Hokkaido Mathematical Journal Vol. 19 (1990) p. 325-337

The Grothendieck ring of linear representations of a finite category

Daisuke TAMBARA

Dedicated to Professor Tosiro Tsuzuku on his sixtieth birthday (Received May 23, 1989)

Introduction

A finite category is a category whose objects and morphisms form finite sets. Yoshida proved the following theorem in his attempt to define the Burnside ring of a finite category [4].

THEOREM. Suppose that a finite category C satisfies the following conditions.

(a) C has the unique epi-mono factorization property (see Section 4 for the precise definition).

(b) For any object x of C and any cyclic subgroup H of Aut(x), a quotient object $H \setminus x$ exists.

Let I be a set of representatives for isomorphism classes of objects of C. Denote by $\mathbf{Z}[I]$ and \mathbf{Z}^{I} the free abelian group on I and the ring of **Z**-valued functions on I respectively. Define a group homomorphism φ : $\mathbf{Z}[I] \longrightarrow \mathbf{Z}^{I}$ by $\varphi(x)(y) = \# \operatorname{Hom}_{c}(y, x)$ for $x, y \in I$. Then

- (i) φ is injective.
- (ii) $#Coker(\varphi) = \prod_{x \in I} #Aut(x).$
- (iii) Image(φ) is a subring of \mathbf{Z}^{I} (with the common identity).

Thus, for such a category C, $\mathbf{Z}[I]$ has a unique ring structure such that φ is a ring homomorphism. Yoshida called $\mathbf{Z}[I]$ the abstract Burnside ring of C. When C is the category of transitive G-sets for a finite group G, the ring $\mathbf{Z}[I]$ is just the Burnside ring of G, i.e., the Grothendieck ring of the category of finite G-sets.

In this paper we prove a linear version of the above theorem. Let k be a field of characteristic p>0 and C a finite category. A k[C]-module means a functor $C^{\text{op}} \longrightarrow \{k \text{-modules}\}$. Let $G_0(k[C])$ (resp. $K_0(k[C])$) be the Grothendieck group of the category of finite dimensional (resp. finite dimensional projective) k[C]-modules with respect to exact sequences. Tensor product makes $G_0(k[C])$ a commutative ring. Let $c: K_0(k[C])$

 $\longrightarrow G_0(k[C])$ be the Cartan map, namely the map induced by viewing projective k[C]-modules simply as k[C]-modules. For an object x of C, let $c_x: K_0(k[\operatorname{Aut}(x)]) \longrightarrow G_0(k[\operatorname{Aut}(x)])$ be the Cartan map for $k[\operatorname{Aut}(x)]$ -modules.

THEOREM A. Suppose that C satisfies the following conditions.

(a) C has the unique epi-mono factorization property.

(b) For any object x of C and any p-subgroup Q of Aut(x), a quotiont object $Q \setminus x$ exists.

Let I be as in the previous theorem. Then

(i) The map c is injective.

(ii) $\#\operatorname{Coker}(c) = \prod_{x \in I} \#\operatorname{Coker}(c_x).$

(iii) Image(c) is a subring of $G_0(k[C])$).

The proof of this theorem is based on the next theorem. Denote by k_c the constant functor on C^{op} with value k.

THEOREM B. Let C be as in Theorem A. Then the k[C]-module k_c has a finite projective dimension.

These theorems are proved in Sections 3-5. As preparation we classify simple k[C]-modules for an arbitrary finite category C and determine the ring $G_0(k[C])$ in Section 2.

1. Notation and conventions

We fix a field k throughout and put $p=\operatorname{char}(k)$ if $\operatorname{char}(k)>0$, p=1 if $\operatorname{char}(k)=0$. Our modules are right and finitely generated, unless specified otherwise. The category of such modules over a ring A is denoted by A-Max. The Grothendieck group of the category of A-modules (resp. projective A-modules) with respect to exact sequences is denoted by $G_0(A)$ (resp. $K_0(A)$). An (resp. a projective) A-module M has its class [M] in $G_0(A)$ (resp. $K_0(A)$).

