i} which is generically isomorphic to the blowing-up of
f_{1}[D_{i}] . Based on this fact, we wish to prove that (w_{3}, s_{3})=(5,1) and
f_{1}[D_{3}]\subset B_{1} .

We have two possibilities : f_{1}[D_{i}] is a point or a curve. In the first
case d_{i}=D_{3} and (w_{3}, s_{3})=(5,1) . In this case f_{1}^{-1} is an isomorphism
except on B_{1}=f_{1}[D_{2}] and y_{1}=f_{1}[D_{3}]=f_{1}[D_{4}] , by lemma 1.2 of [9] or by
another application of 2.7 to a general point of M_{1}\tau Since B_{1}=f_{1}(A_{0})\subset

f_{1}(D_{4}) and f_{1}(D_{4}) is connected, we conclude that y_{1}\in B_{1} , as desired.
Now consider the case that f_{1}[D_{i}] is a curve, so that (w_{i}, s_{i})=(4,1) .

Since dim f_{1}^{-1}[y_{1}]\leq 1,- we can apply lemma 1.8 to find a local center \overline{B} at
the Henselization y_{1}\in\overline{Y}_{1} , such that after base extension, \tilde{f}_{1} factors
through the blowing up of \tilde{b}_{2} of \overline{B} . Let b_{2} be a quasi-blowing up with \tilde{B}

as local center at y_{1} . Let y_{2} be a general point of f_{2}[D_{4}] such that
h_{21}(y_{2})=y_{1} . Since s_{4}=1 , the generic point of f_{2}[D_{4}] must lie in a single
first order component of K_{h_{2}} . Thus y_{2}\in f_{1}^{-1}[y_{1}] , and y_{2} is accessible. We
apply lemma 2.7 to the accessible first order points of M_{2} . Case (3)
occurs neither at y_{1} , where the component containing f_{1}^{-1}[y_{1}] maps to the
center of the local blowing-up, nor at y_{2} , since the set of bad points is
finite and y_{2} is general. Thus in a neighborhood of the fiber at y_{2} , f_{2}^{-1} is
an isomorphism except on the strict images of components other than D_{1}

and D_{i} . If f_{2}[D_{4}] were an \overline{1}solated point, this would contradict the con-
nectedness of f_{2}(D_{4}) , since f_{2}(A_{0})\subset M_{2}\cap M_{1}^{(2)} . Thus y_{2} must 1\overline{1}e on some
curve in M_{2} on which f_{2}^{-1} is not well-defined. We conclude from lemma
2.7 that there exists a component of K_{f} generically isomorphic to the blow-
ing up of this curve, hence of canonical pair (5, 1) . The only possibility
is D_{3} . We conclude that D_{i}=D_{2} , f_{1}[D_{2}]=B_{1} , and thus that f_{1}[D_{3}]\subset

h_{21}(f_{2}[D_{3}])\subset h_{21}(M_{2})=B_{1} , as desired. Note that we have also shown that
f_{2}[D_{4}]\subset f_{2}[D_{3}] .

We are now close to our goal. We have four components, D_{1} , D_{2} ,
D_{3} , D_{4} , with canonical pairs (3, 1) , (4, 1) , (5, 1) and (6, 1) respectively.
D_{1} is generically isomorphic to the blowing up of y. D_{2} is gener\overline{l}cally

isomorphic to the exceptional divisor M_{2} which results from blowing up a
curve B_{1}arrow-P^{1} in M_{1} . D_{3} is generically isomorphic to the blowing up of a
curve in M_{2} . We have seen two possibilities for this curve. It can either
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be the fiber of M_{2} over a point y_{1} , in which case D_{3} is generically isomor-
ph\overline{l}C to the blowing up of y_{1} , or else it can be a section of B_{1} in M_{2} . See
Fig. 5.

Let H_{1} be a smooth hypersurface through y such that h_{1}^{-1}[H_{1}] con-
tains the linear subspace B_{1} of M_{1} in Y_{1} . Assume H_{1} is a generic hyper-
surface with this property. In particular we may assume that if h_{2}[D_{4}] is
a point on M_{2} , it \overline{1}S not contained in h_{1}^{-1}[H_{1}] . We now blow up M_{2}\cap M_{1}^{(2)}

to obtain M_{3} . Since sh_{2} (M(2) 1,H_{1})=sh_{1} ( M_{1}. H_{1})=1,sh_{2} (M_{2}, H_{1})=

s_{b}^{1}(M_{1}, H_{1})+s_{b_{2}}(M_{2}, h_{1}^{-1}[H_{1}]=2 , and M_{2}\cap M_{1}^{(2)} is not contained in h_{2}^{-1}[H_{1}] ,

we get s_{h_{3}}(M_{3}, H_{1})=s_{hz}(M_{2}, H_{1})+s_{h_{2}}(M\{^{2)}, H_{1})=2+1=3 . On the other
hand, D_{3} is generically isomorphic to the blowing up of a curve f_{2}[D_{3}] in
M_{2} which is not contained in h_{2}^{-1}[H_{1}] . Thus s_{f}(D_{3}, H_{1})=2 . Similarly, if
we blow up f_{2}[D_{3}]\overline{1}nM_{2} to get a space Y_{\acute{3}} , D_{4} is generically isomorphic
to the blowing up of a curve in the exceptional divisor M_{3}’ , whence s_{f}(D_{4} ,
H_{1})=2 . We have shown that M_{3} , the blowing up of M_{2}\cap M_{1}^{(2)} , is generlc
ically isomorphic to the blowing up of the curve A_{0} in D_{4} . Thus

3=s_{h_{3}}(M_{3}, H_{1})=s_{f}(D_{4}, H_{1})+s_{f_{3}^{-1}}(M_{3}, f^{-1}[H_{1}]) .

We conclude that f_{3}^{-1} [M_{3}]=A_{0} must be contained in f^{-1}[H_{1}] , since we
must have s_{f_{3}^{-1}}(M_{3}, f^{-1}[H_{1}])=1 . f_{1} is not well-defined on A_{0}\subset f^{-1}[H_{1}] . We
wish to use this fact to show that only the first of the two cases in Fig. 5
is possible, and that D_{1}\cap D_{2}=\emptyset and D_{2}\cap D_{3}=\emptyset .

(c) Construction of the quasi-factorization sequence:
We build up a factorization sequence Y_{0} , Y_{1} , Y_{2} , Y_{\acute{3}} , Y_{4}’ , and deter-

mine step by step where the corresponding \overline{1}nduced morphisms from X are
isomorphisms.
\underline{Stepl} : b_{1} : Y_{1}arrow Y_{0} is the blowing-up of the point y_{0} . f_{1}^{-1} is an isomor-
phism except on the strict images of other components, all of which are
contained in B_{1} . Furthermore, for every singleton point of D_{1f}f_{1} is well-
defined by lemma 2.11. Since no component through the point collapses, f_{1}

is an isomorphism there. Thus

D_{1}-(D_{2}\cup D_{3}\cup D_{4})^{\frac{f_{1}}{arrow}}M_{1}-B_{1}

arrow-M_{1}^{(2)}-M_{2}

\underline{Step2} : b_{2} : Y_{2}arrow Y_{1}\overline{1}S the blowing up of B_{1} , M_{2} is generically \overline{1}somorphic

to D_{2} . At every po\overline{l}nt of M_{2}-M_{1}^{(2)} we can apply lemma 2.7. Since the
strict images of D_{2} , D_{3} and D_{4} are all contained in B_{1} , the set on which

f_{1}^{-1} is not an isomorphism is nonsingular, and thus the set \hat{C} of possible
bad points is empty. We conclude that f_{2}^{-1}\overline{1}S an isomorphism at every
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point of M_{2}-M_{1}^{(2)} except on f_{2}[D_{3}] (which contains f_{2}[D_{4}] ). For any sin-
gleton point x in D_{2} , we consider a transversal test curve \Gamma . Since
S_{f}(D_{2}, H)=1 for a general hypersurface H\subset Y_{-} we have \Gamma\cdot f^{*}(H)=1 .
Letting y_{2}=f_{2}[\Gamma]\cap h_{2}^{-1}(y) , we have 1=\deg(\Gamma\cdot f^{*}(H))=\deg(f_{*}(\Gamma)\cdot H)=

deg f_{2}[\Gamma]\cdot h_{2}^{*}(H) . y_{2} must be a point of M_{2}-M_{1}^{(2)} since h_{2}^{*}(H) has order 1
there. We now apply lemma 2.6 to conclude that f_{2} is well-defined at x.
Since there is no collapsing component, it \overline{1}S thus an isomorphism. Thus

D_{2}-(D_{1} \cap D_{3}\cup D_{4})\frac{f_{2}}{arrow}M_{2}-(M_{1}^{(2)}\cap M_{2})-f_{2}[D_{3}]

.

