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Abstract

We exhibit a class of linear liftings of Fourier-Stieltjes transforms
defined on a closed subgroup of a locally compact Abelian group to Four-
ier-Stieltjes transforms defined on the whole group. Using these liftings,
we establish a result about unitary representations associated with cocy-
cles on compact Abelian groups with dense action.

0. Introduction

Let G be a locally compact Abelian group and \overline{G} be the dual group of
G. Let A(G) be the space of Fourier transforms of Haar-integrable func-
tions on \hat{G} , B(G) be the space of Fourier transforms of complex finite
regular Borel measures on \overline{G} , B_{+}^{1}(G) be the set of Fourier transforms of
regular Borel probability measures on \hat{G} , and B_{s}(G) be the space of Four-
ier transforms of finite regular Borel measures on \hat{G} singular with respect
to Haar measure. Let G_{0} be a closed subgroup of G and R be the opera-
tor of the restriction to G_{0} of functions defined on G. A well-known ele-
mentary result states that R(A(G))=A(G_{0}) and R(B(G))=B(G_{0}) (cf. [13,
Theorems 2. 7. 2 and 2. 7. 4]). J. Inoue [10] constructed a linear isometry
I from B(G_{0}) into B(G) , carrying A(G_{0}) in A(G) , B_{1}^{+}(G_{0}) in B_{1}^{+}(G) , and
B_{s}(G_{0}) in B_{s}(G) , such that RI is the identity on B(G_{0}) and, for each \psi\in

B(G_{0}) , the support of I\phi is contained in the set of all elements of the form
x+y with x in the support of \emptyset and y in any given neighbourhood of 0 in
G. Inoue’s nstruction, relying on a subtle reduction to the case in
which G_{0} is discrete and in which such an isometry can be expressed by a
simple formula (cf. [9, Theorem A. 7. 1]) is fairly complicated and leads to
a rather non-transparent formula for I. In this paper, we reveal a class
of isometries with properties as above, which have a strikingly simple
form. Taking advantage of the special shape of these isometries, we
establish a result about transferring cocycles from closed subgroups of
compact Abelian groups with dense action to the entire groups. The
latter result will provide motivation to the proposed approach.
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1. A lifting theorem

With G a locally compact Abelian group, let m_{G} be the Haar measure
on G and \mathscr{K}(G) be the space of all complex continuous functions on G

with compact support. With G_{0} a closed subgroup of G, let G/G_{0} be the
corresponding quotient group and \pi be the canonical epimorphism from G

onto G/G_{0} . Suppose the Haar measure on G/G_{0} is normalized so that

\int_{G}f(x)dm_{G}(x)=\int_{G/Go}[\int_{Go}f(x+y)dm_{Go}(x)]dm_{G/Go}(\dot{y}) ( j’ =\pi(y))

for all f\in \mathscr{K}(G) : here we adopt the standard notational convention
regarding double integrals in which one integration is performed over a
subgroup and the other over the corresponding quotient group (cf. [3, p .
44 : 5, p. 249]).

Let C(G) be the space of all complex bounded continuous functions on
G, C_{0}(G) be the space of all complex continuous functions on G vanishing
at infinity, and, for 1\leq p<+\infty , let L^{p}(G) be the pth Lebesgue space based
on m_{G} .

Let \mathscr{F} be the Fourier transformation defined by

\mathscr{I}^{-}f(\gamma)=\int_{G}f(x)(x,-\gamma)dm_{G}(x) (f\in L^{1}(G), \gamma\in\hat{G}) .

We normalize the Haar measure on \overline{G} so that

f(x)= \int_{\overline{G}}\mathscr{F}f(\gamma)(x, \gamma)dm_{\overline{G}}(\gamma) (x\in G) ,

whenever f\in L^{1}(G)\cap C(G) and \mathscr{F}f\in L^{1}(\hat{G}) .

Let G_{0}^{\perp} be the annihilator of G_{0} in \overline{G} defined as

{ \gamma\in\hat{G} :(x , \gamma)=1 for x\in G_{0}}.

