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On the number of solutions of certain linear
diophantine equations

Andreas W. M. DRESS and Christian SIEBENEICHER
(Received December 28, 1988)

Abstract: In this note various old and new combinatorial facts related to
the so called cyclotomic identity are presented and discussed.

Introduction

Around 1800 C. F. Gauss considered the problem to compute the num-
ber M(q, n) of irreducible polynomials of degree n over the finite field F_{q}

with q elements and solved it in the following way (cf. [G]): Combining
the two facts that there are precisely q^{n} polynomials of degree n with
leading coefficient 1 and that every such polynomial decomposes uniquely
into a product of irreducibles he derived the so called cyclotomic identity

\frac{1}{1-qt}=\prod_{n=1}^{\infty}(\frac{1}{1-t^{n}})^{M(q,n)} (1)

which in turn allowed him to determine the numbers M(q, n) by consider-
ing its logarithmic derivative. Thereby he obtained (in modern notation
and with \mu denoting the Moebius function)

n \cdot M(q, n)=\sum_{d|n}\mu(d)q^{n/d} .

In 1872 M. C. Moreau discussed in [M] necklaces with n beads which
are coloured with q colours and obtained for the number M’(q, n) of
primitive or aperiodic necklaces the same formula:

n \cdot M’(q, n)=\sum_{d|n}\mu(d)q^{n/d} .

In a paper of E. Witt from 1937 (cf. [W1]) the same number occurs
as the dimension of the submodule of homogeneous elements of degree n
in the free Lie algebra with q generators. Witt wondered why his number
coincides with the number of irreducible polynomials, determined by
Gauss.

Today, there are well understood explanations for these coincidences.
Consider for a (finite) set A the set P(A) of periodic functions on the
integers Z with values in the set A together with the shift map
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\alpha:P(A)arrow P(A)
(2)

g\vdasharrow(\alpha g:Zarrow A:\alpha g(i) : =g(i+1)) .
If the set A has q elements, then for each positive integer n the set of

elements of P(A) , invariant under the iterate \alpha^{n} of \alpha , contains precisely
q^{n} elements. If q is a prime power, \hat{F}_{q} denotes the algebraic closure of
the field F_{q} , and \alpha:\hat{F}_{q}arrow\hat{F}_{q} is the Frobenius automorphism x-,x^{q}, then the
elements of \hat{F}_{q} , invariant under \alpha^{n}- are precisely the elements of the
extension field F_{q^{n}} of F_{q} of degree n and therefore their number equals q^{n} .
An argument of Burnside (cf. [DS2]) then shows that P(A) and \hat{F}_{q} are
isomorphic as cyclic sets, i . e . as sets on which the infinite cyclic group Z
acts by permutations. In particular, it follows that both sets contain the
same number M(q, n) of Z-0rbits of length n for every positive integer n.

It is clear that an orbit of length n in the cyclic set \hat{F}_{q} consists of the
set of roots of an irreducible polynomial of degree n over F_{q} and that
there are as many such orbits as there are irreducible polynomials.

On the other hand, the orbits of length n in the cyclic set P(A) are
precisely the primitive necklaces of length n. Hence the number of ir-
reducible polynomials of degree n coincides with the number of primitive
necklaces of length n.

The relation between Witt’s number and the number of primitive neck-
laces becomes apparent if one considers so called Lyndon words over the
somehow linearily ordered alphabet A . Lyndon words are the minimal
elements in the set of cyclic permutations of primitive words with respect
to the lexicographic order on the set of words. Since primitive words
correspond in a one to one manner to periodic functions on Z (repeat the
primitive word indefinitely to the left and to the right), to each orbit of
P(A) there corresponds precisely one Lyndon word, i . e . the number of
orbits of length n equals the number of Lyndon words of that length. In
[V] and [L] it is shown that the Lyndon words of length n provide a
basis of the module of homogeneous elements of degree n in the free Lie
algebra generated by A . Hence the dimension of this module equals
M(q, n) .

