Lifting Fourier-Stieltjes transforms and transferring cocycles

Wojciech CHOJNACKI (Received March 26, 1990)

Abstract

We exhibit a class of linear liftings of Fourier-Stieltjes transforms defined on a closed subgroup of a locally compact Abelian group to Fourier-Stieltjes transforms defined on the whole group. Using these liftings, we establish a result about unitary representations associated with cocycles on compact Abelian groups with dense action.

0. Introduction

Let G be a locally compact Abelian group and \hat{G} be the dual group of G. Let A(G) be the space of Fourier transforms of Haar-integrable functions on \widehat{G} , B(G) be the space of Fourier transforms of complex finite regular Borel measures on \widehat{G} , $B^1_+(G)$ be the set of Fourier transforms of regular Borel probability measures on \widehat{G} , and $B_s(G)$ be the space of Fourier transforms of finite regular Borel measures on \widehat{G} singular with respect to Haar measure. Let G_0 be a closed subgroup of G and R be the operator of the restriction to G_0 of functions defined on G. A well-known elementary result states that $R(A(G))=A(G_0)$ and $R(B(G))=B(G_0)$ (cf. [13, Theorems 2.7.2 and 2.7.4). J. Inoue [10] constructed a linear isometry I from $B(G_0)$ into B(G), carrying $A(G_0)$ in A(G), $B_1^{\dagger}(G_0)$ in $B_1^{\dagger}(G)$, and $B_s(G_0)$ in $B_s(G)$, such that RI is the identity on $B(G_0)$ and, for each $\psi \in$ $B(G_0)$, the support of $I\psi$ is contained in the set of all elements of the form x+y with x in the support of ψ and y in any given neighbourhood of 0 in G. Inoue's construction, relying on a subtle reduction to the case in which G_0 is discrete and in which such an isometry can be expressed by a simple formula (cf. [9, Theorem A. 7. 1]) is fairly complicated and leads to a rather non-transparent formula for I. In this paper, we reveal a class of isometries with properties as above, which have a strikingly simple Taking advantage of the special shape of these isometries, we establish a result about transferring cocycles from closed subgroups of compact Abelian groups with dense action to the entire groups. latter result will provide motivation to the proposed approach.

1. A lifting theorem

With G a locally compact Abelian group, let m_G be the Haar measure on G and $\mathcal{K}(G)$ be the space of all complex continuous functions on Gwith compact support. With G_0 a closed subgroup of G, let G/G_0 be the corresponding quotient group and π be the canonical epimorphism from Gonto G/G_0 . Suppose the Haar measure on G/G_0 is normalized so that

$$\int_{G} f(x) dm_{G}(x) = \int_{G/G_{0}} \left[\int_{G_{0}} f(x+y) dm_{G_{0}}(x) \right] dm_{G/G_{0}}(\dot{y}) \quad (\dot{y} = \pi(y))$$

for all $f \in \mathcal{K}(G)$; here we adopt the standard notational convention regarding double integrals in which one integration is performed over a subgroup and the other over the corresponding quotient group (cf. [3, p. 44; 5, p. 249]).

Let C(G) be the space of all complex bounded continuous functions on G, $C_0(G)$ be the space of all complex continuous functions on G vanishing at infinity, and, for $1 \le p < +\infty$, let $L^p(G)$ be the pth Lebesgue space based on m_G .

Let F be the Fourier transformation defined by

$$\mathscr{F}f(\gamma) = \int_{G} f(x)(x, -\gamma) dm_{G}(x) \quad (f \in L^{1}(G), \ \gamma \in \widehat{G}).$$

We normalize the Haar measure on \widehat{G} so that

$$f(x) = \int_{\widehat{G}} \mathscr{F} f(\gamma)(x, \gamma) \ dm_{\widehat{G}}(\gamma) \ (x \in G),$$

whenever $f \in L^1(G) \cap C(G)$ and $\mathscr{F} f \in L^1(\widehat{G})$.

Let G_0^{\perp} be the annihilator of G_0 in \widehat{G} defined as

$$\{\gamma \in \widehat{G} : (x, \gamma) = 1 \text{ for } x \in G_0\}.$$

Let ρ be the canonical epimorphism from \widehat{G} onto \widehat{G}/G_0^+ . With the normalization of Haar measures on mutually dual groups adopted above, we have

$$\int_{\hat{G}} f(\gamma) dm_{\hat{G}}(\gamma) = \int_{\hat{G}/G_{b}} \left[\int_{G_{b}} f(\gamma + \xi) dm_{G_{b}}(\xi) \right] dm_{\hat{G}/G_{b}}(\dot{\gamma}) (\dot{\gamma} = \rho(\gamma))$$

for all $f \in \mathcal{K}(\widehat{G})$.

Let M(G) be the space of all complex finite regular Borel measures on G, $M_s(G)$ be the space of measures in M(G) singular with respect to Haar measure, $M_a(G)$ be the space of atomic measures in M(G), and $M_0(G)$ be

the space of measures $\mu \in M(G)$ such that $\mathcal{F}\mu \in C_0(\widehat{G})$, where $\mathcal{F}\mu$, the Fourier transform of μ , is defined by

$$\mathcal{F}\mu(\gamma) = \int_{G} (x, -\gamma) d\mu(x) \quad (\gamma \in \widehat{G}).$$

We identify the space of measures in M(G) absolutely continuous with respect to Haar measure with the space $L^1(G)$. We also let

$$B_a(\widehat{G}) = \{ \mathscr{F}\mu : \mu \in M_a(G) \}$$

and

$$B_0(\widehat{G}) = \{ \mathscr{F} \mu : \mu \in M_0(G) \}.$$

For any space E of functions or measures, we denote by E_+ the set of all non-negative elements of E.

Given a topological space X, let $\mathcal{B}(X)$ be the space of all complex bounded Borel functions on X, and $\mathfrak{B}(X)$ be the σ -algebra of Borel subsets of X.