Let \rho be the canonical epimorphism from \overline{G} onto \hat{G}/G_{0}^{\perp} . With the normal-
ization of Haar measures on mutually dual groups adopted above, we
have

\int_{\overline{G}}f(\gamma)dm_{\overline{G}}(\gamma)=\int_{\overline{c}/G_{0}^{\perp}}[\int_{G_{0}^{\perp}}f(\gamma+\xi)dm_{G^{\perp}}(\xi)]dm_{\hat{G}/G^{\perp}}(\gamma.)(\dot{\gamma}=\rho(\gamma))

for all f\in \mathscr{K}(\hat{G}) .

Let M(G) be the space of all complex finite regular Borel measures on
G, M_{s}(G) be the space of measures in M(G) singular with respect to Haar
measure, M_{a}(G) be the space of atomic measures in M(G) , and M_{0}(G) be
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the space of measures \mu\in M(G) such that \mathscr{F}\mu\in C_{0}(\overline{G}) , where \mathscr{F}\mu , the
Fourier transform of \mu , is defined by

\mathscr{F}\mu(\gamma)=\int_{G}(_{X}, -\gamma)d\mu(x) (\gamma\in\hat{G}) .

We identify the space of measures in M(G) absolutely continuous with
respect to Haar measure with the space L^{1}(G) . We also let

B_{a}(\hat{G})=\{\mathscr{F}\mu:\mu\in M_{a}(G)\}

and
B_{0}(\overline{G})=\{\mathscr{T}\mu:\mu\in M_{0}(G)\} .

For any space E of functions or measures, we denote by E_{+} the set of
all non-negative elements of E .

Given a topological space X, let \mathscr{B}(X) be the space of all complex
bounded Borel functions on X, and \mathfrak{B}(X) be the \sigma-algebra of Borel sub-
sets of X.

Suppose h is a function in C_{+}(\overline{G}) such that, for each \gamma\in\hat{G} ,

\int_{G^{\perp}}h(\gamma+\xi)dm_{G^{\perp}}(\xi)=1 . (1. 1)

As we shall see shortly, such functions exist in abundance. For each f\in

\mathscr{K}(\overline{G}) , the function

g_{f}( \gamma)=\int_{G^{\perp}}h(\gamma+\xi)f(\gamma+\xi)dm_{G^{\perp}}(\xi) (\gamma\in\overline{G})

is continuous on \overline{G} and g_{f}(\gamma+\eta)=g_{f}(\gamma) for each \gamma\in\hat{G} and each \eta\in G_{0}^{\perp} , so
that g_{f}=\overline{g}_{f^{\circ}}\rho , where \tilde{g}f is a uniquely determined continuous function on
\overline{G}/G_{0}^{\perp} . Moreover, \overline{g}f has compact support (cf. [5, Theorem 14. 1. 5. 5]),
and if we let ||\circ||_{\infty,X} denote the supremum norm over a set X, then
||\overline{g}_{f}||_{\infty,/G^{\perp}}-=||g_{f}||_{\infty\overline{G}}\leq||f||_{\infty,\overline{G}} . Thus, by the Riesz theorem, for e a ch
\mu\in M(\overline{G}/G_{0}^{\perp}) the bounded linear functional

f arrow\int_{\overline{G}/G^{\perp}}\tilde{g}_{f}d\mu (f\in \mathscr{K}(G))

can be represented as

f arrow\int_{\overline{G}}fdJ_{\mu}

for a unique J_{\mu} in M(\overline{G}) . We claim that given f\in \mathscr{B}(\overline{G}) , g_{f} is in \mathscr{B}(\hat{G}/G_{0}^{\perp})

and, for each \mu\in M(\overline{G}/G_{0}^{\perp}) ,
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\int_{\overline{c}^{fdJ\mu}}=\int_{\overline{G}/G^{\perp}}\tilde{g}_{f}d\mu . (1. 2)

