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1. Introduction

Let G be a finite p-solvable group with a Sylow p-subgroup P of
order p^{a} , K a field of characteristic p , KG the group algebra of G over
K , and t(G) the nilpotency index of the radical J(KG) of KG.

D. A. R. Wallace [9] proved that a(p-1)+1\leqq t(G)\leqq p^{a} . Y Tsu-
shima [8] proved that the second equality t(G)=p^{a} holds if and only if P
is cyclic. Here we shall study the structure of G with t(G)=a(p-1)+1 .
If G has p- length 1, then t(G)=t(P) by Clarke [1]. From this, we can
easily see that t(G)=a(p-1)+1 if and only if P is elementary abelian.
Therefore we shall be interested in the structure of G of p- length 2 with
t(G)=a(p-1)+1 . As such examples, we know the followings.

We set q=p^{r} and t=(q^{p}-1)/(q-1) . Then q-1 and t are relatively
prime. Let F=GF(q^{p}) be a finite field of q^{p} elements, \lambda a generator of
the multiplicative group F^{*} of F , and \iota/=\lambda^{q-1} . Let V be the additive
group of F . If we define v^{x}=\nu v , where llv means a multiplication in the
field F. then x\in Aut(V) . Let U be the Galois group of F over GF(q) ,

and H=\langle x\rangle . Then HU\subseteqq Aut(V) . So we can consider the semidirect
product of V by HU. We set M_{p,r}=VHU . Then HU is a Frobenius
group and |H|=l , |U|=p , and VU is a Sylow p-subgroup of M_{p.r} of order
p^{pr+1} . In [5], Motose proved t(M_{p,r})=(pr\dagger 1)(p-1)+1 .

Let G=M_{p,r}, then G=O_{p,p,p}(G) and G/O_{p}(G) is a Frobenius group.
So can we consider conversely that if G satisfies such conditions and
t(G)=a ( P-1)+1 , then is G isomorphic to M_{p,r} ? Concerning this prob-
lem, we have the following result.

THEOREM. Let V be a normal p -subgroup of G with G=VN and
V\cap N=1 for some Frobenius group N with complement U and kernel H,

where U and H are p-group and abelian p’-group, respectively. Then the
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follwing conditions are equivalent.

(i) t(G)=a(p-1)+1, where p^{a} is the order of a Sylow p -subgroup
of G.

(ii) (A) U and V are elementary abelian.
(B) C_{G}(x) contains a Sylow p-subgroup of G for every element

x of V.
(iii) Set \overline{G}=G/O_{p\prime}(G) . Then \overline{G}= [ V. \overline{H} ] N-\cross C - (\overline{H}) and [ \overline{V} .

\overline{H}]=\overline{V}_{1}\cross\cdots\cross\overline{V}_{m}, where V_{i} is a minimal normal subgroup of
VH, 1\leqq i\leqq m . Furthermore [\overline{V}-\overline{H}]\overline{H}=(\overline{V}_{1}\overline{H}_{1})\cross\cdots\cross(\overline{V}_{m}\overline{H}_{m}) ,

where H_{i} is a subgroup of H and \overline{V}_{i}\overline{H}_{i}\overline{U}^{\simeq}M_{p,r_{i}} for some r_{i} .

2. Preliminaries

In this section we shall prove some lemmas which will be used to
prove the theorem.

From Theorem 3. 1 of Wallace [9], we have immediately the follow-
ing result.

LEMMA 1. Let G be a p -solvable group of order p^{a}m, (p, m)=1,

and have the following normal series
1=P_{0}\subseteqq N_{0}\subseteqq P_{1}\subseteqq N_{1}\subseteqq\cdots\cdots\subseteqq P_{n}=G

such that P_{i+1}/N_{i}, N_{i}/P_{i} are p and p’-groups, respectively, 0\leqq i\leqq n-1 . If
t(G)=a(p-1)+1, then P_{i+1}/N_{i} is elementary abelian, 0\leqq i\leqq n-1 .