Let *C* be a finite category. We denote by ob(C) and mor(C) the set of objects and the set of morphisms of *C* respectively. We often write $Hom_c(x, y) = C(x, y)$ for objects x, y of *C*. We denote by C^{op} the dual category of *C* and by C^{\wedge} the category of functors $C^{op} \longrightarrow \{sets\}$. For $x \in$ ob(C), we set $h_x = Hom_c(-, x) \in ob(C^{\wedge})$. Given $F \in ob(C^{\wedge})$, the category C/F is defined as follows. Objects are pairs (x, a) with $x \in ob(C)$, $a \in$ F(x), and $Hom_{C/F}((x, a), (y, b)) = \{f \in Hom_c(x, y) | F(f)(b) = a\}$. When F = h_x , we write $C/h_x = C/x$. Dually $x \setminus C$ denotes the category of morphisms $x \longrightarrow y$. We mean by a k[C]-module a functor $C^{\text{op}} \longrightarrow k$ -*Mod*. The category of k[C]-modules is denoted by k[C]-*Mod*. If $F: C^{\text{op}} \longrightarrow \{\text{finite sets}\}$ is a functor, k[F] denotes the k[C]-module taking $x \in ob(C)$ to k[F(x)], the free k-module on the set F(x). Then the k[C]-modules $k[h_x], x \in ob(C)$, are projective.

2. Simple modules

Let C be a finite category. Let A be a ring object of C^{\wedge} , i. e., a functor $C^{\text{op}} \longrightarrow \{\text{rings}\}$. An A-module is an abelian group object F of C^{\wedge} together with a morphism $F \times A \longrightarrow F$ in C^{\wedge} satisfying the same commutative diagrams as in the definition of usual modules. The category of A-modules is denoted by A - Mod. We aim to classify simple objects of this category. Though our main concern lies in the case where A is the constant ring functor k_c , the general case does not require more effort.

Before doing it, we make a slight reduction. A category *C* is said to be Karoubien if every idempotent endomorphism *e* in *C* has a factorization e=ip such that *pi* is an identity morphism (Grothendieck and Verdier, [2]). For any category *C* it is known that there is a Karoubien category *C'* with *C'^* being equivalent to *C^*. Here is a construction of *C'*. Objects of *C'* are pairs (x, e) where $x \in ob(C)$ and $e^2 = e \in End(x)$, and $Hom_{C'}((x, e), (x', e')) = \{f \in Hom_C(x, x') | e'f = f = fe\}$. Composition of morphisms of *C'* is restriction of that of *C*. If *C* is finite, so is *C'*. Since *C^* $\simeq C'^{\wedge}$, there is a ring object *A'* of *C'^* so that *A-Mad* $\simeq A'-Mad$. Thus, for our purpose we may replace *C* by *C'*. Until the end of this section we assume that *C* is Karoubien.

When a monoid M acts on a ring R on the right, R[M] denotes the twisted monoid ring. Elements of R[M] are of the form $\sum \sigma r$, with $\sigma \in M$, $r \in R$, and product is defined by $\sigma r \cdot \tau s = \sigma \tau r^{\tau} s$. If $x \in ob(C)$, the monoid End(x) and the group Aut(x) act on the ring A(x), so we have the rings A(x)[End(x)], A(x)[Aut(x)].

LEMMA 2.1. Let F be an A-module and $x \in ob(C)$ such that $F(x) \neq 0$. Then the following are equivalent.

(i) F is a simple A-module.

(ii) F(x) is a simple A(x)[End(x)]-module, and for any $y \in ob(C)$ we have

$$\sum_{\substack{f: y \to x \\ g: x \to y}} \operatorname{Im}(F(f))A(y) = F(y),$$

PROOF. (i) \Rightarrow (ii): Let *M* be an A(x)[End(x)]-submodule of F(x). Define an *A*-submodule *F'* of *F* by

$$F'(y) = \sum_{f: y \to x} F(f)(M) A(y)$$

for $y \in ob(C)$. Then F'(x) = M. Since F is simple, F' = F or F' = 0. Hence M = F(x) or M = 0. Thus F(x) is a simple A(x)[End(x)]-module. Let M = F(x). Then F' = F. This proves the first equality in (ii). The second one follows similarly, by considering a submodule F'' of F defined by

$$F''(y) = \bigcap_{g:x \to y} \operatorname{Ker}(F(g))$$

for $y \in ob(C)$. (ii) \Rightarrow (i): Obvious.

Let $x, y \in ob(C)$. We write $x \le y$ if x is a direct summand of y, i.e., if there are morphisms $i: x \to y$ and $p: y \to x$ such that $pi = id_x$. Note that $x \le y \le x$ implies $x \cong y$. The following lemma is well known.

LEMMA 2.2. Let S be a finite monoid. If $f \in S$, then f^n is an idempotent for some integer n > 0.

LEMMA 2.3. Let F be a simple A-module and $x \in ob(C)$. Suppose that $F(x) \neq 0$ and F(y) = 0 for all y < x. Then every non-unit of End(x)annihilates F(x).

