On groups G of p-length 2 whose nilpotency indices of J(KG) are a(p-1)+1

Dedicated to Professor Tosiro TSUZUKU on his 60th birthday

Hiroshi FUKUSHIMA (Received April 9, 1990)

1. Introduction

Let G be a finite p-solvable group with a Sylow p-subgroup P of order p^a , K a field of characteristic p, KG the group algebra of G over K, and t(G) the nilpotency index of the radical J(KG) of KG.

D. A. R. Wallace [9] proved that $a(p-1)+1 \le t(G) \le p^a$. Y. Tsushima [8] proved that the second equality $t(G) = p^a$ holds if and only if Pis cyclic. Here we shall study the structure of G with t(G) = a(p-1)+1. If G has p-length 1, then t(G) = t(P) by Clarke [1]. From this, we can easily see that t(G) = a(p-1)+1 if and only if P is elementary abelian. Therefore we shall be interested in the structure of G of p-length 2 with t(G) = a(p-1)+1. As such examples, we know the followings.

We set $q=p^r$ and $l=(q^p-1)/(q-1)$. Then q-1 and l are relatively prime. Let $F=GF(q^p)$ be a finite field of q^p elements, λ a generator of the multiplicative group F^* of F, and $\nu = \lambda^{q-1}$. Let V be the additive group of F. If we define $v^x = \nu v$, where νv means a multiplication in the field F, then $x \in \operatorname{Aut}(V)$. Let U be the Galois group of F over GF(q), and $H = \langle x \rangle$. Then $HU \subseteq \operatorname{Aut}(V)$. So we can consider the semidirect product of V by HU. We set $M_{p,r} = VHU$. Then HU is a Frobenius group and |H| = l, |U| = p, and VU is a Sylow p-subgroup of $M_{p,r}$ of order p^{pr+1} . In [5], Motose proved $t(M_{p,r}) = (pr+1)(p-1)+1$.

Let $G = M_{p,r}$, then $G = O_{p,p,p}(G)$ and $G/O_p(G)$ is a Frobenius group. So can we consider conversely that if G satisfies such conditions and t(G) = a (p-1)+1, then is G isomorphic to $M_{p,r}$? Concerning this problem, we have the following result.

THEOREM. Let V be a normal p-subgroup of G with G = VN and $V \cap N = 1$ for some Frobenius group N with complement U and kernel H, where U and H are p-group and abelian p'-group, respectively. Then the

follwing conditions are equivalent.

- (i) t(G) = a(p-1)+1, where p^a is the order of a Sylow p-subgroup of G.
- (ii) (A) U and V are elementary abelian.
 (B) C_G(x) contains a Sylow p-subgroup of G for every element x of V.
- (iii) Set $\overline{G} = G/O_{p'}(G)$. Then $\overline{G} = [\overline{V}, \overline{H}] \overline{N} \times C_{\overline{V}}(\overline{H})$ and $[\overline{V}, \overline{H}] = \overline{V}_1 \times \cdots \times \overline{V}_m$, where V_i is a minimal normal subgroup of VH, $1 \le i \le m$. Furthermore $[\overline{V}, \overline{H}] \overline{H} = (\overline{V}_1 \overline{H}_1) \times \cdots \times (\overline{V}_m \overline{H}_m)$, where H_i is a subgroup of H and $\overline{V}_i \overline{H}_i \overline{U} \simeq M_{p,r_i}$ for some r_i .

2. Preliminaries

In this section we shall prove some lemmas which will be used to prove the theorem.

From Theorem 3. 1 of Wallace [9], we have immediately the following result.

LEMMA 1. Let G be a p-solvable group of order p^am , (p, m)=1, and have the following normal series

 $1 = P_0 \subseteq N_0 \subseteq P_1 \subseteq N_1 \subseteq \cdots \subseteq P_n = G$

such that P_{i+1}/N_i , N_i/P_i are p and p'-groups, respectively, $0 \le i \le n-1$. If t(G) = a(p-1)+1, then P_{i+1}/N_i is elementary abelian, $0 \le i \le n-1$.