Let f be a non-negative lower semicontinuous function on \overline{G} and
(f_{a})_{a\in A} be an increasing net in \mathscr{K}_{+}(\overline{G}) such that \sup_{a}f_{a}=f . Then, by the
generalized monotone convergence theorem (cf. [3, Chapitre 4, \S 1, no1,
Th\’eor\‘eme 1]), \tilde{g}_{f}=\sup_{a}\tilde{g}_{f\alpha} and, since the \overline{g}_{fa}(\alpha\in A) are in \mathscr{K}_{+}(\hat{G}/G_{0}^{\perp}),\tilde{g}_{f}

is lower semicontinuous. Let \mu\in M_{+}(\overline{G}/G_{0}^{\perp}) . Then, still by the general-
ized monotone convergence theorem,

\int_{\overline{G}}fdJ_{\mu}=\sup_{a}\int_{\overline{G}}f_{a}dJ_{\mu}=\sup_{a}\int_{\hat{G}/G_{0}^{\perp}}\overline{g}_{fa}d\mu=\int_{\overline{G}/G^{\perp}}\tilde{g}_{f}d\mu .

In particular, for each open subset U of \hat{G} , if we let 1_{U} denote the charac-
teristic function of U, then \overline{g}_{1_{U}} is lower semicontinuous and (1. 2) holds
with f=1_{U} . Let

\mathscr{D}= { E\in \mathfrak{B}(\overline{G}):\tilde{g}_{1_{E}}\in \mathfrak{B}(\hat{G}/G_{0}^{\perp}) and (1. 2) holds for f=1_{E} }.

Clearly, \mathscr{D} is a Dynkin class: 1^{o}\hat{G} is in \mathscr{D};2^{o} if E is in \mathscr{D} , then \overline{G}\backslash E is
in \mathscr{D};3^{o} if (E_{n})_{n\in N} is a sequence of pairwise disjoint sets in \mathscr{D} , then
\bigcup_{n\in N}E_{n} is in \mathscr{D} . According to the main theorem about Dynkin classes,
if \Omega is a non-empty set and \mathscr{C} is a family of subsets of \Omega closed under
finite intersections, then the smallest Dynkin class containing \mathscr{C} coincides
with the \sigma-algebra generated by \mathscr{C} (cf. [2, Theorem 1. 2. 4]). Applying
this result in the situation where \Omega=\overline{G} and where \mathscr{C} is the family of all
open subsets of \hat{G} , we conclude that \mathscr{D}=\mathfrak{B}(\overline{G}) , so that the claim is valid
for all f=1_{E}(E\in \mathfrak{B}(\overline{G})) , and next, by the usual extension, for all f in
\mathscr{B}(\hat{G}) . The final step consists in an obvious extension of the validity of
(1. 2) to all measures in M(\overline{G}/G_{0}^{\perp}) .

The mapping J : \muarrow J_{\mu} is clearly a linear operator from M(\overline{G}/G_{0}^{\perp}) into
M(\hat{G}) . Its basic properties are listed in the following

THEOREM 1. 1. The following hold true :
(i) J is an isometry ;
(ii) J_{\mu}\in M_{+}(\overline{G}) if and only if \mu\in M_{+}(\hat{G}/G_{0}^{\perp}) :
(iii) J_{\mu}\in L^{1}(\overline{G}) if and only if \mu\in L^{1}(\overline{G}/G_{0}^{\perp}),\cdot

(iv) if \mu\in M_{a}(\overline{G}/G_{0}^{\perp}) and G/G_{0} is compact, then J_{\mu}\in M_{a}(\hat{G}) .

PROOF. ( i) For each \mu\in M(\hat{G}) , let \rho_{*}\mu be the image of \mu by \rho

given by

\rho_{*}\mu(B)=\mu(\rho^{-1}(B)) (B\in \mathfrak{B}(\overline{G}/G_{0}^{\perp})) .
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The mapping \rho_{*}: \muarrow\rho_{*}\mu is clearly a linear operator from M(\overline{G}) into
M(\overline{G}/G_{0}^{\perp}) . One verifies at once that the composition \rho_{*}J is the identity
operator in M(\overline{G}/G_{0}^{\perp}) . Since ||J||\leq 1 and ||\rho_{*}||\leq 1 , it follows that J is an
isometry.