We note, furthermore, that D_{1}\cap D_{2} must be empty. On D_{1}\cap D_{2}-

(D_{3}\cup D_{4}) , f_{1} is well-defined, by lemma 2.11 ( ii) . On D_{2}-(D_{3}\cup D_{4}) , f_{2} is
well-defined, again by lemma 2.11 ( ii) , and is actually an isomorphism,
since there are no collapsing components. If D_{1}\cap D_{2}\neq\phi , its image must
be in f_{2}[D_{1}]\cap f_{2}[D_{2}]=M_{1}^{(2)}\cap M_{2} . However f_{2}^{-1} is not an isomorphism on
M_{1}^{(2)}\cap M_{2}=f_{2}(A_{0}) . Thus D_{1}\cap D_{2} must be empty.
Step : b_{3}’ : Y_{3}’arrow Y_{2} is the quasi-blowing up of f_{2}[D_{3}] . If y_{2} is a first
order point of f_{3}[D_{3}] , then by lemma 2.7, f_{2}^{-1}[y_{2}]\subset D_{3}\cap D_{4} . If in D_{4} , then
f_{2}^{-1}[y_{2}]=D_{4} and y_{2}=f_{2}[D_{4}] . If in D_{3} , then by lemma 1.8, f_{2} factors
through the blowing up of a smooth branch of B_{3}’=f_{2}[D_{3}] at y_{3} , and we
can assume that b_{2} factors through this blowing up too. We conclude
from lemma 2.7 that f_{3}^{-1}\overline{1}S an isomorphism at every accessible point of
M_{3}’-M\xi^{3)’}-f_{3}[D_{4}] . Let x be a point of D_{3}-(D_{1}\cup D_{2}\cup D_{4}) , and let \Gamma -be a
transversal curve at x. Since f_{1} is well-defined at x , we can take H to be
a generic hyperplane through y\in Y and we will get deg \Gamma\cdot f^{*}(H)=

s_{f}(D_{3}, H)=1 . Lift to Y_{3} getting a point y_{3}’ and a curve \Gamma_{3} . b_{3}’ is so con-
structed that the only first order components in Y_{3} are the accessible com-
ponents M_{1}^{(3)} , M\S^{3)} and M_{3} . Let Q_{3}’ be the union of the non-accessible
components. Since \Gamma\cdot h_{3}^{*}(H)=1 , y_{3} must lie in a first order component,
necessarily D_{3} , since f_{3} gives isomorphisms

D_{1}-(D_{2}\cup D_{3}\cup D_{4})^{\frac{f_{3}}{arrow}}M_{1}^{(3)’}-M\xi^{3)’}-M_{\acute{3}}-Q_{3}’

f_{3}

D_{2}-(D_{1}\cup D_{2}\cup D_{4})arrow-M\S^{3)’}-M_{1}^{(3)’}-M_{3}’-Q_{3}’

We conclude from lemma 2.6 that f_{3} is well-defined at x. Since there are
no collapsing components

D_{3}-(D_{1}\cup D_{2}\cup D_{4})-arrow M_{3}’-M\xi^{3)’}-M_{1}^{(3)^{r}}-f_{3}[D_{4}]-Q_{\acute{3}}

The key point will be to prove that D_{2}\cap D_{3} is empty. Let x be a
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general point of D_{2}\cap D_{3}-(D_{1}\cup D_{4}) . f_{1} is well-defined there by lemma 2.11
(ii). f_{2} is then well-defined there by lemma 2.3 ( ii) , (iii) of [9] applied to
D_{2} , generically isomorphic to the blowing up of B_{1} and thus having excess
0, and D_{3} , which has excess 1 with respect to a coordinate system in Y_{1}

for which B_{1} is one of the coordinate axes. Finally, f_{3} is well-defined at x ,
by lemma 2.2 of [9], and it is an isomorphism since no components at x
collapse. Thus D_{2}\cap D_{3} must be isomorphic to M_{3}M_{2}^{(3)} . We will return to
this point after Step 4.
\underline{Step4} : b_{4}’ : Y_{4}’arrow Y_{3}’ is the quasi-blowing up of B_{3}’=f_{3}[D_{4}] . Applying
lemma 2.7 to the sequence Y_{0} , Y_{1_{J}} Y_{2} , Y_{\acute{3}} and to any first order point Y_{3}’

of f_{3}[D_{4}] , we see as in step 3 that f_{3}’-1[y_{3}’] must be a curve in D_{4} , and thus
we can choose our quasi-blowing-up to factor through a smooth branch of
B_{3}’ at each first order point y_{3}’ . We thus obtain, as in step 3, that the
only first order components of K_{h_{4}} are the accessible components M_{1}^{(4)’}

M_{2}^{(4)^{\gamma}} M\xi^{4)’} and M_{4}’ . Let Q_{4}’ be the union of the non-accessible comp0-
nents.

Let x be any singleton point of D_{4} at which f_{1} is well defined. If H_{1} is
a generic hypersurface in Y such that h_{1}^{-1}[H_{1}] contains B_{1} , then we have
already shown that s_{f1}(D_{4}, h_{1}^{-1}[H_{1}])=1 . If x\not\in f^{-1}[H_{1}]\cap f^{-1}[H_{1}’] for
generic H_{1} , H_{1}’ with h_{1}^{-1}[H_{1}] , h_{1}^{-1}[H_{1}’]\supset B_{1} , then f_{2} will also be well
defined at x. We apply lemma 2.2 ( ii) of [9] to f_{2} . If f_{2}(x) is a singular
point of B_{\acute{2}} , we make an etale base extension to separate branches. The
multiplicity of D_{4} in the canonical divisor of f_{2} is r=w_{f_{2}}(D_{4})-1=3-1=2 ,
the multiplicity b of D_{1} in the lifting of a generic hypersurface is 1, and
the codimension c’ of the blowing-up h_{23} is 2. Thus r=bc’ . so f_{3}’ is well
defined. A further application of lemma 2.2 (i) of [9] to f_{3} shows that f_{4}’

is well-defined, and must in fact be an isomorphism, since the unique com-
point D_{4} through x does not collapse. We thus have

D_{4}-(D_{1}\cup D_{2}\cup D_{3})-P_{y}(f)-f^{-1}[H_{1}]\cap f^{-1}[H_{1}’]

arrow-M_{4}’-M_{1}^{(4)\prime}-M\xi^{4)\prime}-M_{3}^{(4)\prime}-Q_{4}’ .

Let x’ be a point of D_{4}\cap f^{-1}[H_{1}]\cap f^{-1}[H_{1}’] . Since x’ has order at
least 2 with respect to the lifting of the generic hyperplane h_{1}^{-1}[H_{1}]

through B_{1} , the image f_{1}[\Gamma’] of a transversal test curve at x’ must inter-
sect B_{1} with multiplicity at least 2. Thus

f_{1}[\Gamma’]\cdot M_{1}\geq 2 .

