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On bicommutators of modules over
\bm{H} -separable extension rings II

Kozo SUGANO
(Received September 5, 1990)

This paper is a continuation of the author’s previous paper [13], and
is devoted to its application. Therefore we will use the same notation as
[13]. In \S 1 we will give some supplements to [13], and the results of \S 1
and [13] will be applied to Azumaya algebras in \S 2. Azumaya algebra is
the model of the H-separable extension. In general, when we dealt with
modules over Azumaya algebras, they were almost limited to be finitely
generated projective. Here we will deal with general modules and show
that, if A is an Azumaya R-algebra, then for any left A-module MA^{*}=

Bic (_{A}M) is an Azumaya R^{*}-algebra, with R^{*}=Bic(_{R}M) commutative,
and we have R^{*}\cap\iota(A)=\iota(R) , A^{*}\cong A\otimes_{R}R^{*} , where \iota is the canonical map
of A to A^{*} (Theorem 2). Furthermore if M is A-faithful, there exist
mutually inverse 1-1-correspondences between the class \mathscr{L} of intermediate
rings between R and R^{*} and the class \mathscr{T} of intermediate rings between A
and A^{*} . given by Tarrow A T. and Sarrow S\cap R^{*} . for T\epsilon \mathscr{T} and S\epsilon \mathscr{L}. In addi-
tion, every ring S belonging to \mathscr{L} is an Azumaya (S\cap R^{*})-algebra (Prop-
osition 3). In \S 3 we deal with the H-separable extension of strongly
primitive rings. Strongly primitive ring is the one which has a faithful
minimal left, or equivalently right, ideal. Suppose that A and B are
strongly primitive rings, and let M and rn be faithful minimal left ideals of
A and B, respectively. If A is left B-finitely generated projective and H
-separable over B, then B^{*}=Bic(_{B}M)\cong Bic(_{B}\mathfrak{m}) , and A^{*}=Bic(_{A}M) is an
H-separable extension of B^{*} (See Theorom 3. 3 [12]). In this paper we
will show under the same condition as above that A^{*}=\overline{A}B^{*}=B^{*}\overline{A},
B^{*}\cap\overline{A}=\overline{B} , where \overline{A}=\iota(A) and \overline{B}=\iota(B) , and for any strongly primitive
subring S of A such that B\subset S and A is left S-projective, A^{*} is H-sepa-
rable over S^{*} . and S^{*}=Bic(_{s}M) is also a full linear ring (Theorem 4).

1. In this section A will always be a ring with the identity 1 and B a
subring of A containing 1. C is the center of A and D=V_{A}(B) , the
centralizer of B in A. For a left A-module M we write A^{*} Bic(AM)
the bicommutator of AM, B^{*}=Bic(_{B}M) , D^{*}=V_{A*}(B^{*}) and C^{*}=V_{A*}(A^{*}) ,
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the center of A^{*} . It is easily seen that D^{*}=A^{*B}=V_{A*}(\overline{B}) and C^{*}=A^{*A}=

V_{A*}(\overline{A})= , where \overline{B} and \overline{A} are the images of B and A, respectively, by
the canonical map \iota of A to A^{*} Now suppose that A is an H-separable
extension of B . Then we have D^{*}\cong D\otimes_{c}C^{*} and B^{*}=V_{A*}(V_{A*}(B^{*})) (See

Proposition 1 [13] ) . If furthermore A is left (resp. right) B-finitely
generated projective, then A^{*} is an H-separable extension of B^{*} . and A^{*}

is left (resp. right) B^{*}-finitely generated projective (See Theorem 1 [13]
and Remark 2). Therefore it is natural to assume that A is an H-sepa-
rable extension of B, and M is a left A-module such that A^{*} is an H
-separable extension of B^{*} . Assume furthermore that M is A-faithful.
Under these conditions we have

Hom (_{C*}D_{ C*}^{*}.A^{*})\cong Hom (_{C*}D\otimes {}_{c}C_{ C*}^{*},A^{*})

Hom(cD,{}_{c}Hom(_{C*}C_{ C*}^{*},A^{*}))\cong Hom(_{C}D_{ C},A^{*})

