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1. Introduction

Throughout this paper, G denotes always a finite group, Z a ring of
rational integers, @ a rational field and C a complex field. Let {xi(a
principal character),:*,x»} be the set of all irreducible C-characters of G.
We denote this set by Irr(G). Let us set

R(G) :{lé dz‘XilClz‘EZ}

That is, R(G) is the set of generalized characters of G. It is well
known that R(G) forms a commutative ring with an identity element x:.
We call R(G) a character ring of G.

Let ¢ be a primitive |G|-th root of unity and let K=Q({) be the smal-
lest subfield of C containing @ and ¢{. We denote by A the ring of alge-
braic integers in K. In the paper of [9], we have proved the following
theorem and corollary.

THEOREM 1.1. Any unit of finite ovder in AQ: R(G) has the form
ex for some linear charvacter x of G and some unit € in A.

COROLLARY 1.2. Awny unit of finite ovder in R(G) has the form *yx
for some linear chavacter x of G.

We denote by U(R(G)) a unit group of R(G). In section 2, we shall
prove that U(R(G)) is finitely generated. Hence a factor group
URG)/U(R(G)) is a free abelian group of finite rank, where
Us(R(G)) is the group which consists of units of finite order in R(G)).

In this paper, we intend to compute the rank of U(R(CA»)/
U;(R(A»)), where A, is an alternating group on # symbols.

2. Preliminaries
We first show that U(R(G)) is finitely generated.
THEOREM 2.1. For a finite group G, U(R(G)) is finitely generated.
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PROOF. Let ¢ be a primitive |G|-th root of unity, and let K=@Q(&)
be the smallest subfield of C containing @ and . Let us denote by A the
ring of algebraic integers in K. Let €;,-+,6, be a full set of conjugacy
classes in G and let c1=1,"*-,c» be the representatives of &,,---,&» respec-
tively. Let « be an element of U(R(G)).

Then there exists #’' € R(G) such that

uu'=yx (a principal character).

Hence u(c)u'(c)=1 (i=1,---,h). If x is an irreducible C-character
of G, then x(c)EA (i=1,h). Therefore u(c)<€A, u'(cHoeA (=1,
. k). That is, #(c:) and wu'(c;) are units in A (7=1,--,4). We denote
by UCA) a unit group of A.

Now we define a mapping ¢ from U(R(G)) to a direct product of %
copies of UCA);

¢: URGHDU— (ulcr),ulcn))EUCA) X+ X UCA) (h copies)

Then it is clear that ¢ is a homomorphism and injective. Since A is
the ring of algebraic integers in K, U(A) is finitely generated by Dirich-
let's Theorem. Therefore U(A) X---X U(A) is an abelian group which is
finitely generated. As U(R(G)) is isomorphic to a subgroup of U(A) X
X UCA), UR(G®)) is finitely generated. The theorem is proved.

Q.E.D.

There are three irreducible C-characters of As (an alternating group
on three symbols). We denote them by x, xz, xs. Each x; is a linear
character and y:(x)€Q(/—3) for x&As. Hence for any ¢ER(As), ¢(x)

cQ(/—3) for x€As. Since U(Q—=3))={£1, tp, £0* where o=
(—1++v=3)/2, by the proof of Teorem 2.1, we can see that any unit in
R(A,) is of finite order. Therefore we have U(R(A3)=U;(R(As))=
{£x, £x2, T3}, by [Corollary 1.2.

A, has four irreducible C-characters yi, Xz X3 xs such that x(1)=
22(1D)=x(1)=1 and x(1)=3. For any xEA,, 2 (0)EQW-3) (=123,
4). Analogously we have U(R(AD)=U;(R(AD)={%x1, T x, x5}

For a natural number n=5, A, is a simple group. And so A,=
D(A,) (a commutator subgroup of A.). Hence A, has only one linear
character x (i.e. a principal character). By [Corollary 1.2, we have
Us;(RCAD) ={£x}.

From now on, we may assume #=5, when we consider about
U(R(Ay), and we use a notation “ U(R(A,))/{£1}” in place of
“UR(AD)/Us;(R(AD)” for simplicity, by identifying {1} with {£x}.
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Now we state the irreducible C-characters of an alternating group
An. The irreducible characters of the symmetric groups which are not
self-associated, are also irreducible characters of the alternating groups.