PROOF. Put S=End(x) and let S_0 be the set of non-units of S. If $f \in S_0$, then F(f) is nilpotent. Indeed, take n > 0 such that $f^n = e$ is an idempotent. Since C is Karoubien, we can write $e=ip: x \to y \to x$ with $pi = id_y$. By $e \in S_0$, i is not an isomorphism, hence y < x. Then F(y)=0, so $F(f)^n = F(e) = 0$ as asserted. Now let I be the two-sided ideal of A(x)[S] generated by S_0 . Suppose that $F(x)I \neq 0$. Then F(x)I = F(x) because F(x) is a simple A(x)[S]-module. Put $T = \{t \in S_0 | F(x)t \neq 0\}$. Then $T \neq \emptyset$ and if $t \in T$, then $st \in T$ for some $s \in S_0$. Take $t_0 \in T$ such that the subset St_0 of S is minimal among St for all $t \in T$. Take $s_0 \in S_0$ such that $s_0 t_0 \in T$. Then $St_0 = Ss_0 t_0$, so $t_0 = ss_0 t_0$ with $s \in S$. By the earlier observation, $F(x)(ss_0)^n = 0$ for some n > 0. Then $t_0 = (ss_0)^n t_0$ also annihilates F(x). This is a contradiction. Thus F(x)I=0, which proves the lemma.

LEMMA 2.4. Let F, x be as in Lemma 2.3. For $y \in ob(C)$, we have that $F(y) \neq 0$ if and only if $x \leq y$.

PROOF. If $x \le y$, then F(x) is a direct summand of F(y), so $F(y) \ne y$

Q. E. D.

0. Define an A-submodule F' of F by

$$F'(z) = \sum_{f} \operatorname{Im}(F(f))A(z)$$

for $z \in ob(C)$, where *f* ranges over all morphisms $z \rightarrow x$ which do not have sections. By Lemma 2.3, F'(x)=0. Since *F* is simple, F'=0. On the other hand, we have by Lemma 2.1 that

$$0 \neq F(y) = \sum_{f: y \to x} \operatorname{Im}(F(f))A(y).$$

Therefore some $f: y \rightarrow x$ must have a section. This proves the lemma.

Let $x \in ob(C)$. We denote by $A[h_x]$ the right A-module taking $y \in ob$ (C) to the free right A(y)-module on the set C(y, x). The ring A(x)[End(x)] acts naturally on $A[h_x]$ on the left. Therefore, if V is a right A(x)[End(x)]-module, we have a right A-module $F' = V \otimes_{A(x)[End(x)]} A[h_x]$. Define a right A-module $S_{x,v}$ by

$$S_{x,v}(y) = F'(y) / \bigcap_{g: x \to y} \operatorname{Ker}(F'(g))$$

for $y \in ob(C)$.

LEMMA 2.5. If V is a simple A(x)[End(x)]-module, then $S_{x,v}$ is a simple A-module.

PROOF. This follows immediately from Lemma 2.1.

Let *I* be a representative system of isomorphism classes of objects of *C*. For each $x \in I$, take a representative system R_x of isomorphism classes of simple $A(x)[\operatorname{Aut}(x)]$ -modules. Let *R* be the set of pairs (x, V) with $x \in I$, $V \in R_x$. Any $A(x)[\operatorname{Aut}(x)]$ -module can be viewed as an $A(x)[\operatorname{End}(x)]$ -module on which the non-units of $\operatorname{End}(x)$ act as zero. Thus, for each $(x, V) \in R$, we have the simple *A*-module $S_{x,V}$.

PROPOSITION 2.6. $\{S_{x,v}|(x, V) \in R\}$ is a representative system of isomorphism classes of simple A-modules.

PROOF. Let F be a simple A-module. Minimal elements of the set $\{x \in ob(C) | F(x) \neq 0\}$ with respect to the preorder \leq are isomorphic to each other by Lemma 2.4. We call these elements vertices of F. If x is a vertex of F, then by lemma 2.3, the non-units of End(x) annihilate F(x). Hence F(x) is a simple A(x)[Aut(x)]-module. By the definition of $S_{x,F(x)}$ and Lemma 2.1 applied to F, there is a nonzero A-homomorphism $S_{x,F(x)} \rightarrow F$. Both sides being simple, we have $S_{x,F(x)} \cong F$.

We next claim that if $(x, V) \in R$, then x is a vertex of $S_{x,v}$. Let y < x. Then $id_y = pi$ where $i: y \to x$ and $p: x \to y$ are not isomorphisms. Let F' be as in the definition of $S_{x,v}$. If $a \in A(y)$, $f: y \to x$ and $v \in V$, then we have that $v \otimes fa = v \otimes fpia = vfp \otimes ia$ in F'(y). Since $fp \in End(x)$ is not a unit, vfp=0. Thus F'(y)=0 and so $S_{x,v}(y)=0$. This proves the claim.