Amazingly enough, the identity (1) plays a key r\^ole in the quite
different context of Witt vectors, which have been invented by E. Witt in
1937, too (cf. [W2]). Universal Witt vectors over the ring R are infinite
sequences q= (q_{1y}q_{2}\ldots) of elemets of R together with an addition and a
multiplication which are defined by universal polynomials. It is well
known (cf. [C]) that the map
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W(R)arrow\Lambda(R)

q=(q_{1}, q_{2, } \ldots)-,\prod_{i=1}^{\infty}\frac{1}{1-q_{i}t^{i}}

of the ring of Witt vectors over R onto the set \Lambda(R) of formal power
series with constant term 1 and coefficents in R provides an isomorphism
from the additive group of W(R) onto the multiplicative group \Lambda(R) . It
becomes even an isomorphism of rings, if \Lambda(R) is equipped with Grothen-
dieck’s multiplication, which is also defined by universal polynomials.
Using this isomorphism and (1) one has for the image of q=(q_{1}, q_{2, }\ldots)\in

W(Z) in \Lambda(Z) with M(q, n) := \sum_{d|n}M(q_{d}, n/d) the relation

\prod_{i=1}^{\infty}\frac{1}{1-q_{i}t^{i}}=\prod_{i=1}^{\infty}\prod_{d=1}^{\infty}(\frac{1}{1-t^{di}})^{M(qtd)}’=\prod_{n=1}^{\infty}(\frac{1}{1-t^{n}})^{M(q,n)}

and by additivity M(q+q’. n)=M(q, n) . This relation allows to calcu-
late the components of the Witt vector q+q’ recursively:

(q+q’)_{1}=M(q+q’, 1)=M(q, 1)+M(q’. 1)=q_{1}+q_{\acute{1}}

.\cdot. .\cdot.
(q+q’)_{n}=M(q, n)+M(q’. n)- \sum_{d||n}M((q+q’)_{d}, n/d) .

Recently there has been interest in a direct combinatorial interpreta-
tion of (1): if we denote by s(P(A)) the set of all maps u:P(A)arrow N_{0}

which have finite support and are shift invariant (i.e. u(\alpha g)=u(g) for all
g\in P(A)) and if for any such u\in s(P(A)) we denote by |u|\in N_{0} the sum
|u|=\Sigma_{g\in P(A)}u(g) , then the more or less obvious identities

\prod_{n=1}^{\infty}(\frac{1}{1-t^{n}})^{M(q,n)}=\prod_{n=1}^{\infty}(1+t^{n}+t^{2n}+\ldots)^{M(q,n)}

= \prod_{<a>g\in<a>\backslash P(A)}(1+t^{\#(<a>g)}+t^{2\cdot\#(<a>g)}+\ldots)

= \sum_{u\in s(P(A))}t^{|u|}

= \sum_{0}^{\infty}\#\{u\in s(P(A))||u|=n\}\cdot t^{n}

imply that (1) is equivalent with the assertion that the set

s^{n}(P(A)) := \{u\in s(P(A))|\sum_{g\in P(A)}u(g)=n\}

has the same cardinality as the set A^{n} . So it seemed natural to ask for a
“ canonical ” bijection between these two sets. In [MR1, MR2]
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N. Metropolis and G.-C. Rota raised this problem and established a cer-
tain bijection which implies that \# s^{n}(P(A))=\# A^{n}=q^{n} .

Their work stimulated further research (cf. [DS2] and [VW]) trying
to develop additional insight into the combinatorial structures underlying
these relationships. In addition, N. G. de Bruijn and D. A. Klarner estab-
lished a bijection between s^{n}(P(A)) and A^{n} already in 1982 (cf [dBK] ),
using Lyndon words, though without realizing neither the relationship
with the use of Lyndon words in the combinatorial theory of words as
developed by the french school around Scht\"utzenberger (cf. [V] and [L])
nor the relationship with the cyclotomic identity (1).

In this note it is our purpose to show at first that a thorough analysis
of the facts mentioned above can be used to establish a certain refinement
of the result \# s^{n}(P(A))=q^{n}, which allows to compute the exact number of
solutions of certain linear diophantine equations. Secondly we will use
our approach in the last section to analyze the relationship between the
various contributions towards a combinatorial interpretation of the
cyclotomic identity mentioned above.

Acknowledgment: We are greatful to D. Foata, G.-C. Rota and
V. Strehl for several helpful comments concerning this paper.

