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Introduction

A finite category is a category whose objects and morphisms form
finite sets. Yoshida proved the following theorem in his attempt to define
the Burnside ring of a finite category [4].

THEOREM. Suppose that a fifinite category C satisfifies the following con-
ditions.

(a) C has the unique epi-mono factorization property {see Section 4
for the precise defifinition).

(b) For any object x of C and any cyclic subgroup H of Aut(x), a
quotient object H\backslash x exists.

Let I be a set of representatives for isomorphism classes of objects of
C. Denote by Z[I] and Z^{I} the free abelian group on I and the ring of
Z -valued functions on I respectively. Defifine a group homomorphism \varphi :
Z[I]arrow Z^{I} by \varphi(x)(y)=\#Hom_{C}(y, x) for x, y\in I. Then

(i) \varphi is injective.
(ii) \#Coker(\varphi)=\prod_{x\in I} Aut(x),

(iii) Image(\mbox{\boldmath $\varphi$}) is a subring of Z^{I} (with the common identity).

Thus, for such a category C, Z[I] has a unique ring structure such
that \varphi is a ring homomorphism. Yoshida called Z[I] the abstract Burn-
side ring of C. When C is the category of transitive G-sets for a finite
group G, the ring Z[I] is just the Burnside ring of G, i . e. , the Grothen-
dieck ring of the category of finite G-sets.

In this paper we prove a linear version of the above theorem. Let k
be a field of characteristic p>0 and C a finite category. A k[C] -module
means a functor C^{op}arrow {k-modules}. Let G_{0}(k[C]) (resp. K_{0}(k[C]) ) be the
Grothendieck group of the category of finite dimensional (resp. finite
dimensional projective) k[C] -modules with respect to exact sequences.
Tensor product makes G_{0}(k[C]) a commutative ring. Let c : K_{0}(k[C])
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arrow G_{0}(k[C]) be the Cartan map, namely the map induced by viewing pr0-
jective k[C] -modules simply as k[C] -modules. For an object x of C, let
Cx : K_{0}(k[Aut(x)]) – G_{0}(k[Aut(x)]) be the Cartan map for k[Aut(x)]-
modules.

THEOREM A. Suppose that C satisfifies the following conditions.
(a) C has the unique epi-mono factorization property.
(b) For any object x of C and any p-subgroup Q of Aut(x), a

quotiont object Q\backslash x exists.
Let I be as in the previous theorem. Then
(i) The map c is injective.
(ii) \#Coker(c)=\prod_{x\in I}\#Coker(c_{x}) .

(iii) Image(c) is a subring of G_{0}(k[C])) .

The proof of this theorem is based on the next theorem. Denote by
k_{C} the constant functor on C^{op} with value k .

THEOREM B. Let C be as in Theorem A. Then the k[C] -module k_{C}

has a fifinite projective dimension.

These theorems are proved in Sections 3-5. As preparation we clas-
sify simple k[C] -modules for an arbitary finite category C and determine
the ring G_{0}(k[C]) in Section 2.

1. Notation and conventions

We fix a field k throughout and put p=char(k) if char(&) >0 , p=1 if
char(k)=0. Our modules are right and finitely generated, unless specified
otherwise. The category of such modules over a ring A is denoted by A-
\mathscr{M} . The Grothendieck group of the category of A-modules (resp. projec-
tive A-modules) with respect to exact sequences is denoted by G_{0}(A)

(resp. K_{0}(A) ). An (resp. a projective) A-module M has its class [M] in
G_{0}(A) (resp. K_{0}(A) ).

Let C be a finite category. We denote by ob(C) and mor(C) the set
of objects and the set of morphisms of C respectively. We often write
Hom_{C}(x, y)=C(x, y) for objects x , y of C. We denote by C^{op} the dual
category of C and by C^{\wedge} the category of functors C^{op}arrow\{sets\} . For x\in

ob(C) , we set h_{x}=Homc(x, x)\in ob(C^{\wedge}) . Given F\in ob(C^{\wedge}) , the category
C/F is defined as follows. Objects are pairs (x, a) with x\in ob(C) , a\in

F(x) , and Hom_{C/F}((x, a), (y, b))=\{f\in Hom_{C}(x, y)|F(f)(b)=a\} . When F=
h_{X} , we write C/h_{x}=C/x . Dually x\backslash C denotes the category of morphisms
xarrow y .
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We mean by a k[C]-module a functor C^{op}arrow k-{?} . The category of
k[C] -modules is denoted by k[C]- \mathscr{M} . If F:C^{op}arrow {finite sets} is a func-
tor, k[F] denotes the k[C] -module taking x\in ob(C) to k[F(x)] , the free
k-module on the set F(x) . Then the k[C] modules k[h_{x}] , x\in ob(C) , are
projective.