Now suppose that $S_{x,v} \cong S_{x',v'}$ for (x, V), $(x', V') \in R$. Considering vertices of both sides, we have x=x'. By evaluation at x, we get V=V'. This completes the proof.

We consider the case where $A = k_c$, the constant ring functor. Then A-modules are simply functors $C^{\text{op}} \longrightarrow k$ -*Mod*, i. e., k[C]-modules. The tensor product $F \otimes G$ of k[C]-modules F, G is the k[C]-module defined by $(F \otimes G)(x) = F(x) \otimes_k G(x)$ for $x \in ob(C)$. The Grothendieck group $G_0(k[C])$ of k[C]-modules becomes a commutative ring with multiplication induced by tensor product and identity element $[k_c]$.

PROPOSITION 2.7. The homomorphism

$$G_0(k[C]) \longrightarrow \prod_{x \in I} G_0(k[\operatorname{Aut}(x)])$$

taking the classes [F] of k[C]-modules F to $\{[F(x)]\}_{x \in I}$ is a ring isomorphism.

PROOF. Let $(x, V) \in R$. If $S_{x,v}(y) \neq 0$, then $x \leq y$, and $S_{x,v}(x) \cong V$ as $k[\operatorname{Aut}(x)]$ -modules. Hence the above homomorphism takes the basis $\{[S_{x,v}]\}_{(x,v)\in R}$ of $G_0(k[C])$ to a basis of $\prod_{x\in I} G_0(k[\operatorname{Aut}(x)])$ and so it is an isomorphism.

3. A category without non-isomorphic endomorphisms

Throughout this section *C* is a finite category such that $\operatorname{End}(x) = \operatorname{Aut}(x)$ for all $x \in \operatorname{ob}(C)$. We denote by pd *F* the projective dimension of a k[C]-module *F*. The finitistic dimension of k[C] is by definition the supremum of finite projective dimensions of k[C]-modules, and denoted by f. dim k[C]. See Bass [1].

REMARK 3.1. Define dim *C* to be the supremum of lengths *n* of chains $x_0 \rightarrow x_1 \rightarrow ... \rightarrow x_n$ of non-isomorphisms of *C*. Then it is not difficult to prove that f. dim $k[C] \leq \dim C$.

LEMMA 3.2. Suppose that C satisfies the following conditions.

(i) Aut(x) is a p-group for any $x \in ob(C)$.

(ii) If $f: x \to y$ is not an isomorphism, then f = fg for some $g \in Aut(x)$ with $g \neq 1$.

Then f. dim k[C]=0.

PROOF. For $x \in ob(C)$, define a k[C]-module I_x by $I_x(y) = Map(C(x, y), k)$ for $y \in ob(C)$. Then I_x is an injective hull of a simple k[C]-module S_x . By a result of Bass [1, Theorem 6.3], it suffices to show that Hom $(I_x, S_x) \neq 0$ for any $x \in ob(C)$. This amounts to saying that $\sum_{f} Im(I_x(f)) \neq I_x(x)$, where $f: x \to y$ runs over all non-isomorphisms. For such a morphism f, the map $C(x, x) \longrightarrow C(x, y): g \longmapsto fg$ is not injective by (ii), so the map $I_x(f)$ is not surjective. Since $I_x(x)$ has a unique maximal left k[Aut(x)]-submodule by (i), we have that $\sum_{f} Im(I_x(f)) \neq I_x(x)$ as required.

Let G be a finite group. Let S(G) be the category whose objects are the right G-sets $H \setminus G := \{Hg | g \in G\}$ for subgroups H of G and whose morphisms are G-maps.

PROPOSITION 3.3. If G is a p-group, f. dim k[S(G)]=0.

PROOF. It is enough to verify that S(G) satisfies conditions (i), (ii) of the previous lemma. (i) is obvious. Let $f: Q \setminus G \longrightarrow Q' \setminus G$ be a non-isomorphism with Q, Q' subgroups of G. We may assume that Q < Q' and f is the projection. Then $Q < N_{Q'}(Q)$ and any element $w \in N_{Q'}(Q)$ -Q induces an automorphism $\overline{w}: Q \setminus G \longrightarrow Q \setminus G$ such that $f\overline{w} = f$. Thus S(G) satisfies (ii) and the proposition is proved.

Suppose given $x \in ob(C)$ and a subgroup Q of Aut(x). For $y \in ob(C)$, $C(x, y)^{q}$ denotes the set of fixed elements of C(x, y) under the natural action of Q. If there is an object of C which represents the functor $y \mapsto C(x, y)^{q}$, such an object is called a quotient of x by Q and denoted by $Q \setminus x$. Now suppose that C satisfies the following condition.

(3.4) For any $x \in ob(C)$ and any *p*-subgroup Q of Aut(x), a quotient object $Q \setminus x$ exists.

