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Let T={z€C :|z|=1} be the circle group, and let A be the Lebesgue
measure on 7T normalized so that A(T)=1. Thus the Fourier coefficients
of f€L'(T) are defined by

Flm)= sz-"f<z>d,1<z> ey

The Hardy class H'(T) consists of all f€L'(T) such that f(%)=0 for
all #<0. The classical inequality of Hardy states that

®  Elymi<ci vrerm,
where C, is a positive constant< 7z ; see, e.g., K. Hoffman [2; p. 70] or A.
Zygmund [5; p.286]. On the other hand, Paley’s Gap Theorem
asserts that given a sequence (%)Y of natural numbers with inf {ns+1/%:
k>1}>1, there exists a finite constant C, such that

@  RFaoP<CH  VIEHD.

For a generalization of (2) to connected compact abelian groups, we refer
to W. Rudin [4; p.213]. In the present paper, we shall give some gener-
alizations of these well known results both in the classical setting and the
abstract setting.

Let ¢ be a Borel measurable function on T such that|a|=1 almost
everywhere. Given fEL'l(T), let @*f denote the complex measure on T
defined by

3) fhd<a*f>= f (hoa) fdA

for all bounded Borel functions %z on T. In other words, a*f is the image
measure of fi by e Let HI(T)={f€H'(T):f(0)=0}. Finally recall
that an inner function is an element @ of H'(T) such that |e|=1 almost
everywhere.

THEOREM 1. i Let a, B be two functions in H'(T) such that |a|=1>
18l a. e. and @a(0)B(0)=0. Then
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)
>
n=1

N

ICa* 8™+ fli< Cill £l VfEHI(T),

where C, is any finite constant satisfying(1).

THEOREM 2. Let a, BEH'(T) be as in Theorem 1, and let (nu)Y
be a sequence of natural numbers that satisfies (2) for some C;<co.
Then

Sla*gmmfR<ClflE  VFSHI(T.

Example 5 (iii) given below includes a precise calculation of the mea-
sure a*g for Mobius transformations ¢ and g L'(T). In order to prove
the above two results, let G be a locally compact (Hausdorff) space, and
let M(G) be the Banach space of all bounded regular Borel measures on
G. Given a bounded Borel function f on G and =M (G), we shall often

write <f, u> for f fdp. For a linear subspace .« of Co(G), define

Z={uEM(G) : {$, w>=0 Vel
For 1<{p<oo, let p'=p/(p—1).

LEMMA 3. Let « be a linear subspace of Co(G), let (yu)T be a
sequence in Co(G), let 1<p<oo, and let (ar)§ be a sequence of real
positive numbers. Then the following conditions are equivalent :

(8) For each p€s/*, 3 al<ru, 1 <aflpl”.
(b) Whenever c, ..., cn are finitely many complex numbers such

that sup {|cel: 1<E<n}<1 if p=1 or kZZ!l arlce|®” <1 if p>1, then

inf{

ProorF: That (a) implies (b) follows from the Hahn-Banach Theo-
rem combined with the Riesz Representation Theorem. The converse is
an easy exercise.

Iglakckyk-l- ¢“m . ¢EM}S(ZO.

PROOF OF THEOREM 1: Choose and fix any @, B€E H'(T) such that
|e|=1>=|8| almost everywhere and «(0)3(0)=0. Then

@ (a*B*)/=0  VhEN and FEHID),
In fact, nEN implies «"f<=Hs (T), so

(a*E)A(n)=f2”d(a*[7)=fc‘f",§d/1
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:( f: a",é’dA)_=0.

Therefore (a*B)*f=0 for each fEH}(T). Applying this result to g%
we obtain (4).

Now let ar=1/k for k=1, and let ¢, ..., ¢, be finitely many complex
numbers with sup {|cx|:1<k<#un}<1. Notice that {¢€EM(T) : t(n)=0
VneN}={fA:f€H'(T)} by the F. and M. Riesz Theorem. There-
fore Lemma 3 (with p=1) combined with (1) yields complex numbers
b1, ..., bm such that

) kélakaZk+ i‘ib,ij <C VzeT,

where C is any preassigned finite constant>C,. Define g L*(T) by set-
ting

(6) g:kéldka,Bk'Fjébjﬁ_j.