Thus for a generic hyperplane H through y\in Y . we have \Gamma’\cdot f^{*}(H)=

f_{1}[\Gamma’]\cdot M_{1}\geq 2 . Thus either x’\in P_{y}(f) , so that x’\in f^{-1}[H] , or else x’ is not
a singleton point of D_{4} . We thus have
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D_{4}-(D_{1}\cup D_{2}\cup D_{3})-P_{y}(f)arrow-M_{4}’-M_{1}^{(4)’}-Mt^{4)’}-M_{3}^{(4)’}-Q_{4}’

(d) All singleton points of P_{y}(f) lie in A_{0} :
We wish to show that the only singleton points of the pinch locus are

in A_{0} . We already showed, by considerations of excess from lemma 2.11,
that the pinch locus is contained in D_{4} , and that it cannot have a comp0-

nent in D_{1}\cap D_{4} . Suppose A_{\acute{0}} was a component contained solely in D_{4} .
The quasi blowing-up N_{1}’ of A_{\acute{0}} has canonical pair (6, 1)+(1, d) , and
since the excess must be positive, we must have d=1 , giving (7, 2) .
Blowing up the images of N_{1}’ we could construct a factorization sequence
Y_{0} , Y_{1} , \ldots . Y_{k} with M_{k} generically isomorphic to N_{1}’ . Apply lemma 2.9
with f=h_{1} and p=h_{k1} Choosing a generic hyperplane H through y\in Y

such that h_{1}^{-1}[H] does not contain the strict image of N_{1}’ in M_{1} , we find
that all the d_{i} in lemma 2.9 (i ii) will be zero, since B_{i-1} will not be
contained in h_{(i-1)0}^{-1}[H] . The only exceptional divisor of h_{1} is M_{1} with
(w_{1}, s_{1})=(3,1) . Applying lemma 2.9(i. ii) to f_{1} , we have

(7, 2)=e_{1}(3,1)+ \sum_{i=1}^{l}c_{i}(k_{i}’-k_{i}, 0) .

Thus e_{1}=2 , k_{1}=1 , k_{1}’=2 , and M_{2}’ is the blowing-up of the curve B_{1} : (It

cannot be another curve since f_{1}^{-1} is an isomorphism except on B_{1} ). The
image of N_{1}’ must be in M_{2}’ , so applying 2.9 with f=h_{2} , p=h_{32} , we have
only the possibility

(7, 2)=(4,1)+(3,1)+(k_{2}’-2,0) .

We conclude that k_{2}’=2 , i.e., that f_{2}[N_{1}’]=M_{2}\cap M_{1}^{(2)} . Since N_{1}’ then maps
into M_{3}’ , which has the same canonical pair (7, 2) we conclude that it is
generically isomorphic to M_{\acute{3}} . Since the blowing-up of A_{0} is generically
isomorphic to this same divisor, we conclude that A_{0}=A_{\acute{0}} .

(e) The strict image of D_{3} in Y_{1} is a point y_{1} :
We now wish to use this information about f_{4}’ to eliminate the possi-

bility that in the quasi-factorization sequence defined in (c), f_{2}[D_{3}]=B_{2}’ is
a section of B_{1} of degree \geq 1 . Suppose it were. Then M_{3}’\cap M_{2}^{(3)} would be
a section of B_{1}

‘ Consider G=f_{4}^{\prime-1} [ M_{3}^{\prime(4)}\cap M\xi^{4)}] . G must be an irreducible
curve. If the f^{-1}[H] were separated along G, they would have to inter-
sect the components of K_{f} containing G in curves along which f_{1} would be
well-defined, which would move as H moves. The canonical pairs of
these curves in the surface f^{-1}[H] would have to be the same as in
h_{4}^{-1}[H] , since, as we have already shown, f_{4}’ is an isomorphism at the
generic point of each component. Since in Y_{4}’ they sweep out M\xi^{4)} and
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M_{3}^{(4)} , in X they sweep out D_{2} and D_{3} . We conclude that \overline{1}fG were not
contained in the pinch locus, then G\subset D_{2}\cap D_{3} , which would therefore be
non-empty, and f_{4}’ would be an isomorphism there.

If G were conta\overline{l}ned in the pinch locus, then since the blowing-up of
M_{\acute{3}}^{(4)}\cap M\xi^{4)} has canonical pair (9, 2) , and f^{-1}[H]\supset G for generic H in Y
containing Y. we would conclude that G is not contained in an intersec-
tion, but rather G\subset A_{0} . However, since the multiplicity of f^{-1}[H] along
A_{0} is one, we could not have h_{4}^{\prime-1}[H] intersecting f_{4}’(A_{0}) at two different
p_{0\overline{1}}nts , one in M_{1}^{\prime(4)}\cup M_{2}^{\prime(4)} and one in M_{2}^{\prime(4)}\cap M_{3}^{\prime(4)} . We conclude that G
would not be contained in the p_{\overline{1}}nch locus, and thus that D_{2}\cap D_{3} would be
non-empty, and f_{4}’ would be an isomorphism at the generic point of
D_{2}\cap D_{3} . Composing with h_{43} , we would also have that f_{3}’ is an isomor-
phism at the generic point of D_{2}\cap D_{4} . We would then have D_{2}\cap D_{3}-(D_{1}\cap

D_{4})_{arrow}-M_{2}^{\prime(4)}\cap M_{3}^{\prime(4)}-M_{1}^{\prime(4)}-M_{4}’-Q_{4} .
Since f_{3}’(D_{4}) would have to be connected, since we have shown that

f_{3}’-1 is an isomorphism except on f_{3}’[D_{4}] and M_{1}^{\prime(3)}\cap M_{2}^{(3)}’ , and since
M_{1}^{\prime(3\rangle}\cap M_{2}^{\prime(3)}\subset f_{3}’(A_{0}) , we would conclude that B_{3}’=f_{3}[D_{4}] must intersect
M_{1}^{\prime(3)}\cap M_{2}^{(3)}’ . Since the multiplicity of D_{4} is one, f_{\acute{3}}(D_{4}) could not be
contained in an intersection. In order for a fiber of M_{\acute{3}} to intersectn M_{1}^{\prime(3)} ,
it would have to be the blowing-up of a point of f_{2}[D_{3}]\cap M_{1}^{(2)} . In this case
the fiber would lie entirely in M_{3}’\cap M_{1}^{\prime(3)} . We conclude that f_{3}’[D_{4}] could
not be a fiber, and would therefore have to be a section of f_{2}[D_{3}] . (see
Fig. 5, II). We can therefore repeat the argument made above, replacing
G by G’=f_{4}^{\prime-1}[M_{4}’\cap M\S^{4)}] and replacing (9, 2) by (11, 2) . We would con-
clude as there that f_{4}^{r-1} would be an isomorphism on M_{3}^{(4)}’\cap M_{4}’ . We
would thus have f_{4}^{\prime-1} an isomorph_{\overline{1}}sm except on M_{1}^{\prime(4)}\cap M_{2}^{\prime(4)} and possibly
on M_{4}’\cap(M_{1}^{\prime(4)}\cup M_{2}^{\prime(4)}) .

Taking H_{1} to be a generic hyperplane with the property that B_{1}\subset

h_{1}^{-1}[H_{1}] , we now have the contradiction we desired. h_{4}^{r-1}[H_{1}] , if it inter-
sects M_{4}’ at all, would cut M_{4}’ at a generic fiber, at which it does not inter-
sect M_{1}^{\prime(4)} or M_{2}^{(4)}’ , and at which there are no non-accessible components.
Thus f_{4}^{r-1} would be an isomorphism everywhere along h_{4}^{-1}[H] . It would
have to be isomorphic to f^{-1}[H_{1}] , whence f_{4}’ would be well-defined every-
were along f^{-1}[H_{1}] . Composing with h_{41}’ , we find that f_{1} would be well-
defined everywhere on f^{-1}[H_{1}] . However, this contradicts the fact we
proved in (b), that f^{-1}[H_{1}] contains A_{0} , along which f_{1} is \underline{not} well-
defined. This was the desired contradiction, so we may finally conclude
that f_{2}[D_{3}] was not a section of B_{1} , but rather f_{2}[D_{3}] is the fiber in M_{2}

over a point y_{1} in M_{1} .