The composition \phi of the above isomorphisms is given by \phi(f)(d)=

f(\iota(d)) for each f\in Hom(_{C*}D_{ C*}^{*}.A^{*}) and d\in D . Then we have a
commutative diagram

\eta

A\otimes_{B}A Hom (_{C}D_{ C},A)

\iota\otimes\iota
\downarrow

\downarrow l*

\eta^{*} \phi

A^{*}\otimes_{B*}A^{*} – Hom (_{C*}D_{ C*}^{*},A^{*}) – Hom(_{C}D_{ C},A^{*})

where \iota_{*}=Hom(D, \iota) , \eta(a\otimes b)(d)=adb for a , b\in A and d\in D , and \eta^{*}

is defined in the same way as \eta . Since \eta and \eta^{*} are isomorphisms and \iota_{*}

is a monomorphism, \iota\otimes\iota is a monomorphism. Then we have

[A\otimes_{B}A]^{A}\cong[Hom(_{C}D, cA)]^{A}\subset[Hom(_{C}D_{ C},A^{*})]^{A}=Hom(_{C}D_{ C},A^{*A})

Hom(cD_{ C},A^{*A*})=[Hom(_{C}D_{ C},A^{*})]^{A*}\cong[A^{*}\otimes_{B*}A^{*}]^{A*}

Therefore, we can regard A\otimes_{B}A and [A\otimes_{B}A]^{A} as submodules of
A^{*}\otimes_{B*}A^{*} and [A^{*}\otimes_{B*}A^{*}]^{A*}- respectively.

A is an H-separable extension of B if and only if 1\otimes 1\epsilon[A\otimes_{B}A]^{A}D

by Proposition 1 [9]. When we write 1\otimes 1=\Sigma x_{ij}\otimes y_{ij}d_{i} with d_{i} \in D ,
\Sigma x_{ij}\otimes y_{ij}\in[A\otimes_{B}A]^{A} , we call \{\Sigma x_{ij}\otimes y_{ij}, d_{i}\} an H-system of A over B
(See [5]).

Hereafter we will always denote \iota(a) by \overline{a} for each a \epsilon A .

LEMMA 1. Assume that A is an H-separable extension of B, and M
a left A- module such that A^{*} is an H-separable extension of B^{*} . and tet
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\{\Sigma x_{ij}\otimes y_{ij}, d_{i}\} be an H-system of A over B. Then we have
(1) \{\Sigma\overline{x}_{ij}\otimes\overline{y}_{ij},\overline{d}_{i}\} is an H-system of A^{*} over B^{*} .
(2) The map \overline{\iota} of A^{*}\otimes_{B}A to A^{*}\otimes_{B*}A^{*} such that \iota(a^{*}\otimes b)=a^{*}\otimes\overline{b}

for a^{*}\epsilon A^{*} and b\in A is an isomorphism. Similarly we have A\otimes_{B}A^{*}\cong

A^{*}\otimes_{B*}A^{*} .

PROOF. (1). Since \Sigma\overline{x}_{ij}\otimes\overline{y}_{ij} \in[\overline{A}\otimes-A\urcorner^{\overline{A}}\subset[A^{*}\otimes_{B*}A^{*}]^{A*} by the
above discussion and \overline{d}_{i}\in\overline{D}\subset D^{*} . (1) is obvious. (2). For any a^{*} b^{*}\epsilon

A^{*} we have
\tilde{\iota}(\Sigma a^{*}\overline{d}_{i}b^{*}\overline{x}_{ij}\otimes y_{ij})=\Sigma a^{*}\overline{d}_{i}b^{*}\Sigma\overline{x}_{ij}\otimes\overline{y}_{ij}

– a^{*}\Sigma\overline{d}_{i}\overline{x}_{ij}\otimes\overline{y}_{ij}b^{*}=a^{*}(1\otimes 1)b^{*}=a^{*}\otimes b^{*}

which means that \tilde{\iota} is surjective. Next suppose that \Sigma a_{k}^{*}\otimes\overline{b}_{k}=0 in
A^{*}\otimes_{B*}A^{*} with a_{k}^{*}\in A^{*} and b_{k}\in A . Then \eta^{*}(\Sigma a_{k}^{*}\otimes\overline{b}_{k}) ( \overline{d}_{i})=