The main theorem

To state our result on the number of solutions of a certain linear
diophantine equation we collect some definitions. Given a set A, we
define a map g:Zarrow A to be periodic if there exists some positive integer n
\in N:=\{1,2,3, \ldots\} with g(i+n)=g(i) for all i\in Z. Examples of periodic
maps are provided in the following way: If \sigma:Earrow E is a permutation of
the finite set E, f : Earrow A an arbitrary map and \epsilon an element of E then the
map

f_{\sigma^{\epsilon}} : Zarrow A

i->f(\sigma^{i}\epsilon)

is a periodic map. Indeed, any periodic map g:Zarrow A can be constructed
in this way. Let P(A) denote the set of all periodic maps from Z to A .
The shift mp \alpha (cf. (2)) induces on P(A) an equivalence relation, two
periodic functions g and g’ being equivalent if and only if g and g’ are in
the same \alpha-0rbit, i.e . \alpha^{k}g=g’ for some k\in N. Note that, with the above
notations, the equivalence class \overline{f_{\sigma^{\epsilon}}} of f_{\sigma^{\epsilon}} consists of all f_{\sigma}^{\sigma\epsilon}t(i\in Z) . Let
\overline{P(A)} denote the set of equivalence classes of P(A) with respect to this
equivalence relation– i . e . the set of \alpha-0rbits of P(A) . Obviously, each
equivalence class in \overline{P(A)} is finite. Hence, for any T\in\overline{P(A)} the num-
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bers

\Delta(a, T) :=\#\{g\in T|g(0)=a\} (a\in A)

are necessarily finite, too. With these definitions one has

THEOREM 1. If A is a finite set and s:Aarrow N_{0} :=N\cup\{0\} an arbitrary
map, then the set

U(s) := { u\in N_{0}^{\overline{P(A)}}|

T \in\frac{\sum}{P(A)},\Delta(a,
T)\cdot u(T)=s(a) for all a\in A}

of non negative integral solutions of the linear equation \Delta\cdot u=s has car-
dinality

((s)) := \frac{(\sum_{a\in A}s(a))!}{\prod_{a\in A}s(a)!} .

From Theorem 1 one may derive immediately the following corollary
which provides the possibility of a recursive calculation of the numbers

\chi(s) :=\#\{T\in\overline{P(A)}|\Delta(\cdot, T)=s\}

COROLLARY 1.

((s))= \sum_{n_{1}^{1}}^{|S|},\cdot\cdot\Sigma k=1S,\cdots.’,s ^{\prod_{n_{k}^{h}}^{k}}i=1,(\begin{array}{l}\chi(s_{i})+n_{i}-1n_{i}\end{array})

= \chi(s)+\sum_{n_{1}}^{|S|},’\cdot..\sum_{sk=2s_{1},,jn_{h}^{k}}...\prod_{i=1}^{k}(\begin{array}{l}\chi(s_{i})+n_{i}-1n_{i}\end{array})

where for all k\in N the sum is taken over all subsets \{s_{1} , ..., s_{k}\}\subset N_{0}^{A} of
cardinality k and all n_{1} , \ldots , n_{k}\in N for which s=n_{1}s_{1}+\ldots+n_{k}s_{k} .

Before proving Theorem 1 let us illustrate its content by discussing a
particular example. Take A=\{0,1\} and the functions s_{2,2}, s_{3,1} and s_{3,2} ,
where s_{a,b} denotes that function from A to N_{0} which takes the walue a on
the element 0 of A and the value b on 1. Note first that for u\in U(s) one
has necessarily

|u|
:=u(T) \cdot\# T\tau\in\frac{\sum}{P(A)} =T \in\frac{\sum}{P(A)}

,
a\in Au(T)\cdot\Delta(T, a)

= \sum_{a\in A}s(a)=:|s| , (3)

in particular u(T)\neq 0 only if \# T\leq|s| . Let us denote by \epsilon_{1}\epsilon_{2}\ldots\epsilon_{n} the func-
tion Z— A mapping i to \epsilon_{imodn} and by \epsilon_{1}\epsilon_{2}\ldots\epsilon_{n} its equivalence class.

By inspection of the following scheme, in which the front part dis-
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plays that part of the matrix \Delta which results from the elements T\in\overline{P(A)}

with \# T\leq\max(|s_{2,2}|, |s_{3,1}|, |s_{3,2}|)=5 , we see immediately that the subse-
quent columns–in which only the nonzero entries have been displayed
–provide the non negative integral solutions u of the system \Delta\cdot u=s of
linear equations.

Counting the respective numbers of solutions shows that in these cases the
theorem provides the correct numbers.

Consider now more generally for an arbitrary function s=s_{a,b} together
with the set U(s) the sets

U_{0}(s)=\{u\in U(s)|u(\overline{0})>0\}

and
U_{1}(s)=\{u\in U(s)|u(\overline{1})>0\} .

