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1. Introduction

Let G be a finite p-solvable group with a Sylow p-subgroup P of
order p? K a field of characteristic p, KG the group algebra of G over
K, and ¢t(G) the nilpotency index of the radical J(KG) of KG.

D. A.R. Wallace [9] proved that «(»p—1)+1=t(G)<pe Y. Tsu-
shima proved that the second equality ¢t(G)=p¢ holds if and only if P
is cyclic. Here we shall study the structure of G with t(G)=a(p—1)+1.
If G has p-length 1, then +(G)=¢t(P) by Clarke [1]. From this, we can
easily see that (G)=a(p—1)+1 if and only if P is elementary abelian.
Therefore we shall be interested in the structure of G of p-length 2 with
t(G)=a(p-1)+1. As such examples, we know the followings.

We set ¢g=p" and /=(g?—1)/(g—1). Then g—1 and [/ are relatively
prime. Let F=GF (g?) be a finite field of ¢” elements, A a generator of
the multiplicative group F* of F, and v=A%"!. Let V be the additive
group of F'. If we define v*=wv, where vv means a multiplication in the
field F, then x€Aut(V). Let U be the Galois group of F over GF(g),
and H=<x>. Then HUSAut(V). So we can consider the semidirect
product of V by HU. We set M,,=— VHU. Then HU is a Frobenius
group and |H|=/, |U|=p, and VU is a Sylow p-subgroup of M,, of order
p?1. In [5], Motose proved ¢(M,,)=(pr+1)(p—1)+1.

Let G=M,,, then G=0p5,(G) and G/0,(G) is a Frobenius group.
So can we consider conversely that if G satisfies such conditions and
t(G)=a(p—1+1, then is G isomorphic to M,,? Concerning this prob-
lem, we have the following result.

THEOREM. Let V be a normal p-subgroup of G with G=VN and
VNN =1 for some Frobenius group N with complement U and kernel H,
where U and H are p-group and abelian p’-group, rvespectively. Then the
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follwing conditions are equivalent.

(1) t(G)=a(p—1)+1, where p® is the order of a Sylow p-subgroup
of G.

(i) (A) U and V are elementary abelian.
(B)  Cc(x) contains a Sylow p-subgroup of G for every element

x of V.

(i) Set G=G/0p(G). Then G=[V, HINXCv(H) and [V,
H)=ViX X Vn, where Vi is a minimal normal subgroup of
VH, 1<i<m. Furthermove [V, HIH=(ViH) XX (VuHn),
where H; is a subgroup of H and V:H:U= Mp,», for some 7:.

2. Preliminaries

In this section we shall prove some lemmas which will be used to
prove the theorem.

From Theorem 3. 1 of Wallace [9], we have immediately the follow-
ing result.

LEMMA 1. Let G be a p-solvable group of ovder p°m, (p, m)=1,
and have the following normal series

1:P02N0gP1gN1g """ gpn:G

such that P:v1/Ni, N:/P; ave p and p’-groups, respectively, 0=i=n—1. If
t(G)=a(p—1+1, then Pi1/N; is elementary abelian, 0=i=n—1.

LEMMA 2. ([7, Proposition 19. 8]).  Let G act faithfully on vector
space V of order q" over GF(q). Suppose A is a normal cyclic subgroup
of G which acts irveducibly on V. Then we can identify V with the addi-
tive group of GF(q™) in such a way that GE T (q") where T (¢g") is the
set of semilinear transformations of the form x—ax’ with aSGF (¢"), a+0
and o a field automorphism. Furthermore Ce(A) is contained in the sub-
group of T (q") consisting of linear transformations (that is, 0=1).

LEMMA 3. ([3, Theorem 4. 6, p409]). Let G satisfy the assumption
of the theorvem. Then the following conditions are equivalent.

(D t@=t(U)+t(V)—1.
2 h‘esz””—thzhE](KV)i“ for all i=0, all z&€J(KV)' and all

uce U.

LEMMA. 4 Let G satisfy the assumption and (i) of the theovem.
Then the following conditions hold.
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(1) |U|=p and V is elementary abelian.

(2) If W is a H-invariant subgroup of V, then W is N -invariant.

