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Throughout, R will represent a ring with center C, N the set of
nilpotent elements in R, N* the subset of N consisting of all x with x%2=0.
Given a positive integer #n, we set E,={x&R|x"=x}; in particular, E=E,.
For x, yER, define extended commutators [x, y], as follows:let [x, ¥],
be the usual commutator [x, y]=xy—yx, and proceed inductively [x, ¥].=
[[% ¥]e-1, ¥].

A ring R is called wnearly commutative if R has no factorsubrings
isomorphic to MG(K)-——{(S’ dfa))la’ BE K}, where K is a finite field and ¢
is a non-trivial automorphism of K. Needless to say, every commutative
ring is nearly commutative ; every subring and every homomorphic image
of a nearly commutative ring are nearly commutative. Following [2], R
is called s-umital if for each x in R, x&RxNxR. As stated in [2], if R is
an s-unital ring then for any finite subset F of R there exists an element ¢
in R such that ex=xe=x for all x&F. Such an element e will be called a
pseudo-identity of F.

Now, let A be a non-empty subset of R, and / a positive integer. We
consider the following conditions:

I'-A) For each x&R, either x&C or there exists a polynomial f(¢)
in Z[t] such that x—x%f (x) € A.

(Ir’-A) If x, yeR and x—y& A, then either x™=y™ with some positive
integér m or both x and y belong to the centralizer Cx(A) of A4
in R.

(I-4), If x, y&R and x—y€&€A, then either x'=y*’ or x and y both
belong to Cx(A).

(ii-A)’ For each xR and a= A, there exists a positive integer m, de-
pending on x and @, such that [a, x™]=0.

(ii-A); [a, x]=0 for all x&R and a=A.

(ii-A)* For each x&R and a€ A, there exist positive integers £ and m,
each depending on x and @, such that [4, x™],=0.
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(ii-A){ For each xR and a= A, there exist positive integers £ and m,
each depending on x and a, such that (m, /)=1 and [a, x™],=0.

(4j-A)*  For each x&R and a< A, there exist positive integers %2 and m,
each depending on x and ¢, such that [(x+a)™, x™],=0.

(Gj-A)!  For each xR and a< A, there exists a positive integer %, de-
pending on x and g, such that [(x+a)¢, x*],=0.

(II-A)* For each xR and a= A, there exist positive integers %k, m and
n, each depending on x and a, such that (m, n)=1 and
[a, x™],=][a, x"],=0.

(III-A)* For each x&R and a= A, there exist positive integers %2 and m,
each depending on x and ¢, such that [a, x™],=0 and x=x"+x"
with some x’€FE,, and x”"€N.

(JJJ-A)* For each x&R and a€ A, there exist positive integers k, m and
n, each depending on x and «, such that (m, #»)=1 and
[(x+a)™, x™]e=[(x+a)", x"],=0.

(A); If a, b€ A and [[a, b]=0, then [a, b]=0.

(A} If x€R, acA and [[a, x]=0, then [a, x]=0.

Our present objective is to prove the following commutativity theo-
rem, which improves several early results obtained in [3,4,5 and 6].
(Note that the conditions (ii-A); and (III-A)* are denoted as (ii-A)¥ and

(II1*-4) in and [3], respectively.)

THEOREM 1.  The following conditions are equivalent :

1) R is commutative.

2) R is nearly commutative and there exists a commutative subset A
of R for which R satisfies (I''A) and (I'-A).

3) There exists a commutative subset A of R for which R satisfies
(I'-A4), AI'-A) and (II-A)*.

4) There exists a commutative subset A of R for which R satisfies
(I'-A), AT"-A) and (III-A)*.

5) There exists a commutative subset A of R for which R satisfies
(I'-A), (I'-A) and (JJJ-A)*.

6) There exists a commutative subset A of R and a positive integer n
Jfor which R satisfies (I-A), (I'-A), (j-A)% and (A)%.

7)  There exists a commutative subset A of N for which R satisfies
(I"-A) and dII-A)*.

8) There exists a commutative subset A of N for which R satisfies
(I'-A) and II-A)*.

9) There exists a commutative subset A of N for which R satisfies
(I-A) and (JJJ-A)*.
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10)  There exists a commutative subset A of N and a positive integer
n for which R satisfies (I'-A), (Gj-A)} and (A)},.

In preparation for proving our theorem, we state the following lem-
mas.

LEMMA 1. (1) If R satisfies (I-C), then R is commutative.

(2) If R satisfies (I'-A), then NSA*+C and N*SAUC, where A+
1S the additive subsemigroup of R gemervated by A.

(3) Suppose R satisfies (I'-A). If R satisfies one of the conditions
(II-A4), (i-A)* and Gj-A)*, then R is normal, that is, E <C.

4) If A is commutative and R satisfies (I-A), then N is a com-
mutative nil ideal containing the commutator ideal of R and is contained
in Cp(A), and thevefore N[A, R]1=[A, RIN=0 and [A, R]AUC.