(ii) As J is an isometry and J_{\mu}(\overline{G}/G_{0}^{\perp})=\mu(\hat{G}) for each \mu\in M(\overline{G}/G_{0}^{\perp}) ,

it is clear that J_{\mu}\geq 0 if and only if \mu\geq 0 .
(iii) If \mu\in M(\overline{G}/G_{0}^{\perp}) is absolutely continuous with respect to m_{\overline{G}/G_{0}^{\perp}}

and f is the corresponding density, then, as one directly verifies, J_{\mu} is
absolutely continuous with respect to m_{\overline{G}} with density h(f\circ\rho) . Conversely,
if for \mu\in M(\overline{G}/G_{0}^{\perp}) , J_{\mu} is absolutely continuous with respect to m_{\overline{G}} and g is
the corresponding density, then, as it follows immediately from the iden-
tity \rho_{*}J_{\mu}=\mu , \mu is absolutely continuous with respect to m_{\overline{G}/G_{0}^{\perp}} with density
d defined as

d( \dot{\gamma})=\int_{G_{0}^{\perp}}g(\gamma+\xi)dm_{G^{\perp}}(\xi) (\dot{\gamma}=\rho(\gamma), \gamma\in\hat{G}) .

(iv) Suppose that G/G_{0} is compact. Then G_{0}^{\perp} is discrete. Let \mu=

\Sigma_{s\in S}a_{s}\delta_{S} , where S is a countable subset of \overline{G}/G_{0}^{\perp} and the a_{s}(s\in S) are
complex numbers such that \Sigma_{s\in s}|a_{s}|<+\infty (for each s\in S , \delta_{s} stands, of
course, for the Dirac measure at s). For each s\in S , choose \gamma_{s}\in\overline{G} so that
\rho(\gamma_{s})=s . Then, as easily seen,

J_{\mu}= \sum_{s\in S}\sum_{\xi\in G^{\perp}}a_{s}h(\gamma_{s}+\xi)\delta_{7s+\xi}

showing that J_{\mu} is atomic along with \mu .
The proof is complete.
Now that the role of functions satisfying (1. 1) is clear, we turn to

the question of the existence of such functions.
Let \mathscr{U} be a locally finite covering of \overline{G}/G_{0}^{\perp} consisting of open relatively

ly compact sets. For each U\in \mathscr{U} . let f_{U} be a function in \mathscr{K}_{+}(\hat{G}) such that
\rho(\{\gamma:f_{U}(\gamma)>0\})\supset U . Let g_{U} be the function on \overline{G} defined by

g_{U}(\gamma)=\{_{0}^{f_{U}(\gamma)[\int_{G_{0}^{\perp}}f_{U}(\gamma+\xi)dm_{G^{\perp}}(\xi)]^{-1}},ifif\gamma\in\hat{G}\backslash \rho^{-1}(.U\gamma\in\rho^{-1}(U)_{r})

.

The latter definition makes sense for if \gamma\in\rho^{-1}(U) , then f_{U}(\gamma+\chi)\neq 0 for
some \chi\in G_{0}^{\perp} , whence

\int_{G^{\perp}}f_{U}(\gamma+\xi)dm_{G^{\perp}}(\xi)>0 .

Notice that g_{U} is lower semicontinuous and, for each \gamma\in\rho^{-1}(U) ,
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\int_{G_{0}^{\perp}}g_{U}(\gamma+\xi)dm_{G_{0}^{\perp}}(\xi)=1 . (1. 3)

Let (\varphi_{U})_{U\in Z} be a partition of unity subordinate to \mathscr{U} . Set f=\Sigma_{U\in\Psi}(\varphi_{U^{\circ}}

\rho)g_{U} . Clearly, f is a non-negative lower semicontinuous function on \hat{G} .
If we arbitrarily fix an element \gamma of \overline{G} , then, for each \xi\in G_{0}^{\perp} ,

f( \gamma+\xi)=\sum_{U\in\Psi}\varphi_{U}(\rho(\gamma))g_{U}(\gamma+\xi) .