Suppose h is a function in $C_+(\widehat{G})$ such that, for each $\gamma \in \widehat{G}$,

$$\int_{G_{\dagger}} h(\gamma + \xi) dm_{G_{\dagger}}(\xi) = 1. \tag{1.1}$$

As we shall see shortly, such functions exist in abundance. For each $f \in \mathcal{K}(\hat{G})$, the function

$$g_f(\gamma) = \int_{G_{\bar{0}}} h(\gamma + \xi) f(\gamma + \xi) dm_{G_{\bar{0}}}(\xi) \quad (\gamma \in \widehat{G})$$

is continuous on \widehat{G} and $g_f(\gamma+\eta)=g_f(\gamma)$ for each $\gamma\in\widehat{G}$ and each $\eta\in G_0^+$, so that $g_f=\widetilde{g}_f\circ\rho$, where \widetilde{g}_f is a uniquely determined continuous function on \widehat{G}/G_0^+ . Moreover, \widetilde{g}_f has compact support (cf. [5, Theorem 14.1.5.5]), and if we let $\|\cdot\|_{\infty,X}$ denote the supremum norm over a set X, then $\|\widetilde{g}_f\|_{\infty,\widehat{G}/G_0^+}=\|g_f\|_{\infty,\widehat{G}}\leq \|f\|_{\infty,\widehat{G}}$. Thus, by the Riesz theorem, for each $\mu\in M(\widehat{G}/G_0^+)$ the bounded linear functional

$$f \rightarrow \int_{\widehat{G}/G_{\delta}} \widetilde{g}_f d\mu \quad (f \in \mathcal{K}(G))$$

can be represented as

$$f{
ightarrow}\int_{\widehat{G}}fdJ_{\mu}$$

for a unique J_{μ} in $M(\widehat{G})$. We claim that given $f \in \mathcal{B}(\widehat{G})$, g_f is in $\mathcal{B}(\widehat{G}/G_0^{\perp})$ and, for each $\mu \in M(\widehat{G}/G_0^{\perp})$,

$$\int_{\hat{G}} f dJ_{\mu} = \int_{\hat{G}/G_{h}} \tilde{g}_{f} d\mu. \tag{1.2}$$

Let f be a non-negative lower semicontinuous function on \widehat{G} and $(f_{\alpha})_{\alpha \in A}$ be an increasing net in $\mathcal{K}_{+}(\widehat{G})$ such that $\sup_{\alpha} f_{\alpha} = f$. Then, by the generalized monotone convergence theorem (cf. [3, Chapitre 4, §1, n°1, Théorème 1]), $\widetilde{g}_{f} = \sup_{\alpha} \widetilde{g}_{f_{\alpha}}$ and, since the $\widetilde{g}_{f_{\alpha}}$ ($\alpha \in A$) are in $\mathcal{K}_{+}(\widehat{G}/G_{0}^{\perp})$, \widetilde{g}_{f} is lower semicontinuous. Let $\mu \in M_{+}(\widehat{G}/G_{0}^{\perp})$. Then, still by the generalized monotone convergence theorem,

$$\int_{\widehat{G}} f dJ_{\mu} = \sup_{\alpha} \int_{\widehat{G}} f_{\alpha} dJ_{\mu} = \sup_{\alpha} \int_{\widehat{G}/G_{0}^{+}} \widetilde{g}_{f\alpha} d\mu = \int_{\widehat{G}/G_{0}^{+}} \widetilde{g}_{f} d\mu.$$

In particular, for each open subset U of \widehat{G} , if we let 1_U denote the characteristic function of U, then \widetilde{g}_{1_U} is lower semicontinuous and (1.2) holds with $f=1_U$. Let

$$\mathscr{D} = \{ E \in \mathfrak{B}(\widehat{G}) : \widetilde{g}_{1_E} \in \mathfrak{B}(\widehat{G}/G_0^{\perp}) \text{ and } (1.2) \text{ holds for } f = 1_E \}.$$

Clearly, \mathscr{D} is a Dynkin class: 1° \widehat{G} is in \mathscr{D} ; 2° if E is in \mathscr{D} , then $\widehat{G} \setminus E$ is in \mathscr{D} ; 3° if $(E_n)_{n \in \mathbb{N}}$ is a sequence of pairwise disjoint sets in \mathscr{D} , then $\bigcup_{n \in \mathbb{N}} E_n$ is in \mathscr{D} . According to the main theorem about Dynkin classes, if Ω is a non-empty set and \mathscr{E} is a family of subsets of Ω closed under finite intersections, then the smallest Dynkin class containing \mathscr{E} coincides with the σ -algebra generated by \mathscr{E} (cf. [2, Theorem 1.2.4]). Applying this result in the situation where $\Omega = \widehat{G}$ and where \mathscr{E} is the family of all open subsets of \widehat{G} , we conclude that $\mathscr{D} = \mathfrak{B}(\widehat{G})$, so that the claim is valid for all $f = 1_E$ ($E \in \mathfrak{B}(\widehat{G})$), and next, by the usual extension, for all f in $\mathscr{F}(\widehat{G})$. The final step consists in an obvious extension of the validity of (1.2) to all measures in $M(\widehat{G}/G_0^{\perp})$.

The mapping $J: \mu \to J_{\mu}$ is clearly a linear operator from $M(\widehat{G}/G_0^{\perp})$ into $M(\widehat{G})$. Its basic properties are listed in the following

THEOREM 1.1. The following hold true:

- (i) J is an isometry;
- (ii) $J_{\mu} \in M_{+}(\widehat{G})$ if and only if $\mu \in M_{+}(\widehat{G}/G_{0}^{\perp})$;
- (iii) $J_{\mu} \in L^{1}(\widehat{G})$ if and only if $\mu \in L^{1}(\widehat{G}/G_{0}^{\perp})$;
- (iv) if $\mu \in M_a(\widehat{G}/G_0^{\perp})$ and G/G_0 is compact, then $J_{\mu} \in M_a(\widehat{G})$.

PROOF. (i) For each $\mu \in M(\widehat{G})$, let $\rho_*\mu$ be the image of μ by ρ given by

$$\rho_*\mu(B) = \mu(\rho^{-1}(B)) \quad (B \in \mathfrak{B}(\widehat{G}/G_0^{\perp})).$$

The mapping $\rho_*: \mu \to \rho_* \mu$ is clearly a linear operator from $M(\widehat{G})$ into $M(\widehat{G}/G_0^{\perp})$. One verifies at once that the composition $\rho_* J$ is the identity operator in $M(\widehat{G}/G_0^{\perp})$. Since $\|J\| \le 1$ and $\|\rho_*\| \le 1$, it follows that J is an isometry.