(5) Let R be a subdirectly irreducible ving. If A is a commutative
subset of R (vesp. N) for which R satisfies (I'-A) and (I'-A) (resp. (I-
A) and (i-A)* (or (j-A)*)), and x is an element in R\Cix(A), then x
1s tnvertible and {x) is a finite local ring.

6) If A is a commutative subset of R (resp. N) for which R
satisfies (I'-A), (II'-A) and (Gj-A)} (resp. (I'-A) and (Gj-A)%), then R
satisfies (ii-A)%,.

(D) If A is a commutative subset of R (vesp. N) for which R
satisfies (1-A), (I"-A) and (JJJ-A)* (vesp. (I'-A) and (JJJ-A)*), then R
satisfies (III-A)*.

Proor. (1) This is a well-known theorem of Herstein (see [1D.

(2) See [4, Lemma 1 (2)].

(3) See, e.g., the proofs of [4, Lemma 1 (4)] and [3, Lemma (4)].

(4) See [4, Lemma 1 (5)].

(5) By (3), R is normal. Choose ¢ € A such that [q, x]#+ 0. By
I-A) and (I'"A) (resp. (I"A) and ASN), x™=x>"f(x) with some f(?)
&Z[t] and m>1. Since N is contained in Czx(A4) by (4), x is not in N,
and so x™f(x) is a non-zero central idempotent. Hence we see that
x™f(x)=1 and x'&<x)>. Replacing x by x7', we get x&<x'), and so
¢g(x) =0 with some monic polynomial ¢g(¢) in Z[¢]. This implies that the
additive group of <(x) is finitely generated. Since @ cannot commute with
both 2x and 3x, there exists an integer 4>1 such that [a, hx]+0. Then,
by the above observation, we get h7'=(hx) 'x&{(hxd>x=<{x)>. Noting that
the additive group of <x)> is Noetherian, we can easily see that 42 5(Z-.1)
=h~*V(Z-1) with some positive integer s. Hence hZ-.1=Z-1, which
implies that <{x) is a finite local ring.
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(6) Let x€R and a=A. By (4), [A, R]?°=0 and [4, R]cAUC.
Hence, by (j-A)7, there exists a positive integer k2 such that

[a, x™) i =[D2E0x[a, x]x" 1% x™]=[(x+[a x])", x"],=0.

Now, in order to see that [a, x*] =0, we may assume that R is subdirectly
irreducible. Suppose, to the contrary, that [, x*]# 0. Then, by (5),
" (x>=GF(g) with some ¢>1, where x =x+N. Since both gx and x"7—x"
are in N and [a, x"]...€AUC by ), [[[a x"]r1, x"], x"]=[a, "] ps1=
0 together with (4) implies that

[d, xn]k: [[a’ xn]k-l: xn] = [[a’ xn]k—l’ an] :qxn(q—l)[a’ xn]k:O-

Repeating the same procedure, we obtain eventually a contradiction
[a, x*]=0.

(7) By making use of the same argument as in the proof of (6), we
can easily see that for each x&R and e A, there exist positive integers
m, n such that (m, n)=1 and [ x™]=[a, x*]=0;in particular, R
satisfies (III-A)*.

LEMMA 2. Let R be a non-commutative, subdirectly irreducible ring.
Let A be a commutative subset of R (resp. N) for which R satisfies (I'-A)
and (I'-A) (resp. (I-A) and (1i-A)*). If R=<a x> with some x&R
and a€ A, then there exists a finite field K with a non-trivial automor-
phism ¢ such that My(K) is homomorphic to a subring of R which meets
A.

PrOOF. Let u=[a, x](+0). Then x is invertible and <{x) is a finite
local ring with radical M =<x>N\ N nilpotent (Lemma 1 (5)). According
to (4), N is a commutative nil ideal containing the commutator
ideal of R with [A, N]=0, M<C, {(#)}*=0, and M+(x)=0. Obviously,
M is an ideal of S=<{(x ud>=<{x>+<{xd>uix). Let K=<{(x>/M=GF(g),
where ¢g=p¢ (p a prime and e>0). Then S=S/M=KPKuyK. We
claim that [#, x]#0. Actually, if [« x]=0, then [#, x]EM <C. Since
both gxr and x?—x are in M(SC), we see that [u, x]=[u, x?]=qx"[u, x]
eM-(u)=0, and so u=[a, x]=[a x?)=qgx**[a, x]=EM+(u)=0. This is a
contradiction. Now, as is well-known, K ®¢r»K is the direct sum of e
fields isomorphic to K. This enables us to see that KuK = (K QcrnK) u
=Ku® - DKu., where Ku,=u.K (1<i<e’<e). Since [u, x ]+0, we
may assume that [, x ]#0, and therefore u,€A (2)). Then
there exists a non-trivial automorphism ¢ of K such that the subring K
@®Ku, of S is isomorphic to My(K).
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LEMMA 3. Let R=Ms(K), where K is a finite field with a non-
trivial automorphism o. Let A be a subset of R for which R satisfies
(I-A). Then R satisfies neither (III-A)* nor (III-A)*.