Then, for $x \in ob(C)$ and a *p*-Sylow subgroup *P* of Aut(*x*), we can define a functor

$$q_{x,P}: k[C] \text{-} Mod \longrightarrow k[S(P)] \text{-} Mod$$

by

$$q_{x,P}(F)(Q \setminus P) = F(Q \setminus x)$$

for k[C]-modules F and subgroups Q of P.

LEMMA 3.5. Suppose that C satisfies (3.4). Let F be a k[C]-

module. Then the following are equivalent.

(i) pd $F < \infty$.

(ii) $q_{x,P}(F)$ is a projective k[S(P)]-module for any $x \in ob(C)$ and any p-Sylow subgroup P of Aut(x).

PROOF. Fix a pair (x, P) as in (ii). The functor $q_{x,P}$ is clearly exact. It preserves projective modules. To see this, it is enough to show that for any $y \in ob(C)$, the functor $Q \setminus P \longmapsto k[C(x, y)^{q}]$ on $S(P)^{op}$ is projective. But this follows from the isomorphisms $C(x, y)^{q} \cong \operatorname{Hom}_{P}(Q \setminus P, C(x, y)) \cong \coprod_{i} \operatorname{Hom}_{P}(Q \setminus P, H_{i} \setminus P)$, where $C(x, y) \cong \coprod_{i} H_{i} \setminus P$ as *P*-sets. Now suppose pd $F < \infty$. Then pd $q_{x,P}(F) < \infty$. By Proposition 3.3, $q_{x,P}(F)$ is projective. This proves (i) \Rightarrow (ii).

For the converse, we first observe the following fact. If P is a pgroup and M is a projective k[S(P)]-module such that $M(Q \setminus P) = 0$ for all nontrivial subgroups Q of P, then $M(1 \setminus P)$ is a free left k[P]-module. Indeed, M must be isomorphic to a direct sum of copies of $k[\operatorname{Hom}_P(-, 1 \setminus P)]$. Suppose that F satisfies (ii) and $F \neq 0$. Take $x \in ob(C)$ such that $F(x) \neq 0$ and that F(y) = 0 if there is a non-isomorphism $x \rightarrow y$. Take a p-Sylow subgroup P of Aut(x). If $1 < Q \leq P$, the projection $x \rightarrow Q \setminus x$ is not an isomorphism. Applying the above observation to $M = q_{x,P}(F)$, we see that $M(1 \setminus P) = F(x)$ is a free left k[P]-module, and hence a projective left $k[\operatorname{Aut}(x)]$ -module. So there is an exact sequence of k[C]-modules

$$0 \to F' \to \bigoplus_{y} (U_{y} \bigotimes_{\operatorname{Aut}(y)} k[h_{y}]) \oplus (F(x) \bigotimes_{\operatorname{Aut}(x)} k[h_{x}]) \to F \to 0$$

where y runs over objects of C such that $F(y) \neq 0$ and $y \not\cong x$, and U_y is a projective $k[\operatorname{Aut}(y)]$ -module. The middle term is projective and F'(x)=0. Applying $q_{x',P'}$ to this sequence for any pair (x', P'), we see that F' also satisfies (ii). By induction we may assume pd $F' < \infty$. Then pd $F < \infty$. This proves the lemma.

Let $k_c: C^{\text{op}} \longrightarrow k$ -*Mod* be the constant functor with value k.

PROPOSITION 3.6. Suppose that C satisfies (3.4). Then the k[C]-module k_c has a finite projective dimension.

PROOF. For any x and P as in (ii) of the previous lemma, $q_{x,P}(k_c) = k_{S(P)} \cong k[\operatorname{Hom}_P(-, P \setminus P)]$ is projective. Hence the conclusion follows from the lemma.

When G is a finite group, the full subcategory of S(G) consisting of the objects $Q \setminus G$ for *p*-subgroups Q of G satisfies (3.4).

4. A category having the unique epi-mono factorization property

A category C is said to have the unique epi-mono factorization property if there are two classes E(C) and M(C) of morphisms of C satisfying the following conditions.

(1) If $f \in E(C)$, f is an epimorphism.

(2) If $f \in M(C)$, f is a monomorphism.

(3) E(C) and M(C) contain all isomorphisms and are closed under composition.

(4) Any morphism f of C is factorized as f=gh with $g\in M(C)$, $h\in E(C)$. This factorization is unique in the sense that if f=g'h' with $g'\in M(C)$, $h'\in E(C)$, then g'=gu, $h'=u^{-1}h$ for some isomorphism u.