- (ii) As J is an isometry and $J_{\mu}(\widehat{G}/G_{0}^{\perp}) = \mu(\widehat{G})$ for each $\mu \in M(\widehat{G}/G_{0}^{\perp})$, it is clear that $J_{\mu} \geq 0$ if and only if $\mu \geq 0$.
- (iii) If $\mu \in M(\widehat{G}/G_0^{\perp})$ is absolutely continuous with respect to $m_{\widehat{G}/G_0^{\perp}}$ and f is the corresponding density, then, as one directly verifies, J_{μ} is absolutely continuous with respect to $m_{\widehat{G}}$ with density $h(f \circ \rho)$. Conversely, if for $\mu \in M(\widehat{G}/G_0^{\perp})$, J_{μ} is absolutely continuous with respect to $m_{\widehat{G}}$ and g is the corresponding density, then, as it follows immediately from the identity $\rho_*J_{\mu}=\mu$, μ is absolutely continuous with respect to $m_{\widehat{G}/G_0^{\perp}}$ with density d defined as

$$d(\dot{\gamma}) = \int_{G_{\dot{\theta}}} g(\gamma + \xi) dm_{G_{\dot{\theta}}}(\xi) \quad (\dot{\gamma} = \rho(\gamma), \ \gamma \in \widehat{G}).$$

(iv) Suppose that G/G_0 is compact. Then G_0^{\downarrow} is discrete. Let $\mu = \sum_{s \in S} a_s \delta_s$, where S is a countable subset of $\widehat{G}/G_0^{\downarrow}$ and the a_s ($s \in S$) are complex numbers such that $\sum_{s \in S} |a_s| < +\infty$ (for each $s \in S$, δ_s stands, of course, for the Dirac measure at s). For each $s \in S$, choose $\gamma_s \in \widehat{G}$ so that $\rho(\gamma_s) = s$. Then, as easily seen,

$$J_{\mu} = \sum_{s \in S} \sum_{\xi \in G_{\sigma}^{\pm}} a_s h(\gamma_s + \xi) \delta_{\gamma_s + \xi}$$

showing that J_{μ} is atomic along with μ .

The proof is complete.

Now that the role of functions satisfying (1.1) is clear, we turn to the question of the existence of such functions.

Let \mathscr{U} be a locally finite covering of \widehat{G}/G_0^{\perp} consisting of open relatively compact sets. For each $U \in \mathscr{U}$, let f_U be a function in $\mathscr{K}_+(\widehat{G})$ such that $\rho(\{\gamma: f_U(\gamma)>0\})\supset U$. Let g_U be the function on \widehat{G} defined by

$$g_{U}(\gamma) = \begin{cases} f_{U}(\gamma) \left[\int_{G_{\theta}^{+}} f_{U}(\gamma + \xi) dm_{G_{\theta}}(\xi) \right]^{-1}, & \text{if } \gamma \in \rho^{-1}(U); \\ 0, & \text{if } \gamma \in \widehat{G} \backslash \rho^{-1}(U). \end{cases}$$

The latter definition makes sense for if $\gamma \in \rho^{-1}(U)$, then $f_U(\gamma + \chi) \neq 0$ for some $\chi \in G_0^{\perp}$, whence

$$\int_{G_{\delta}} f_{U}(\gamma + \xi) dm_{G_{\delta}}(\xi) > 0.$$

Notice that g_U is lower semicontinuous and, for each $\gamma \in \rho^{-1}(U)$,

$$\int_{G_{b}} g_{U}(\gamma + \xi) dm_{G_{b}}(\xi) = 1. \tag{1.3}$$

Let $(\varphi_U)_{U \in \mathscr{U}}$ be a partition of unity subordinate to \mathscr{U} . Set $f = \sum_{U \in \mathscr{U}} (\varphi_U \circ \rho) g_U$. Clearly, f is a non-negative lower semicontinuous function on \widehat{G} . If we arbitrarily fix an element γ of \widehat{G} , then, for each $\xi \in G_0^{\perp}$,

$$f(\gamma+\xi)=\sum_{U\in\mathscr{U}}\varphi_U(\rho(\gamma))g_U(\gamma+\xi).$$

The right-hand sum has only a finite number of non-zero summands corresponding to those U's for which $\varphi_U(\rho(\gamma))>0$ or, equivalently, for which $\gamma\in\rho^{-1}(U)$. Hence

$$\int_{G_{\delta}} f(\gamma + \xi) dm_{G_{\delta}}(\xi) = \sum_{U \in \mathscr{U}} \varphi_{U}(\rho(\gamma)) \int_{G_{\delta}} g_{U}(\gamma + \xi) dm_{G_{\delta}}(\xi).$$

Taking into account (1.3), we see that f satisfies (1.1).

Let p be a function in $\mathcal{K}_+(G_0^{\perp})$ such that

$$\int_{G^{\frac{1}{b}}} p(\eta) dm_{G^{\frac{1}{b}}}(\eta) = 1. \tag{1.4}$$

For each $\gamma \in \widehat{G}$, set

$$r(\gamma) = \int_{G_0^+} f(\gamma + \eta) p(\eta) dm_{G_0^+}(\eta).$$

Repeating *mutatis mutandis* the argument used in the proof of (1.2), we see that r is a non-negative lower semicontinuous function on \widehat{G} . By (1.1) applied to f and by (1.4),

$$\begin{split} \int_{G_{\vartheta}} r(\gamma + \xi) dm_{G_{\vartheta}}(\xi) &= \int_{G_{\vartheta}} \left[\int_{G_{\vartheta}} f(\gamma + \xi + \eta) p(\eta) dm_{G_{\vartheta}}(\eta) \right] dm_{G_{\vartheta}}(\xi) \\ &= \int_{G_{\vartheta}} \left[\int_{G_{\vartheta}} f(\gamma + \xi + \eta) dm_{G_{\vartheta}}(\xi) \right] g(\eta) dm_{G_{\vartheta}}(\eta) \\ &= 1. \end{split}$$

so r satisfies (1.1) and $||r||_{\infty,\hat{G}} \le ||p||_{\infty,G^{\dagger}}$. Now, letting * denote convolution, if s is a function in $\mathscr{K}_{+}(\widehat{G})$ such that $\int_{\widehat{G}} sdm_{\widehat{G}} = 1$, then h = r * s is a function in $C_{+}(\widehat{G})$ satisfying (1.1).