It is clear that for every element u\in U_{0}(s) (resp. u\in U_{1}(s) ) the correct
sponding element u_{0}\in N_{0}^{\overline{P(A)}} (resp. u_{1}\in N_{0}^{\overline{P(A)}}) defined by

– -

u_{O}(\overline{\epsilon_{1}\epsilon_{2}\ldots\epsilon_{n}})=\{ u()u(_{\frac{0)-1}{\epsilon_{1}\epsilon_{2}\ldots\epsilon_{n}}} if\epsilon_{1}\epsilon_{2}\ldots\epsilon_{n}=0otherwise

respectively by
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– -

u_{1}(\overline{\epsilon_{1}\epsilon_{2}\ldots\epsilon_{n}})=\{ u(^{\frac{1)-1}{\epsilon_{1}\epsilon_{2}\ldots\epsilon_{n}}})u( if\epsilon_{1}\epsilon_{2}\ldots\epsilon_{n}=1otherwise

is contained in U(s_{a-1,b}) (resp. U(s_{0oeb-1}) ) and that the mapping u->u_{0}

(resp. u^{-\nu}u_{1} ) provides a bijection from U_{0}(s_{Gb}) to U(s_{a-1,b}) (resp. from
U_{1}(s_{Gb}) to U(s_{0oeb-1})) . Hence

\# U(s_{qb})=(\begin{array}{l}a+ba\end{array})

\# U_{0}(s_{qb})=(\begin{array}{ll}a+b -1a-1 \end{array})

\# U_{1}(s_{Gb})=(\begin{array}{ll}a+b -1b -1\end{array})

by Theorem 1. Using the recursion formula for the binomial coefficients
(Pascal’s triangle) it follows that

\#\{u\in U(s_{4b})|u(\overline{0})=0\}=(\begin{array}{l}a+ba\end{array})-(\begin{array}{ll}a+b -1a-1 \end{array})

=(\begin{array}{ll}a+b -1a \end{array})

=\# U(s_{\Phi b-1})

as well as

\#\{u\in U(s_{0oeb})|u(\overline{0})=u(\overline{1})=0\}=(\begin{array}{ll}a+b -2a-1 \end{array})

=\# U(s_{a-1,b-1})

in case a\cdot b>0 . But inspection of the above examples for s=s_{3,2} does not
supply in an obvious fashion a 1-1 correspondence between

U(s_{3,2})\backslash U_{0}(s_{3,2}) and U(s_{3,1})

or between
U(\ _{2},)\backslash (U_{0}(a_{2},)\cup U_{1} (&,2) ) and U(q_{2,1)}) .

Hence it is probably a bit complicated to prove the above theorem by
simple recursion.

The key lemma

Instead for any u\in N_{0}^{\overline{P(A)}} we will consider
o the set
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[u] := { (g, \gamma) |g\in P(A) and 1\leq\gamma\leq u(\overline{g}) },

where \overline{g}\in\overline{P(A)} denotes the equivalence class of g\in P(A)
(note that \#[u]=u(T)\cdot\# T=T\in\frac{\Sigma}{P(A)}|u| )

o the evaluation map

ev_{u} : [u]arrow A

which associates to an element (g, \gamma)\in[u] the value g(0)
(note that \# ev_{\overline{u}}^{1}(a)=\Delta(aT\in\frac{\Sigma}{P(A)},

T)\cdot u(T) )

o the sets :
os^{n}(P(A)) :=\{u:\overline{P(A)}arrow N_{0}||u|=n\}

and

oS^{A}(n) := { (u, \Phi)|u\in s^{n}(P(A)) , \Phi:[n]arrow[u] bijective}
where [n] :=\{1,2,\ldots, n\}

o and the diagram

A^{1nl}

in which
o [n] ! denotes the group of all permutations of the set [n]
othe maps pr_{1} and pr_{2} are the canonical projection maps onto the

first resp. the second factor
o the maps p and q are defined as follows:

op : S^{A}(n)arrow A^{[n]} : (u, \Phi)\vdasharrow ev_{u}\circ\Phi

O q:[n]!\cross A^{1n1}arrow s^{n}(P(A)) : (\sigma, f)\vdasharrow u_{\sigma,f}

where

u_{\sigma,f} : \overline{P(A)}arrow N_{0}

is defined by choosing for any T\in\overline{P(A)} some g\in T and
associating to T the number \#\{\nu\in[n]\psi_{\sigma}^{\nu}=g\} which is in
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dependent of the choice of g.
(Note, that [n]!\cross A^{1n1} is, in terms of [MR2], the set of
placements of necklaces with colours in A and places in
[n].)