Combinato\dot{n}al analysis of point obstructions to local factor.zability in three-folds 447

(f) D_{2}\cap D_{6}=\emptyset :
f_{2}[D_{4}] is either a point or all of f_{2}[D_{3}] . In the first case f_{3}[D_{4}] is a

fiber of M_{3}’ , and since it must be connected to f_{3}(A_{0}) we find that f_{\acute{s}^{-1}} is
not an isomorphism on M_{3}’\cap M_{2}^{(3)} , whence D_{2}\cap D_{3}=\emptyset .

We need to show that D_{2}\cap D_{3}=\emptyset would be empty even if we had
f_{2}[D_{4}]=f_{2}[D_{3}] . If D_{2}\cap D_{3}\neq\emptyset then as we showed in Step 3, of (b), it is
isomorphic to M\xi^{3)}\cap M_{3}’ . Let H_{1} be a generic hyperplane in Y containing
y such that B_{1}\subset h_{1}^{-1}[H_{1}] . We have shown that f_{4}^{r_{-1}} cannot be an isomor-
phism on all of h_{4}^{\prime-1}[H_{1}] . We conclude that it is not well-defined at the
generic point of B_{4}’=M_{4}’\cap M_{3}^{\prime(4)} , which is the only curve intersected by
h_{4}^{-1}[H_{1}] on which \dot{1}\zeta is not known or assumed to be an isomorphism.
Blowing up this intersection, B_{4}’ gives canonical pair (11, 2) .

Let G’=f_{4}^{\prime-1}[B_{4}’] . We are presuming that G’\subset f^{-1}[H_{1}]\cap f^{-1}[H_{1}’] for
generic H_{1} , H_{1}’ such that h_{1}^{-1}[H_{1}] h_{1}^{-1}[H_{1}’]\supset B_{1} . Thus f_{2} would not be
well-defined along G’ Calculating canonical B_{1} -pairs with respect to h_{41}’ :
Y_{4}’arrow Y_{1} , we find that

u_{f_{1}}(D_{2}\cdot H_{1})=(2,1)

u_{f_{1}}(D_{3}\cdot H_{1})=(3,1)

u_{f_{1}}(D_{4}\cdot H_{1})=(4,1)

The canonical B_{1} -pair of the blowing-up of B_{5}’ is (3, 1)+(4,1)=(7,2) .
Since f_{2} is well-defined except on D_{4} , G’ would have to be contained in D_{4} .
By Step 4 of (c), since f_{4} would not be an isomorphism on G’, we would
have G^{1}\subset D_{4}\cap(D_{1}\cup D_{2}\cup D_{3})\cup P_{y}(f) .

We have already shown in (d) that all singleton points of P_{y}y ) lie in
A_{0} . On purely combinatorial grounds, we see that G’ cannot be contained
in D_{4}\cap D_{3} or D_{4}\cap D_{2} , for if we let b_{5}’ be the blowing-up of B_{5}’ , we have

s_{h_{51}}(N_{5}’, h_{1}^{-1}[H_{1}])=2 .

On the other hand, G’\subset f_{1}^{-1} [h_{1}^{-1}[H_{1}]]=f^{-1}[H_{1}] , and if G’\subset D_{4}\cap D_{i} , i=2,3 ,
then since N_{5}’ maps into G’ . the additivity formula would require

s_{h_{51}}(N_{5}’, h_{1}^{-1}[H_{1}])\geq s_{f_{1}^{-1}}(D_{4}, h_{1}^{-1}[H_{1}])+s_{f_{1}^{-1}}(D_{i}, h_{1}^{-1}[H_{1}])+d

\geq 1+1+1=3 .

Thus we must have G’\subset A_{0}\cup(D_{4}\cap D_{1}) . G’\subseteq D_{4}\cap D_{1} would be combinator-
ially possible since s_{f_{1}^{-1}}(D_{1}, h_{1}^{-1}[H_{1}])=0 .

We first show that G’ does not lie in A_{0} .
If G’ is in A_{0} , then f_{5}^{-1} factors through the blowing-up of A_{0} , and its

generic point would be a singleton po\overline{l}nt of the exceptional divisor N_{1} .
However, it must also be in the fiber over y_{1}=f_{2}[D_{4}] , which is the intersec-
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tion of N_{1} and the lifting D_{4}^{(1)} of D_{4} . This gives a contradiction.
The other possibility is G’\subset D_{4}\cap D_{1} . Since f^{-1}[H_{1}] would not inter-

sect D_{1} at any singleton point, f^{-1}[H_{1}] and f^{-1}[H_{1}’] could not separate at
this point, so f^{-1}[H_{1}]\cap f^{-1}[H_{1}’] would have a curve component in this
intersection. Furthermore a single blowing-up would suffice to separate
these surfaces. Let a_{1}’-. X_{1}’arrow X be the blowing-up of this component of D_{1}

\cap D_{4} . f_{12}’ : X_{1}’arrow Y_{2} would map the exceptional divisor N_{1}’ to the fiber over
y_{1} in M_{2} . Applying lemma 2.9(i. iii) to f_{13}’ : X_{1}’arrow Y_{\acute{3}} , we would get

u_{f_{10}}(N_{1}’, H)=(9,2)=e_{2}(4,1)+e_{3}(5,1)+c_{i}(k_{i}’-k_{i}, 0) , e_{3}\geq 1 .

We obtain e_{2}=e_{3}=1 .
If we now compare f^{-1}[H_{1}] with h_{3}’[H_{1}] , we find that h_{3}’-1 [ H_{1}]\cap

f_{3}’[D_{4}] maps to G’\cap f^{-1}[H_{1}]\subset D_{1}\cap D_{4} , whereas the calculation just made
of the blowing-up of this component of D_{1}\cap D_{4} shows that f_{\acute{3}}(G’\cap f^{-1}[H_{1}])

\subset h_{3}^{\prime-1}[H_{1}]\cap M_{2}^{\prime(3)}\cap M_{3}’ . This would be a contradiction, since these two
points are distinct on the connected tree h_{3}’-1[H_{1}]k_{h_{3}} . We conclude that
f_{4}’-1 could not fail to be an isomorphism on M_{4}’\cap M_{3}^{\prime(4\rangle} , and thus that the
only place where it could fail to be an isomorphism on h_{4}’-1[H_{1}] would be
in M_{2}^{\prime(4)}\cap M_{3}^{\prime(4)} . Since f_{4}’-1 is not an isomorphism there, we would con-
clude that D_{2}\cap D_{3}=\emptyset , as shown in Step 3 of (c).

We thus have four components D_{1} , D_{2} , D_{3} , D_{4} with canonical pairs
(3, 1) , (4, 1) , (5, 1) and (6, 1) . B_{1}=f_{1}[D_{2}] is smooth of degree 1, and
there is a curve A_{0} in D_{4} along which f_{1} is not well-defined, whose
blowing-up has canonical pair (7, 2) . f_{1} is well-defined except on A_{0} and
possibly D_{4}\cap(D_{1}\cup D_{3}) . D_{1}\cap D_{2}=\emptyset and D_{2}\cap D_{3}=\emptyset .

(g) A_{0} is smooth at each of its singleton points
We want to show that A_{0} is smooth and transversal to D_{1} and D_{2} .