LEMMA 2. ([7, Proposition 19. 8]). Let G act faithfully on vector space V of order q^n over GF(q). Suppose A is a normal cyclic subgroup of G which acts irreducibly on V. Then we can identify V with the additive group of $GF(q^n)$ in such a way that $G \subseteq T(q^n)$ where $T(q^n)$ is the set of semilinear transformations of the form $x \rightarrow ax^{\sigma}$ with $a \in GF(q^n)$, $a \neq 0$ and σ a field automorphism. Furthermore $C_G(A)$ is contained in the subgroup of $T(q^n)$ consisting of linear transformations (that is, $\sigma=1$).

LEMMA 3. ([3, Theorem 4. 6, p409]). Let G satisfy the assumption of the theorem. Then the following conditions are equivalent.

- (1) t(G) = t(U) + t(V) 1.
- (2) $\sum_{h \in H} z^{hu} \sum_{h \in H} z^h \in J(KV)^{i+1} \text{ for all } i \ge 0, \text{ all } z \in J(KV)^i \text{ and all } u \in U.$

LEMMA. 4 Let G satisfy the assumption and (i) of the theorem. Then the following conditions hold.

- (1) |U| = p and V is elementary abelian.
- (2) If W is a H-invariant subgroup of V, then W is N-invariant.
- $(3) \quad \sum_{h \in H} z^h + (\sum_{h \in H} z^h)^s + \dots + (\sum_{h \in H} z^h)^{s^{p-1}} \in J(KV)^{i+(p-1)} \text{ for all } i \ge 0 \text{ and}$ $all \quad z \in J(KV)^i.$

PROOF. (1) Since N = HU is a Frobenius group, (1) follows immediately by Lemma 1.

(2) Since H is a p'-group, V is completely reducible as H-module. So we may assume that W is an irreducible H-module. Then we have (2) by the proof of [6, Lemma 11(7)].

(3) HU acts on KV by conjugation. So KHU acts on KV by linear extention. Then

$$z^{(\sum_{h\in H}h)(s-1)} = (\sum_{h\in H}z^h)^s - \sum_{h\in H}z^h \in J(KV)^{i+1}$$

by Lemma 3. Similarly

$$\{z^{(\sum h)(s-1)}\}^{(\sum h)(s-1)}=|H|z^{(\sum h)(s-1)^2}\!\!\in\!\! J(KV)^{i+2}$$

by Lemma 3. Hence $z^{(\sum h)(s-1)^{p-1}} \in J(KV)^{i+2}$. If we repeat this method, we have $z^{(\sum h)(s-1)^{p-1}} \in J(KV)^{i+(p-1)}$. On the other hand $(s-1)^{p-1} = 1+s+\cdots + s^{p-1}$, and so

$$z^{(\sum_{h\in H}h)(1+s+\cdots+s^{p-1})} = \sum_{h\in H} z^{h} + (\sum_{h\in H} z^{h})^{s} + \cdots + (\sum_{h\in H} z^{h})^{s^{p-1}} \in J(KV)^{i+(p-1)}.$$

3. Proof of the Theorem

(ii)
$$\to$$
 (i) For $z \in V$, $z^{h_0} \in Z(VU)$ for some $h_0 \in H$ by (ii)(B). Then
 $(\sum_{h \in H} z^h)^u = \sum_{h \in H} z^{h_0} = \sum_{h \in H} z^{h_0 h_0^{-1} h u} = \sum_{h \in H} (z^{h_0})^{h u} = \sum_{h \in H} (z^{h_0})^{u^{-1} h u} = \sum_{h \in H} z^h$.

Hence t(G) = t(U) + t(V) - 1 by Lemma 3, and so t(G) = a(p-1) + 1 by (ii)(A).