Let $\mathcal{F}h$ be the Fourier transform of h in the sense of pseudomeasures, that is, $\mathcal{F}h$ is the element of the dual space A(G)' of A(G) given by

$$<\mathscr{F}h, \ \varphi>=\int_{\widehat{G}}h(\xi)w(-\xi)dm_{\widehat{G}}(\xi) \quad (\varphi\in A(G)\,;\, \varphi=\mathscr{F}w,\ w\in L^{1}(\widehat{G})).$$

It turns out that the support of $\mathcal{F}h$ may always be assumed to be arbirarily small.

Given a function f on G and an element x of G, let $T_x f$ be the translate of f by x, that is,

$$T_x f(y) = f(x+y) \quad (y \in G).$$

We recall that if $x \in G$ and $S \in A(G)'$, then the translate T_xS of S by x is the pseudomeasure

$$< T_x S, \varphi > = < S, T_{-x} \varphi > (\varphi \in A(G)).$$

Let $\mathscr{A}(G)$ be the space of all compactly supported Fourier transforms of elements of $L^1(\widehat{G}) \cap C(\widehat{G})$. With S in A(G)', we shall say that the function $G_0 \ni x \to T_x S \in A(G)'$ is weakly integrable whenever $G_0 \ni x \to T_x S$, $\varphi > is$ in $L^1(G_0)$ for every $\varphi \in \mathscr{A}(G)$. Notice that if f is any $m_{\widehat{G}}$ -essentially bounded $m_{\widehat{G}}$ -measurable function on \widehat{G} whose Fourier transform has compact support, then $G_0 \ni x \to T_x \mathscr{F} f$ is weakly integrable. In the light of the previous paragraph it is clear that the assumptions about the function h appearing in the theorem to follow are consistent.

THEOREM 1.2. Let h be a function in $C_+(\widehat{G})$ satisfying (1.1) such that $G_0 \ni x \to T_x \mathscr{F} h \in A(G)'$ is weakly integrable. Then, for each $\mu \in M(\widehat{G}/G_0^+)$ and each $\varphi \in \mathscr{A}(G)$,

$$\int_{G} \varphi \mathcal{F} J_{\mu} dm_{G} = \int_{G_{0}} \langle T_{-x} \mathcal{F} h, \varphi \rangle \mathcal{F} \mu(x) dm_{G_{0}}(x).$$

PROOF. For each $\varphi \in \mathscr{A}(G)$ with $\varphi = \mathscr{F}w$ $(w \in L^1(\widehat{G}) \cap C(\widehat{G}))$, we have

$$\int_{\hat{G}/G_{\dagger}} \left[\int_{G_{\dagger}} h(\gamma + \xi) |w(-\gamma - \xi)| dm_{G_{\dagger}}(\xi) \right] dm_{\hat{G}/G_{\dagger}}(\dot{\gamma}) \\
\leq \|h\|_{\infty,\hat{G}} \|w\|_{1,\hat{G}} \quad (\dot{\gamma} = \rho(\gamma)),$$

where $\| \cdot \|_{1,\widehat{G}}$ denotes the $L^1(\widehat{G})$ norm, so that \widetilde{g}_{w^*} , where $w^*(\gamma) = w(-\gamma)$ for all $\gamma \in \widehat{G}$, is in $L^1(\widehat{G}/G_0^+) \cap C(\widehat{G}/G_0^+)$ (cf. [3, Chapitre 7, § 2, n° 3, Propo-

sition 3;5, Theorem 14.4.5]). Remembering that $(\widehat{G}/G_0^{\perp})$ can canonically be identified with G_0 , for each $x \in G_0$, we have

$$\begin{split} \mathscr{F} \widetilde{g}_{w^*}(x) &= \int_{\widehat{G}/G_{\delta}} \widetilde{g}_{w^*}(\dot{\gamma})(x, -\dot{\gamma}) dm_{\widehat{G}/G_{\delta}}(\dot{\gamma}) \\ &= \int_{\widehat{G}/G_{\delta}} \left[\int_{G_{\delta}} h(\gamma + \xi) w(-\gamma - \xi)(x, -\gamma - \xi) dm_{G_{\delta}}(\xi) \right] dm_{\widehat{G}/G_{\delta}}(\dot{\gamma}). \end{split}$$

Given $\gamma \in \widehat{G}$, set $v(\gamma) = w(\gamma)(x, \gamma)$. Then, of course, $\mathscr{F}v = T_{-x}\varphi$ and

$$\mathcal{F}\tilde{g}_{w^*}(x) = \int_{\tilde{G}} h(\gamma)v(-\gamma)dm_{\tilde{G}}(\gamma) = \langle \mathcal{F}h, T_{-x}\varphi \rangle
= \langle T_x\mathcal{F}h, \varphi \rangle.$$

Since $G_0 \ni x \to \langle T_x \mathcal{F} h, \varphi \rangle \in \mathbb{C}$ is in $L^1(G_0)$ and \tilde{g}_{w^*} is continuous, it follows that

$$\widetilde{g}_{w^*}(\dot{\gamma}) = \int_{G_0} \langle T_x \mathscr{F} h, \varphi \rangle (x, \dot{\gamma}) dm_{G_0}(x) \quad (\dot{\gamma} = \rho(\gamma)).$$

Hence, in view of (1.2), for each $\mu \in M(\widehat{G}/G_0^{\perp})$,

$$\int_{G} \varphi \mathscr{F} J_{\mu} dm_{G} = \int_{\hat{G}} w^{*} dJ_{\mu} = \int_{\hat{G}/G_{\delta}} \tilde{g}_{w^{*}} d\mu$$

$$= \int_{G_{0}} \langle T_{x} \mathscr{F} h, \varphi \rangle \Big[\int_{\hat{G}/G_{\delta}} (x, \dot{\gamma}) d\mu(\dot{\gamma}) \Big] dm_{G_{0}}(x)$$

$$= \int_{G_{0}} \langle T_{x} \mathscr{F} h, \varphi \rangle \mathscr{F} \mu(-x) dm_{G_{0}}(x)$$

$$= \int_{G_{0}} \langle T_{-x} \mathscr{F} h, \varphi \rangle \mathscr{F} \mu(x) dm_{G_{0}}(x).$$

The proof is complete.