We let Y_{0} , Y_{1} , Y_{2} , Y_{3} be the factorization sequence obtained by blowing
up y, B_{1} , and then B_{2}=M_{2}\cap M_{1}^{(2)} . M_{3} has a fibration which is induced by

f_{3}^{-1} mapping M_{3} onto A_{0} . Except for two special fibers B_{3}’=M_{3}\cap M_{1}^{(3)} and
B_{3}’=M_{3}\cap M\xi^{3)} , all the other fibers consist of singleton points. Because f_{1}

fails to be well-defined at every point of A_{0} , each fiber contains a section
B_{3} of B_{1} . Let Y_{4} be the space obtained by a quasi-blowing up of one of
these sections B_{3} , which will have canonical pair (8, 2)=(7,2)+(2-1,0) ,

by lemma 2.4. Applying lemma 2.9, the image of M_{4} in X must lie in a
single component, W\overline{l}ths_{1}=1 , and

4=8-2\cdot 2\leq e_{1}(w_{1}-2s_{1})

The only possibility is D_{4} , with e_{1}=1 . By lemma 2.4 we then have
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(8, 2)–(6,1)+(k_{1}’-1, d_{1})

So k_{1}’=3 and d_{1}--1 . Thus M_{4} is generically isomorphic to the blowing up
of a single point x of A_{0} lying only \dot{1}nD_{4} , and f^{-1}[H] has multiplicity one
at x. Since a single blowing up separates generic hyperplanes H_{1} , H_{2}

whose liftings h_{1}^{-1}[H_{1}] and h_{1}^{-1}[H_{2}] to Y_{1} intersect B_{1} at different points,
we conclude that A_{0}--f^{-1}[H_{1}]\cap f^{-1}[H_{2}] , as the transversal intersection of
smooth surfaces, is nonsingular at x. It remains to check A_{0}\cap D_{1} and A_{0}

\cap D_{2} .
(h) A_{0} intersects D_{1} and D_{2} transversally.\cdot

We now make a similar analysis for the two special sections B_{3}’ and
B_{3}’ We begin with B_{3}’--M_{3}\cap M_{1}^{(3)} . Blowing up B_{3}’ to get b_{4}’ : Y_{4}’arrow Y_{3} , we
have an exceptional divisor M_{4}’ with canonical pair (7, 2)+(3,1)=(10,3) .
We want to locate f_{4}’-1 [ M_{4}’] . From the formulas of 2.9.

3\leq\Sigma e_{i}s_{i}+dl, 10\leq\Sigma e_{i}w_{i} .

If l=1 , then each e_{i}\leq 1 , since the mu1t_{\dot{1}}p1icity of s_{p}(E_{i}, N_{1})=1 . Further-
more, x=f_{4}’-1 [ M_{4}] is in D_{4} , since we proved early in our consideration of
case D that the entire pinch locus is in D_{4} . Thus the only possible combi-
nations of components are (3, 1)+(6,1)+(1,1) , (4, 1)+(6,1)+(0,0) , or
(6, 1)+(2,1)+(2,1) .

The last possibility involves as an intermediate stage a component
with canonical pair (8, 2) which has excess 2, too small to conta\overline{l}n a sin-
gleton point in the pinch locus. We want to show that the first possibility
is the only one which can hold, so we must eliminate the second possibil-
ity, that f_{4}^{\prime-1} [ M_{4}’] is D_{2}\cap D_{4} .

We have already shown that D_{1}\cap D_{2}=\phi and D_{2}\cap D_{3}=\phi . Except for
A_{0} , we have already shown that components of the pinch locus all lie in
D_{4}\cap D_{2} and D_{4}\cap D_{3} . For generic H. we consider f^{-1}[H] , which is gener-
ically isomorphic to h_{3}^{-1}[H] . h_{3}^{-1}[H]\cap K_{hs} is a union of three curves, C_{1}’

in M_{1}^{(3)} , C_{2}’ in M_{2}^{(3)} , and C_{3}’ in M_{3} , which lies between C_{1}’ and C_{2} . (See
Fig_{\mathfrak{U}1^{-}}c6.)

Since f_{3}^{-1} is an isomorphism at the generic point of M_{1}^{(3)} and M\xi^{3)} , we
have curves C_{1}\subset f^{-1}[H]\cap D_{1} and C_{2}\subset f^{-1}[H]\cap D_{2} , which are isomorphic
to C_{1}’ and C_{2}’ respectively. The restriction of f_{3} to f_{3}^{-1}[H] will map A_{0} to
C_{3}’ , since the blowing up of A_{0} is generically isomorphic to M_{3} . Thus in
the correspondence f_{3} : f^{-1} [H]—>h3-1[H] , there are no components of
h_{3}^{-1}[H] which collapse under f_{3}^{-1} . We conclude that \overline{f}_{3}=f_{3}|_{f^{-1}[H]} is will
defined. If we let P_{1}’=C_{1}’\cap C_{\acute{3}} and P_{2}’=C_{2}’\cap C_{3}’ , we find that the pinch
locus is the union of A_{0} and the pre\overline{l}mages of P_{1}’ and P_{2}’ . Since D_{1}\cap D_{2} is
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Fig. 6

empty the only possible component of the pinch locus which could \dot{1}nter-

sect C_{1} would be a component of D_{4}\cap D_{3} . Since D_{3}\cap D_{2} is also empty,
this could not be followed by a component of D_{4}\cap D_{2} , but only by A_{0} .
Since f_{3}^{-1}[B_{3}]=f_{4}^{r_{-1}}[M_{4}’] must be contained in f_{1}^{-1}(B_{1})\cap D_{1} , we conclude
that it cannot be a curve in D_{2}\cap D_{4} , and we are left with the possibility
that we wanted, that f_{4}^{\prime-1}[M_{4}] is a point P_{1} in D_{1}\cap D_{4} .

We have (10, 3)=(3,1)+(6,1)+(1,1) , so M_{4}’ is generically isomor-
phic to the blowing up of the point. We conclude that for generic H,
f^{-1}[H] is not tangent to either D_{1} or D_{4} at the point. Since it has degree
1 and is nonsingular, we conclude that A_{0} is nonsingular and transversal to
D_{1} at P_{1} .

We now make a similar analysis at the other end of A_{0} . Let C_{2}’=

h_{3}^{-1}[H]\cap M\xi^{3)} and let P_{2}
’ be the point where it intersects c\prime 3 . Letting

\overline{f_{3}} : f^{-1}[H]arrow h_{3}^{-1}[H] be the morphism of surfaces induced by f_{1} : Xarrow Y_{3} ,
we consider the preimage \overline{f}_{3}^{-1}(P_{2}’) which is a tree of curves contained in
the pinch locus. Because D_{2}\cap D_{3}=\emptyset , if \overline{f}_{3}^{-1}(P_{2}’) were not a point, it could
only be a S\overline{l}ngle component of D_{2}\cap D_{3} . We wish to show that it is indeed
a point.

Let b_{4}^{rr} : Y_{4}’arrow Y_{3} be a blowing up of B_{3}’=M\xi^{3)}\cap M_{3} . h_{4}^{r_{-1}}[H]\cap M_{4} is
just the blowing up of the point P_{2}’ . f_{4}^{\prime\prime-1}[M_{4}^{rr}] is thus contained in

\overline{f}_{3}^{-1}(P_{\acute{2}}) . The canonical pair of M_{4}’ is just the sum of the canonical pairs
of M\xi^{3)} and M_{3} .

(11, 3)=(4,1)+(7,2)

We have shown that the image must be contained in D_{2} and D_{4} . By 2.9
(ii) we have 3=s= \sum e_{i}s_{i}+\sum c_{i}d_{i} . We conclude that there is only one
blowing up, and e_{2}=e_{4}=1 . We then have

(11, 3)=(4,1)+(6,1)+(k’-2,1) .

We conclude that M_{4}’ is generically isomorphic to the blowing-up of a
point in D_{2}\cap D_{4} , at which f^{-1}[H] has multiplicity 1. As before we see
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that for generic H, f^{-1}[H] cannot be tangent to D_{2} or D_{4} . We conclude
that A_{0} intersects D_{2} transversally at this point, and that there are no
more components to the pinch locus.

(i) We construct a strong factorization for f :
We now blow up A_{0} . Since that \dot{1}S the only component of the pinch

locus and the resulting space is generically isomorphic to M_{3} , so that the
liftings f^{-1}[H] of generic hypersurfaces are separated, we conclude that
f_{11}:X_{1}arrow Y_{1} is well-defined. For any point of B except f_{1}[D_{3}] , we can
choose a hyperplane H such that h_{1}-1[H] passes through the point.
f^{-1}[H] will be A_{0} which in f^{-1}[H] will be a P^{1} with self intersection -1.
The blowing up to X_{1} will not change the configuration of exceptional
curves in f^{-1}[H] , since we are blowing up a curve in a surface. The
fiber of N_{1} over f_{1}[D_{3}] is N_{1}\cap D_{4} , also isomorphic to A_{0} . Thus N_{1} has
irreducible fibers, the generic fiber being a P^{1} of self\overline{l}ntersection-1 . We
conclude that N_{1} is contractible. After contracting it we are left with
three components collapsing to a non-singular curve. By the main the0-
rem of [9], this is locally factorizable. In the particular case, the appr0-

priate factorization is the one given by blowing up P=f_{1}[D_{3}] to get M_{2}’

-D_{3} , then blowing up f_{2}’[D_{4}] , and nally f_{3}’[D_{2}] . This concludes the
proof.