\Sigma a_{k}^{*}\overline{d}_{i}\overline{b}_{k}=0 for each i , and we have in A^{*}\otimes_{B}A that
\Sigma a_{k}^{*}\otimes b_{k}=\Sigma a_{k}^{*}\overline{d}_{i}\overline{x}_{ij}\otimes y_{ij}b_{k}=\Sigma a_{k}^{*}\overline{d}_{i}\overline{b}_{k}\overline{x}_{ij}\otimes y_{ij}=0

which means that \tilde{\iota} is a monorphism. Since H-system is left and right
symmetry, we have also that A\otimes_{B}A^{*}\cong A^{*}\otimes B*A^{*}

PROPOSITION 1. With the same notation as Lemma 1 assume further-
more that B^{*} is a right (resp. left) B^{*}-direcl summand of A^{*} Then we
have A^{*}=B^{*}\overline{A}\cong B^{*}\otimes_{B}A (resp, A^{*}=\overline{A}B^{*}\cong A\otimes_{B}B^{*} ).

PROOF. By the assumption there exists a right B^{*}-projection p of
A^{*} to B^{*} . Then, since \{\Sigma\overline{x}_{ij}\otimes\overline{y}_{j},\overline{d}_{i}\} is an H-system of A^{*} over B^{*} by
Lemma 1, we have x^{*}=\Sigma p(\overline{d}_{i}x^{*}\overline{x}_{ij})\overline{y}_{ij}\in B^{*}\overline{A} for each x^{*}\epsilon A^{*} (See

page 53 [10] ) , which implies that A^{*}=B^{*}\overline{A}. On the other hand we have
the isomorphism \tilde{\iota}:A^{*}\otimes_{B}Aarrow A^{*}\otimes_{B*}A^{*} by Lemma 1. Since B^{*} is a right
B^{*}-direct summand of A^{*} . we h a ve B^{*}\otimes_{B}A\subset A^{*}\otimes_{B}A . T hen
\tilde{\iota}(B^{*}\otimes_{B}A)= { 1\otimes\Sigma b_{i}^{*}a_{i} : b_{i}^{*}\in B^{*} and a_{i}\in A}. But the map \mu of A^{*} to
A^{*}\otimes_{B*}A^{*} such that \mu(a^{*})=1\otimes a^{*} for any a^{*}\epsilon A^{*} is a B^{*}-split monomor-
phism. Hence we have \tilde{\iota}(B^{*}\otimes_{B}A)=\mu(B^{*}\overline{A}) , which concludes B^{*}\otimes_{B}A\cong

B^{*}\overline{A}.
We are now ready to have our main theorem

THEOREM 1. Let A be an H-separable extension of B such that A is
left or right B -finitely generated projective. Then if B is a left (resp.
right) B -direct summand of A, we have A^{*}=\overline{A}B^{*}\cong A\otimes_{B}B^{*} (resp. A^{*}=

B^{*}\overline{A}\cong B^{*}\otimes_{B}A) and B^{*}\cap\overline{A}=\overline{B}.

PROOF. By Theorem 1 [13] A^{*} is an H-separable extension of B^{*} .
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and B^{*} is a left (resp. right) B^{*}-direct summand of A^{*} . Hence we have
the first assertion of the theorem. By Proposition 1. 5 [7] and Proposi-
tion 3. 4 [10] we have that \overline{A} is an H-separable extension of \overline{B} such that
\overline{B} is a left (resp. right) \overline{B}-direct summand of \overline{A}. Then by Proposition
1. 2 [7] and Proposition 1 [13] we have \overline{B}=V_{\overline{A}}(V_{\overline{A}}(\overline{B}))=B^{*}\cap\overline{A}.