Now we are in a position to state the main result of this section. It will be a minor generalisation of Inoue's result mentioned in the introduction.

THEOREM 1.3. Let h be a function in $C_+(\widehat{G})$ satisfying (1.1), and let I be the linear operator from $B(G_0)$ into B(G) defined by

$$I\psi = \mathcal{F} J_{\mu} \ (\psi \in B(G_0); \psi = \mathcal{F} \mu, \mu \in M(\widehat{G}/G_0^{\perp})).$$

Then

- (i) I is an isometry such that RI is the identity on B(G);
- (ii) $I(A(G_0)) \subset I(A(G))$;
- (iii) $I(B_{+}^{1}(G_{0})) \subset B_{+}^{1}(G)$;
- (iv) $I(B_s(G_0)) \subset B_s(G)$;
- (v) if G/G_0 is compact, then $I(B_a(G_0)) \subset B_a(G)$.

If, for a given neighbourhood U of 0 in G, h is such that supp $\mathcal{F}h \subset U$, then

(vi) supp $I\psi \subset \text{supp } \psi + U \text{ for each } \psi \in B(G_0).$

PROOF. (i) That I is an isometry follows immediately from Theorem 1.1(i). By (1.1) and (1.2), for each $\psi \in B(G_0)$ with $\psi = \mathscr{F}\mu$ ($\mu \in M(\widehat{G}/G_0^{\perp})$) and each $x \in G_0$, we have

$$egin{aligned} I\psi(x) &= \int_{\widehat{G}/G^{rac{1}{6}} } igg[\int_{G^{rac{1}{6}}} h(\gamma + \xi)(x, -\gamma - \xi) dm_{G^{rac{1}{6}}}(\xi) igg] d\mu(\dot{\gamma}) \ &= \int_{\widehat{G}/G^{rac{1}{6}} } igg[\int_{G^{rac{1}{6}}} h(\gamma + \xi) dm_{G^{rac{1}{6}}}(\xi) igg](x, -\gamma) d\mu(\dot{\gamma}) \ &= \psi(x), \end{aligned}$$

showing that RI is the identity in B(G).

- (ii), (iii), (iv) and (v) are consequences of suitable statements of Theorem $1.\,1.$
 - (vi) results from Theorem 1. 2.

2. A refinement

In this section, we single out a class of functions satisfying (1.1) and examine the corresponding lifting operators. The results of this section will be of direct use in the next section.

Let G be a locally compact Abelian group satisfying the second axiom of countability and G_0 be a closed subgroup of G such that G/G_0 is compact. Let η be a section of the canonical epimorphism π over G/G_0 , that is, η is a Borel right inverse of π (for the existence of at least one such section see [14, Theorem 8. 11]).

For each
$$\gamma \in \widehat{G}$$
, set
$$h(\gamma) = \left| \int_{G/G_0} (\eta(\dot{x}), \gamma) dm_{G/G_0}(\dot{x}) \right|^2; \tag{2.1}$$

here we assume that m_{G/G_0} has mass equal to 1. Clearly, h is a function in $C_+(\widehat{G})$ with values no greater than 1. It turns out that h satisfies (1, 1).

To see this, notice first that for each $x \in G$, $\pi(x - \eta \pi(x)) = 0$, so $x - \eta \pi(x)$ lies in G_0 . Hence, for each $\gamma \in \widehat{G}$ and each $\xi \in G_0^{\perp}$,

$$(\eta \pi(x), \gamma + \xi) = (\eta \pi(x), \gamma)(x, \xi). \tag{2.2}$$

Since G_0^{\dagger} is the discrete dual of G/G_0 , it follows from Parseval's identity and the above identity that

$$\begin{split} \sum_{\xi \in G_{\delta}} h(\gamma + \xi) &= \sum_{\xi \in G_{\delta}} \left| \int_{G/G_{0}} (\eta(\dot{x}), \gamma)(\dot{x}, \, \xi) dm_{G/G_{0}}(\dot{x}) \right|^{2} \\ &= \int_{G/G_{0}} |(\eta(\dot{x}), \, \gamma)|^{2} dm_{G/G_{0}}(\dot{x}) = 1, \end{split}$$

as was to be shown.

As we saw earlier, for each $x \in G$, $x - \eta \pi(x)$ is an element of G_0 . We shall denote it by [x] and refer to it as the integral part of x. Such a terminology fits in with the one employed in the special case in which $G = \mathbf{R}$, $G_0 = \mathbf{Z}$, and, for each $\dot{x} \in \mathbf{R}/\mathbf{Z}$, $\eta(\dot{x})$ is the unique element of [0,1) such that $\pi \eta(\dot{x}) = \dot{x}$.

Now we can state our major result.