\S 4: Three collapsing surfaces

In analyzing morphisms collapsing four surfaces to a point, we en-
countered two cases, those which do not factor through the blowing up of
the point, and those which do. In the previous chapter we analyzed those
which do not. We now wish to show that those which do are locally
factorizable. After factoring through the blowing up the resulting mor-
phism f_{1} : Xarrow Y_{1} collapses three normally crossing surfaces to a set of
higher codimension. It suffices, therefore, to prove the following:

PROPOSITION 2: Let \overline{f}:\overline{X}arrow\overline{Y} be a proper birational morphism of
three dimensional algebraic spaces, collapsing three or fewer normally cross-
ing surfaces. Then \overline{f} is locally factorizable.

PROOF: Over isolated points of S - this is just the main theorem of
Crauder [1], in the three surface case. We may thus assume that S -

contains a curve. By lemma 1.6, if \overline{f} were not locally factorizable then
there would be a morphism f : Xarrow Y occurring in a local factorization
tree of \overline{f} . with a point obstruction at a point y\in Y.

It thus suffices to show that for any f in such a tree there is an etale
covering such that f factors through some blowing-up in a neighborhood
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of each point y. We may presume that we have passed to an arbitrarily
fine neighborhood of y , and that b_{1} : Y_{1}arrow Y is the blow\dot{l}ng up of the point.
By lemma 1.8, we may presume that f_{1}^{-1}[M_{1}] is a surface, but f_{1} is not
well defined. We must show that for a properly chosen scheme Y. there
is a subscheme B\subset Y such that f factors through the blowing-up b_{1}’ : Y_{1}’arrow

Y of B.
Let D_{1}=f_{1}^{-1}[M_{1}] . Let \alpha=\beta^{-} be a pair of adjacent vertices in the

partial factorization tree leading to f. Let D_{j} be a component of K_{f} . \pi_{\beta} :
X_{\beta}arrow X_{a} is an etale morphism. We define D_{j}^{a}=\pi_{\beta}(D_{j}^{\beta}) . By the construc-
tion of the local factorization, \pi_{\beta} is one-t0-0ne over any point y_{a} which is
the image of a surface in X_{a} . If f_{\beta}(D_{j}^{\beta}) is a point y_{\beta} , then f_{a}(D_{j}^{a}) is also
a point y_{a}=e_{\beta}(y_{\beta}) . Thus (\pi_{\beta})^{-1}(D_{j}^{a})=D_{j}^{\beta}.We conclude that if S_{f} is a
point, each component of K_{f} corresponds one-t0-0ne to a component of S -.
Thus there would be at most three components in K_{f} , and the morphism
would be locally factorizable by [1]. Henceforward we may assume that
S_{f} is a curve.

By lemma 1.2 of [9], there must be a component of K_{f} which is gener-
locally isomorphic to the blowing-up of any component of S_{f} . Thus there
\overline{1}S at least one component D_{21} with canonical pair (2,0) . We denote all
other components of K_{f} whose image in \overline{X} is the same component D_{2} by
D_{22} , \ldots

a_{j_{2}} , and note that D_{2j}\cap L\lambda_{j’}=\phi for j\neq j’ . since components of K -

have no self-intersections.
There is at most one other class of divisors D_{31} , \ldots-l\lambda_{j_{3}}\iota^{-}nK_{f} , all

maDP^{\overline{1}n}g to the same divisor \overline{D}_{3} in K -. At least one of the images \overline{f}

(\overline{D}_{2}),\overline{f}(\overline{D}_{3}) is a curve in S -. We presume D_{21} to be chosen so that if it
is only one of them, \overline{f}(\overline{D}_{2}) is the one, with canonical \overline{y}-pair (2, 0) , and
that if both map to the same curve B_{0} , then (\overline{D}_{2}) is the component gener-
ically isomorphic to the blowing up of B_{0} , which ex\overline{l}sts by 1.2 of [9]. In
that case \overline{f}(\overline{D}_{3}) is generically isomorphic to the blowing up of a section,
therefore has canonical pair (3, 0) . By the additivity formula, the
weights of components can only drop as we proceed out the branches of a
local factorization tree, and the canonical y-pair of a surface D_{ij} whose
image is a curve will always have second component 0 because f(D_{ij})\overline{1}S

not contained in the generic hyperplane H through y , whence s_{f}(D_{ij}, H)=

0 . Since the weight is always at least the codimens\overline{l}on of the image, we
see that the components D_{2j} all have canonical pair (2, 0) . If there is a
second divisor class \{D_{3i}\} for which each f(D_{3i}) is a curve, D_{3i} either has
canonical pair (2, 0) or, if f(D_{3i})=f(D_{2j}) for some j, it has the pair
(3, 0) .
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EXAMPLE: Divisor class with different canonical pairs. LetC\subset P^{3}=

Y be an ordinary node contained in a hyperplane G_{arrow}^{-}P^{2} . Let \overline{y} be the
singular point of C , and let e_{1} : Y_{1}arrow Y be an etale ne\dot{l}ghborhood of y in
which C splits into two irreducible normally crossing branches C_{1}andC_{2} .
Let \overline{f}:Xarrow Y be the locally factorizable morphism which is obtained in
Y_{1} by five blowings-up with the following centers: ( i) C_{1} , ( ii) the inter-
section of the preimage of C_{2} with the fiber over y , (iii) the curve wh_{\overline{1}}ch

is the intersection of the first exceptional divisor with the strict preimage
of G , (iv) the str\overline{l}ct preimage of C_{2} , ( v) the intersection of the excep-
tional divisor over C_{2} with the strict preimage of G. In \overline{f} itself we have
a divisor D_{1} collapsing to \overline{y}, a divisor class \{D_{21}, D_{22}\} in which both divi-
sors have canonical pair (2, 0) and a divisor class \{D_{31}, D_{32}\} in which both
divisors have canonical pair.

Now let f_{1} : X_{1}arrow Y_{1}’ be the first node in the local factorization tree.
Let y_{1} be the center of the second blowing-up. In K_{f_{1}} we have a divisor
D_{1}’ , a divisor class \{D_{22}’\} with canonical pair (2, 0) and a divisor class
\{D_{31}’, D_{\acute{3}2}\} in which the first divisor has canonical pair (2, 0) and the sec-
ond has canonical pair (3, 0) . (See Fig. 7.)

Fig. 7

Let \Delta be an irreducible curve in M_{1} along which f_{1}^{-1} is not an isomor-
phism. Let Y_{2} be the space obtained by quasi blowing-up with center
\Delta_{1}=\Delta and accessible component M_{2} . Consider f_{2}^{-1} [M_{2}] . We claim that
it cannot be a surface. If it were a surface D_{3} , then it would also have a
point image, and thus be the unique preimage of some component \overline{D}_{3} in
\overline{X} . There can only be one remaining class of components, all of canoni-
cal pair (2, 0) . None of the components has an excess of 3, and none of
the intersections has an excess of 4, since the excesses of D_{1} , D_{2j} , D_{3} are
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0,2,1 respectively. f_{1} would then be well defined, a contradiction. Thus
f_{2}^{-1}[M_{2}] is not a surface.