Obviously, the fibres of the projection maps pr_{1} and pr_{2} have car-
dinality n !. Moreover, we know (but will not need) from [DS2] that all
fibres of q have also cardinality n !. In addition, for any f\in A^{1n1} consider
the mapping s_{f} : Aarrow N_{0} which maps an element a in A to \# f^{-1}(a) . Obvi-
only |s_{f}|=\Sigma_{a\in A}s_{f}(a)=n . Hence U(s_{f})\subset s^{n}(P(A)) by (3). More pre-
cisely, if u\in s^{n}(P(A)) , then u\in U(s_{f}) if and only if there exists some
bijection \Phi : [n]arrow[u] with f=ev_{u}\circ\Phi in which case there exist precisely
\prod_{a\in A}s_{f}(a) ! such \Phi . Hence the theorem will follow once we know that any

fibre of p has cardinality n !. This in turn follows from the above analy-
sis of the diagram in conjunction with the following

LEMMA 1. There exists a bijection \Psi : [n]!\cross A^{[n]}arrow S^{A}(n) which one
may insert into the above diagram to obtain the following commutative
diagram :

[n]!\cross A^{1n1}

PROOF: We have to define a bijection \Psi such that p\circ\Psi=pr_{2} and
pr_{1^{\circ}}\Psi=q . To this end consider for an element (\sigma,f) in [n] ! XA^{1n1} the
map

\gamma_{\sigma,f} : [n]arrow N_{0}

lJ farrow\gamma\sigma,f(\nu) :=\#{\mu\in[n]|\mu\leq\nu and f_{\sigma^{\mu}}=f_{\sigma^{\nu}}}.

Note that
\gamma_{\sigma,f}(\nu)\leq u_{\sigma,f}\overline{\varphi_{\sigma^{\nu}}})=\#\{\mu\in[n]|f_{\sigma^{\mu}}=f_{\sigma^{\nu}}\} .

With this definition in mind we may associate to the element (\sigma, f) in
[n]!\cross A^{1n1} the map
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\Phi_{\sigma.f} : [ n]arrow[u_{\sigma,f}]

\nu\}arrow(f_{\sigma}^{\nu}, \gamma_{\sigma,f}(\sigma\nu)) .

This map is well defined in view of \overline{f_{\sigma}^{\sigma\nu}}=\overline{f_{\sigma^{\nu}}} and therefore
\gamma_{\sigma.f}(\sigma\nu)\leq u_{\sigma,f}(\overline{f_{\sigma}^{\sigma\nu}})=u_{\sigma,f}\overline{(f_{\sigma}^{\nu}})

and is easily seen to be a bijection. Define

\Psi:[n]!\cross A^{[n]}arrow S^{A}(n)

by

(\sigma,f)\vdasharrow(u_{\sigma,f}, \Phi_{\sigma,f}) .

With these definitions one has indeed

pr_{1}\circ\Psi(\sigma, f)=u_{\sigma,f}=q(\sigma, f)

and for any \nu\in[n] one has
p\circ\Psi(\sigma, f)(\nu)=ev_{u\sigma,f}(\Phi\sigma,f(\nu))=ev_{u\sigma,J}(f_{\sigma_{ }}^{\nu},\ldots)

=f_{\sigma^{\nu}}(0)=f(\sigma^{0}\nu)

=f(\nu) ,

i . e . p\circ\Psi=pr_{2} , showing that the map \Psi renders the diagram commutative.
Next we show that \Psi is injective. It is clear that for given (\sigma, f)\in

[n]!\cross A^{[n]} one can reconstruct f from \Psi(\sigma,f) in view of pr_{2}=p\circ\Psi , i . e .
f=p\circ\Psi(\sigma, f) . Now put u:=u_{\sigma,f} and \Phi:=\Phi\sigma,f so that \Psi(\sigma,f)=(u, \Phi)

and for \nu\in[n] put \Phi(\nu) :=(g_{\nu}, \gamma_{\nu}) .
To reconstruct \sigma from u and \Phi note that for \nu\in[n] one has

\sigma\nu\in { \mu\in[n]|g_{\mu}(i)=\alpha g_{\nu}(i)=g_{\nu}(i+1) for all i\in Z}

since
(g_{\sigma\nu}, \gamma_{\sigma\nu})=\Phi\sigma,f(\sigma\nu)=\sigma_{\sigma}^{\sigma\nu} . \gamma_{\sigma}.f(\sigma(\sigma\nu)))

and therefore
g_{\sigma\nu}(i)=f_{\sigma}^{\sigma\nu}(i)=f(\sigma^{i}(\sigma\nu))=f(\sigma^{i+1}\nu)=f_{\sigma^{\nu}}(i+1)

=g_{\nu}(i+1)=\alpha g_{\nu}(i) .