The unique epi-mono factorization property is called FAC in [4]. We call elements of E(C) and M(C) admissible epimorphisms and admissible monomorphisms respectively. Troughout this section C is a finite category having the unique epi-mono factorization property. The following are easy consequences of (1)-(4).

- (5) If $f \in E(C) \cap M(C)$, f is an isomorphism.
- (6) If $gh \in E(C)$, then $g \in E(C)$.
- (7) If $gh \in M(C)$, then $h \in M(C)$.
- (8) C is Karoubien.

(9) If $F \in ob(C^{\wedge})$, then the category C/F defined in Section 1 has also the unique epi-mono factorization property. More precisely, let $p: C/F \longrightarrow C$ be the canonical functor $(x, a) \longmapsto x$. Then the classes $p^{-1}E(C), p^{-1}M(C)$ satisfy conditions (1)—(4) for C/F.

Define subcategories C_e , C_m of C by $ob(C_e) = ob(C_m) = ob(C)$ and mor $(C_e) = E(C)$, $mor(C_m) = M(C)$. Both C_e and C_m have no nonisomorphic endomorphisms. Let $j_e: C_e \longrightarrow C$, $j_m: C_m \longrightarrow C$ be the inclusion functors. Define functors $j_e^*: k[C] \operatorname{-Mod} \longrightarrow k[C_e] \operatorname{-Mod}$, $j_m^*: k[C] \operatorname{-Mod} \longrightarrow k[C_m] \operatorname{-Mod}$ by $j_e^*(F) = F \circ j_e$, $j_m^*(F) = F \circ j_m$.

LEMMA 4.1. (i) A right adjoint $j_e^*: k[C_e] \cdot M_{od} \longrightarrow k[C] \cdot M_{od}$ to j_{e*} is given by

$$j_{e*}(F)(x) = \prod_{z \to x} F(z)$$

for $k[C_e]$ -modules F and $x \in ob(C)$, where $z \to x$ runs over representatives for isomorphism classes of objects of the category C_m/x .

(ii) A left adjoint $j_{m_1}: k[C_m] \cdot M_{od} \longrightarrow k[C] \cdot M_{od}$ to j_m^* is given by

$$j_{m!}(F)(x) = \bigoplus_{x \to z} F(z)$$

where $x \rightarrow z$ runs over representatives for isomorphism classes of objects of the category $x \setminus C_e$.

This is a consequence of condition (4). We omit the proof.

Let $x \in ob(C)$. Let $r_x \in ob(C^{\wedge})$ be the subobject of h_x defined by $r_x(y) = \{f \in C(y, x) | f \notin E(C)\}$ for $y \in ob(C)$. Define a k[C]-module T_x by

 $T_x = \operatorname{Coker}(k[r_x] \hookrightarrow k[h_x]).$

Then $T_x(y) \cong k[C_e(y, x)]$ for $y \in ob(C)$. The group Aut(x) acts naturally on T_x on the left.

LEMMA 4.2. pd $T_x < \infty$.

PROOF. Note that the category C_m/x is essentially a partially ordered set. Let $i: C_m/x \longrightarrow C_m$ be the canonical functor $(z \rightarrow x) \longmapsto z$ and let k_x be a simple $k[C_m/x]$ -module supported on final objects of C_m/x . The restriction functor $i^*: k[C_m]$ -Mod $\longrightarrow k[C_m/x]$ -Mod has a left adjoint i_1 given by

$$i_!(F)(y) = \bigoplus_{y \to x} F(y \to x)$$

for $k[C_m/x]$ -modules F and $y \in ob(C_m)$, where $y \to x$ runs over all objects of C_m/x . We see that

$$i_1(k_x)(y) = k[\operatorname{Aut}(x)] \quad \text{if } y = x, \\ = 0 \quad \text{if } y \not\equiv x, \end{cases}$$

for $y \in ob(C_m)$. By Lemma 4.1 it follows easily that $j_{m!}i_!(k_x) \cong T_x$. Since both $j_{m!}$ and $i_!$ are exact and preserve projectives, pd $T_x \leq pd k_x < \infty$. This proves the lemma.

Let $K_0(k[C])$ be the Grothendieck group of projective k[C]-modules. The Cartan map $c: K_0(k[C]) \longrightarrow G_0(k[C])$ is defined by c[F]=[F] for projective k[C]-modules F. For each $x \in ob(C)$ we have also the Cartan map $c_x: K_0(k[\operatorname{Aut}(x)]) \longrightarrow G_0(k[\operatorname{Aut}(x)])$ of the algebra $k[\operatorname{Aut}(x)]$. See Serre [3]. Now we prove assertions (i), (ii) of Theorem A in Introduction.

PROPOSITION 4.3. The Cartan map c is injective and $\#Coker(c) = \prod_{x \in I} \#Coker(c_x)$

where I is a representative system of isomorphism classes of ob(C).