Since M_{2} is the blowing up of a curve on a surface with canonical
y pair (3, 1) , the canonical y pair of M_{2} must be (4, 1) . Applying lemma
2.9( v) with (w, s)=(4,1) , and (w_{1}, s_{i}) the canonical y-pairs of comp0-
nents of K_{f} containing f_{2}^{-1} [M_{2}] , we have

s \leq\sum s_{i}+dl,

where l is the number of blowings up in the quasi-factorization sequence
obtained by blowing-up the image of M_{2} until a component generically
isomorphic to M_{2} is obtained. Since s=1 , we must have s_{i}=0 for all i ,
and d=l=1 . Lemma 2.8 then gives

(4, 1)= \sum(w_{i}, 0)+(k’-k, 1) ,

with each w_{i}=2,3 . f_{2}^{-1} [M_{2}] is in the pinch locus and thus by lemma 2.11
it cannot lie only in a component with canonical pair (2, 0) and excess
2-0=2. Thus the only possibilities are a single component with pair (3,
0) or an intersection (2, 0) , (2, 0) . In the first case k=1 and k’-k=1 , so
the codimension k’ of f_{2}^{-1} [M_{2}] is 2, and in the second case k=2 and k’-
k=0, so again f_{2}^{-1} [M_{2}] is a curve, with codimension 2. In both cases d=
1 implies that B_{1} is of degree 1, and is thus isomorphic to P^{1} .

There may be several bad curves on M_{1} . We want to analyze the
various possibilities, and show that in every case there is some smooth
curve L_{i} in Y such that f factors through the blowing-up of L_{i} . Each
bad curve \Delta_{i} in M_{1} corresponds to a unique bad curve C_{i} in X. with the
blowing-up of \Delta_{i} generically isomorphic to the blowing-up of A_{i} , and hav-
ing canonical y pair (4, 1) .

For a given bad curve C_{1} in X , we want to show that f^{-1}(y) has
multiplicity 1 along C_{1} . We construct a quasi-factorization sequence Y,

Y_{1} , Y_{2} by blowing up first y and then \Delta_{1} . The accessible component M_{2}

\subset Y_{2} is thus, as we showed above, generically isomorphic to the blow\overline{l}ng

up of C_{1} . Let y_{2} be a general point of M_{2} and t_{2}\in O_{Y_{2},\mathcal{Y}2} be a local param-
eter for the divisor M_{2} . We first show that h_{2}^{-1}(g) has multiplicity 1 on
M_{2} . More precisely, we want to show that the ideal h_{2}^{-1}(I_{y})O_{Y_{2},\mathcal{Y}2} is the
principal ideal (t_{2}) . Since h_{2} factors through the blowing-up h_{1} of y,
h_{2}^{-1}(I_{y})O_{Y_{2},y2} must be invertible. S_{\overline{1}}nceM_{2} is the only exceptional divisor
of h_{2} containing y_{2} , this ideal must be generated by some power t_{2}^{r} of the
local parameter t_{2} . The lifting of an arbitrary generator of I_{y} must there
fore be divisible by t_{2}^{r} , which translates in our combinatorial notation into
the statement that s_{h_{2}}(M_{2}, H)\geq r for every hypersurface H through y.
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Since the canonical y-pair of M_{2} is (4, 1) , we have s_{h_{2}}(M_{2}, H)=1 for
generic H , so r=1 , and thus h_{2}^{-1}(I_{y})O_{Y_{2},y2}=(t_{2}) . Let x be the image of y_{2}

in X. h_{2} factors locally through X , and h_{2}^{-1}(I_{y})O_{Yz,\mathcal{Y}2} is the lifting of
f^{-1}(I_{y})O_{X,x} , whence this latter ideal must also have multiplicity one.
Translating back from ideals to subvarieties, this is what we mean by
saying that f^{-1}(y) has multiplic\overline{l}ty1 at x For y_{2} a general point of M_{2} ,
x is a general point of C_{1} , so we have f^{-1}(y) of multiplicity 1 along C_{1} .

Pass\overline{l}ng to the Henselization \tilde{Y} of Y at y , then for each component of
K_{f}contain\overline{l}ng general point x of C_{1} , we can choose a transversal curve Z_{i}

through x contained in that component which does not intersect f^{-1}(y) at
any other points. By Nakayama’s lemma, the image L_{i}=f(Z_{i}) must be
nonsingular (see Danilov’s argument in the proof of lemma 1.8). The L_{i}

will be the images of the components containing the Z_{i} . Let V be a
closed hypersurface containing Z_{1} and Z_{2} . Let H_{1}\subset\tilde{Y} be a generic hyper-
plane through L_{1} , and let \overline{f} be the restriction of \tilde{f}:X\cross\tilde{Y}arrow\tilde{Y} to V. \overline{f} :

Varrow\overline{Y} is also proper, so by the projection formula we will get

deg Z_{2}\cdot\overline{f}*(H_{1})=\deg\overline{f}(Z)\cdot H_{1}

=\deg L_{2}\cdot H_{1} .
Z_{2} can only intersect \overline{f}*(H_{1}) on f^{-1}(y) , since L_{2} intersects H_{1} only at y,

\tilde{Y} being local. Thus if D_{j1} is the component containing Z_{1} , deg Z_{2} .
\overline{f}^{*}(H_{1})=\deg Z\cdot\overline{f}^{*}(H_{1})=\deg Z\cdot s -(D_{j1}, H_{1})D_{j1}=s -(D_{j1} , H_{1})=1 , since all
the components mapping to L have L_{1} pairs with (2, 1) or (3, 1) , being
the result of one or two blowings-up of L_{1} . z \cdot D_{j1}=1 because Z_{2} is tran-
sversal to C_{1}\subset D_{i1} . We conclude that L_{1} and L_{2} are transversal.

We can repeat this analysis for each bad curve C_{i} , continuing to work
after base extension by the Henselization. We now assume that our base
scheme Y was chosen sufficiently fine that all the L_{i} are smooth curves in
Y.

Suppose C_{1} is contained in a single component D_{ii} , let Z_{3} be a tran-
sversal curve at a point of C_{1} , and let H be a generic hyperplane through
L_{1} in Y. 1=\deg z\cdotf^{*}(H)=\deg f(z)\cdotH. We conclude that f(z) is
nonsingular and transversal to H , therefore to L_{1}

‘ Let H_{1} be a smooth
hypersurface in Y containing L_{1} and f(z) . Then H_{1}’=f^{-1}[H_{1}] is a
smooth hypersurface transversal to C_{1} at Z_{3}\cap C_{1} . H_{1}’ thus intersects the
general fiber of any component containing C_{1} , and thus H_{1} contains L_{1} . If
C_{1} is contained in two components, then their images, as we proved above,
are transversal, and we choose H_{1} to be a smooth hypersurface containing
both.

We now consider the two possible cases:
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\underline{Casel} : For some curve \Delta , f^{-1}[M_{2}] is a curve on a component D_{31} of
order (3, 0) . For such a component to exist, there must also be a comp0-
n ot D_{21} such that D_{31} is generically the blowing up of a section of the
image C_{1} of D_{21} in Y. For generic H we found above that f^{-1}[H] has
order 1 along the bad curve, so \Delta has degree 1, and thus is isomorphic to
P^{1} . In fact, the additivity analysis in the previous paragraph shows that
every bad curve in M_{1} is a P^{1} . We wish to show that if there is more
than one bad curve, all intersect at a single point P , which will be the
intersection of M_{1} with the strict image of D_{21} , and that f will factor
through the blowing up of L_{1}=f(D_{21}) .

Let us suppose that there is a second bad curve C_{2} . Let \Delta_{1} , \Delta_{2}\subset M_{1}

be the bad curves in Y_{1} corresponding to C_{1} and C_{2} , whose blowings-up,
with canon\overline{l}cal pair (4, 1) , are generically \overline{1}somorphic to the blowing up of
C_{1} and C_{2} respectively. C_{1} is contained in a single component D_{31} , and we
can find a hyperplane H_{1} in Y containing L_{1} , by taking the image in Y of
a hypersurface transversal to C_{1} at general point. Since that means that
after blowing up C_{1} to get X_{1} , f_{10}^{-1}[H_{1}] would contain a fiber of N_{1} over
C_{1} , we conclude that h_{1}^{-1}[H_{1}] contains the image \Delta_{1} of such a fiber.
Since \Delta_{1}\neq\Delta_{2} , and h_{1}^{-1}[H_{1}] is nonsingular since H_{1} is nonsingular, this
means that h_{1}^{-1}[H_{1}] does not contain \Delta_{2} , since h_{1}^{-1}[H_{1}]\cap M_{1}-arrow cannot con-
tain any points not in \Delta_{1} .