THEOREM 2.1. If I is the lifting operator associated with h given by (2.1), then, for each $\psi \in B(G_0)$ and each $x \in G$,

$$I\psi(x) = \int_{G/G_0} \psi([x + \eta(\dot{y})]) dm_{G/G_0}(\dot{y}).$$

PROOF. In view of (2.2) and Parseval's identity, for each $x \in G$ and each $\gamma \in \widehat{G}$, we have

$$\begin{split} \sum_{\xi \in G_{\delta}} h(\gamma + \xi)(x, -\gamma - \xi) \\ &= (x, -\gamma) \sum_{\xi \in G_{\delta}} (x, -\xi) \left| \int_{G/G_{0}} (\eta(\dot{y}), \gamma + \xi) dm_{G/G_{0}}(\dot{y}) \right|^{2} \\ &= (x, -\gamma) \sum_{\xi \in G_{\delta}} \int_{G/G_{0}} (\eta(\dot{x} + \dot{y}), \gamma)(\dot{y}, \xi) dm_{G/G_{0}}(\dot{y}) \\ &\times \int_{G/G_{0}} (\eta(\dot{y}), \gamma)(\dot{y}, \xi) dm_{G/G_{0}}(\dot{y}) \\ &= (x, -\gamma) \int_{G/G_{0}} (\eta(\dot{x} + \dot{y}) - \eta(\dot{y}), \gamma) dm_{G/G_{0}}(\dot{y}). \end{split}$$

Since, for any $x, y \in G$, $[x + \eta(\dot{y})] = x + \eta(\dot{y}) - \eta(\dot{x} + \dot{y})$, we see that $\sum_{\xi \in G\dot{x}} h(\gamma + \xi)(x, -\gamma - \xi) = \int_{G/G_0} ([x + \eta(\dot{y})], -\gamma) dm_{G/G_0}(\dot{y}).$

Now, if $\mu \in M(\widehat{G}/G_0^{\perp})$ is such that $\psi = \mathcal{F}\mu$, then, in view of (1.2), for each $x \in G$,

$$I\psi(x) = \mathscr{F} J_{\mu}(x) = \int_{\hat{G}/G_{\delta}} \left[\sum_{\xi \in G_{\delta}} h(\gamma + \xi)(x, -\gamma - \xi) \right] d\mu(\dot{\gamma})$$

$$= \int_{\hat{G}/G_{\delta}} \left[\int_{G/G_{0}} ([x + \eta(\dot{y})], -\gamma) dm_{G/G_{0}}(\dot{y}) \right] d\mu(\dot{\gamma})$$

$$= \int_{G/G_{0}} \mathscr{F} \mu([x + \eta(\dot{y})]) dm_{G/G_{0}}(\dot{y})$$

$$= \int_{G/G_0} \psi([x+\eta(\dot{y})]) dm_{G/G_0}(\dot{y}).$$

The proof is complete.

It is worth noticing that if one takes \mathbf{R} for G, \mathbf{Z} for G_0 , and the natural mapping from \mathbf{R}/\mathbf{Z} onto [0,1) for η , then Theorem 2.1 in conjunction with Theorem 1.3 implies the following theorem due to R. Goldberg [7].

THEOREM 2.2. If $(a_n)_{n \in \mathbb{Z}}$ is the sequence of Fourier coefficients of a finite Borel measure on $[0, 2\pi)$, then the function whose graph consists of the line segments successively joining the points (n, a_n) is the Fourier transform of a finite Borel measure on \mathbb{R} .

More generally, the extension to \mathbb{R}^n of Goldberg's result due to C. C. Graham and A. Maclean [8] can immediately be deduced from Theorems 1. 3 and 2. 1.

We close this section with the following

THEOREM 2.3. If I is the lifting operator associated with h given by (2.1), then

$$I(B_0(G_0))\subset B_0(G)$$
.

PROOF. Let ψ be a non-zero element of $B_0(G_0)$. Since every Borel measure on locally compact space satisfying the second axiom of countability is regular, given $\varepsilon > 0$ there exists a compact subset C of G such that $\eta_* m_{G/G_0}(C) > 1 - \varepsilon/4 \|\psi\|_{\infty,G_0}$. Since G/G_0 is compact, the set $\pi^{-1}(\pi(C))$ is also compact. Passing if necessary to $\pi^{-1}(\pi(C))$, we may assume with no loss of generality that $\pi^{-1}(\pi(C)) = C$. For each $\dot{x} \in G/G_0$, we have

$$m_{G/G_0}(G/G_0 \setminus \pi(C) \cap (\pi(C) - \dot{x}))$$

$$\leq m_{G/G_0}(G/G_0 \setminus (\pi(C)) + m_{G/G_0}(G/G_0 \setminus (\pi(C) - \dot{x})))$$

$$= 2(1 - \eta_* m_{G/G_0}(C))$$

$$< \frac{\varepsilon}{2\|\psi\|_{\infty,G_0}}$$

whence

$$\int_{G/G\backslash\pi(C)\cap(\pi(C)-\dot{x})} \psi([x+\eta(\dot{y})]) dm_{G/G_0}(\dot{y}) < \frac{\varepsilon}{2}; \qquad (2.3)$$

here, of course,

$$\pi(C) - \dot{x} = \{ \dot{z} \in G/G_0 : \dot{z} = \dot{y} - \dot{x} \text{ with } \dot{y} \in \pi(C) \}.$$

Let K be a compact subset of G_0 such that $|\psi(z)| < \varepsilon/2$ for $z \in G_0 \setminus K$. The set K + C - C is compact, so to end the proof, it suffices to show that $|I\psi(x)| < \varepsilon$ for $x \in G \setminus (K + C - C)$.

Let $x \in G \setminus (K+C-C)$. Note that if \dot{y} is in $\pi(C) \cap (\pi(C)-\dot{x})$, then $\eta(\dot{y})$ and $\eta(\dot{x}+\dot{y})$ are in $\eta(\pi(C))$. But $\pi(\eta(\pi(C)))=\pi(C)$ and so $\eta(\pi(C)) \subset \pi^{-1}(\pi(C))=C$. Thus $\eta(\dot{y})$ and $\eta(\dot{x}+\dot{y})$ are in C, which implies that $x+\eta(\dot{y})-\eta(\dot{x}+\dot{y})$ is in $G_0\setminus K$ and next that $\psi([x+\eta(\dot{y})])<\varepsilon/2$. Consequently

The latter inequality together with (2.3) implies that $|I\psi(x)| < \varepsilon$. The proof is complete.

3. An application

Let G be a locally compact non-compact Abelian group satisfying the second axiom of countability and Σ be a compact Abelian group satisfying the second axiom of countability. Suppose that there is a one-to-one continuous homomorphism α from G onto a dense subgroup of Σ .