Every self-associated character of the symmetric group S» is the sum
of two irreducible characters of the alternating group A.. These two ir-
reducible characters of A, take exactly half the values of the character of
S», except for the conjugacy class for which the value of the character of
S» is £1. This conjugacy class splits into two for A,, and it is for these
conjugacy classes alone that the two irreducible characters of A, differ,
the characteristic values in the two conjugacy classes being interchanged
for the second character.

Again we repeat these circumstances explicitly. (See p222 of [1D
Let [m, -, m,], mu+---+m,=n be a self-associated frame. In the follow-
ing way, we can assign to [#,-*,m,] a conjugacy class of S, with cycles
of odd lengths ¢1> g2 > qr, ¢1+q2+--+qr=n; let ¢. be the length of the
“hook ” consisting of the first row and the first column; ¢:=2wnu—1. If
this hook is deleted, another self-associated frame remains, from which
we determine ¢. in the same way ; ¢:=2(m.—1)—1=2m,—3. We continue
thus until there is nothing left.

Here we use the following notation ;

(q1, g2,*,q») =a conjugacy class of S, with cycles of lengths ¢i1>¢.>-->
qr, 1+ q2++ +qr.=n.

Then the following two theorems, which play a fundamental role, are
well known (See p 222-223 of [1].

THEOREM 2.2. The character of a self -associated representation of
S» which corresponds to a self -associated frame [my, -, m,]|, nmu+--+m,=
n s

(—1)z0 = (—1)z#~D

in the conjugacy class (qu, gz, **,qr) which is assigned to [m, -, m,] where
b=qiqe""qr ; in all other conjugacy classes it is an even number.

THEOREM 2.3. (Frobenius’'s theorem) Let x be a self-associated
chavacter of Sn» which corresponds to a self -associated frame [ma, -+, m r],
mit-+mr=n. Then we have

(1) If we consider x as a charvacter of A, x is the sum of two ir-

reducible charvacters y1, 2 of An, x=x1tx

(i) If (qu, g, ",qr) is a conjugacy class which is assigned to [mi,-,

mr), then (qi, g2, **,qr) splits into two conjugacy classes €, € of
An. The values of x1 and x. are
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Ax/pA
2

in the two classes §, €, where /1:(_1)%("-’@:(_1)%@—1) and
p=qiqqr. The values of x and x. ave equal in all other con-

Jugacy classes of An; y= sz%x.

DEFINITION 2.4. For a natural number #n, we define a nonnegative
rational integer ¢(n) as follows;

c(n) =the number of self-associated frames [mu, -, m,], wu+-+m,=

n such that

(i) p is not the square of a number. (.e. Vp&Q)
(ii) p=1 (mod. 4).

Where we assign to [m,::-,m,] a conjugacy class (qi, gz,**,qx) and
P=q1qz2 " qx.

EXAMPLE. We compute c¢(15). There are three self-associated
frames; [8,1,--,1], [5,4,3,2,1], [4,4,4,3]. We can assign to [8,1,-1],
(5,4,3,2,1], [4,4,4,3] conjugacy classes of Sis (15), (9,5,1), (7,5,3)
respectively. And conjugacy classes (15), (9,5,1), (7,5, 3) determine
odd numbers 15, 9X5X1=45 7X5X3=105 respectively. 15Z1 (mod. 4),
45=1 (mod. 4), 105=1 (mod. 4). Therefore we have ¢(15)=2.

In this paper our intention is to show that the rank of U(R(Ax))/
{£1} is equal to c(n). (See [Theorem 4.2.)

3. Construction of unit elements

In this section we construct a unit element of R(A.) which is not of
finite order.

Let [wu,--,m.), mu+-- +m,=n be a self-associated frame and let
(qu, g2,**,qx) be a conjugacy class of S, which is assigned to [ma, -, m-].
We set p=qiq2""*qr. In addition we assume that p=1 (mod.4) and p is
not the square of a number. Hence Q(/p) is the real quadratic field.
Here we state several lemmata in the above situation.

LEMMA 3.1. A conjugacy class (qi, g2,,qx) of S» comsists of |Sal/p
elements.

PROOF. Since (qi, g2, qr) iS a conjugacy class with cycles of
lengths ¢1>q2> > qw, @1+ @2+ gr=n, then it consists of
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n! :|Sn|
Q1q2"qre D
elements (See p 31 of [1]). The lemma is proved. Q.E.D.

LEMMA 3.2. We set p= 2, (o : square-free). Then we have
(1) p=1 (mod. »

(i) If %(tvLu\/jT), t uEZ is an algebraic integer in Q(Vpo), then t=u

(mod. 2)
(i) If e is a fundamental unit of Q(Jpo), then the unmits of Q(Vpo)

which take the form of %(z‘-ku\/ﬁ), L usZ, are given by *TE'
(n=0, £1, £2,--- ), where Fy=¢€§ for some natural number e.