PROOF. For $x, y \in ob(C)$ we write $x \le_m y$ if $C_m(x, y) \neq \emptyset$, and $x \ge_e y$ if

 $C_e(x, y) \neq \emptyset$. In the paragraph preceding Proposition 2.6 we defined the sets R_x , R and the simple k[C]-modules $S_{x,v}$ for $(x, V) \in R$. Let $S_{x,v}$ be a projective cover of $S_{x,v}$. Then $\{[S_{x,v}]\}_{(x,v)\in R}$, $\{[S_{x,v}]\}_{(x,v)\in R}$ are bases of $K_0(k[C])$, $G_0(k[C])$ respectively.

Fix $(x, V) \in R$ for a moment. Let V^{\sim} be a projective cover of the simple $k[\operatorname{Aut}(x)]$ -module V. In the proof of Lemma 4.2 we defined the adjoint functors

$$k[C_m/x]$$
- Mod $\xleftarrow{j_m:i!}{i^*j_m^*} k[C]$ - Mod

and showed that $T_x \cong j_{m!} i_!(k_x)$. If $(y, W) \in \mathbb{R}$, then

$$\operatorname{Ext}_{c}^{q}(V^{\sim}\otimes_{\operatorname{Aut}(x)}T_{x}, S_{y,W}) \cong \operatorname{Hom}_{\operatorname{Aut}(x)}(V^{\sim}, \operatorname{Ext}_{c}^{q}(T_{x}, S_{y,W}))$$
$$\cong \operatorname{Hom}_{\operatorname{Aut}(x)}(V^{\sim}, \operatorname{Ext}_{cm/x}^{q}(k_{x}, i^{*}j_{m}^{*}S_{y,W}))$$

for any $q \in \mathbf{N}$. Since $S_{y,W}$ is supported on objects containing y as a direct summand, and since split monomorphisms belong to M(C), we have that $i^*j_m^*S_{y,W}=0$ unless $y \leq_m x$. If y=x, then $i^*j_m^*S_{y,W}\cong W\otimes k_x$ is injective. Hence $\operatorname{Ext}_{C}^{q}(V^{\sim}\otimes_{\operatorname{Aut}(x)}T_x, S_{x,W})\neq 0$ if and only if q=0 and W=V. We know also that $V^{\sim}\otimes_{\operatorname{Aut}(x)}T_x$ has a finite projective resolution by Lemma 4. 2. From these facts it follows that $[V^{\sim}\otimes_{\operatorname{Aut}(x)}T_x]-[S_{x,V}]$ is a linear combination of $[S_{y,W}]$ with $y \leq_m x$ in $G_0(k[C])$. Therefore the classes $[V^{\sim}\otimes_{\operatorname{Aut}(x)}T_x]$, for all $(x, V)\in R$, span $\operatorname{Im}(c)$.

If $(V^{\sim} \bigotimes_{\operatorname{Aut}(x)} T_x)(y) \neq 0$, then $y \ge_e x$. So we can write

$$[V^{\sim} \bigotimes_{\operatorname{Aut}(x)} T_{x}] = \sum_{\substack{(y, W) \in R \\ y \geq ex}} m_{x, V; y, W}[S_{y, W}]$$

in $G_0(k[C])$ with $m_{x, V; y, W} \in \mathbb{N}$. Evaluating both sides at x, we have

$$[V^{\sim}] = \sum_{W \in R_x} m_{x, V; x, W}[W]$$

in $G_0(k[\operatorname{Aut}(x)])$. Namely, $(m_{x, V; x, W})_{V, W \in R_x}$ is the Cartan matrix of $k[\operatorname{Aut}(x)]$, whose determinant is known to be nonzero [3]. Hence

$$\det(m_{x, V; y, W})_{(x, V), (y, W) \in R}$$

= $\prod_{x \in I} \det(m_{x, V; x, W})_{V, W \in R_x}$
= $\prod_{x \in I} \# \operatorname{Coker}(c_x).$

Thus c is injective and $\#Coker(c) = \prod_{x \in I} \#Coker(c_x)$ as required.

LEMMA 4.4. If F is a k[C]-module, then

$$\operatorname{pd} j_e^*(F) \leq \operatorname{pd} F \leq \operatorname{pd} j_e^*(F) + \dim C_m$$

where dim C_m is as defined in Remark 3.1.