(iii) \rightarrow (ii) It is clear that (ii)(A) holds. Let $v \in V$, then $v = v_1 \cdots v_m$ for some $v_i \in V_i$, $1 \leq i \leq m$. Since $V_i H U \simeq M_{p,r_i}$, there exists an element $h_i \in H_i$ such that $v_i^{h_i} \in C_{V_i}(U) \subseteq Z(VU)$. Set $h = h_1 \cdots h_m \in H$, then $v^h = v_1^{h_1} \cdots v_m^{h_m} \in Z(VU)$. Hence $C_G(v^h) \supseteq VU$, and so $C_G(v) \supseteq (VU)^{h^{-1}} \in Sy1_p(G)$. This proves that (ii)(B) holds.

In the next proof, we denote by e the identity of G.

(i) \rightarrow (iii) Let $\overline{G} = G/O_{p'}(G)$. Then \overline{G} satisfies (i), and so we may assume that $O_{p'}(G) = \{e\}$. By Lemma 4(1), |U| = p and V is elementary abelian. N acts on V by conjugation. So we can regard V as N = HU

module. Since H is a p'-group, V is a completely reducible H-module. Let $V = V_1 \times \cdots \times V_m$, where V_i is an irreducible H-module, $1 \le i \le m$. Then by Lemma 4(2), V_i is N-invariant.

If $C_V(H) \neq \{e\}$, then we may assume that $[V_1,H] = \{e\}$. Since $G \triangleright V_2 \times \cdots \times V_m H$ and $G/V_2 \times \cdots \times V_m H \simeq V_1 U$, $V_1 U$ is elementary abelian by Lemma 1, in particular $[V_1, U] = \{e\}$. Hence $G = (V_2 \times \cdots \times V_m H U) \times V_1$. Since $V_2 \times \cdots \times V_m H U \simeq G/V_1$ satisfies (i), we may assume that $C_V(H) = \{e\}$.

Let $L_i = V_i H U$ and $\overline{L}_i = V_i H U / C_H(V_i)$, $1 \le i \le m$. Then $\overline{L}_i = \overline{V}_i \overline{H} \overline{U}$ and \overline{H} is cyclic since \overline{H} is abelian and \overline{H} acts irreducibly and faithfully on \overline{V}_i . Since $\overline{V}_i \simeq V_i$ and $\overline{U} \simeq U$, we can identify \overline{V}_i and \overline{U} with V_i and U, respectively. By Lemma 2, we can identify V_i with the additive group of $GF(p^{n_i})$ in such a way that $\overline{H}\overline{U} \subseteq T(p^{n_i})$, where $p^{n_i} = |V_i|$. Furthermore \overline{H} is contained in the subgroup of $T(p^{n_i})$ consisting of linear transformations.

Let $\operatorname{Gal}(GF(p^{n_i})/GF(p)) = \langle \tau \rangle$ and $\sigma = \tau^{r_i}$, where $n_i = pr_i$. Furthermore $C_{v_i}(\sigma) = GF(q_i)$, where $q_i = p^{r_i}$. By considering the structure of $T(p^{n_i})$, a conjugate subgroup of \overline{HU} in $T(p^{n_i})$ contains σ . So let $U = \langle s \rangle$, then we may assume that $s = \sigma$. When we identify V_i with $GF(p^{n_i})$, let V_i^* be the multiplicative group of V_i . Set $\langle \lambda_i \rangle = C_{v_i^*}(s)$ and $\langle \nu_i \rangle = [V_i^*, \langle s \rangle]$, then $V_i^* = \langle \lambda_i \rangle \times \langle \nu_i \rangle$. Let $x \in H$ such that $\langle \overline{x} \rangle = \overline{H}$. Then there exists $\xi_i \in V_i^*$ such that $v^x = \xi_i v$ for every element $v \in V_i$, where $\xi_i v$ means a multiplication of ξ_i and v in $GF(p^{n_i})(=V_i)$. Since \overline{HU} is a Frobenius group, $\overline{x^s} = \overline{x^j}$ for some $\overline{x^j} \neq \overline{x}$. Let 1 be the identity of V_i^* , then $(1^x)^s = \xi_i^s$ and $(1^x)^s = 1^{xs} = 1^{s^{-1}xs} = 1^{x^j} = \xi_i^j$. Hence $\langle \xi_i \rangle = [\langle \xi_i \rangle, \langle s \rangle] \subseteq \langle \nu_i \rangle$, and so $\overline{L_i} \subseteq M_{p,r_i}$.