LEMMA 2. ([7, Proposition 19. 8]). Let G act faithfully on vector
space V of order q^{n} over GF(q) . Suppose A is a normal cyclic subgroup
of G which acts irreducibly on V. Then we can identify V with the addi-
tive group of GF(q^{n}) in such a way that G\subseteqq T(q^{n}) where T(q^{n}) is the
set of semilinear transformations of the form xarrow m^{\sigma} with a\in GF(qn) a\neq 0

and \sigma a fifield automorphism. Furthermore C_{G}(A) is contained in the sub-
group of T(q^{n}) consisting of linear transformations (that is, \sigma=1).

LEMMA 3. ([3, Theorem 4. 6, p409]). Let G satisfy the assumption
of the theorem. Then the following conditions are equivalent.

(1) t(G)=t ( U)+t ( V)-1 .
(2) \sum_{h\in H}z^{h\mathcal{U}}-\sum_{h\in H}z^{h}\in J(KV)^{i+1} for all i\geqq 0 , all z\in J(KV)^{i} and all

u\in U.

LEMMA. 4 Let G satisfy the assumption and (i) of the theorem.
Then the following conditions hold.
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(1) |U|=p and V is elementary abelian.
(2) If W is a H -invariant subgroup of V, then W is N -invariant.
(3) \sum_{h\in H}z^{h}+(\sum_{h\in H}z^{h})^{S}+\cdots+(\sum_{h\in H}z^{h})^{S^{p- 1}}\in J(KV)^{i+(p-1)} for all i\geqq 0 and

all z\in J(KV)^{i} .

PROOF. (1) Since N=HU is a Frobenius group, (1) follows imme-
diately by Lemma 1.

(2) Since H is a p’-group, V is completely reducible as H-module.
So we may assume that W is an irreducible H-module. Then we have
(2) by the proof of [6, Lemma 11 (7)].

(3) HU acts on KV by conjugation. So KHU acts on KV by linear
extention. Then

z^{(\sum_{\in H}h)(s-1)}=( \sum_{h\in H}z^{h})^{s}-\sum_{h\in H}z^{h}\in J(KV)^{i+1}

by Lemma 3. Similarly

\{z^{(\sum_{h\in H}h)(s-1)}\}^{(\sum_{h\in H}h)(s-1)}=|H|z^{(\sum_{h\in H}h)(s-1)^{2}}\in J(KV)^{i+2}

by Lemma 3. Hence z^{(\sum_{h\in H}h)(s-1)^{2}}\in J(KV)^{i+2} . If we repeat this method,
we have z^{(\sum_{h\in H}h)(s-1)^{\rho 1}}\in J(KV)^{i+(p-1)} . On the other hand (s-1)^{p-1}=1+s+\cdots
+s^{p-1} . and so

z^{(\sum_{h\in H}h)(1+s+}+s^{\rho 1})= \sum_{h\in H}z^{h}+(\sum_{h\in H}z^{h})^{s}+\cdots+(\sum_{h\in H}z^{h})^{s^{p- 1}}\in J(KV)^{i+(p-1)} .

3. Proof of the Theorem

(ii)arrow(i) For z\in V z^{h_{0}}\in Z(VU) for some h_{0}\in H by (ii) (A). Then
( \sum_{h\in H}z^{h})^{u}=\sum_{h\in H}z^{hu}=\sum_{h\in H}z^{h_{0}ho^{-1}hu}=\sum_{h\in H}(z^{h_{0}})^{hu}=\sum_{h\in H}(z^{h_{0}})^{u^{-1}hu}=\sum_{h\in H}z^{h} .

Hence t(G)=t(U)+t(V)-1 by Lemma 3, and so t(G)=a(p-1)+1 by
(ii) (A).