PROOF.  Choose y&K with ¢(y)+y, and put x:(g 0(07,))’ a:(g (1)>

Since [a, x]+0 and @*=0, a belongs to A4, by (2). First, sup-
pose that R satisfies (III-A)*. Then there exist positive integers m,
and % such that (m, n)=1 and [a, x™],=0=[gq, x*].. Then one can easily
see that [a, x™]=0=[q, x"]. Since (m, »)=1 and x is invertible, this
forces a contradiction [a, x]=0. Next, suppose that R satisfies (III-A)*.
Then we can easily see that there exists a positive integer m such that [a,
x™]=0 and x™=x, which forces again a contradiction [a, x]=0.
We are now ready to complete the proof of [Theorem 1.

PrROOF OF THEOREM 1. Obviously, 1) implies 2)—10).

2)=1). According to (1), it suffices to show that A<C.
Suppose, to the contrary, that [¢, x]+0 for some xR and ac=A.
Choose an ideal I of <@, x> which is maximal with respect to excluding
[a, x]. Then S*=<a, x>/I is a subdirectly irreducible ring whose heart is
([a*, x*]), where x*=x+1 Obviously, S* is nearly commutative and
satisfies (I'-B*) and (II'-B*), where B=AN<aq, x>. But this contradicts
Lemma 2.

3) (resp. 7))=1). Again, suppose that [a, x]+0 for some xR and
acA, and consider the same S* as in the proof of 2)=1). Then, by
Lemma 2, there exists a finite field K with a non-trivial automorphism ¢
such that Ms(K) is homomorphic to a subring of S* which meets B*.
Obviously, M;(K) satisfies (I"U) and (III-U)* for some subset U. But
this contradicts Lemma 3. We have thus seen that ACC. Hence R is
commutative, by D).

4) (resp. 8))=1). The proof is quite similar to the above.

5) (resp. 9))=3) (resp. 7)). By .

6) (resp. 10))=1). Let ¢ be a homomorphism of R onto a subdirect-
ly irreducible ring R’. Then R’ satisfies (I'-¢6(A4)) and (j-6(A))%. We
claim that for each xR’ and a’'€¢(A)

S z"'(:.l)[a’, 291=0 (G=12, ... n—1).

Actually, in case R’ is commutative, there is nothing to prove. If R’ is
not commutative then R’ has an identity element 1’ and satisfies (ii-0(A4))
(Lemma 1 (1), (5) and (6)), and therefore
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S z’f(’]?)[ag 2 =[a, A+ )" — [, (ix)"]=0.

We have thus seen that for each x&R and e A

n

. \
in[a, x]+1 (2

)[a, 4.+ nla, 271 =0 (i=1,2, ..., n—1),

and the usual Vandermonde determinant argument shows, in view of
(A%, that [a, x]=0. Hence A=C, and R is commutative by
(.

COROLLARY 1. Let R be an s-unital ring. Then the following condi-
tions arve equivalent -

1) R is commutative.

2)  There exists a subset A of R and a positive integer n for which R
satisfies (I'-A), (II-A),, (i-A)) and (A);.

3) There exists a subset A of N and a positive integer n for which R
satisfies (I'-A), (ii-A)%, (i-A)dy and (A),.

Proor. Obviously, 1) implies 2) and 3).

2) (resp. 3))=1). By [4, Lemma 1 (3)], (II-A), implies (ii-A)%.
Hence, in view of [Theorem 1, it suffices to show that if R satisfies (I-A),
(II-A), (resp. (ii-A);) and (A); then A is commutative. Suppose now
that there exist ¢, b= A such that [a, 6]#0. Then, by (II-A), (resp. 4
C©N), a is nilpotent. Let £(>1) be the least positive integer such that
[a!, b]=0 for all i > k, and let ¢ be a pseudo-identity of {@, &}. Then
nla*?, b]=[(e+a*")" b]=0, by ({i-A),. According to (I-A), there
exists f(t)eZ[t] such that

ak—l_az(k—l)f(ak—1>€A_
Then n[a*'—a**Vf (a* "), b]=0, which together with (A)} implies that
[*, b]=[a*" —a**f (a* ), b] =0,

But this contradicts the minimality of . Hence A has to be commutative.

a b ¢
REMARK 1. Let R_{{O a? O}

a, b, CEGF(4)}. Obviously, N is

0 0 a
commutative and R satisfies (I'“N), (j-N)% and (N)3. But R is not
commutative. This shows that, in the statement 10) in [Theorem 1, (A);

cannot be replaced by (A4);.
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