Notice that (5) holds for all z& C with |z|<1 by the maximum modulus
principle for harmonic functions. Since |8|<1 (g, e.), it follows from (6)
that |g|<C. Therefore f€ H}(T) implies

3 aucn(a* B

| B aca s+ Eo@ B by @

=|(a*)+f| Dby (6
< (a*|lgD)*|fI< Cla*D)*|f].

Since this holds for all c,..., cxEC with sup {|cs|: 1<Ek<#u}<]1, it fol-
lows that

D RNal@BOf<CrDf|  VFEHID.

Upon integrating both sides of (7) over T and noting that ¢*1 is a proba-
bility measure, we obtain 2%-; axl|(a*B*)*f|: < C|f|, for each fEH(T).
Since €N and C>(C, were arbitrary, this completes the proof of Theo-
rem 1.

The proof of is quite similar to the above proof. We
leave the details to the reader.

REMARK 4: Suppose that A(0)=0. Then (4) holds for all fe&
H'(T). Consequently Hi(T) in Theorems 1 and 2 may be replaced by
H'(T) in this case.
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EXAMPLES 5. (i) Let @ be a nonconstant inner function on 7T with
c=a(0), so that |¢|<1. Let P. denote the Poisson kernel at c:

1+cz
1—

8 P.(z2)=Re —1+2ReZc VzeT.

Then we have
© f(hoa)d/l=/hP£‘ QA VhELN),

where P {(2)=P.(z™") for 2T (cf.R.B. Burckel [1; p.134]). Conse-
quntly o*1=P¢A

To prove this, first suppose that % is a trigonometric polynomial on
T:h(2)=2k--1" arz®. Then

f(hw)a’/l: 3 o [a*d
kh=—n
=ao+ é (akck-l—a_kék):/h P} dA.
k=1

Thus (9) holds for all trigonometric polynomials % and hence for all z2&
C(T). Therefore it is an easy exercise to show that (9) holds for all
[0, oo]-valued Borel functions % and hence for all 2 L'(T).

(ii) Let @, ¢ be as in Part (i), and let 3 H'(T) be such that|s|<1
a.e. and ¢8(0)=0. Then our proof of Theorem 1 combined with (9)
shows that

(10) g?l(af*ﬁ“)*flé C:PEsf] VFEHIT).
Similarly we have
Gy gm*m*fvg CHPIfD? YV FEHKT)

under the hypotheses of [Theorem 2. In case 3(0)=0, both (10) and (11)
hold for all fe H'(T).

(iii) Now we consider a special case. Fix any c€C with |c|<],
and let @=a. denote the Mobius transformation defined by

_c—=z
() =72 VzeT.

Thus ¢ is an inner function with @(0)=c and aca is nothing but the iden-
tity mapping on 7.
If g=L'(T), then we have a*g=(gea) P! A; in fact, h€ C(T) implies
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Jraca*g)= [how gdi
~ [(hea)(goac @ dr= J e
by (9). Therefore (10) and (11) become respectively

A0 BB PO <GPS VIEHIT),

k=1

and
A R(Be™POfP<CHPDT  VSEHIT).

Now let G, X, Y be three locally compact spaces, and let #: GXX—
Y be a Borel measurable mapping. Given veM(G) and peM(X), let
y*,u denote the complex Borel measure on Y defined by

12) ﬁha’(u*uﬂ)=ffh(u(t,x))du(t)du(x)

for all bounded Borel functions % on Y. It is readily seen that if # is
continuous, then v#*,u is a regular measure.

To give an example, let @: C—C be a Borel function. Define u«: C*
—C by setting u(z, w)=a(2)w for z, w=C. Regard C as a topological
semigroup with respect to the usual multiplication of complex numbers.
If v, p.€M(C) and % is a bounded Borel function on C, then

fhd(u*uu)=ffh(a(z)w)du(z)du(w)
:/fh(zw)d(a/*u) (2)du(w)
— [ hala*v)ul,

where (a*v)*u denotes the convolution product of e*v and g on the
topological semigroup C. Consequently we have y*,u=(a*v)*p.