(iii)arrow(ii) It is clear that (ii) (A) holds. Let v\in V . then v=v_{1}\cdots v_{m}

for some v_{i}\in V_{i} , 1\leqq i\leqq m . Since ViHU Mp,ri , there exists an element h_{i}

\in H_{i} such that v_{i}^{h_{i}}\in C_{Vi}(U)\subseteqq Z(VU) . Set h=h_{1}\cdots h_{m}\in H , then v^{h}=v_{1}^{h_{1}}\cdots

v_{m}^{hm}\in Z ( VU). Hence C_{G}(v^{h})\supseteqq VU , and so C_{G}(v)\supseteqq(VU)^{h^{-1}}\in Sylp(G).

This proves that (ii) (B) holds.

In the next proof, we denote by e the identity of G .
(i)arrow(iii) Let \overline{G}=G/O_{p\prime}(G) . Then \overline{G} satisfies (i), and so we may

assume that O_{p\prime}(G)=\{e\} . By Lemma 4(1) , |U|=p and V is elementary
abelian. N acts on V by conjugation. So we can regard V as N=HU
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module. Since H is a p^{r_{-}}group, V is a completely reducible H module.
Let V=V_{1}\cross\cdots\cross V_{m} , where V_{i} is an irreducible //-module, 1\leqq i\leqq m .
Then by Lemma 4(2), V_{i} is N -invariant.

If C_{V}(H)\neq\{e\} , then we may assume that [ V_{1},H]=\{e\} . Since G\triangleright V_{2}\cross

\ldots\cross V_{m}H and G/V_{2}\cross\cdots\cross V_{m}H\simeq V_{1}U , V_{1}U is elementary abelian by
Lemma 1, in particular [ V_{1}, U]=\{e\} . Hence G=(V_{2}\cross\cdots\cross V_{m}HU)\cross V_{1} .
Since V_{2}\cross\cdots\cross V_{m}HU\simeq G/V_{1} satisfies (i), we may assume that C_{V}(H)=
\{e\} .

Let L_{i}=V_{i}HU and \overline{L}_{i}=V_{i}HU/C_{H}( V_{i}) , 1\leqq i\leqq m . Then \overline{L}_{i}=\overline{V}_{i}\overline{H}\overline{U}

and \overline{H} is cyclic since \overline{H} is abelian and \overline{H} acts irreducibly and faithfully
on \overline{V}_{i} . Since \overline{V}_{i}\simeq V_{i} and \overline{U}\simeq U , we can identify \overline{V}_{i} and \overline{U} with V_{i} and
U, respectively. By Lemma 2, we can identify V_{i} with the additive group
of GF(p^{n_{i}}) in such a way that \overline{H}\overline{U}\subseteqq T(p^{n_{i}}) , where p^{n_{i}}=|V_{i}| . Further-
more \overline{H} is contained in the subgroup of T(p^{n_{i}}) consisting of linear trans-
formations.

Let Gal (GF(p^{n_{i}})/GF(p))=\langle\tau\rangle and \sigma=\tau^{r_{i}}, where n_{i}=pr_{i} . Further-
more C_{V_{i}}(\sigma)=GF(q_{i}) , where q_{i}=p^{r_{i}}. By considering the structure of
T(p^{n_{i}}) , a conjugate subgroup of \overline{H}\overline{U} in T(p^{n_{i}}) contains \sigma . So let U=

\langle s\rangle , then we may assume that s=\sigma . When we identify V_{i} with GF(p^{n_{i}}) ,
let V_{i}^{*} be the multiplicative group of V_{i} . Set \langle\lambda_{i}\rangle=C_{Vi*}(s) and \langle\mu_{i}\rangle=