AM is called to be balanced if the canonical map \iota is surjective. As
an immediate consequence of Theorem 1 we have

COROLLARY 1. Under the same condition as Theorem 1, we have
that AM is balanced if and only if BM is balanced

PROOF. If BM is balanced, we have B^{*}=\overline{B} and A^{*}=\overline{A}B^{*}=\overline{A}. If
conversely \overline{A}=A^{*}(\supset B^{*}) , we have \overline{B}=V_{\overline{A}}(V_{\overline{A}}(\overline{B}))=B^{*}\cap\overline{A}=B^{*} for the
same reason as the second part of Theorem 1.

Another application of Theorem 1 [13] is

PROPOSITION 2. Let A be an H-separable extension of B and Ma
left A-module such that A^{*} is an H-separable extension of B^{*}- Then for
any subring P of A such that P is a separable extension of B and a P-P
-direct summand of A, P^{*}=Bic(_{P}M) is a separable extension of B^{*} and a
P^{*}-P^{*}- direct summand of A^{*}

PROOF. By Theorem 1 [6] E=V_{A}(P) is a separable C-algebra,
while A is an H-separable extension of P by Proposition 2. 2 [8]. There-
fore by Theorem 1 [13] we have that P^{*}=V_{A^{*}}(V_{A^{*}}(P^{*})) and
V_{A*}(P^{*}))\cong E\otimes_{C}C^{*} . But E\otimes_{C}C^{*} is a separable C^{*}-subalgebra of

D\otimes_{c}C^{*}(\cong D^{*}) . Hence again by Theorom 1 [6] P^{*} is a separable exten-
sion of B^{*} and a P^{*}-P^{*}-direct summand of A^{*} .

REMARK 1. In the disccuion above Lemma 1 let us drop the condi-
tion that A^{*} is an H-separable extension of B^{*} But \eta^{*} always exists,
and \phi is an isomorphism. Therefore \iota\otimes\iota : A\otimes_{B}Aarrow A^{*}\otimes_{B*}A^{*} is a
monomorphism. If \eta^{*} is a monomorphism, then [A\otimes_{B}A]^{A}\subset[A^{*}\otimes_{B*}A^{*}]^{A*} ,

and A^{*} is an H-separable extension of B^{*} .

REMARK 2. Let S be a ring and T a subring of S , and assume that
there exists a ring homomorphism \chi of A into S such that x (B)\subset T If
furthermore C’=V_{S}(S)=V_{S}(x(A)) and V_{s}(T)=V_{S}(x(B)) , then all asser-
tions in this section exept Theorem 1 and Corollary 1 are valid when we
replace A^{*} and B^{*} with S and T respectively. Because, all of them
depend only on the facts that V_{A*}(\overline{A})=C^{*} and D^{*}=V_{A*}(\overline{B}) . If we
assume furthermore that T=V_{S}(V_{S}(T)) , then also Theorem 1 [13] and
Theorem 1 hold for S and T
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2. In this section we will apply the results in [13] or \S 1 of this paper
to the theory on Azumaya algebra. Let R be a commutative ring. An
Azumaya R-algebra A is always an H-separable extension of R and is
R-finitely generated projective, and R is an R-direct summand of A.
Conversely if an R-algebra A is an H-separable extension of R, and R is
an R-direct summand of A, then A is an Azumaya R-algebra (See Corol-
lary 1. 1 [7] ) . Therefore applying Theorem 1 [13] and Theorem 1 we
have

THEOREM 2. Let A be an Azumaya R-algebra and M a left A-mod-
ule, and write A^{*}=Bic(_{A}M) and Bic(RM) . Then we have

(1) A^{*} is an Azumaya R^{*}-algebra with A^{*}\cong A\otimes_{R}R^{*}

(2) AM has the double centralizer property if and only if RM does.
(3) For any separable R-subalgebra B of A, B^{*}=Bic(_{B}M) is a sepa-

rable R^{*}- subalgebra of A_{r}^{*}

PROOF. If B is a separable R-subalgebra of an Azumaya R-algebra
A, then B is a B-B-direct summand of A by Proposition 1. 5 [8].
Therefore we need only to prove the following

LEMMA 2. Let R be a commutative ring M an R-module and \Lambda=

End(_{R}M) . Then R^{*}=Bic(_{R}M) coinsides with C(\Lambda) , the center of \Lambda .