Hence if
\{\mu\in[n]|g_{\mu}=\alpha g_{\nu}\}=\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}\}

with k:=u(\overline{g}_{\nu}) and \mu_{1}<\mu_{2}<\ldots<\mu_{k} , then \sigma\nu=\mu_{\gamma\nu} by the definition of the
map \gamma_{\sigma,f^{\circ}}\sigma , used in the definition of the map \Psi . Hence the value of the
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permutation \sigma on an element \nu\in[n] is uniquely determined by the ele-
ment \Phi(\nu)=(g_{\nu}, \gamma_{\nu}) in [n] . This proves the injectivity of the map \Psi

and also indicates how to prove its surjectivity. \square

From our basic observation that \Psi is a bijection one can deduce as
well as an immediate corollary that for any given f : [n]arrow A and
u\in U(s_{f}) the set \Sigma(u, f) of all permutations \sigma\in[n] ! with u=u_{\sigma,f} has
cardinality \prod_{a\in A}s_{f}(a) !:

\#\Sigma(u, f)=\prod_{a\in A}s_{f}(a) !. (4)

Obviously, this result in turn is strong enough to yield the above the0-
rem as one of its immediate consequences. Hence the following direct
characterization of \sum(u, f) might be of some interest in our context as
well :

Lemma 2. For any f\in A^{[n]} , u\in U(s_{f}) and \sigma\in[n] ! one has u=u_{\sigma,f}

if and only if for any g\in T\in\overline{P(A)} there exists a subset K(g)\subset[n] of
cardinality u(T) , uniquely determined by g and \sigma, such that

K(g)\subset f^{-1}(g(0))

and

\sigma K(g)=K(\alpha g) ,

where \alpha g is the shift of g.

The proof of Lemma 2 whose details are left to the reader is based on
the fact that for \sigma\in\Sigma(u, f) and g\in T\in\overline{P(A)} the set K(g) coincides
with the set of all \nu\in[n] for which f_{\sigma^{\nu}}=g .

Obviously, Lemma 2 implies (4) (and, therefore, it provides a slightly
different proof of the above Theorem as well), since it allows to construct
\Sigma(u, f) as follows: for any a\in A and any g\in T\in\overline{P(A)} with g(0)=a
choose a subset K(g)\subset f^{-1}(g(0)) of cardinality u(T) such that all these
subsets are disjoint. For any a\in A this can be done in

\frac{s_{f}(a)!}{g\in P(A)\prod_{g(0)=a}u(\overline{g})!}

different ways. Next, for any a\in A and g\in T\in\overline{P(A)} as above choose a
bijection \sigma_{g} : K(g)arrow K(\alpha g) which can be done in u(T) ! different ways.
Finally define \sigma as the union of the \sigma_{g} :

\coprod_{g}\sigma_{g} : [ n]=\coprod_{g}K(g)arrow\coprod_{g}K(\alpha g)=[n]
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Hence indeed

\#\sum(u, f)=\prod_{a\in A}\frac{s_{f}(a)!}{g\in P(A)\prod_{g(0)=a}u(\overline{g})!}\cdot\prod_{a\in A}(\prod_{g(0)=a}u(\overline{g})!)=\prod_{ag\in P(A)\in A}s_{f}(a)
!.