[V_{i}^{*}, \langle s\rangle] , then V_{i}^{*}=\langle \mathcal{A}_{i}\rangle\cross\langle f_{J_{i}}\rangle Let x\in H such that \langle \overline{x}\rangle=\overline{H} . Then
there exists \xi_{i}\in V_{i}^{*} such that v^{x}=\xi_{i}v for every element v\in V_{i} , where \xi_{i}v

means a multiplication of \xi_{i} and v in GF(p^{n_{i}})(=V_{i}) . Since \overline{H}\overline{U} is a
Frobenius group, \overline{x^{s}}=\overline{x}^{j} for some \overline{x}^{j}\neq\overline{x} . Let 1 be the identity of V_{i}^{*} ,
then (1^{x})^{s}=\xi_{i}^{s} and (1^{x})^{s}=1^{xs}=1^{s^{-1}xs}=1^{x^{j}}=\xi_{i}^{j} . Hence \xi_{i}^{S}=\xi_{i}^{j}\neq\xi_{i} . This
implies that s acts fixted-point-freely on \langle\xi_{i}\rangle . Hence \langle\xi_{i}\rangle=[\langle\xi_{i}\rangle, \langle s\rangle]\subseteqq

\langle\nu_{i}\rangle , and so \overline{L}_{i}\subseteqq M_{p,r_{i}} .

Now we shall divide the remainder of the proof into several steps.

STEP 1. The following conditions hold.

(1) If C_{V_{i}}(h)\neq\{e\} for some V_{i} and h\in H, then [ V_{i}, h]=\{e\} .
(2) If a^{h}\in C_{V_{i^{*}}}(s) for some a\in C_{V_{i^{*}}}(s) and h\in H, then [ V_{i}, h]=\{e\} .

PROOF. (1) Since H is abelian, C_{V_{i}}(h) is H-invariant. Moreover,
since V_{i} is an irreducible //-module, CvXk) =V_{i} , and so [ V_{i}, h]=\{e\} .

(2) Two elements of Z ( UV) are conjugate in G if and only if they are
conjugate in N_{G} ( VU) (See [Gorenstein, Finite groups, p. 240 Th. 1. 1]).
Since N=UH is a Frobenius group, N_{G} ( VU)=VU. Hence a h_{=a} and so
e\neq a\in C_{V_{t}*}(h) . Then (2) follows from (1).

Let A=\{(\mu_{1^{ }},\cdots, \mu_{m})|\mu_{i}\in<\nu_{i}>, 1\leqq i\leqq m\} . Next we define the action
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of HU on A as follows:

(\mu_{1}, \cdots\mu_{m})^{g}=(\mu_{1}^{g}, \cdots, \mu_{m^{g}}) for g\in HU .

STEP 2. The following conditions holds.
(1) H acts regularly on A .
(2) If H acts transitively on A, then (ii) (B) holds.

PROOF. (1) If (\mu_{1}, \cdots, \mu_{m})^{h}=(\mu_{1}, \cdots, \mu_{m}) , then \mu_{i}\in C_{V},\cdot(h) , 1\leqq i\leqq m .
By Step 1 (1) [V_{i}, h]=\{e\} , and so [ V-h]={e}. Since O_{p\prime}(G)=\{e\} , h=e .
Hence H acts regularly on A.

(2) Let a\in V . then a=(\alpha_{1}\mu_{1})\cdots (\alpha_{m}\mu_{m}) , where \alpha_{i}\in C_{V_{i}}(s) and \mu_{i}\in\langle\nu_{i}\rangle ,

and \alpha_{i}\mu_{i} means a multiplication of \alpha_{i} and \mu_{i} in GF(p^{n_{i}})(=V_{i}) , 1\leqq i\leqq m .
Since H acts transitively on A, (\mu_{1^{ }},\cdots, \mu_{m})^{h}=(1, \cdots, 1) for some h\in H ,

where 1 is the identity of V_{i}^{*} . Since \mu_{i}^{h}=1 , v^{h}=\mu_{i}^{-1}v for every element v

\in V_{i} . In particular (\alpha_{i}\mu_{i})^{h}=\mu_{i}^{-1}\alpha_{i}\mu_{i}=\alpha_{i} , 1\leqq i\leqq m . Hence a^{h}=\{(\alpha_{1}\mu_{1})\cdots

(\alpha_{m}\mu_{m})\}^{h}=(\alpha_{1}\mu_{1})^{h}\cdots(\alpha_{m}\mu_{m})^{h}=\alpha_{1}\cdots\alpha_{m}\in C_{V}(s)\subseteqq Z ( VU).