Now we shall divide the remainder of the proof into several steps.

STEP 1. The following conditions hold.

(1) If $C_{v_i}(h) \neq \{e\}$ for some V_i and $h \in H$, then $[V_i, h] = \{e\}$.

(2) If $a^h \in C_{V_i*}(s)$ for some $a \in C_{V_i*}(s)$ and $h \in H$, then $[V_i, h] = \{e\}$.

PROOF. (1) Since *H* is abelian, $C_{v_i}(h)$ is H-invariant. Moreover, since V_i is an irreducible *H*-module, $C_{v_i}(h) = V_i$, and so $[V_i, h] = \{e\}$.

(2) Two elements of Z(UV) are conjugate in G if and only if they are conjugate in $N_G(VU)$ (See [Gorenstein, Finite groups, p. 240 Th. 1.1]). Since N = UH is a Frobenius group, $N_G(VU) = VU$. Hence $a^h = a$ and so $e \neq a \in C_{V_i*}(h)$. Then (2) follows from (1).

Let $A = \{(\mu_1, \dots, \mu_m) | \mu_i \in \langle \nu_i \rangle, 1 \leq i \leq m\}$. Next we define the action

of HU on A as follows:

 $(\mu_1, \cdots \mu_m)^g = (\mu_1^g, \cdots, \mu_m^g)$ for $g \in HU$.

STEP 2. The following conditions holds.

(1) H acts regularly on A.

(2) If H acts transitively on A, then (ii) (B) holds.

PROOF. (1) If $(\mu_1, \dots, \mu_m)^h = (\mu_1, \dots, \mu_m)$, then $\mu_i \in C_{V_i}(h)$, $1 \le i \le m$. By Step 1(1), $[V_i, h] = \{e\}$, and so $[V, h] = \{e\}$. Since $O_{p'}(G) = \{e\}$, h = e. Hence *H* acts regularly on *A*.

(2) Let $a \in V$, then $a = (\alpha_1 \mu_1) \cdots (\alpha_m \mu_m)$, where $\alpha_i \in C_{V_i}(s)$ and $\mu_i \in \langle \nu_i \rangle$, and $\alpha_i \mu_i$ means a multiplication of α_i and μ_i in $GF(p^{n_i})$ $(=V_i)$, $1 \le i \le m$. Since H acts transitively on A, $(\mu_1, \dots, \mu_m)^h = (1, \dots, 1)$ for some $h \in H$, where 1 is the identity of V_i^* . Since $\mu_i^h = 1$, $v^h = \mu_i^{-1}v$ for every element $v \in V_i$. In particular $(\alpha_i \mu_i)^h = \mu_i^{-1} \alpha_i \mu_i = \alpha_i$, $1 \le i \le m$. Hence $a^h = \{(\alpha_1 \mu_1)^m \cdots (\alpha_m \mu_m)^h = \alpha_1 \cdots \alpha_m \in C_V(s) \subseteq Z(VU)$.

Let A_0, A_1, \dots, A_r be the *H*-orbits of *A*, where $(1, \dots, 1) \in A_0$. Since *U* normalizes *H*, $U = \langle s \rangle$ induces a permutation on the set of the *H*-orbits of *A*.

STEP 3. A_0 is the only orbit which is fixed by s.