PROOF. It is clear that (i) and (ii) hold. For (i), for example,
see p 319 of [8]. Q.E.D.

LEMMA 3.3.  There exists a unit of Q(J/p) which takes the form of

%Ca-i—b«/f)%—l, a, bEZ, pla (i e a divides by p)
b*+0

and of which the norm over Q is equal to 1.

PrOOF. By Lemma 3.2, there exists a unit 77=%(t+u\/5), L useZz
such that Np=1 where N7 denotes the norm of 7 over Q. Hence t*—
pu?=4. Thus t*=pu*+4. If we set a=pu®, b=1tu, then we obtain

7}2:%(t2+pu2+2tu\/17) Z%Ca%- bJ/p)+1,

because a equation t*=pu’*+4=a+4 holds. Thus %{a%— by/p)+1 is the
desired unit of @(v/») and so the proof is complete. Q. E.D.
Now we construct a unit of R(A.) which is not of finite order.

Let [m, -, mr], mi+ -+ m,=n be a self-associated frame and let (g,
gz2,"*,qr) be a conjugacy class of S, which is assigned to [mu, -, m]; (1=
ZW’L1“1, 42:27”2_3,"'>.

Let €, " be the two conjugacy classes of A, into which (g1, g2,**,q%)
splits. We set p=q1 g2-**qx. In addition, we assume that p=1 (mod. 4)
and p is not the square of a number. Let
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%(a+b\/5)+1, a,b€Z (pla, b+0) be the unit of Q(/p) which is
stated in [Lemma 3.3. Then we have [Theorem 3.4.
THEOREM 3.4.  There exists a unit ¢ of R(An) such that
¢(x)=1 for x€A, x£€, ¢ .
$(c) =4 Ca+b/p)+1, $(cD=ta—b/p)+1

where ¢, ¢” are the representatives of &, & respectively.

PROOF.  First we note that a self-associated character 6 of S, which
corresponds to [, --,m], is the sum of two irreducible characters ¢i, .
of A., when we consider @ as a character of A,.

By Theorem 2.3, we assume that

P1()=FA+B), ()=~ VP

P()=5A=VB), eI =21+/B)
(=g (x)EZ  for x€A, x£C, ¢

Let x1 (a principal character), -, xs be all other irreducible characters
of A.. Then x:.(cD=yx.(c")EZ (i=1,-,s). Here we show that the class
function ¢ which is stated in this theorem, is actually written as a linear
combination of x: and ¢, (/=1,--;s;/7=1,2) with integral coefficients.

Now we pay attention to the fact that |€]|=|8"|=|A.l/p (See Lemma 3.1)
and that

(¢—x)(x)=0 for x€A,, &€, ¢,
(=1 () =5a+bJp), (=) (I =Ea— VD

We denote by (4, ) the inner product of two class functions A, y of
An. That is,

(/1, /1) :ﬁzgeAang)ﬂ(g)
Here we compute several inner products as follows

(6=, 2) =®{|@’|<¢—xl><c'>x,~<c'> +
I8 (p—x) (D x: (D} =

1atb/p a=bip. . ~_a_ ..
p( , T 5 )x,(c)—pxz(c)eZ
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. because x:(c)=yx:(c")EZ and a divides by p.

(P—x, o) = 1A, I{l@K‘ﬁ X1)(C)¢1(C>+

67| (p—x) () @1 ()

_l,a+bJp 1+Vp L a—bVp 1-Vp, 1

—p( > > + 5 > )—Zp(a+bp)€Z, because a

=) (mod.2), p is an odd number and a divides by p. Analogously we
have

_1.
(P—mn, ¢z)—2p(a bp)EZ.

Therefore we obtain

a+bp a—bp

Now we denote by ¢ the class function of A» which satisfies

¢ (x)=1 for xEA, x£C, ¢

¢:x1+%gxi(c')xi+

J()=Ea=b/BI+1, (D=Lt b/pI+1.

Then we obtain by the same method,

a—bp
2p

a+bp
2p

¢’:X1+%§_1Xi(6'>)(i+ o1+ ©2ER(An)

By the proof of Lemma 3.3, we can see that 7722%(a+b\/5)+1, Np=
1, where 7 is a unit of Q(/p). Since N(»») =

a-l— bJ_ a—byJp
2

+1)( +1) 1,

we have ¢¢’'=yx. Therefore ¢ is a unit of R(A.) which is not of finite
order. This completes the proof of [[heorem 3. 4. Q.E.D.