PROOF. Since R is commutative, it is obvious that R^{*}\subset\Lambda . Further-
more we have V_{\Lambda}(R^{*})=End(_{R*}M)=End(_{R}M)=\Lambda , which means R^{*}\subset

C(\Lambda) . That C(\Lambda)\subset R^{*} is clear, since R^{*}=End(_{\Lambda}M) .

COROLLARY 2. With the same notation as Lemma 2, for any
Azumaya R^{*}- subalgebra A of \Lambda we have that A=V_{\Lambda}(V_{\Lambda}(A)) , i. e. , A=
A^{*} .

PROOF. Note that R^{*}=Bic(_{R}M) , and apply Theorem 2 (2).

PROPOSITION 3. With the same notation as Theorem 2 assume
furthermore that AM is faithful. Denote the class of subrings of R^{*}

containing R by \mathscr{T}

, and the class of subrings of A^{*} containing A by \mathscr{L} .
Each T in \mathscr{L} is an Azumaya (S\cap R^{*})-algabra, and there exist mutually
inverse 1-1-correspondences between \mathscr{T} and \mathscr{L} given by Tarrow AT and Sarrow

S\cap R^{*} . for T\in \mathscr{F}and S\in \mathscr{L}

PROOF. Let S\in \mathscr{L}. S is also an R-algebra. Hence we have S=
A FsG4) \cong A\otimes_{R}V_{S}(A) . But V_{S}(A)=S\cap V_{A*}(A)=S\cap R^{*}\epsilon \mathscr{T} Then S is
an Azumaya (S\cap R^{*})- algebra, and we have S=A(S\cap R^{*}) . Next let T
\epsilon

\mathscr{T} We have A T\cong A\otimes_{R}T . since A\otimes_{R}T\subset A\otimes_{R}R^{*}\cong AR^{*}- Thus AS is
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an Azumaya S-algebra. Then by the same urgument as above we see
that AS\cap R^{*} is the center of AS, manely, AS\cap R^{*}=S .

For any ring A and left A-modules M and N we write M–N, in case
M and N are isomorphic to direct summands of some finite direct sums of
copies of N and M, respectively, as A-module. The next lemma is an
immediate consequence of Proposition 1. 5 [4] and Morita Theorem. But
we will give here a proof by the direct computations.

LEMMA 3. Let A be a ring and M and N left A-modules such that
M–N. Let \Lambda=End(_{A}M) and \Omega=End(_{A}N) . Then we have C(\Lambda)\cong

C(\Omega) .

PROOF. By the assumption there exist f_{i} , k_{j}\in Hom ( M, AN) and g_{i} ,
h_{j}\in Hom ( N, AM) such that \Sigma g_{i}f_{i}=1_{M} and \Sigma k_{j}h_{j}=1_{N} . Then for any f\epsilon

C(\Lambda) and g\in\Omega we have \Sigma k_{j}fh_{j}\in\Omega and

\Sigma k_{j}fh_{j}g=\Sigma k_{j}fh_{j}g\Sigma k_{m}h_{m}=\Sigma k_{j}h_{j}gk_{m}fh_{m}=g\Sigma k_{m}fh_{m}

since hjgkm \epsilon\Lambda and \Sigma k_{j}h_{j}=1_{N} . Hence we have \Sigma k_{j}fh_{j}\in C(\Omega) , and we
can define the map \Phi of C(\Lambda) to C(\Omega) by \Phi(f)=\Sigma k_{j}fh_{j} for f\in C(\Lambda) . It
is easily seen that \Phi is a ring homorphism. Similarly we can define \Psi :
C(\Omega)arrow C(\Lambda) by \Psi(g)=\Sigma g_{i}gf_{i} for g\epsilon C(\Omega) . We can easily see that \Psi\Phi

and \Phi\Psi are identity maps on C(\Lambda) and C(\Omega) , respectively. Thus \Phi and
\Psi are isomorphisms.

Now we have our main theorem of this section.

THEOREM 4. Let A be an Azumaya R-algebra and M and N left A
-modules such that M-N as R-module. Then we have Bic(_{A}M)\cong

Bic(_{A}N) .