2. Simple modules

Let C be a finite category. Let A be a ring object of C^{\wedge} , i . e. , a func-
tor C^{op}arrow\{rings\} . An A-module is an abelian group object F of C^{\wedge}

together with a morphism F\cross Aarrow F in C^{\wedge} satisfying the same com-
mutative diagrams as in the definition of usual modules. The category of
A-modules is denoted by A-{?} . We aim to classify simple objects of this
category. Though our main concern lies in the case where A is the con-
stant ring functor k_{C} , the general case does not require more effort.

Before doing it, we make a slight reduction. A category C is said to
be Karoubien if every idempotent endomorphism e in C has a factoriza-
tion e=ip such that pi is an identity morphism (Grothendieck and Ver-
dier, [2] ) . For any category C it is known that there is a Karoubien cate-
gory C’ with C^{r\wedge} being equivalent to C^{\wedge} Here is a construction of C’

Objects of C’ are pairs (x, e) where x\in ob(C) and e^{2}=e\in End(x) , and
Hom_{C’}((x, e) , (x’, e’))=\{f\in Hom_{C}(x, x’)|e’f=f=fe\} . Composition of mor-
phisms of C’ is restriction of that of C. If C is finite, so is C’ Since C^{\wedge}

\simeq C^{r\wedge} , there is a ring object A’ of C^{\prime\wedge} so that A_{- \mathscr{M}}\simeq A’- \mathscr{M} . Thus, for
our purpose we may replace C by C’ Until the end of this section we
assume that C is Karoubien.

When a monoid M acts on a ring R on the right, R[M] denotes the
twisted monoid ring. Elements of R[M] are of the form \sum\sigma r , with \sigma\in

M, r\in R , and product is defined by \sigma r\cdot\tau s=\sigma\tau r^{\tau}s . If x\in ob(C) , the
monoid End(x) and the group Aut(x) act on the ring A(x) , so we have
the rings A(x)[End(x)] , A(x)[Aut(x)] .

LEMMA 2. 1. Let F be an A -module and x\in ob(C) such that F(x)\neq

0 . Then the following are equivalent.
(i) F is a simple A-module.
(ii) F(x) is a simple A(x)[End(x)] -module, and for any y\in ob(C)

we have

\sum_{fyarrow x}{\rm Im}(F(f))A(y)=F(y) ,

\bigcap_{g\cdot xarrow y}Ker(F(g))=0 .
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PROOF. ( i)\Rightarrow(ii) : Let M be an A(x)[End(x)] submodule of F(x) .
Define an A submodule F’ of F by

F’(y)=_{f} \sum_{yarrow x}F(f)(M)A(y)

for y\in ob(C) . Then F’(x)=M. Since F is simple, F’=F or F’=0.
Hence M=F(x) or M=0. Thus F(x) is a simple A(x)[End(x)] -module.
Let M=F(x) . Then F’=F. This proves the first equality in ( ii) . The
second one follows similarly, by considering a submodule F’ of F defined
by

F’(y)= \bigcap_{qxarrow y}Ker(F(g))

for y\in ob(C) . ( ii)\Rightarrow(i) : Obvious. Q. E. D.

Let x , y\in ob(C) . We write x\leq y if x is a direct summand of y , i . e. ,
if there are morphisms i:xarrow y and p:yarrow x such that pi=id_{X} . Note that
x\leq y\leq x implies x\cong y . The following lemma is well known.

LEMMA 2. 2. Let S be a fifinite monoid. If f\in S, then f^{n} is an
idempotent for some integer n>0 .

LEMMA 2. 3. Let F be a simple A -module and x\in ob(C) . Suppose
that F(x)\neq 0 and F(y)=0 for all y<x. Then every non-unit of End(x)
annihilates F(x) .