Let A_{0},A_{1} , \cdots , A_{r} be the if-0rbits of A, where (1, \cdots, 1)\in A_{0} . Since U
normalizes H, U=\langle s\rangle induces a permutation on the set of the H-orbit of
A.

STEP 3. A_{0} is the only orbit which is fifixed by s.

PROOF. Since (|s|, |H|)=1 , a s-invariant orbit contains an element
which is fixed by s . Since C_{\langle\nu_{\iota}\rangle}(s)=1 , (1, \cdots, 1) is the only element of A
which in fixed by s and the assertion follows.

STEP 4. Let (\eta_{1^{ }},\cdots\eta_{m})\in A , then there exists y\in Aut ( V) which
satisfifies the following conditions.

(1) y fifixes V_{i}, 1\leqq i\leqq m .
(2) If we defifine the action of y as follows:

(\mu_{1^{ }},\cdots, \mu_{m})^{y}=(\mu_{1^{\mathcal{Y}_{ }}},\cdots, \mu_{m^{y}}) for (\mu_{1^{ }},\cdots’\mu_{m})\in A ,

then y acts on A .
(3) (\eta_{1}, \cdots, \eta_{m})^{y}=(1, \cdots, 1) .
(4) y commutes with every element of H in Aut ( V) .

PROOF. If we define y\in Aut(V) as follows:
(v_{1}\cdots v_{m})^{y}=(\eta_{1}^{-1}v_{1})\cdots (\eta_{\overline{m}^{1}}v_{m}) , where v_{i}\in V_{i} , 1\leqq i\leqq m ,

then y\in Aut(V) and y fixes V_{i} . Furthermore (\eta_{1^{ }},\cdots, \eta_{m})^{y}=(\eta_{1^{\mathcal{Y}_{ }}},\cdots, \eta_{m^{y}})=

(1, \cdots, 1) . Next, since \eta_{i}\in\langle\nu_{i}\rangle , 1\leqq i\leqq m , y acts on A . Let h\in H , then
(v_{1}\cdots v_{m})^{h}=(\xi_{1}v_{1})\cdots(\xi_{m}v_{m}) , where \xi_{i}\in\langle\nu_{i}\rangle and v_{i}\in V_{i} , 1\leqq i\leqq m . Then
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(v_{1}\cdots v_{m})^{hy}=\{(\xi_{1}v_{1})\cdots(\xi_{m}v_{m})\}^{y}

=(\eta_{1}^{-1}\xi_{1}v_{1})\cdots(\eta_{\overline{m}^{1}}\xi_{m}v_{m})

and
(v_{1}\cdots v_{m})^{yh}=\{(\eta_{1}^{-1}v_{1})\cdots(\eta_{m}^{-1}v_{m})\}^{h}

=(\xi_{1}\eta_{1}^{-1}v_{1})\cdots(\xi_{m}\eta_{m}^{-1}v_{m}) ,
and so (4) follows.

Let \hat{S}=\sum_{v\in S}v(\in KG) for any subset S of V and let V_{1}^{*}\cross\cdots\cross V_{m}^{*}=

\{v_{1}\cdots v_{m}|v_{i}\in V_{i}^{*}. 1\leqq i\leqq m\} . Set z=\hat{V}-V_{1}^{*}\cross\cdots\cross V_{m}^{*} and

z_{n}=z+ \sum_{a_{i}(\mu_{1},\cdots,\mu_{m})\in An\in 1\leqq i\leqq m}\sum_{C_{Vi}*(s)},(\alpha_{1}\mu_{1})\cdots(\alpha_{m}\mu_{m})
, 0\leqq n\leqq r .