PROOF. Since (|s|, |H|)=1, a *s*-invariant orbit contains an element which is fixed by *s*. Since $C_{\langle\nu_i\rangle}(s)=1$, $(1, \dots, 1)$ is the only element of *A* which in fixed by *s* and the assertion follows.

STEP 4. Let $(\eta_1, \dots, \eta_m) \in A$, then there exists $y \in Aut(V)$ which satisfies the following conditions.

- (1) y fixes V_i , $1 \leq i \leq m$.
- (2) If we define the action of y as follows: $(\mu_1, \dots, \mu_m)^y = (\mu_1^y, \dots, \mu_m^y)$ for $(\mu_1, \dots, \mu_m) \in A$, then y acts on A.
- (3) $(\eta_1, \dots, \eta_m)^{\nu} = (1, \dots, 1).$
- (4) y commutes with every element of H in Aut (V).

PROOF. If we define $y \in Aut(V)$ as follows:

 $(v_1\cdots v_m)^{y} = (\eta_1^{-1}v_1)\cdots(\eta_m^{-1}v_m), \text{ where } v_i \in V_i, 1 \leq i \leq m,$

then $y \in \operatorname{Aut}(V)$ and y fixes V_i . Furthermore $(\eta_1, \dots, \eta_m)^y = (\eta_1^y, \dots, \eta_m^y) = (1, \dots, 1)$. Next, since $\eta_i \in \langle v_i \rangle$, $1 \le i \le m$, y acts on A. Let $h \in H$, then $(v_1 \cdots v_m)^h = (\xi_1 v_1) \cdots (\xi_m v_m)$, where $\xi_i \in \langle v_i \rangle$ and $v_i \in V_i$, $1 \le i \le m$. Then

 $(v_1 \cdots v_m)^{hy} = \{(\xi_1 v_1) \cdots (\xi_m v_m)\}^y \\ = (\eta_1^{-1} \xi_1 v_1) \cdots (\eta_m^{-1} \xi_m v_m)$

and

$$(v_1 \cdots v_m)^{y_h} = \{(\eta_1^{-1} v_1) \cdots (\eta_m^{-1} v_m)\}^h \\ = (\xi_1 \eta_1^{-1} v_1) \cdots (\xi_m \eta_m^{-1} v_m),$$

and so (4) follows.

Let $\hat{S} = \sum_{v \in S} v (\in KG)$ for any subset S of V and let $V_1^* \times \cdots \times V_m^* = \{v_1 \cdots v_m | v_i \in V_i^*, 1 \le i \le m\}$. Set $z = \hat{V} - V_1^* \times \cdots \times V_m^*$ and

$$z_n = z + \sum_{\substack{(\mu_1, \dots, \mu_m) \in A_n \\ 1 \leq i \leq m}} \sum_{\substack{\alpha_i \in C_{VI} \star (s) \\ 1 \leq i \leq m}} (\alpha_1 \mu_1) \cdots (\alpha_m \mu_m), \ 0 \leq n \leq r.$$

Since $\{(\alpha_1\mu_1)\cdots(\alpha_m\mu_m)\}^h = (\alpha_1\mu_1^h)\cdots(\alpha_m\mu_m^h),$ $z_n = z + \sum_{h \in H} \sum_{\alpha_i} \{(\alpha_1\eta_1)\cdots(\alpha_m\eta_m)\}^h$

for some fixed element $(\eta_1, \dots, \eta_m) \in A_n$, and so $z_n^h = z_n$ for $\forall h \in H$.

STEP 5. Let t be the maximal positive integer such that $z_0 \in J(KV)^t$, then for z_n , $1 \leq n \leq r$, t is also the maximal positive integer such that $z_n \in J(KV)^t$. Furthermore, if t = d(p-1), where $|V| = p^d$, then (ii) (B) holds.