THEOREM 6 (NOTATION AS BEFORE). Suppose that omne of the
conditions in Lemma 3 obtains, vEM(G) and pEM(X). If (¢v)*,u=0
for all =7, then

3 G sl < al Pl

PrRoOOF: Given t€G, let p: denote complex Borel measure on Y
defined by
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a3 <k ut>=/yhdﬂt=[(h<u<t, ) du(x)

for all bounded Borel functions %2 on Y. Then we have
(14) |l <leel  ViEG

and

(15) f<h, ut>¢(t)du(t)=/hd(¢u*uﬂ)

for all % as above and all ¢ L'(v). Thus the assumption that (¢y)*,u=
0 for all p=.o can be expressed as

16)  [<hpd¢Dd (D=0 Vg

whenever % is a bounded Borel function on Y.

Now choose and fix any finite constant C>a, and any natural number
n. Suppose z=(zx){€C" and sup {|z.|: 1<k<u}<1 (if p=1) or
2i-1axl2:/” <1 (f p>1). Then condition (b) of Lemma 3 yields ¢=.o
such that

an H P ¢'L< C.

Notice that this inequality is valid for all z’ in a sufficiently small neigh-
borhood of z in C”. Therefore we can find finitely many simple Borel
functions ¢, ..., gn on C" and ¢, ..., pnE.% such that

(18) HléldekYk +ﬁ'igi<2) b;

<C.

for all z& C” as above.
In order to confirm the desired inequality, let /%, ..., 4. be any bound-

ed Borel functions on Y such that sup{llhkllw: 1gksn}s1 (f p=1) or
2 k=1 dk"hk”gﬁl (if p>1). Define

H:(yp=g:((y),..., ha(y)) YyEY and j=1, 2,..., m.

Then each H; is a simple Borel function on Y and (18) ensures that

a9 |Ban®het Ea0OH,

<C Ytedi.

It follows that
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o[l =| San [ha, won(Oavd| by a5)
:‘_/(;<élak7k<t>hk +j=§l¢j(t>Hj, ﬂt)dl/(t)‘
by (16

<Clgl-Ivl by (19) and (14).

Since this holds for all 4,..., k. as above, we obtain 31 @l (7sv)*uul?
<C?|vlP-llel®. As mEN and C>a, are arbitrary, this completes the
proof.

REMARK 7: has a purely measure-theoretical version.
Since this version is somewhat complicated, we shall merely give an
example instead of stating it.

Let X be a measurable space, and let ¢ be a complex measure on R X
X, where R is equipped with its Borel field. Define the “maximal” func-
tion M of u by setting

M@ =swl[ e *hCdutt, )|  VseR,

where the supremum is taken over all measurable functions % on X with
12le<1. If M(s)=0 for all s<0, then

ey [T M©ds<Cl,

where C, is any finite constant satisfying (1).

First of all, note that M is a continuous function on R. To prove
(20), pick any >0 and any finitely many measurable functions 4., ..., 4»
on X such that||4.|~<1 for each .. Then the proof of com-
bined with (5) shows that there exist finitely many simple functions
H,, ..., H, on X such that

D ‘élk‘l zkhk(x)+éz‘jHj(x)l< Ci+e Viz,x)ETXX.

Upon replacing z by ¢™* in (21) and integrating both sides of the result-
ing inequality with respect to d|g|, we get

|BE e G dutt, o)< (Gt ol
since M (s)=0 for all s<0. Therefore 221k *M (k) <(Ci+&)|y| ; hence

22) g(ek)-lM(ek)es<c1+e>||#u.
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Since M is continuous, (20) is obtained from (22) by applying Fatou’s
Lemma.

Finally observe that if X is a locally compact abelian group with dual
X, if te M(RXX), and if

(23) fe"'“y(x)a’u(t, x)=0 Vs<0 and yE X,

then M (s)=0 for all s <0.
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