The right-hand sum has only a finite number of non-zero summands corre-
sponding to those U’s for which \varphi_{U}(\rho(\gamma))>0 or, equivalently, for which \gamma

\in\rho^{-1}(U) . Hence

\int_{G_{0}^{\perp}}f(\gamma+\xi)dm_{G^{\perp}}(\xi)=\sum_{U\in{?}}\varphi_{U}(\rho(\gamma))\int_{G_{0}^{\perp}}g_{U}(\gamma+\xi)dm_{G^{\perp}}(\xi) .

Taking into account (1. 3), we see that f satisfies (1. 1).
Let p be a function in \mathscr{K}_{+}(G_{0}^{\perp}) such that

\int_{G_{0}^{\perp}}p(\eta)dm_{G_{0}^{\perp}}(\eta)=1 . (1. 4)

For each \gamma\in\hat{G} , set

r( \gamma)=\int_{G_{0}^{\perp}}f(\gamma+\eta)p(\eta)dm_{G_{0}^{\perp}}(\eta) .

Repeating mutatis mutandis the argument used in the proof of (1. 2), we
see that r is a non-negative lower semicontinuous function on \hat{G} . By
(1. 1) applied to f and by (1. 4),

\int_{G_{0}^{\perp}}r(\gamma+\xi)dm_{G_{0}^{\perp}}(\xi)=\int_{G^{\perp}}[\int_{G^{\perp}}f(\gamma+\xi+\eta)p(\eta)dm_{G_{0}^{\perp}}(\eta)]dm_{G^{\perp}}(\xi)

= \int_{G_{0}^{\perp}}[\int_{G_{0}^{\perp}}f(\gamma+\xi+\eta)dm_{G^{\perp}}(\xi)]g(\eta)dm_{G_{0}^{\perp}}(\eta)

=1 ,

so r satisfies (1. 1) and ||r||_{\infty,\overline{G}}\leq||p||_{\infty,G_{0}^{\perp}} . Now, letting*denote convolu-
then, if s is a function in \mathscr{K}_{+}(\hat{G}) such that \int

-

sdm_{\overline{G}}=1 , then h=r*s is a
function in C_{+}(\overline{G}) satisfying (1. 1).

Let \mathscr{I}^{-}h be the Fourier transform of h in the sense of pseudomeasures,
that is, \mathscr{F}h is the element of the dual space A(G)’ of A(G) given by

<\mathscr{F}h , \varphi>=\int_{\overline{G}}h(\xi)w(-\xi)dm_{\overline{G}}(\xi) (\varphi\in A(G);\varphi=\mathscr{F}w, w\in L^{1}(\overline{G})) .
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It turns out that the support of \mathscr{F}h may always be assumed to be arbirar-
ily small.

Indeed, let U be a neighbourhood of 0 in G and V be a compact sym-
metric neighbourhood of 0 in G such that V+V\subset U , where V+V=\{x

+y:x , y\in V\} . Set \phi=(m_{G}(V))^{-1}(\mathscr{T}1_{V})^{2} . A standard argument shows

that \emptyset is a non-negative element of C_{0}(\hat{G})\cap L^{1}(\hat{G}) with \int_{\overline{G}}\phi dm_{\overline{G}}=1 whose

Fourier transform, (m_{G}(V))^{-1}(1_{V}*1_{V}) , is suppored by U. Now, if we set
\tilde{h}=\phi*h , then \overline{h} is an element of C_{+}(\hat{G}) satisfying (1. 1) whose Fourier
transform, \mathscr{F}\phi \mathscr{F}h , has support in U.

Given a function f on G and an element x of G, let T_{x}f be the trans-
late of f by x , that is,

T_{x}f(y)=f(x+y) (y\in G) .

We recall that if x\in G and S\in A(G)’ , then the translate T_{x}S of S by x is
the pseudomeasure

<T_{x}S , \varphi>=<S , T_{-x}\varphi> (\varphi\in A(G)) .