PROOF. Let
$$y \in \operatorname{Aut}(V)$$
 as in Step 4. Then
 $z_n^y = z^y + \{\sum_{h \in H} \sum_{\alpha_i} (\alpha_1 \eta_1) \cdots (\alpha_m \eta_m)\}^{hy}$
 $= z + \{\sum_{h \in H} \sum_{\alpha_i} (\alpha_1 \eta_1) \cdots (\alpha_m \eta_m)\}^{hy}$ (by Step 4(1))
 $= z + \{\sum_{h \in H} \sum_{\alpha_i} (\alpha_1 \eta_1) \cdots (\alpha_m \eta_m)\}^{yh}$ (by Step 4(4))
 $= z + \{\sum_{h \in H} \sum_{\alpha_i} (\alpha_1 1) \cdots (\alpha_m 1)\}^{h}$ (by Step 4(3))
 $= z_0$.

Since $y \in Aut(V)$, the first assertion follows.

We remark $J(KV)^{d(p-1)} = K\hat{V}$. Hence, if $z_0 \in J(KV)^{d(p-1)}$, $A_0 = A$, and so H acts transitively on A. By Step 2(2), the second assertion follows.

STEP 6. (ii) (B) holds.

PROOF. Suppose false, then $r \ge 1$ by Step 2(2). Let $\{A_1, \dots, A_p\}$ be a *s*-orbit. For example, if $A_1^s = A_2$, then

$$\{\sum_{\substack{(\mu_1,\dots,\mu_m)\in A_1\\1\leq i\leq m}}\sum_{\substack{\alpha_i\in C_{VI}*(s)\\1\leq i\leq m}}(\alpha_1\mu_1)\cdots(\alpha_m\mu_m)\}^s$$
$$=\sum_{\substack{(\mu_1s,\dots,\mu_ms),\in A_2\\\alpha_i}}\sum_{\alpha_i}(\alpha_1\mu_1^s)\cdots(\alpha_m\mu_m^s).$$

Since $\alpha_i \in C_{V_i*}(s)$, $1 \leq i \leq m$, $z_1^s = z_2$. By Lemma 4(3),

$$\sum_{h \in H} z_1^h + (\sum_{h \in H} z_1^h)^s + \dots + (\sum_{h \in H} z_1^h)^{s^{p-1}} = |H|(z_1 + z_1^s + \dots + z_1^{s^{p-1}})$$
$$= |H|(z_1 + \dots + z_p) \in J(KV)^{t + (p-1)}$$

The same thing holds for another orbits, and so $z_1 + \cdots + z_r \in J(KV)^{t+(p-1)}$ $\subseteq J(KV)^{t+1}$ by Step 3. Then

$$z_{0}+z_{1}+\dots+z_{r}$$

$$=z+\sum_{(\mu_{1},\dots,\mu_{m})\in A_{0}}\sum_{\alpha_{i}}(\alpha_{1}\mu_{1})\cdots(\alpha_{m}\mu_{m})+\sum_{j=1}^{p}\{\sum_{(\mu_{1},\dots,\mu_{m})\in A_{j}}\sum_{\alpha_{i}}(\alpha_{1}\mu_{1})\cdots(\alpha_{m}\mu_{m})\}+\dots$$

$$=z+\sum_{j=0}^{r}\sum_{(\mu_{1},\dots,\mu_{m})\in A}\sum_{\alpha_{i}}(\alpha_{1}\mu_{1})\cdots(\alpha_{m}\mu_{m})$$

$$=z+\sum_{(\mu_{1},\dots,\mu_{m})\in A}\sum_{\alpha_{i}}(\alpha_{1}\mu_{1})\cdots(\alpha_{m}\mu_{m})$$

$$=z+V_{1}^{*}\times\dots\times V_{m}^{*}$$

$$=\hat{V}\in J(KV)^{d(p-1)}\subseteq J(KV)^{t+1} \text{ by Step 5.}$$

Hence $z_0 = \hat{V} - (z_1 + \dots + z_r) \in J(KV)^{t+1}$, this contradicts the choice of t and the assertion follows.