Since \{(\alpha_{1}\mu_{1})\cdots(\alpha_{m}\mu_{m})\}^{h}=(\alpha_{1}\mu_{1^{h}})\cdots(\alpha_{m}\mu_{m^{h}}) ,
z_{n}=z+ \sum_{h\in H}\sum_{a_{i}}\{(\alpha_{1}\eta_{1})\cdots(\alpha_{m}\eta_{m})\}^{h}

for some fixed element (\eta_{1}, \cdots, \eta_{m})\in A_{n} , and so z_{n}^{h}=z_{n} for \forall h\in H .

STEP 5. Let t be the maximal positive integer such that z_{0}\in J(KV)^{t}-

then for z_{n}, 1\leqq n\leqq r, t is also the mmimal positive integer such that z_{n}\in

J(KV)^{t}- Furthermore, if t=d(p-l) , where |V|=p^{d} then (ii) (B)
holds.

PROOF. Let y\in Aut(V) as in Step 4. Then
z_{n}^{y}=z^{y}+ \{\sum_{h\in H}\sum_{a_{i}}(\alpha_{1}\eta_{1})\cdots(\alpha_{m}\eta_{m})\}^{hy}

=z+ \{\sum_{h\in H}\sum_{a_{i}}(\alpha_{1}\eta_{1})\cdots(\alpha_{m}\eta_{m})\}^{hy} (by Step 4(1))

=z+ \{\sum_{h\in H}\sum_{a_{i}}(\alpha_{1}\eta_{1})\cdots(\alpha_{m}\eta_{m})\}^{yh} (by Step 4(4))

=z+ \{\sum_{h\in H}\sum_{a_{i}}(\alpha_{1}1)\cdots(\alpha_{m}1)\}^{h} (by Step 4(3))

=z_{0} .

Since y\in Aut(V) , the first assertion follows.
We remark J(KV)^{d(p-1)}=K\hat{V} Hence, if z_{)}\in J(KV)^{d(p-1)}, A_{0}=A , and

so H acts transitively on A. By Step 2(2), the second assertion follows.

STEP 6. (ii) (B) holds.

PROOF. Suppose false, then r\geqq 1 by Step 2(2). Let\{A_{1}, \cdots, A_{p}\} be a
s -0rbit. For example, if A_{1}^{s}=A_{2} , then

\{\sum_{(\mu_{1},\cdots,\mu_{m})\in A_{1}}a_{l}\in C\gamma\iota*(s)\sum_{1\leq\iota\leq m}(\alpha_{1}\mu_{1})\cdots(\alpha_{m}\mu_{m})\}^{s}

= \sum_{(\mu_{1^{S}},\cdots,\mu_{m^{S}}),\in A_{2}}\sum_{a_{t}}(\alpha_{1}\mu_{1^{S}})\cdots(\alpha_{m}\mu_{m^{S}}) .
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Since \alpha_{i}\in C_{V\iota*}(s) , 1\leqq i\leqq m , z_{1^{S}}=z_{2} .
By Lemma 4 (3),

\sum_{h\in H}z_{1^{h}}+(\sum_{h\in H}z_{1}^{h})^{s}+\cdots+(\sum_{h\in H}z_{1}^{h})^{s^{p- 1}}=|H|(z_{1}+z_{1}^{s}+\cdots+z_{1}^{s^{p- 1}})

=|H|(z_{1}+\cdots+z_{p})\in J(KV)^{t+(p-1)}

The same thing holds for another orbits, and so z_{1}+\cdots+z_{r}\in J(KV)^{t+(p-1)}

\subseteqq J(KV)^{t+1} by Step 3. Then

z_{)}+z_{1}+\cdots+z_{r}

=z+ \sum_{(\mu_{1},\cdots,\mu_{m})\in Ao}\sum_{a_{i}}(\alpha_{1}\mu_{1})\cdots(\alpha_{m}\mu_{m})+\sum_{j=1}^{p}\{\sum_{(\mu_{1},\cdots,\mu_{m})\in A_{J}}\sum_{a_{i}}(\alpha_{1}\mu_{1})\ldots(\alpha_{m}\mu_{m})\}+\cdots