PROOF. Put S=End(x) and let S_{0} be the set of non-units of S. If
f\in S_{0} , then F(f) is nilpotent. Indeed, take n>0 such that f^{n}=e is an
idempotent. Since C is Karoubien, we can write e=ip:xarrow yarrow x with pi
=id_{y} . By e\in S_{0} , i is not an isomorphism, hence y<x . Then F(y)=0,

so F(f)^{n}=F(e)=0 as asserted. Now let I be the tw0-sided ideal of
A(x)[S] generated by S_{0} . Suppose that F(x)I\neq 0 . Then F(x)I=F(x)
because F(x) is a simple A(x)[S] -module. Put T=\{t\in S_{0}|F(x)t\neq 0\} .
Then T\neq\emptyset and if t\in T . then st\in T for some s\in S_{0} . Take t_{0}\in T such
that the subset St_{0} of S is minimal among St for all t\in T Take s_{0}\in S_{0}

such that s_{0}t_{0}\in T Then St_{0}=Ss_{0}t_{0} , so t_{0}=ss_{0}t_{0} with s\in S . By the ear-
lier observation, F(x)(ss_{0})^{n}=0 for some n>0 . Then t_{0}=(ss_{0})^{n}t_{0} also anni-
hilates F(x) . This is a contradiction. Thus F(x)I=0, which proves the
lemma.

LEMMA 2. 4. Let F, x be as in Lemma 2. 3. For y\in ob(C) , we have
that F(y)\neq 0 if and only if x\leq y .

PROOF. If x\leq y , then F(x) is a direct summand of F(y) , so F(y)\neq
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0. Define an A-submodule F’ of F by

F’(z)= \sum_{f}{\rm Im}(F(f))A(z)

for z\in ob(C) , where f ranges over all morphisms zarrow x which do not have
sections. By Lemma 2. 3, F’(x)=0. Since F is simple, F’=0. On the
other hand, we have by Lemma 2. 1 that

0 \neq F(y)=_{f}\sum_{yarrow x}{\rm Im}(F(f))A(y) .

Therefore some f:yarrow x must have a section. This proves the lemma.

Let x\in ob(C) . We denote by A[h_{x}] the right A-module taking y\in ob

(C) to the free right A(y)-module on the set C(y, x) . The ring A(x)[End
(x)] acts naturally on A[h_{x}] on the left. Therefore, if V is a right
A(x)[End(x)] -module, we have a right A-module F’=V\otimes_{A(\chi)[End(x)]}A[h_{x}] .
Define a right A-module S_{x,V} by

S_{x,V}(y)=F’(y)/_{q} \bigcap_{xarrow y}Ker(F’(g))

for y\in ob(C) .

LEMMA 2. 5. If V is a simple A(x)[End(x)] -module, then S_{x,V} is a
simple A-module.

PROOF. This follows immediately from Lemma 2. 1.

Let I be a representative system of isomorphism classes of objects of
C. For each x\in I , take a representative system R_{x} of isomorphism clas-
ses of simple A(x)[Aut(x)] -modules. Let R be the set of pairs (x, V)
with x\in I , V\in R_{\chi} . Any A(x)[Aut(x)] -module can be viewed as an
A(x)[End(x)] -module on which the non-units of End(x) act as zero. Thus,
for each (x, V)\in R , we have the simple A-module S_{x,V} .

PROPOSITION 2. 6. \{S_{x,V}|(x, V)\in R\} is a representative system of
isomorphism classes of simple A-modules.

PROOF. Let F be a simple A-module. Minimal elements of the set
\{x\in ob(C)|F(x)\neq 0\} with respect to the preorder \leq are isomorphic to each
other by Lemma 2. 4. We call these elements vertices of F. If x is a
vertex of F, then by lemma 2. 3, the non-units of End(x) annihilate F(x) .
Hence F(x) is a simple A(x)[Aut(x)] -module. By the definition of S_{x,F(x)}

and Lemma 2. 1 applied to F, there is a nonzero A-homomorphism S_{x,F(x\rangle}

arrow F . Both sides being simple, we have S_{x,F(\chi)}\cong F .
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We next claim that if (x, V)\in R , then x is a vertex of S_{x,V} . Let y<
x . Then id_{y}=pi where i:yarrow x and p:xarrow y are not isomorphisms. Let
F’ be as in the definition of S_{x,V} . If a\in A(y) , f:yarrow x and v\in V . then
we have that v\otimes fa=v\otimes fpia=vfp\otimes ia in F’(y) . Since fp\in End(x) is not a
unit, vfp=0 . Thus F’(y)=0 and so S_{x,V}(y)=0 . This proves the claim.