PROOF. By Lemma 4.1, j_e^* is exact and preserves projectives. So pd $j_e^*(F) \leq \text{pd } F$. To prove the second innequality, it is enough to show that if $j_e^*(F)$ is projective, then pd $F \leq \dim C_m$. For $(x, V) \in R$, let $S_{x,V}^e$ be a simple $k[C_e]$ -module whose value at x is V. Then $\text{Ext}^q(F, j_{e*}(S_{x,V}^e)) \cong$ $\text{Ext}^q(j_e^*(F), S_{x,V}^e) = 0$ for q > 0. There is an injection $g: S_{x,V} \longrightarrow j_{e*}(S_{x,V}^e)$ and the composition factors of Coker(g) consist of $S_{y,W}$ with $(y, W) \in R$ and $x < _m y$. Using induction on $\dim x \setminus C_m$, we see that $\text{Ext}^q(F, S_{x,V}) = 0$ for $q > \dim x \setminus C_m$. Hence, if $q > \dim C_m$, then $\text{Ext}^q(F, S) = 0$ for any simple module S. Thus pd $F \leq \dim C_m$ as required.

REMARK 4.5. It follows from this lemma and Remark 3.1 that f.dim $k[C] \leq \dim C_e + \dim C_m$.

5. The main theorems

In the rest we assume that a finite category C has the unique epi-mono factorization property and satisfies (3.4).

THEOREM 5.1. The constant k[C]-module k_c has a finite projective dimension.

PROOF. Let x, Q be as in (3.4). One easily sees that the quotient morphism $x \longrightarrow Q \setminus x$ is an admissible epimorphism and that the bijections $C(Q \setminus x, y) \cong C(x, y)^{q}$, for $y \in ob(C)$, restrict to bijections $C_{e}(Q \setminus x, y) \cong$ $C_{e}(x, y)^{q}$. Therefore the category C_{e} also satisfies (3.4). The theorem follows from Proposition 3.6 and Lemma 4.4.

LEMMA 5.2. If F, G are projective k[C]-modules, then $F \otimes G$ has a finite projective dimension.

PROOF. The following fact is easily proved. If $K: C^{\text{op}} \longrightarrow \{\text{finite sets}\}\$ is a functor such that for all x, Q as in (3.4) the maps $K(Q \setminus x) \longrightarrow K(x)^q$ induced by the quotient morphisms $x \longrightarrow Q \setminus x$ are bijections, then the category C/K also satisfies (3.4). This can be applied when K is a product of representable functors.

To prove the lemma, it is enough to show that $pd(k[h_x] \otimes k[h_y]) < \infty$ for any $x, y \in ob(C)$. Put $K = h_x \times h_y \in ob(C^{\wedge})$. By the above observation, we can apply Theorem 5.1 to C/K. Thus the k[C/K]-module $k_{C/K}$ has a finite projective dimension. Let $p: C/K \longrightarrow C$ be the canonical functor. The restriction functor $p^*: k[C]$ - Mod $\longrightarrow k[C/K]$ - Mod has a left adjoint p_1 given by

$$p_!(F)(x) = \bigoplus_{a \in K(x)} F(x, a)$$

for k[C/K]-modules F and $x \in ob(C)$. Since p_1 is exact and preserves projectives, pd $p_1(k_{C/K}) < \infty$. Since $p_1(k_{C/K}) \cong k[K] \cong k[h_x] \otimes k[h_y]$, the conclusion follows.

THEOREM 5.3. The image of the Cartan map $c: K_0(k[C]) \longrightarrow G_0(k[C])$ is a subring.

PROOF. By Theorem 5.1 and Lemma 5.2, Im(c) contains $1=[k_c]$ and is closed under product.

Let us consider the case where C=S(G) for a finite group G. We can describe the ring structure of $K_0(k[C])$ induced by that of $G_0(k[C])$ through the map c. For any finite group H, let P(H) be the free abelian group on the set of isomorphism classes of indecomposable direct summands of permutation k[H]-modules. Tensor product makes P(H) a ring. A finite group H is said to be p-perfect if H has no nontrivial factor p-group. Then there is a ring isomorphism

$$K_0(k[C]) \cong \prod_H P(N_G(H)/H)$$

where H runs over representatives for conjugacy classes of p-perfect subgroups of G.

References

- H. BASS, Finitistic dimension and homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960) 466-488.
- [2] A. GROTHENDIECK and J.-L. VERDIER, Topos, in "Théorie des Topos et Cohomologie Etale des Schémas", Lecture Notes in Math. 269, Springer, Berlin, 1972, pp. 299-519.
- [3] J.-P. SERRE, "Représentations Linéaires des Groupes Finis", Hermann, Paris, 1971.
- [4] T. YOSHIDA, On the Burnside rings of finite groups and finite categories, in "Commutative Algebra and Combinatorics", Advanced Studies in Pure Mathematics 11, Kinokuniya, Tokyo, 1987, pp. 337-353.

Department of Mathematics Hokkaido University Sapporo 060, Japan