Now consider the factorization sequences corresponding to C_{2} and \Delta_{2} .
We let a’ : X’arrow X be the blowing up of C_{2} with exceptional divisor N_{1}’ ,
and we let b_{2}’ : Y_{2}’arrow X_{1} be the blowing up of \Delta_{2} , with exceptional divisor
M_{2}’ , generically isomorphic to N_{1}’ . Since h_{1}^{-1}[H_{1}]\supset\supset\Delta_{2} , we have 1=
s_{h_{1}}(M_{1}, H_{1})=s_{h_{2}}(M_{2}’, H_{1})=s_{f_{10}}(N_{1y}’H_{1}) . By lemma 2.8

s_{f_{10}}(N_{1}’, H_{1})= \sum_{c_{2}\subset E_{i}}s_{f}(E_{i}, H_{1})+s_{a_{1}}(N_{1}’, f^{-1}[H_{1}]) .

f^{-1} [ H_{1}] intersects f^{-1}(y) only on C_{1} . so C_{2}tf^{-1} [ H_{1}] , whence
s_{a_{1}}(N_{1}^{1}, f^{-1}[H_{1}])=0 . We conclude that C_{2} in contained in exactly one
component E_{1} with s_{f}(E_{i}, H_{1})=1 . Let L=f(E_{i}) . Since f^{-1}(H_{1}) is con-
nected, f^{-1}[H_{1}] must intersect f^{-1}(L) in a section of L. This section
must intersect f^{-1}(y) . However, the only component of K_{f} containing the
unique intersection point of f^{-1}[H_{1}] and f^{-1}(y) is D_{31} . Thus f^{-1}[H_{1}]\cap

f^{-1}(L) contains a point of the generic fiber of D_{31}\tau We conclude that L=
L_{1}\tau

Letting H_{2} be a smooth hypersurface in Y whose strict preimage
f^{-1}[H_{2}] in X intersects f^{-1}(y) only on C_{2} , we know that H_{2} contains the
image L_{1} of the unique component containing C_{2} . Since h_{1}^{-1}[H_{2}] is a P^{2} ,
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equal to \Delta_{2} , we see that P=h_{1}^{-1}[L_{1}]\cap M_{1} must lie \overline{1}n\Delta_{2}=h_{1}^{-1}[H_{2}]\cap M_{1}1

This proves the claim that P\in\Delta_{1}\cap\Delta_{2} .
Let h_{1}’ : Y_{1}’arrow Y be the blowing-up of L_{1}=f(D_{21}) . We will now show

that f_{1}’ : Xarrow Y_{1}’ is well-defined everywhere. We begin by showing that D_{21}

intersects f^{-1}[y]=D_{1} . We have a section D_{21}\cap D_{31} of L_{1} , which must
intersect f^{-1}(y) . f^{-1}(y) is the union of D_{1} and isolated curves, all belong-
ing to the pinch locus, and thus not contained in D_{21} Since D_{21} and D_{31}

are representatives of the only divisor classes with curve image, and com-
ponents of the same divisor class cannot intersect, the point of intersection
D_{21}\cap D_{32}\cap f^{-1}(y) must be a point of D_{1} . Thus D_{21}\cap D_{1} is a non-empty
curve C. Let H_{1} , H_{2} , H_{3} be coordinate hypersurfaces at y with L_{1}=

H_{1}\cap H_{2} . Since the excesses of D_{21} and D_{1} in these coordinates are 0, both
the map f_{1}’ to the blowing up of L_{1} and the map f_{1} to the blowing up of y ,
are well-defined at all double points of C , by lemma 2.3 of [9]. Since f_{1}

is well-defined there, f_{1} [C]=f_{1}[D_{21}]\cap f_{1}[D_{1}]=h_{1}^{-1}[L_{1}]\cap M_{1}=P. Letting Y_{2}’

be obtained by blowing up f_{1}[D_{2}] , and X_{1}’ by blowing up D_{21}\cap D_{1} , we get
f_{2}’[N_{1}]\subset M_{1}^{(2)}\cap M_{2}’ . Since (5, 1)=(3,1)+(2,0) , the image \overline{1}S the whole
intersection, and N_{1}’ is generically isomorphic to the blowing-up of
M_{1}^{2}\cap M_{2}’ . Taking a generic test curve through this intersection, its c10-
sure point x then lies in D_{21}\cap D_{3} . Applying lemma 1.2 of [9] to f_{1}’ at x ,

and regarding Y_{2}’ as the blowing up of h_{1}^{\prime-1}(y) , we get f_{2}’ well defined at
x. Since f_{2}’ is a quasifactor for D_{21} , D_{3} we conclude that it-is an isomor-
phism at x , by 1.3 of [9]. Since f_{2}’-1 is then an isomorphism except on the
bad curves in M_{1} , f_{2}^{r-1} is an isomorphism except on their strict transforms,
each of which \overline{1}S fiber over a point in Y_{1}’ . Thus f_{1}’-1 is an isomorphism on
the generic point of h_{1}^{r-1}(y) . Thus by lemma 1.4 of [9], f_{1}’ is well-defined.
This was what we needed to show.
Case 2: All bad curves in M_{1} are of the (2, 0)+(2,0) type. We want to
show that all the bad curves intersect at a single point P. Let D_{21} and D_{31}

be components containing a bad curve. Let L_{2}=f(D_{21}) and L_{3}=f(D_{31}) .
Let P_{2}=f_{1}^{-1}[L_{2}]\cap M_{1} and P_{3}=f_{1}^{-1}[L_{3}]\cap M_{1} . We may presume that L_{2} and
L_{3} are smooth, and transversal at y as we showed above.

Let A_{0} be the bad curve C_{1} , and blow up to get a_{1} : X_{1}arrow X_{0} . By the
normal crossings of K_{1} , A_{0} must be be smooth, and by the connectedness
of f^{-1}(y) , it must intersect D_{1} . Let H_{1}’ be a plane intersecting f^{-1}(y) at
a single point of A_{0} with multiplicity 1. Take H_{1} so that H_{1}’=f^{-1}[H_{1}] .
If A_{\acute{0}} is another bad curve, and a_{1}’ is the blowing up, then E_{1} , E_{2} are the
components of K_{f} containing A_{\acute{0}} .

(4, 1)=u_{f_{10}}(N_{1}’, H_{1})=(4 , s_{f}(E_{1}, H_{1})+s_{f}(E_{2}, H_{1})

+s_{a_{1}’}(N_{1}’, f^{-1}[H_{1}])) .
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Since A_{\acute{0}}Tf^{-1}[H_{1}] , we must have s_{f}(E_{1}, H_{1})=1 for some \dot{\iota}. Thus A_{0} and
A_{\acute{0}} share a common component, D_{21} . Let D_{32} be the second component
containing A_{\acute{0}} . Every other bad curve A_{\acute{\acute{0}}} in X must be in D_{21}\cup D_{3i} for
i=1,2 , by applying the previous argument with A_{\acute{0}} in place of A_{0} or of

A_{\acute{0}} . Since D_{31}\cap D_{32}=\emptyset , A_{\acute{0}}\subset D_{21} . Thus every bad curve in M_{1} passes
through P. We know that D_{21}\cap D_{1} is non-empty, at A_{0}\cap D_{1} , and conclude
as in the previous case that if Y_{2}’ is the blowing up of f_{1}[D_{21}] , then f_{2}’ is
an isomorphism except over a finite number of fibers of Y_{2}’ over Y_{1}’ .
Thus by lemma 1.4 of [9], f’ is well defined, as we wished to show.
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