Now suppose that S_{x,V}\cong S_{x^{r},V’} for (x, V) , (x’. V’)\in R . Considering
vertices of both sides, we have x=x’ By evaluation at x , we get V=V’
This completes the proof.

We consider the case where A=k_{C} , the constant ring functor. Then
A-modules are simply functors C^{op}arrow k- \mathscr{A} , i . e. , k[C] -modules. The ten-
sor product F\otimes G of k[C] -modules F. G is the k[C] -module defined by
(F\otimes G)(x)=F(x)\otimes_{k}G(x) for x\in ob(C) . The Grothendieck group G_{0}(k[C])

of k[C] -modules becomes a commutative ring with multiplication induced
by tensor product and identity element [k_{C}] .

PROPOSITION 2. 7. The homomorphism

G_{0}(k[C]) arrow\prod_{x\in I}G_{0}(k[Aut(x)])

taking the classes [F] of k[C] -modules F to \{[F(x)]\}_{x\in I} is a ring isomor-
phism.

PROOF. Let (x, V)\in R . If S_{x,V}(y)\neq 0 , then x\leq y , and S_{x,V}(x)\cong V

as k[Aut(x)] -modules. Hence the above homomorphism takes the basis
\{[S_{x,V}]\}_{(x,V)\in R} of G_{0}(k[C]) to a basis of \prod_{x\in I}G_{0}(k[Aut(x)]) and so it is an
isomorphism.

3. A category without non-isomorphic endomorphisms

Throughout this section C is a finite category such that End(x) =Aut
(x) for all x\in ob(C) . We denote by pd F the projective dimension of a
k[C] -module F. The finitistic dimension of k[C] is by definition the su-
premum of finite projective dimensions of k[C] -modules, and denoted by
f. dim k[C] . See Bass [1].

REMARK 3. 1. Define dim C to be the supremum of lengths n of
chains \chi_{0}arrow\chi_{1}arrow\ldotsarrow x_{n} of non-isomorphisms of C. Then it is not difficult
to prove that f. dim k[C]\leq\dim C .

LEMMA 3. 2. Suppose that C satisfifies the following conditions.
(i) Aut(x) is a p-group for any x\in ob(C) .
(ii) If f : xarrow y is not an isomorphism, then f=fg for some g\in

Aut(x) with g\neq 1 .
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Then f . dim k[C]=0 .

PROOF. For x\in ob(C) , define a k[C] -module I_{x} by I_{x}(y)=Map(C(x ,
y) , k) for y\in ob(C) . Then I_{X} is an injective hull of a simple k[C] -module
S_{\chi} . By a result of Bass [1, Theorem 6. 3], it suffices to show that Hom
(I_{x}, S_{x})\neq 0 for any x\in ob(C) . This amounts to saying that \sum_{f}{\rm Im}(I_{X}(f))\neq

I_{x}(x) , where f:xarrow y runs over all non-isomorphisms. For such a mor-
phism f, the map C(x, x)arrow C(x, y):g\mapsto fg is not injective by ( ii) , so
the map I_{x}(f) is not surjective. Since I_{x}(x) has a unique maximal left
k[Aut(x)] -submodule by ( ^{i} ) , we have that \sum_{f}{\rm Im}(I_{x}(f))\neq I_{x}(x) as required.

Let G be a finite group. Let S(G) be the category whose objects are
the right G-sets H\backslash G:=\{Hg|g\in G\} for subgroups H of G and whose mor-
phisms are G-maps.

PROPOSITION 3. 3. If G is a p-group, f. dim k[S(G)]=0.

PROOF. It is enough to verify that S(G) satisfies conditions ( i ) ,
(ii) of the previous lemma. ( i) is obvious. Let f:Q\backslash G- Q’\backslash G be a
non-isomorphism with Q, Q’ subgroups of G . We may assume that Q<
Q’ and f is the projection. Then Q<N_{Q’}(Q) and any element w\in N_{Q’}(Q)

-Q induces an automorphism \overline{w} : Q\backslash G– Q\backslash G such that f\overline{w}=f . Thus
S(G) satisfies ( ii) and the proposition is proved.

Suppose given x\in ob(C) and a subgroup Q of Aut(x). For y\in ob(C) ,
C(x, y)^{Q} denotes the set of fixed elements of C(x, y) under the natural
action of Q. If there is an object of C which represents the functor
y\mapsto C(x, y)^{Q} , such an object is called a quotient of x by Q and denoted
by Q\backslash x . Now suppose that C satisfies the following condition.