4. rank U(R(4.))/{x1}

Let T'y,--,Tcny be the self-associated frames such that the conditions
(i), (ii) in Definition 2.4 hold. (See Definition 2.4 about c(n)). To
each T';, a conjugacy class €; of S, is assigned and it splits into two con-
jugacy classes G; @7 of A.. Let c,ci/ be the representatives of € G;
respectively. By [Theorem 3.4, there is a unit ¢; of R(A.) which is not
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of finite order, with respect to I';(z=1,":-,c(n)), and we have
¢:(x)=1 for x€A,, x£6; (S'[.
$icD =5 at blBO +1, (e =2(a—bi/p)+1
$;(c)=¢;(ciH=1 (G#*))

where %(aii bi/p:)+1 are units of Q(Vp:) as stated in the theorem.

We fix ¢, ",¢cny and denote by <{¢1,**,dcn)> an abelian subgroup of
U(R(A»)), which is generated by ¢1,***,¢cn. Then we have Lemma 4. 11

LEMMA 4.1. rvank {¢, ", denyy=c(n).

PROOF. We keep the above notations. Suppose that ¢f'---¢ésn=
xCey, ,eccy€Z). Then we have

1= () = (981 gee) (c) = <¢z-<c;>>ef:<%<ai+ bivB)+ 1%,

Hence e¢;=0 (i=1,--,c(m)). Therefore we obtain rank <{¢i,"**,¢cin)>=
c¢(n). The lemma is proved. Q.E.D.

Finally we can obtain the following main theorem.
THEOREM 4.2. rank U(R(AD/{£1}=c(n).

PROOF. We keep the above notations. Let &; be a fundamental unit
in Q(V/p:). By the proof of Lemma 3.3, we can see that ¢;(c)>0,
¢:(ci)>0 and ¢:(cD¢:(c;)=1. Hence we can assume that there exists a
natural mumber %; such that

gi(co=¢el, ¢:(c)=ei™ (G=1,,c(m).
Here we pay attention to the fact that for an imaginary quadratic

field K, a unit group U(K) is {£1}, except for the case K=Q(), K=
Q(/—3). And in the case. K=Q(), U(K)={=*1, £7} and in the case

K=QU=D), UK ={£1, £p, 2%, p=2(—1+/=3).

For any u€ U(R(A»)), #(x)==1 or px(x) is a unit in an imaginary
quadratic field for x€A,, x&C€;, €. (G=1,,c(n)).

And #(cy), p(c?) are units in Q(Vp;) such that x(cy) is a conjugate
element of ux(cy) over Q. And so if u(c)==xe% then pu(c/)=xe*. By
the above attention, we have p2(x)=1 for xE A, x&C;, € (i=1,-,
c(n)). Therefore we can see that
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pHtem ey, ey
Hence we have
rank U(R(A)/{x1}=rank {¢r, ", deny=c(n).
This completes the proof of [[Theorem 4. 2. Q. E.D.

Summarizing the results which we have obtained, we have

THEOREM 4.3. Let S, and An be a symmetric group and an alternat-
ing group on n symbols respectively. Then we have
(i) URGSH=URESH={tn, i
where x» is an alternating chavacter, that is,
1(0)=1if 0 is an even permutation,
x2(0)=—11if o is an odd permutation.
(i1) As and As have three linear characters 1, Xx., xs and
U(R(As))=U;(R(As)) :{iXI, * X2, ix3}-
URAD)=U;(R(AD)={%x, T x, Txs}.

For a natural number n=5, we have
If c(m)=0, then U(R(A)=Us(R(A)={xx}.
If c(n)*0, then the units of R(A») have the form

+ ot ey (e€Z, i=1,,c(n))
for some fixed c(m) units th,, teny of R(An).

PrROOF. It suffices to prove U(R(S.))={xx, £x}. For any ir-
reducible C-character x of S, x(x)EZ for x€S,. Hence for any ele-
ment ¢ of R(S,), ¢(x)EZ for xS, Let ¢ be any unit of R(S,). Then
we can see that u(x)==+1 for x&S. by the proof of [lheorem 2.1
Therefore x is a unit of finite order. Hence we have y==+x or *x., by
Corollary 1.2, because S, has two linear characters x, x2. Thus the
proof is complete. Q.E.D.
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