We can draw some additional consequences from this analysis. To this
end let us define a pair (\sigma,f)\in[n]!\cross A^{[n]} to be trimmed if for i, j\in[n]

with i<j and f_{\sigma^{i}}=f_{\sigma}^{j} one has \sigma i<\sigma j , that is, if \sigma is monotonically increas-
ing on the fibres K(g)(g\in P(A)) of the map

[n]arrow P(A) i\vdasharrow f_{\sigma^{i}}

in which case \sigma is completely determined by the various sets K(g)
(g\in P(A)) . Hence for any f\in A^{[n]} and any u\in U(s_{f}) there exist precisely
ly

\prod_{a\in A}\frac{s_{f}(a)!}{g\in P(A)\prod_{g(0)=a}u(\overline{g})!}

permutations \sigma\in[n] ! with u=u_{\sigma,f} such that (\sigma,f) is trimmed and, so,
for any u\in s^{n}(P(A)) there exist precisely

\frac{n!}{\prod_{g\in P(A)}u(\overline{g})!}

trimmed pairs (\sigma,f)\in[n]!\cross A^{[n]} with u=u_{\sigma,f} .
If, in addition, A is linearily ordered, we may define a pair

(\sigma,f)\in[n] !\cross A^{[n]} to be well trimmed, if f is monotonically increasing on
all of [n] and \sigma is monotonically increasing on the fibres f^{-1}(a)(a\in A)

of f : [ n]arrow A , which by definition contain the subsets K(g) for all
g\in P(A) with g(0)=a and obviously form intervals in [n] if f is
monotonically increasing. Note that for any s:Aarrow N_{0} with |s|=n there
exists precisely one monotonically increasing f=f_{s}\in A^{[n]} with s=s_{f}^{J} . It
follows immediately from Lemma 2 that a trimmed pair (\sigma, f) is well
trimmed if and only if also all the subsets K(g)(g\in P(A)) are intervals,
ordered in such a way that K(g) comes before K(g’) if and only if there
exists some i\in N_{0} with

g(0)=g’(0) , g(1)=g’(1) , \ldots , g(i-1)=g’(i-1) and g(i)<g’(i) ,

(that is, if and only if g<g’ with respect to the canonical lexicographic
ordering of P(A) , induced by the linear order of A) since otherwise
our \sigma would not be monotonically increasing on K(\alpha^{i-1}g)\cup K(\alpha^{i-1}g’)\subset
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f^{-1}(g(i-1)) . Hence for any given u\in s^{n}(P(A)) there exists precisely
one well trimmed pair (\sigma, f) with u=u_{\sigma,f} . In other words, we get a sec-
tion

s^{n}(P(A))arrow[n]G!\cross A^{[n]}

by associating to each u\in s^{n}(P(A)) the unique well trimmed pair
(\sigma,f)\in[n]!\cross A^{[n]} with u=u_{\sigma,f} .

A more direct construction of G runs as follows: At first let us order
the set [u] lexicographically by (g, i)<(g_{r}’,i’) if and only if g<g’ or g=g’
and i<i’ Then consider the resulting (order) isomorphism

\xi=\xi_{u} : [n]arrow[u]

of ordered sets and observe that the shift map \alpha induces a permutation

\alpha=\alpha_{u} : [u]arrow[u] (g, i)\}arrow(\alpha g, i)

in [u] !. Finally put

\sigma_{u}:=\xi^{-1}\circ\alpha\circ\xi\in[n] !

and

f_{u}:=ev\circ\xi:[n]arrow[u]arrow A .

Then one verifies easily tht G(u)=(\sigma_{u}, f_{u}) . In other words, the sec-
tion G results naturally from the observation that a linear order on A
induces a linear order on [u] and therefore a natural section of the pr0-
jectiou pr_{1} : S^{A}(n)arrow s^{n}(P(A)) given by

u-arrow(u, \xi_{u})

which transforms into G by composing it with \Psi^{-1} . Altogether we
recover an unpublished observation of I. Gessel, which has been com-
municated to us by Jaques D\’esarm\’enien (cf. [DW]).

COROLLARY 2. There exist precisely q^{n} pairs (\sigma, f)\in[n]!\cross A^{1n1} for
which f is monotonically increasing and \sigma is monotonically increasing on
all intervalls f^{-1}(a)(a\in A) , that is,

\sigma(i)>\sigma(i+1) implies f(i)<f(i+1) .

In addition, if E is a set of cardinality n and \tau a permutation of E then
the number of pairs (\sigma, f) as above with ([n], \sigma)\cong(E, \tau) coincides with
the number of u\in s^{n}(P(A)) with ([u], \alpha_{u})\cong(E, \tau) , that is, if \tau has n_{i}

cycles of length i on E, then there exist precisely
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\prod_{i=1}^{n}(\begin{array}{lll}n_{i}+ M(q, i)-1 n_{i} \end{array})

of such pairs.