=z+\Sigma r
\sum \sum(\alpha_{1}\mu_{1})\cdots(\alpha_{m}\mu_{m})

j=0(\mu_{1},\cdots,\mu_{m})\in A_{J}a_{i}

=z+ \sum_{(\mu_{1},\cdots,\mu_{m})\in A}\sum_{a_{l}}(\alpha_{1}\mu_{1})\cdots(\alpha_{m}\mu_{m})

=z+V_{1}^{*}\cross\cdots\cross V_{m}^{*}

=V\in J(KV)^{d(p-1)}\subseteqq J(KV)^{t+1} by Step 5.

Hence z_{)}=\hat{V}-(z_{1}+\cdots+z_{r})\in J(KV)^{t+1} . this contradicts the choice of t

and the assertion follows.

STEP 7. Let H_{i}=C_{H} ( V_{1}\cross\cdots\cross V_{i-1}\cross V_{i+1}\cross\cdots\cross V_{m}) , then H=
C_{H} ( V_{i})\cross H_{i}, 1\leqq i\leqq m .

PROOF. Let h\in H , and let a_{i}\in C_{V_{i}}^{*}(s) , 1\leqq i\leqq m . Since a_{1}\cdot
\cdot a_{i^{h}}\cdot\cdot a_{m}

\in V. there exists an element x\in H such that (a_{1}\cdot\cdot a_{i^{h}}\cdot\cdot a_{m})^{x}\in C_{V}(s)=

\prod_{i}C_{V_{i}}(s) by Step 6. Then a_{1}^{x}\in C_{V_{1}*}(s) , \cdots , a_{i^{hX}}\in C_{V_{i}*}(s) , \cdots , a_{m}^{x}\in C_{v_{m}*}(s) .

By Step 1 (2), x\in H_{i} and hx\in C_{H} ( V_{i}) , hence h=hxx^{-1}\in C_{H}(V_{i})H_{i} .
Furthermore C_{H}( V_{i})\cap H_{i}=C_{H} ( V)\subseteqq O_{p\prime}(G)=\{e\} and the assertion follows.

STEP 8. (iii) holds.

PROOF. Since H=C_{H}(V_{2})\cross H_{2} by Step 7, C_{H}(V_{1})=H_{2}\cross C_{H}( V_{1}\cross V_{2}) .
Hence H=H_{1}\cross H_{2}\cross C_{H}( V_{1}\cross V_{2}) . Similarly we have C_{H} ( V_{1}\cross V_{2})=H_{3}\cross

C_{H} ( V_{1}\cross V_{2}\cross V_{3}) , and hence H=H_{1}\cross H_{2}\cross H_{3}\cross C_{H} ( V_{1}\cross V_{2}\cross V_{3}) . By the
similar argument, H=H_{1}\cross\cdots\cross H_{m}\cross C_{H} ( V) . Since O_{p\prime} ( G)=\{e\} ,
C_{H}( V)=\{e\} , and so H=H_{1}\cross\cdots\cross H_{m} and VH=(V_{1}H_{1})\cross\cdots\cross(V_{m}H_{m}) .
Then, by the first paragraph of the proof, M_{p,r_{i}}\supseteqq V_{i}HU/C_{H} ( V_{i})=V_{i}HU/

H_{1}\cross\cdots\cross H_{i-1}\cross H_{i+1}\cross\cdots XH_{m}\simeq ViHiU If M_{p,r_{i}}\supsetneqq V_{i}HU/C_{H} ( V_{i}) , \langle \nu_{i}\rangle\supsetneqq

\langle\xi_{i}\rangle , then \nu_{i} is not conjugate to any element of C_{V1}(s) . This contradicts
Step 6. Therefore V_{i}H_{i}U\simeq M_{p,r_{i}} and the assertion follows.

This proves (i)arrow(iii) and completes the proof of the theorem.
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