(3) h§H2h+(h§th)s+~-+(hgﬂzh)sP‘IEJ(KV)i+‘p“) for all i=0 and
all z€J(KV)"'.

ProoF. (1) Since N=HU is a Frobenius group, (1) follows imme-
diately by Lemma 1.

(2) Since H is a p’-group, V is completely reducible as H-module.
So we may assume that W is an irreducible H-module. Then we have
(2) by the proof of [6, Lemma 11(7)].

(3) HU acts on KV by conjugation. So KHU acts on KV by linear
extention. Then

Z(hgﬂh)(s—l):< Z Zh>s_ 2 ZhE_/(KV)iH
heH heH

by Lemma 3. Similarly
{Z(hgﬂh)(s—l)}(hgﬂh)(s—l) — |H|Z(hzﬂh><3_l)26] (KV) i+2

by Lemma 3. Hence z':&P¢V'eJ(KV)™% If we repeat this method,
we have z(EPCP7eJ(KV)™*®D  On the other hand (s—1)? '=1+s+::-
+sP71 and so

Z(hgﬂh)(l+s+---+s""): Z Zh+< 2 Zh>s+"'+( 2 Zh)sp"E]<KV>i+(p—l)
HEH HEH HEH )

3. Proof of the Theorem

(ii)—>G) For zeV, "€ Z(VU) for some m=H by (i)(B). Then
(2 Zh)u: 2 Zhu: 2 Zhoho-lhu: 2 (Zho>h11: Z (Zh())u-lhu: 2 Zh.
heH heH heH heH heH heH

Hence t(G)=¢t(U)+t(V)—1 by [Lemma 3, and so t(G)=a(p—1+1 by
(D (A).

(iii)—@i) It is clear that (ii)(A) holds. Let v€V, then v=uv1"""Un
for some v,€V,, 1=i=<m. Since V:HU =~ M,,,, there exists an element #;
€ H; such that v€Cv,(U)SZ(VU). Set h=h'-hnEH, then v"=v"-
vnmeEZ(VU). Hence Cc(v®)2VU, and so Ce(v) 2V '€ Syl,(G).
This proves that (ii) (B) holds.

In the next proof, we denote by e the identity of G.

()—3ii) Let G=G/0»(G). Then G satisfies (i), and so we may
assume that Op(G)={e}. By Lemma 4(1), |U|=p and V is elementary
abelian. N acts on V by conjugation. So we can regard V as N=HU
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module. Since H is a p'-group, V is a completely reducible H-module.
Let V=ViX--XVn, where V; is an irreducible H-module, 1=<i<m.
Then by Lemma 4(2), V;is N-invariant.

If Cv(H)+#{e}, then we may assume that [ Vi,H]={e}. Since G V2 X
X VeH and G/VpX--XVaH=>~ViU, ViU is elementary abelian by
Lemma 1, in particular [Vi, U]={e}. Hence G=(VoX- X V,HU) X V.
Since VXX VaHU =G/ V; satisfies (i), we may assume that Cy(H)=
{e}.

Let L;=V.HU and L,=V:HU/Cy(V)), 1=i<m. Then L,=V.HU
and H is cyclic since H is abelian and H acts irreducibly and faithfully
on V.. Since V:i=V; and U=~U, we can identify V: and U with V; and
U, respectively. By Lemma 2, we can identify V; with the additive group
of GF(p"™) in such a way that HUS T (p™), where p™=|Vi|. Further-
more H is contained in the subgroup of T (™) consisting of linear trans-
formations.

Let Gal(GF(»™)/GF(p))=<r> and o=r" where n;=pr. Further-
more Cv,(0)=GF(q:), where ¢q.=p" By considering the structure of
T (p™), a conjugate subgroup of HU in T (»™) contains ¢. So let U=
(s>, then we may assume that s=¢. When we identify V; with GF(»™),
let Vi* be the multiplicative group of V.. Set <A>=Cwx (s) and <{y:>=
[V:*, <s>], then Vi*=<{A>X<v:> . Let x€H such that <x>=H. Then
there exists &:E Vi* such that v*=E&,v for every element v< V;, where &v
means a multiplication of & and v in GF(™)(=V;). Since HU is a
Frobenius group, x*=x’ for some x’# x. Let 1 be the identity of Vi*,
then (1*)°=&° and (1")°*=1¥=1""=1"=¢/. Hence &°=&/+¢&;. This
implies that s acts fixted-point-freely on <&:. Hence <&)>=[(£D, {(sP] S
vy, and so L:S M, ..