(3.4) For any x\in ob(C) and any p subgroup Q of Aut(x), a quotient
obj ect Q\backslash x exists.

Then, for x\in ob(C) and a p-Sylow subgroup P of Aut(x), we can
define a functor

q_{x,P} : k[C]- \mathscr{M}arrow k[S(P)]- \mathscr{M}

by

q_{x,P}(F)(Q\backslash P)=F(Q\backslash x)

for k[C] -modules F and subgroups Q of P.

LEMMA 3. 5. Suppose that C satisfifies (3. 4). Let F be a k[C]-
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module. Then the following are equivalent.
(i) pd F<\infty .
(ii) q_{x,P}(F) is a projective k[S(P)] -module for any x\in ob(C) and

any p-Sylow subgroup P of Aut(x).

PROOF. Fix a pair (x, P) as in ( ii) . The functor q_{x,P} is clearly
exact. It preserves projective modules. To see this, it is enough to show
that for any y\in ob(C) , the functor Q\backslash P – C(x, y)^{Q}] on S(P)^{op} is pr0-

jective. But this follows from the isomorphisms C(x, y)^{Q}\cong Hom_{P}(Q\backslash P ,

C(x, y)) \cong\prod_{i}Hom_{P}(Q\backslash P, H_{i}\backslash P) , where C(x, y) \cong\prod_{i}H_{i}\backslash P as P-sets. Now

suppose pd F<\infty . Then pd q_{x,P}(F)<\infty . By Proposition 3. 3, q_{x,P}(F) is
projective. This proves ( i)\Rightarrow(ii) .

For the converse, we first observe the following fact. If P is a p-
group and M is a projective k[S(P)] -module such that M(Q\backslash P)=0 for all
nontrivial subgroups Q of P, then M(1\backslash P) is a free left k[P] module.
Indeed, M must be isomorphic to a direct sum of copies of k[Hom_{P}(-, 1\backslash

P)] . Suppose that F satisfies ( ii) and F\neq 0 . Take x\in ob(C) such that
F(x)\neq 0 and that F(y)=0 if there is a non-isomorphism xarrow y . Take a
p-Sylow subgroup P of Aut(x). If 1<Q\leq P , the projection xarrow Q\backslash x is not
an isomorphism. Applying the above observation to M=q_{x,P}(F) , we see
that M(1\backslash P)=F(x) is a free left k[P] -module, and hence a projective left
k[Aut(x)] -module. So there is an exact sequence of k[C] -modules

0 arrow F’arrow\bigoplus_{y}( U_{\mathcal{Y}}\bigotimes_{Aut(y)}k[h_{y}])\oplus(F(x)\bigotimes_{Aut(x)}k[h_{x}])arrow Farrow 0

where y runs over objects of C such that F(y)\neq 0 and y\not\cong x , and U_{y} is a
projective k[Aut(y)] -module. The middle term is projective and F’(x)=0.
Applying q_{x’,P’} to this sequence for any pair (x_{?}’P’) , we see that F’ also
satisfies ( ii) . By induction we may assume pd F’<\infty . Then pd F<\infty .
This proves the lemma.

Let k_{C} : C^{op}arrow k -
\mathscr{M} be the constant functor with value k .

PROPOSITION 3. 6. Suppose that C satisfifies (3. 4). Then the k[C]-
module k_{C} has a fifinite projective dimension.

PROOF. For any x and P as in ( ii) of the previous lemma, q_{x,P}(k_{C})

=k_{S(P)}\cong k[Hom_{P}(-, P\backslash P)] is projective. Hence the conclusion follows
from the lemma.

When G is a finite group, the full subcategory of S(G) consisting of
the objects Q\backslash G for p subgroups Q of G satisfies (3. 4).
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4. A category having the unique epi-mono factorization property

A category C is said to have the unique epi -mono factorization prop-
erty if there are two classes E(C) and M(C) of morphisms of C satisfy
ing the following conditions.

(1) If f\in E(C) , f is an epimorphism.
(2) If f\in M(C) , f is a monomorphism.
(3) E(C) and M(C) contain all isomorphisms and are closed under

composition.
(4) Any morphism f of C is factorized as f=gh with g\in M(C) , h\in

E(C) . This factorization is unique in the sense that if f=g’h’ with g’\in

M(C) , h’\in E(C) , then g’=gu , h’=u^{-1}h for some isomorphism u .