PROOF. Since M–N as R-module, we have C(\Lambda)\cong C(\Omega) , where
\Lambda=End(_{R}M) and \Omega=End(_{R}N) . Then by Theorem 2 and Lemma 2 we
have

Bic (_{A}M)\cong A\otimes_{R} Bic (_{R}M)\cong A\otimes_{R}C(\Lambda)

\cong A\otimes_{R}C(\Omega)\cong A\otimes_{R}Bic(_{R}N) End (AN).

3. In this section we will apply the results of \S 1 or [13] to the theory
on strongly primitive rings. Again we will use the same notation as \S 1,
and consider the same situation as Theorem 3. 3 [12].

Let A and B be strongly primitive rings and M and rn faithful mini-
mal left ideals of A and B, respectively. Suppose that A is an H-sepa-
rable extension of B such that A is left B-finitely generated projective.
Then M is isomorphic to a finite direct sum of copis of \mathfrak{m} as left B-mod-
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ule , and B^{*}\cong Bic(_{B}\mathfrak{m}) by Theorem 3. 3 [12]. In addition Theorem 1 [13]
shows that A^{*} is an H-separable extension of B^{*} . Furthermore we have

THEOREM 4. Let A, B, M and \mathfrak{m} be as above. Suppose that T is a
strongly primitive subring of A such that B\subset T and A is left T -finitely
generated projective. Then we have

(1) A^{*}=AB^{*}\cong A\otimes_{B}B^{*} . and A^{*}=B^{*}A\cong B^{*}\otimes_{B}A . In addition B’=
V_{A}( V_{A}(B)) is strogly primitive.

(2) M is isomorphic to a finite direct sum of copies of \mathfrak{n} as left T
-module, and T^{*}=Bic(_{T}M) is isomorphic to Bic(_{T}\mathfrak{n}) , where \mathfrak{n} is a faithful
minimal left ideal of T.

(3) A^{*} is an H-separable extension of T^{*} such that V_{A*}(V_{A*}(T^{*}))=

T^{*} . and V_{A*}(T^{*}) is finite dimensional simple C^{*}-algebra.

PROOF. Since B\subset V_{A}( V_{A}(B))=B^{*}\cap A\subset B^{*} . B’ is strongly primitive.
As is remarked above, we have B^{*}\cong End(_{\Delta}\mathfrak{m}) , where \Delta=End(_{B}\mathfrak{m}) is a
division ring. Therefore A^{*} is an H-separable extension of a left full
linear ring B^{*} . and A^{*} is left, as well as right, B^{*}-finitely generated free
by Theorem 4 [11]. Then A^{*} is a left, as well as right, B^{*}-generator,
which implies that B^{*} is a left, as well as right, B^{*}-direct summand of
A^{*} by B. M_{\dot{\mathfrak{U}}}11er’ s Lemma. Then we can apply Proposition 1 to have (1).
Next, let T be a subring of A which satisfies the condition of the theorem,
and denote the socles of A, T and B by S , \tilde{3} and 3, respectively. By
Lemma 3. 1 and Theorem 3. 2 [12] we have a=B\cap S\subset T\cap S=\tilde{3} , and S=
aA\subset\tilde{3}A\subset S . Thus we have M\subset S=\tilde{3}A=\Sigma\oplus \mathfrak{n} , while M is T-finitely
generated. Then we have (2) (See Remark \S 3 [12]). Let furthermore
S^{*} . \tilde{a}^{*} and a^{*} be the socles of A^{*} , T^{*} and B^{*} . respectively. Then we
have S^{*}=SAC^{*},\tilde{z}^{*}=\tilde{a}T^{*} and 3^{*}=3B^{*} by Corollary 2. 1 [12]. Then S^{*}=

aAA^{*}=aA^{*}\subset\tilde{z}T^{*}A^{*}=\tilde{a}A^{*}* , which implies that V_{A*}(T^{*}) is a finite dimen-
sional simple C^{*}-algebra and T^{*}=V_{A*}(V_{A*}(T^{*})) by Theorem 36.4 [2].
This implies that A^{*} is an H-separable extesion of T^{*} by Thetrem 4 [11].
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