STEP 7. Let $H_i = C_H(V_1 \times \cdots \times V_{i-1} \times V_{i+1} \times \cdots \times V_m)$, then $H = C_H(V_i) \times H_i$, $1 \le i \le m$.

PROOF. Let $h \in H$, and let $a_i \in C_{V_i}^*(s)$, $1 \le i \le m$. Since $a_1 \cdots a_i^h \cdots a_m \in V$, there exists an element $x \in H$ such that $(a_1 \cdots a_i^h \cdots a_m)^x \in C_V(s) = \prod_i C_{V_i}(s)$ by Step 6. Then $a_1^x \in C_{V_1*}(s), \cdots, a_i^{hx} \in C_{V_i*}(s), \cdots, a_m^x \in C_{V_m*}(s)$. By Step 1(2), $x \in H_i$ and $hx \in C_H(V_i)$, hence $h = hxx^{-1} \in C_H(V_i)H_i$. Furthermore $C_H(V_i) \cap H_i = C_H(V) \subseteq O_{P'}(G) = \{e\}$ and the assertion follows.

STEP 8. (iii) holds.

PROOF. Since $H = C_H(V_2) \times H_2$ by Step 7, $C_H(V_1) = H_2 \times C_H(V_1 \times V_2)$. Hence $H = H_1 \times H_2 \times C_H(V_1 \times V_2)$. Similarly we have $C_H(V_1 \times V_2) = H_3 \times C_H(V_1 \times V_2 \times V_3)$, and hence $H = H_1 \times H_2 \times H_3 \times C_H(V_1 \times V_2 \times V_3)$. By the similar argument, $H = H_1 \times \cdots \times H_m \times C_H(V)$. Since $O_{p'}(G) = \{e\}$, $C_H(V) = \{e\}$, and so $H = H_1 \times \cdots \times H_m$ and $VH = (V_1H_1) \times \cdots \times (V_mH_m)$. Then, by the first paragraph of the proof, $M_{p,r_i} \supseteq V_i H U / C_H(V_i) = V_i H U / H_1 \times \cdots \times H_m \simeq V_i H_i U$. If $M_{p,r_i} \supseteq V_i H U / C_H(V_i)$, $\langle \nu_i \rangle \supseteq \langle \xi_i \rangle$, then ν_i is not conjugate to any element of $C_{v_1}(s)$. This contradicts Step 6. Therefore $V_i H_i U \simeq M_{p,r_i}$ and the assertion follows.

This proves $(i) \rightarrow (iii)$ and completes the proof of the theorem.

References

- [1] R. J. CLARKE, On the radical of the group algebra of a p-nilpotent group, J. Australian Math. Soc. 13 (1972), 119-123.
- [2] S. A. JENNINGS, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
- [3] G. KARPILOVSKY, The Jacobson radical of group algebras, North-Holland, Amsterdam, 1987.
- [4] M. LORENZ, On Loewy lengths of projective module for p-solvable group, Comm. Algebra. 13 No 5 (1985), 1193-1212.
- [5] K. MOTOSE, On the nilpotency index of the radical of a group algebra III, J. London Math. Soc. (2) 25 (1982), 39-42.
- [6] K. MOTOSE, On the nilpotency index of the radical of a group algebra IV, Math. J. Okayama Univ. 25 (1983), 35-42.
- [7] D. S. PASSMAN, Permutation groups, Benjamin, New York, 1968.
- [8] Y. TSUSHIMA, Some notes on the radical of a finite group ring, Osaka J. Math. 15 (1978), 647-653.
- [9] D. A. R. WALLACE, Lower bounds for the radical of group algebra of a finite p-soluble group, Proc. Edinburgh Math. Soc. 16 (1968/69), 127-134.

Department of Mathematics Faculty of General Studies Gunma University Maebashi, Gunma 371 Japan