Now we shall divide the remainder of the proof into several steps.
STEP 1.  The following conditions hold.

(D If Cv(h)*{e} for some Vi and hEH, then [V h]={e}.
(2) If a"€Cvix(s) for some a=Cyx(s) and hEH, then [V, h]={e}.

Proor. (1) Since H is abelian, Cy,(h) is H-invariant. Moreover,
since V; is an irreducible H-module, Cv,(h)=V;, and so [ V;, h]={e).

(2) Two elements of Z(UV) are conjugate in G if and only if they are
conjugate in Ng(VU) (See [Gorenstein, Finite groups, p.240 Th. 1.1]).
Since N=UH is a Frobenius group, N¢(VU)=VU. Hence a"=a and so
e*+a€Cvix(h). Then (2) follows from (1).

Let A={(w, , um)| € <vi;>, 1=i=m}. Next we define the action
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of HU on A as follows:
(o ptm) 9=, -+, un®) for g€ HU.

STEP 2. The following conditions holds.
(1) H acts regularly on A.
(2) If H acts transitively on A, then (ii) (B) holds.

Proor. (1) If (u, -, )=, =+, tn), then wECv:(h), 1=i=m.
By Step 1(1), [V, kl={e}, and so [V, hl={e}. Since Ox(G)={e}, h=e.
Hence H acts regularly on A.

(2) Let a€V, then a= (i) (amitn), where a;€ Cv,(s) and pE<v,
and a:i; means a multiplication of @; and & in GF(p™) (=Vy), 1si=m.
Since H acts transitively on A, (wm, -, un)*=(, -, 1) for some hEH,
where 1 is the identity of Vi*. Since p"=1, v*=u;'v for every element v
€ V:. In particular () "=pitaipi=a;, 1=i<m. Hence a"={(arp)
(mpen) } = () Campm) "= a1 an € Cv () S Z (VD).

Let Ao A, -+, Ar be the H-orbits of A, where (1, -, 1)€Ao. Since U

normalizes H, U=<s) induces a permutation on the set of the H-orbits of
A.

STEP 3. Ao is the only orbit which is fixed by s.

ProOOF. Since (|s|, |H])=1, a s-invariant orbit contains an element
which is fixed by s. Since Cs(s)=1, (,-, 1) is the only element of A
which in fixed by s and the assertion follows.

STEP 4. Let (q1, - qm)E A, then there exists y € Aut(V) which
satisfies the following conditions.

(1) y fixes Vi, 1=i<m.
(2) If we define the action of y as follows :
(e, =, wn)”=(®, o, ) for (u, -, um) €A,
then y acts on A.
3 Gp, =, 9)’=0, -+, D.
(4) y commutes with every element of H in Aut (V).

PrROOF. If we define yEAut(V) as follows:
(o1 vm)”’= (7 v1) (g’ vm), Where v, €V, 1=i=m,
then yEAut(V) and y fixes Vi. Furthermore (7, -, 72)" =, =+, 7u’) =
(1,--,1). Next,since 7:.€<v:>, 1=i<m, y acts on A. Let h&H, then
(v vm) = (& v (Emvm), Where £&E<y;> and v:€V;, 1=i=m. Then
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(v o) ={(&100) (Envm) Y
=(it&vD) (' Envn)
and
(v ={(pit o)) (prtvm) "
=(&npito) - Enpn'om),

and so (4) follows.
Let §:§SU(EKG) for any subset S of V and let Vi*X--X Vi=
(im0 EVi*, 1Si<m). Set 2=V —Vi*x--X V¥ and

Zn=z+ X > )(alﬂ1>“'<amﬂm>, 0<n<vr.