The unique epi -mono factorization property is called FAC in [4]. We
call elements of E(C) and M(C) admissible epimorphisms and admissible
monomorphisms respectively. Troughout this section C is a finite cate-
gory having the unique epi -mono factorization property. The following
are easy consequences of (1)-(4) .

(5) If f\in E(C)\cap M(C) , f is an isomorphism.
(6) If gh\in E(C) , then g\in E(C) .
(7) If gh\in M(C) , then h\in M(C) .
(8) C is Karoubien.
(9) If F\in ob(C^{\wedge}) , then the category C/F defined in Section 1 has

also the unique epi -mono factorization property. More precisely, let p :
C/Farrow C be the canonical functor (x, a)\mapsto x . Then the classes
p^{-1}E(C) , p^{-1}M(C) satisfy conditions (1)-(4) for C/F.

Define subcategories C_{e} , C_{m} of C by ob(C_{e})=ob(C_{m})=ob(C) and mor
(C_{e})=E(C) , mor(C_{m})=M(C) . Both C_{e} and C_{m} have no nonisomorphic
endomorphisms. Let j_{e} : C_{e}arrow C , j_{m} : C_{m}arrow C be the inclusion functors.
Define functors j_{e}^{*}: k[C]- \mathscr{M}arrow k[C_{e}]- \mathscr{M} , j_{m}^{*}: k[C]- \mathscr{A}arrow k[C_{m}]- \mathscr{M} by
j_{e}^{*}(F)=F\circ j_{e} , j_{m}^{*}(F)=F\circ j_{m} .

LEMMA 4. 1. ( i) A right adjoint j_{e}^{*}: k[C_{e}]- \mathscr{A}arrow k[C]-\overline{\mathscr{M}} to j_{e*}

is given by

j_{e*}(F)(x)= \prod_{zarrow x}F(z)

for k[C_{e}] -modules F and x\in ob(C) , where zarrow x runs over representatives
for isomorphism classes of objects of the category C_{m}/x.

(ii) A left adjoint j_{m\dagger} : k[C_{m}]- \mathscr{M}\swarrowarrow k[C]-\overline{\mathscr{M}} to j_{m}^{*} is given by

j_{m^{1}}(F)(x)= \bigoplus_{xarrow z}F(z)
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where xarrow z runs over representatives for isomorphism classes of objects of
the category x\backslash C_{e} .

This is a consequence of condition (4). We omit the proof.
Let x\in ob(C) . Let r_{x}\in ob(C^{\wedge}) be the subobject of h_{X} defined by

r_{x}(y)=\{f\in C(y, x)|f\not\in E(C)\} for y\in ob(C) . Define a k[C] -module T_{x} by

T_{x}=Coker(k[r_{x}]=k[h_{x}]) .

Then T_{x}(y)\cong k[C_{e}(y, x)] for y\in ob(C) . The group Aut(x) acts naturally
on T_{x} on the left.

LEMMA 4. 2. pd T_{x}<\infty .

PROOF. Note that the category C_{m}/x is essentially a partially ordered
ed set. Let i:C_{m}/xarrow C_{m} be the canonical functor (zarrow x)\mapsto z and let
k_{x} be a simple k[C_{m}/x] -module supported on final objects of C_{m}/x . The
restriction functor i^{*}: k[C_{m}]- \mathscr{M}\swarrowarrow k[C_{m}/x]- \mathscr{A} has a left adjoint i_{1} given
by

i_{\mathfrak{l}}(F)(y)= \bigoplus_{yarrow x}F(yarrow x)

for k[C_{m}/x] -modules F and y\in ob(C_{m}) , where yarrow x runs over all objects
of C_{m}/x . We see that

i_{\mathfrak{l}}(k_{x})(y)=k[Aut(x)] if y=x ,
=0 if y\not\cong x ,

for y\in ob(C_{m}) . By Lemma 4. 1 it follows easily that j_{m^{1}}i_{I}(k_{x})\cong T_{X} . Since
both j_{m^{1}} and i_{1} are exact and preserve projectives, pd T_{\chi}\leq pdk_{x}<\infty .
This proves the lemma.