A (G, Σ) -cocycle is a Borel function A from $\Sigma \times G$ into the circle group T such that

$$A(\sigma, x+y) = A(\sigma, x)A(\sigma + \alpha(x), y)$$

for all $\sigma \in \Sigma$ and all $x, y \in G$. Given a (G, Σ) -cocycle A, one defines a unitary strongly continuous representation U of G in $L^2(\Sigma)$ by setting

$$(U(x)f)(\sigma) = A(\sigma, x)f(\sigma + \alpha(x)) \quad (x \in G, \sigma \in \Sigma, f \in L^2(\Sigma)).$$

In virtue of the Stone-Naïmark-Ambrose-Godement theorem (cf. [1, Theorem 6.2.1]), there is a unique regular projection-valued measure E on $\mathfrak{B}(\widehat{G})$, taking values in a Boolean algebra of projections in $L^2(\Sigma)$, such that, for each $x \in G$,

$$U(x) = \int_{\widehat{G}} (x, -\gamma) dE(\gamma),$$

where the integral is to be interpreted in the sense of strong convergence. If, for each $f, g \in L^2(\Sigma)$, $E_{f,g}$ is the Borel measure on \widehat{G} given by

$$E_{f,g}(A) = (E(A)f, g) \qquad (A \in \mathfrak{B}(\widehat{G})),$$

where (\cdot, \cdot) denotes the scalar product in $L^2(\Sigma)$, and if

$$\mathscr{I} = \{E_{f,g} : f, g \in L^2(\Sigma)\},$$

then, as one can show, either $\mathscr{I} \subset M_a(\widehat{G})$, or $\mathscr{I} \subset (M_s(\widehat{G}) \setminus M_a(\widehat{G})) \cup \{0\}$, or $\mathscr{I} \subset L^1(\widehat{G})$. One expresses this property by saying that A is either trivial, or of singular type, or of Haar type, respectively. Moreover, one has either $\mathscr{I} \subset M_0(\widehat{G})$ or $\mathscr{I} \cap M_0(\widehat{G}) = \{0\}$ and, correspondingly, one says that A is either of type (C_0) or of oscillatory type. Cocycles of different types exist and play a vital role in harmonic analysis, ergodic theory, and differential equations (cf. [4]).

Let \hat{a} be the homomorphism from $\hat{\Sigma}$ into \hat{G} given by

$$(x, \hat{\alpha}(\chi)) = (\alpha(x), \chi) \qquad (x \in G, \chi \in \widehat{\Sigma}).$$

Let Γ be a subgroup of $\hat{\alpha}(\hat{\Sigma})$ that is discrete under the topology inherited from \hat{G} . Let G_0 be the annihilator of Γ in G and K be the closure of $\alpha(G_0)$ in Σ . Of course, G_0 is a closed subgroup of G and G/G_0 is compact. Let η be a section over G/G_0 of the canonical epimorphism π from G onto G/G_0 . It turns out that by means of η each (G_0, K) -cocycle can be transferred into a (G, Σ) -cocycle of the same type. The description of this transfer and its properties is the main objective of the present section.

For each $\dot{x} \in G/G_0$ and each $k \in K$, set

$$\theta(\dot{x}, k) = \alpha(\eta(\dot{x})) + k.$$

We first show that θ is a bijection from $G/G_0 \times K$ onto Σ inducing an isomorphism of the Borel structures of the two groups.

Suppose that $\theta(\dot{x}_1, k_1) = \theta(\dot{x}_2, k_2)$ for $x_1, x_2 \in G$ and $k_1, k_2 \in K$. Since Γ is contained in $\hat{a}(\hat{\Sigma})$, it follows that $\Gamma = \hat{a}(K^{\perp})$. Now $a(\eta(\dot{x}_1) - \eta(\dot{x}_2)) = k_2 - k_1$ is annihilated by K^{\perp} , so $\eta(\dot{x}_1) - \eta(\dot{x}_2)$ is annihilated by $\hat{a}(K^{\perp})$ and hence $\eta(\dot{x}_1) - \eta(\dot{x}_2)$ is in G_0 . Consequently, $\pi\eta(\dot{x}_1) = \pi\eta(\dot{x}_2)$ which amounts to $\dot{x}_1 = \dot{x}_2$ and next implies that $k_1 = k_2$. Thus θ is injective.

Given $\sigma \in \Sigma$, let $(x_n)_{n \in N}$ be a sequence in G such that $\sigma = \lim_{n \to \infty} \alpha(x_n)$. (Note that, in view of second countability, both G and Σ are metrizable.) By the compactness of G/G_0 , there exists x in G, a subsequence $(x_{n_k})_{k \in N}$ of $(x_n)_{n \in N}$, and a sequence $(y_k)_{k \in N}$ in G_0 such that $x = \lim_{k \to \infty} (x_{n_k} - y_k)$. In view of the compactness of K, we may assume that the sequence $(\alpha(y_k))_{k \in N}$ is convergent. Let j be the limit of this suquence. Then $\sigma = \alpha(x) + j$. With this representation, it is now easy to see that

$$\sigma = \theta(\dot{x}, j + \alpha(x - \eta(\dot{x}))) \quad (\dot{x} = \pi(x)).$$

This establishes the surjectiveness of θ .

It is clear that θ is a Borel map. Since the Borel structures of $G/G_0 \times K$ and Σ are standard, it follows that θ^{-1} is also Borel (cf. [11]).

Now we shall show that

$$\theta_*(m_{G/G_0} \otimes m_K) = m_{\Sigma}. \tag{3.1}$$

Notice first that

$$\int_{G/G_0} (\eta(\dot{x}), \gamma) dm_{G/G_0}(\dot{x}) = \begin{cases} 1, & \text{if } \gamma = 0; \\ 0, & \text{if } \gamma \in \Gamma \setminus \{0\}. \end{cases}$$

$$(3. 2)$$

In fact, for any $x, y \in G$, $\eta(\dot{x}) + \eta(\dot{y}) - \eta(\dot{x} + \dot{y})$ is in G_0 , so $(\eta(\dot{x}) + \eta(\dot{y}), \gamma) = (\eta(\dot{x} + \dot{y}), \gamma)$ whatever $\gamma \in \Gamma$. Hence

$$((y, \gamma)-1) \int_{G/G_0} (\eta(\dot{x}), \gamma) dm_{G/G_0}(\dot{x})$$

$$= ((\eta(\dot{y}), \gamma)-1) \int_{G/G_0} (\eta(\dot{x}), \gamma) dm_{G/G_0}(\dot{x})$$

$$= \int_{G/G_0} (\eta(\dot{x})+\eta(\dot{y}), \gamma)-(\eta(\dot{x}), \gamma)) dm_{G/G_0}(\dot{x})$$

$$= \int_{G/G_0} ((\eta(\dot{x}+\dot{y}), \gamma)-(\eta(\dot{x}), \gamma)) dm_{G/G_0}(\dot{x})$$

$$= 0.$$

from which (3. 2) follows immediately.