(#1,,#m)EAn a:ECyik(S
l<i=m

Since {(aipm) - Camun) = Carpa™)*+ Clmpm®™,
Zn=2z+ }EH ?_,i{(al ) (anm) }*

for some fixed element (7, -, 7») € A», and so z,"=2z, for Vhe H.

STEP 5. Let t be the maximal positive integer such that 2] (KV)¢,
then for zn, 1Snu=<v, t is also the maximal positive integer such that z,E
J(KV)L.  Furthermore, if t=d(p—1), where |V |=0%, then (ii) (B)
holds.

PrROOF. Let yEAut(V) asin Step 4. Then
zny:Zy+{h§H az <a/1771)"'<am77m>}hy

:z+{h§1 ‘j‘_.i Cern) -+ Camym) )™ (by Step 4(1))
:Z+{h§H gil (a1771>"'<am77m)}yh (by Step 4(4))
:Z+{h§H %} () (anD}” (by Step 4(3))
= 2.

Since yEAut(V), the first assertion follows.
We remark J(KV)¥**D=KV  Hence, if 2EJ(KV)**™ A=A, and
so H acts transitively on A. By Step 2(2), the second assertion follows.

Step 6. (1) (B) holds.

PROOF. Suppose false, then »=1 by Step 2(2). Let{A,, -+, A»} be a
s-orbit. For example, if A:°=A,, then

{ 2 2 (alﬂl)"'(a/m,um)}s

(#1,#m)EA1 a1E€Cy1%(S)
lsism

= X 2 n®) Campn®).

(B18,,#mS),EA2 @i
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Since &:ECvix(8), 15i=m, 21°=2.
By Lemma 4(3),

S At (D a4 (52 = Hl o+ a4 27
:|H|<Zl+"'+Zp>E]<KV>t+(p_l)

The same thing holds for another orbits, and so zi+:-+z,€J(KV)** -V
CJ(KV)**! by Step 3. Then

Zo+21+"'+2r
b
=z+ 2 e lampm)+2{ X Zlam) - (@nptm)}+--
(#1,,4m)EA0 ai i=1 (M1, mm)EA; a;

—2+3 S S (Ampn)

J=0 (K1, H#m)EA; a:

=z+ > 2<d1#1>"'<a’mﬂm>

(B1,,Hm)EA aq
=z4 Vi*X X VX
=P eJ(KV)¥*-VS J(KV)*! by Step 5.

Hence z=V —(zi++2z)EJ(KV)** this contradicts the choice of ¢
and the assertion follows.

STEP 7. Let H,=Cyg(V XXV ,1X Vi1 XX Vp), then H=
Cu(Vi))XH; 1=i=m.

PrROOF. Let ZEH, and let a.€Cv*(s), 1=i<m. Since ai'"a.” an
€V, there exists an element x€H such that (a1 e/ an)*ECv(s)=
l'iICv,-(s) by Step 6. Then ai*ECv.x(s), -+, a*E Cvix(s), =, an" ECvnx(s).

By Step 1(2), x€H; and hxECx(V;), hence h=hxx"'€Cuy(V) H..
Furthermore Cu(V))(NH:=Cu(V)E 0p(G)={e} and the assertion follows.

STeEP 8. (iii) holds.

PrROOF. Since H=Cy(Vo)XH, by Step 7, Ca(V1)=HXCu(ViX Va).
Hence H=H X Hy;X Cy(ViX Vo). Similarly we have Cuy (ViX Vo) = HsX
Ca(ViX Vo X Vi), and hence H=H\XH;X HsX Cy(Vi X V2 X V3). By the
similar argument, H=H1 XX Hax X Cu (V). Since 0, (G)={e},
Cu(V)={e}, and so H=H,XXHpn and VH=(ViH) X+ X(VaHn).
Then, by the first paragraph of the proof, Mp,»2 V.HU/Cy( V) =V:HU/
H1>< XHi—lx Hz‘+1 Xovee ><];.[7n2 V;H,U If Mp,n; VzHU/CH(M), <Vi>;
<&, then v; is not conjugate to any element of Cvi(s). This contradicts
Step 6. Therefore V:H:U =My, and the assertion follows.
This proves (i)—(iii) and completes the proof of the theorem.
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