Let K_{0}(k[C]) be the Grothendieck group of projective k[C] -modules.
The Cartan map c:K_{0}(k[C])– G_{0}(k[C]) is defined by c[F]=[F] for pr0-

jective k[C] -modules F. For each x\in ob(C) we have also the Cartan
map Cx : K_{0}(k[Aut(x)])arrow G_{0}(k[Aut(x)]) of the algebra k[Aut(x)] . See
Serre [3], Now we prove assertions ( i ) , ( ii) of Theorem A in IntrO-
duction.

PROPOSITION 4. 3. The Cartan map c is injective and

\#Coker(c)=\prod_{x\in I}\#Coker(c_{x})

where I is a representative system of isomorphism classes of ob(C) .

PROOF. For x , y\in ob(C) we write x\leq_{m}y if C_{m}(x, y)\neq\emptyset , and x\geq_{e}y if
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C_{e}(x, y)\neq\emptyset . In the paragraph preceding Proposition 2. 6 we defined the
sets R_{X} , R and the simple k[C] -modules S_{x,V} for (x, V)\in R . Let S_{\tilde{x},V} be
a projective cover of S_{x,V} . Then \{[S_{\tilde{x},V}]\}_{(x,V)\in R} , \{[S_{x,V}]\}_{(x,V)\in R} are bases of
K_{0}(k[C]) , G_{0}(k[C]) respectively.

Fix (x, V)\in R for a moment. Let V^{\sim} be a projective cover of the
simple k[Aut(x)] -module V. In the proof of Lemma 4. 2 we defined the
adjoint functors

k[C_{m}/x]- \mathscr{A}^{\frac{j_{m^{1}}i_{\dagger}}{\frac{}{i^{*}j_{m}^{*}}}}k[C]-{?}

and showed that T_{x}\cong j_{m^{1}}i_{I}(k_{x}) . If (y, W)\in R , then
Ext_{C}^{q}(V^{\sim}\otimes_{Aut(x)}T_{x}, S_{y,W})\cong Hom_{Aut(x)} ( V^{\sim}, Ext_{C}^{q} ( T_{X} , Sy, w))

\cong Hom_{Aut(x\rangle} ( V^{\sim}. Ext_{Cm/\chi}^{q}(k_{x}, i^{*}j_{m}^{*} Sy, w) )

for any q\in N . Since S_{y,W} is supported on objects containing y as a direct
summand, and since split monomorphisms belong to M(C) , we have that
i^{*}j_{m}^{*}S_{y,W}=0 unless y\leq_{m}x . If y=x , then i^{*}j_{m}^{*}S_{y,W}\cong W\otimes k_{x} is injective.
Hence Ext_{C}^{q}(V^{\sim}\otimes_{Aut(x)}T_{x}, S_{x,W})\neq 0 if and only if q=0 and W=V. We
know also that V^{\sim}\otimes_{Aut(x)}T_{x} has a finite projective resolution by Lemma 4.
2. From these facts it follows that [ V^{\sim}\otimes_{Aut(x)}T_{x}]-[S_{\tilde{x},V}] is a linear com-
bination of [S_{y,W}^{\sim}] with y<_{m}x in G_{0}(k[C]) . Therefore the classes
[V^{\sim}\otimes_{Aut(x)}T_{x}] , for all (x, V)\in R , span {\rm Im}(c) .

If ( V^{\sim}\otimes_{Aut(x)}T_{x})(y)\neq 0 , then y\geq_{e}x . So we can write

[V^{\sim} \otimes_{Aut(X)}T_{X}]=\sum_{y\geq_{e}x}m.V,y,W(y,W)\in R[S_{y,W}]

in G_{0}(k[C]) with m_{x,V,y,W}\in N . Evaluating both sides at x , we have

[V^{\sim}]= \sum_{W\in R_{X}}m,V,x,W[W]

in G_{0}(k[Aut(x)]) . Namely, (m_{x,V,x,W})_{V,W\in R_{\chi}} is the Cartan matrix of k[Aut
(x)] , whose determinant is known to be nonzero [3]. Hence

\det(m_{x,V,y,W})_{(x,V),(y,W)\in R}=_{x}\prod_{\in I}\det(m_{V,x,W},)_{V,W\in R_{\chi}}

= \prod_{x\in I}\#Coker(c_{x}) .

Thus c is injective and \#Coker(c)=\prod_{x\in I}\#Coker(c_{x}) as required.

LEMMA 4. 4. If F is a k[C] -module, then
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pd j_{e}^{*}(F)\leq pdF\leq pdj_{e}^{*}(F)+\dim C_{m}

where dim C_{m} is as defifined in Remark 3. 1.