Discussion

As we have pointed out already, Lemma 1 implies in particular an
(almost) “ bijective ” proof of the relation \# s^{n}(P(A))=\# A^{1n1} which is the
essential combinatorial content of the cyclotomic identity. Moreover, it
clarifies the relationship between different observations and results in this
content:

o The proof of the cyclotomic identity, suggested in [DS2,6.3.3.] , con-
sists of an analysis of the map q : [n]!\cross A^{1n1}arrow s^{n}(P(A)) (though
in the terminology of [DS2] s^{n}(P(A)) was denoted by S^{n}(A^{(C)})^{C}) .

o The bijection G between s^{n}(P(A)) and the set of well trimmed
pairs (\sigma,f)\in[n] ! XA^{In1} which results quite naturally from our
basic diagram coincides (up to terminology and at least for the
example given there) with GesseVs bijection “ entre l’ensemble des
parures et l’ensemble des couples (\sigma, s) constitu\’es d’une permuta-
tion \sigma\in S_{n} et d’une suite s compatible avec descentes(tf)” explained
in [DW].

o The construction of a bijection s^{n}(P(A))arrow A^{[n]} given in [dBK] via
Lyndon words (assuming the set A to be linearily ordered) can be
viewed as a construction of another appropiate section of the map q

composed with p\gamma_{2} (cf. [DS3]).

o The proof of the cyclotomic identity, given in [MR1, MR2 ] and
reinterpreted in terms of species (cf. [J]) in [VW], can be viewed
as an analysis of the restriction of the map

\Psi:[n]!\cross A^{[n]}arrow S^{A}(n)

onto the fibres of the map q:[n]!\cross A^{[n]}arrow s^{n}(P(A)) over those
elements u\in s^{n}(P(A)) having as support precisely one orbit.

Lemma 1 shows that all these approaches deal with special aspects of
just one and the same more basic phenomenon.

In addition, there is a more general and fundamental relationship
between cyclic sets (as considered in [DS1, DS2] ) and species.

Let X denote a cyclic set, i . e . a set X together with an action of the
additive group Z on X. Let S(X) denote its symmetric algebra, i.e.
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S(X) := \{u:Xarrow N_{0}|\sum_{x\in X}u(x)<\infty\} .

For any u\in S(X) define

[u] := {(x, \alpha) |x\in X and 1\leq\alpha\leq u(g) }

Note that this set has n elements if \Sigma_{x\in X}u(x)=n , i.e. if u\in S^{n}(X) , the
n-th symmetric power of X.

Define now for the cyclic set X the associated species S(X) (same
notation as for its symmetric algebra !) by assigning to a finite set E the
set

S(X)(E) := { (x, \Phi)|u\in S(X) , uZ invariant, and \Phi:Earrow[u] bijective}.

This provides a functor from cyclic sets to species which transforms
sums (of cyclic sets) into products (of species). Moreover, the generat-
ing function (or cardinality} S(X)(t) of S(X) coincides with s_{t}(X) , the
\zeta-function of the cyclic set X defined in terms of its symmetric powers
which has been studied in [DS1, DS2 ]. In particular, any formal power
series with constant term 1 and integer coefficients is of the form
S(X)(t)\cdot S(Y)(t)^{-1} for some appropriate almost finite cyclic sets X and
Y. We believe that this observation may help to make understandable,
why formal power series appear to be so closely related to both concepts,
cyclic sets as well as species.

In the particular case, considered above, the two relevant species are
S_{A} : E\vdasharrow E!\cross A^{E}.

the species of placements of nceklaces and S(P(A)) , where Z acts on
P(A) via the shift map. Note that S(P(A))([n])=S^{A}(n) . Hence
Lemma 1 can be interpreted as providing a “ bijective ” proof that
S(P(A)) and S_{A} are equipotent species, i.e. they satisfy \# S(P(A))(E)=
\# S_{A}(E) for every finite set E.
Added in proof

As outlined in [DS4] , the functor S(X) is also equivalent to the fun-
ctor

S_{X} : E-arrow\{(\sigma, f)\in E!\cross X^{E}|f(\sigma e)=\alpha f(e)\}

with \alpha=\alpha_{1} : Xarrow X the shift-map, associated with the generator 1\in Z .
In this form our construction can be generalized considerably, see[N] for
the discussion of some rather interesting specific cases, derived by replac-
ing the additive group Z by other groups, and [DM, sec. 4] for a discus-
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sion of a rather general setting in terms of forgetful functors, defined on
topos-like categories, which still preserve all the combinatorial features
needed for our most basic results.
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