For any $\chi \in \widehat{\Sigma}$, we have

$$(\mathscr{F}\theta_*(m_{G/G_0}\otimes m_K))(\chi)$$

$$= \int_{G/G_0} (\alpha(\eta(\dot{x})), \chi) dm_{G/G_0}(\dot{x}) \int_K (k, \chi) dm_K(k).$$

If $\chi \oplus K^{\perp}$, then

$$\int_{K}(k,\chi)dm_{K}(k)=0;$$

if $\chi \in K^{\perp}$, then

$$\int_{K}(k,\chi)dm_{K}(k)=1$$

and, moreover, since $\hat{a}(\chi)$ is in Γ , it follows from (3.1) that

$$\int_{G/G_0} (\alpha(\eta(\dot{x})), \chi) dm_{G/G_0}(\dot{x}) = \begin{cases} 1, & \text{if } \chi = 0; \\ 0, & \text{if } \chi \neq 0. \end{cases}$$

Thus

$$(\mathscr{F}\theta_*(m_{G/G_0}\otimes m_K))(\chi) = \begin{cases} 1, & \text{if } \chi = 0; \\ 0, & \text{if } \chi \neq 0, \end{cases}$$

which establishes (3.1).

Now we are ready to discuss transference of cocycles. Let A be a (G_0, K) -cocycle. For each $x \in G$ and each $\sigma \in \Sigma$, put

$$\tilde{A}(\sigma, x) = A(k, [x + \eta(\dot{y})]),$$

where $(\dot{y}, k) = \theta^{-1}(\sigma)$ $(\dot{y} \in G/G_0, k \in K)$. One verifies by a direct computation that \tilde{A} is a (G, Σ) -cocycle. The definition of \tilde{A} in the case where $G = \mathbb{R}$ and $G_0 = \mathbb{Z}$ is due to T. W. Gamelin [6]. The above general definition of \tilde{A} parallels the one employed by J. Mathew and M. G. Nadkarni in [12].

The following is the main result of the present section:

THEOREM 3.1. If a (G_0, K) -cocycle A is trivial (resp. of singular type, of Haar type, of type (C_0) , of oscillatory type), then the corresponding (G, Σ) -cocycle \tilde{A} is also trivial (resp. of singular type, of Haar type, of type (C_0) , of oscillatory type).

PROOF. Let U be the unitary representation of G_0 in $L^2(K)$ associated ed with A and V be the unitary representation of G in $L^2(\Sigma)$ associated with \tilde{A} . Let E and F be the corresponding projection-valued measures. Then, for each $x \in G$,

$$\mathscr{F}F_{1,1}(x) = (V(x)1, 1) = \int_{\Sigma} \tilde{A}(x, \sigma) dm_{\Sigma}(\sigma)
= \int_{G/G_0} \left[\int_{K} A(k, [x + \eta(\dot{y})]) dm_{K}(k) \right] dm_{G/G_0}(\dot{y})
= \int_{G/G_0} (U([x + \eta(\dot{y})])1, 1) dm_{G/G_0}(\dot{y})
= \int_{G/G_0} \mathscr{F}E_{1,1}([x + \eta(\dot{y})]) dm_{G/G_0}(\dot{y}).$$

Hence, by virtue of Theorem 2.1, $\mathscr{F}F_{1,1}$ is the image of $\mathscr{F}E_{1,1}$ by the lifting operator corresponding to the function h given by (2.1). That \tilde{A} is trivial (resp. of singular type, of Haar type, of oscillatory type) now follows upon applying Theorem 1.3. To conclude that \tilde{A} is of type (C_0) whenever A is so, it suffices to invoke Theorem 2.3.

The proof is complete.

References

[1] A. O. BARUT and R. RĄCZKA, Theory of Group Representations and Applications, Państwowe Wydawnictwo Naukowe, Warszawa, 1980.

- [2] H. BAUER, Probability Theory and Elements of Measure Theory, Academic Press, London/New York, 1981.
- [3] N. BOURBAKI, Éléments de mathématique, Livre 6, Intégration, Chapitres 1-8, Hermann, Paris, 1963.
- [4] W. CHOJNACKI, Some non-trivial cocycles, J. Funct. Anal. 77 (1988), 9-31.
- [5] J. DIEUDONNÉ, Treatise on Analysis, vol. II, Academic Press, New York/London, 1970.
- [6] T. W. GAMELIN, Remarks on compact groups with ordered duals, Rev. Un. Math. Argentina 23 (1967), 97-108.
- [7] R. GOLDBERG, Restrictions of Fourier transforms and extension of Fourier sequences, J. Approx. Theory 3 (1970), 149-155.
- [8] C. C. GRAHAM and A. MACLEAN, A multiplier theorem for continuous measures, Studia Math. 66 (1980), 213-225.
- [9] C. C. GRAHAM and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, 1979.
- [10] J. INOUE, On a lifting problem of Fourier-Stieltjes tranforms of measures, Hokkaido Math. J. 12 (1983), 113-118.
- [11] G. W. MACKEY, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165.
- [12] J. MATHEW and M. G. NADKARNI, On systems of imprimitivity on locally compact abelian groups with dense action, Ann. Inst. Fourier (Grenoble) 28 (1978), 1-23.
- [13] W. RUDIN, Fourier Analysis on Groups, Interscience Publishers, New York, 1962.
- [14] V. S. VARADARAJAN, Geometry of Quantum Theory, vol. II, Van Nostrand, New York, 1970.

Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski ul. Banacha 2 00-913 Warszawa, Poland and School of Information Science and Technology The Flinders University of South Australia GPO Box 2100, Adelaide, SA 5001, Australia