PROOF. By Lemma 4. 1, j_{e}^{*} is exact and preserves projectives. So
pd j_{e}^{*}(F)\leq pdF . To prove the second innequality, it is enough to show
that if j_{e}^{*}(F) is projective, then pd F\leq\dim C_{m} . For (x, V)\in R , let S_{x,V}^{e} be
a simple k[C_{e}] -module whose value at x is V. Then Ext^{q}(F, j_{e*}(S_{x,V}^{e}))\cong

Ext^{q}(j_{e}^{*}(F), S_{x,V}^{e})=0 for q>0 . There is an injection g:S_{x,V}arrow j_{e*}(S_{x,V}^{e})

and the composition factors of Coker(g) consist of S_{y,W} with (y, W)\in R

and x<_{m}y . Using induction on dim x\backslash C_{m} , we see that Ext^{q}(F, S_{x,V})=0

for q>\dim x\backslash C_{m} . Hence, if q>\dim C_{m} , then Ext^{q}(F, S)=0 for any sim-
ple module S . Thus pd F\leq\dim C_{m} as required.

REMARK 4. 5. It follows from this lemma and Remark 3. 1 that f.dim
k[C]\leq\dim C_{e}+\dim C_{m} .

5. The main theorems

In the rest we assume that a finite category C has the unique epi-mono
factorization property and satisfies (3. 4).

THEOREM 5. 1. The constant k[C] module k_{C} has a fifinite projective
dimension.

PROOF. Let x , Q be as in (3. 4). One easily sees that the quotient
morphism xarrow Q\backslash x is an admissible epimorphism and that the bijections
C(Q\backslash x, y)\cong C(x, y)^{Q} , for y\in ob(C) , restrict to bijections C_{e}(Q\backslash x, y)\cong

C_{e}(x, y)^{Q} . Therefore the category C_{e} also satisfies (3. 4). The theorem
follows from Proposition 3. 6 and Lemma 4. 4.

LEMMA 5. 2. If F, G are projective k[C] -modules, then F\otimes G has a

fifinite projective dimension.

PROOF. The following fact is easily proved. If K:C^{op}arrow\{fifinite

sets} is a functor such that for all x , Q as in (3. 4) the maps K(Q\backslash x)–

K(x)^{Q} induced by the quotient morphisms xarrow Q\backslash x are bijections, then
the category C/K also satisfies (3. 4). This can be applied when K is a
product of representable functors.

To prove the lemma, it is enough to show that pd(k[h_{x}]\otimes k[h_{\mathcal{Y}}])<\infty

for any x , y\in ob(C) . Put K=h_{x}\cross h_{y}\in ob(C^{\wedge}) . By the above observa-
tion, we can apply Theorem 5. 1 to C/K. Thus the k[C/K] module k_{C/K}

has a finite projective dimension. Let p:C/Karrow C be the canonical func-
tor. The restriction functor p^{*}: k[C]- \mathscr{M}arrow k[C/K]-{?} has a left adjoint
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p_{\dagger} given by

p I(F)(x)=\bigoplus_{a\in K(x)}F(x, a)

for k[C/K] -modules F and x\in ob(C) . Since p\uparrow is exact and preserves
projectives, pd p|(k_{C/\kappa})<\infty . Since p,(k_{C/K})\cong k[K]\cong k[h_{x}]\otimes k[h_{y}] , the con-
clusion follows.

THEOREM 5. 3. The image of the Cartan map c : K_{0}(k[C])–

G_{0}(k[ C]) is a subring.

PROOF. By Theorem 5. 1 and Lemma 5. 2, {\rm Im}(c) contains 1=[k_{C}]

and is closed under product.

Let us consider the case where C=S(G) for a finite group G. We
can describe the ring structure of K_{0}(k[C]) induced by that of G_{0}(k[C])

through the map c . For any finite group H, let P(H) be the free abelian
group on the set of isomorphism classes of indecomposable direct sum-
mands of permutation k[H] -modules. Tensor product makes P(H) a
ring. A finite group H is said to be p-perfect if H has no nontrivial fac-
tor p-group. Then there is a ring isomorphism

K_{0}(k[C]) \cong\prod_{H}P(N_{G}(H)/H)

where H runs over representatives for conjugacy classes of p-perfect sub-
groups of G.
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