Let \mathscr{A}(G) be the space of all compactly supported Fourier transforms of
elements of L^{1}(\overline{G})\cap C(\overline{G}) . With S in A(G)’ , we shall say that the func-
tion G_{0}\ni x- T_{\chi}S\in A(G)’ is weakly integrable whenever G_{0}\ni x -

<T_{x}S , \varphi> is in L^{1}(G_{0}) for every \varphi\in\overline{\mathscr{A}}(G) . Notice that if f is any
m_{\overline{G}^{-}}essentially bounded m_{\overline{G}^{-}}measurable function on \hat{G} whose Fourier trans-
form has compact support, then G_{0}\ni x-T_{x}\mathscr{F}f is weakly integrable. In
the light of the previous paragraph it is clear that the assumptions about
the function h appearing in the theorem to follow are consistent.

THEOREM 1. 2. Let h be a function in C_{+}(\hat{G}) satisfying (1. 1) such
that G_{0}\ni x-T_{x}\mathscr{F}h\in A(G)’ is weakly integrable. Then, for each \mu\in

M(\hat{G}/G_{0}^{\perp}) and each \varphi\in \mathscr{A}(G) ,

\int_{G}\varphi \mathscr{F}J\mu dm_{c}=\int_{Go}<T_{-x}\mathscr{F}h, \varphi>\mathscr{F}\mu(x)dm_{G_{0}}(x) .

PROOF. For each \varphi\in \mathscr{A}(G) with \varphi=\mathscr{F}^{-}w(w\in L^{1}(\hat{G})\cap C(\hat{G})) , we
have

\int_{\overline{c}/G^{\perp}}[\int_{G^{\perp}}h(\gamma+\xi)|w(-\gamma-\xi)|dm_{G^{\perp}}(\xi)]dm_{\overline{G}/G^{\perp}}(\dot{\gamma})

\leq||h||_{\infty,\overline{G}}||w||_{1,\overline{G}} (\dot{\gamma}=\rho(\gamma)) ,

where ||\circ||1,\overline{G} denotes the L^{1}(\hat{G}) norm, so that \tilde{g}_{w^{\iota}} , where w^{\#}(\gamma)=w(-\gamma)

for all \gamma\in\hat{G} , is in L^{1}(\hat{G}/G_{0}^{\perp})\cap C(\hat{G}/G_{0}^{\perp}) (cf. [3, Chapitre 7, \S 2, no3, PropO-
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sition 3; 5, Theorem 14. 4. 5]). Remembering that (\overline{G}/G_{0}^{\perp})^{-} can canonically
be identified with G_{0} , for each x\in G_{0} , we have

\mathscr{F}\tilde{g}_{w^{\alpha}}(x)=\int_{\overline{G}/G_{0}^{\perp}}\tilde{g}_{w^{t}}(\dot{\gamma})(_{X}, -\dot{\gamma})dm_{\overline{G}/G^{\perp}}(\dot{\gamma})

= \int_{\overline{G}/G_{0}^{\perp}}[\int_{G^{\perp}}h(\gamma+\xi)w(-\gamma-\xi)(x, -\gamma-\xi)dm_{G^{\perp}}(\xi)]dm_{\hat{G}/G^{\perp}}(\dot{\gamma}) .

Given \gamma\in\hat{G} , set v(\gamma)=w(\gamma)(x, \gamma) . Then, of course, \mathscr{F}v=T_{-x}\varphi and

\mathscr{F}\tilde{g}_{w^{s}}(x)=\int_{\overline{G}}h(\gamma)v(-\gamma)dm_{\overline{G}}(\gamma)=<\mathscr{F}h , T_{-x}\varphi>

=<T_{x’}\mathscr{F}h , \varphi> .

Since G_{0}\ni x-arrow<T_{x}\mathscr{F}h , \varphi>\in C is in L^{1}(G_{0}) and \overline{g}_{w^{\epsilon}} is continuous, it fol-
lows that

\tilde{g}_{w^{\alpha}}(\dot{\gamma})=\int_{G_{0}}<T_{X}\mathscr{F}h , \varphi>(x,\dot{\gamma})dm_{G_{0}}(x) (\dot{\gamma}=\rho(\gamma)) .

Hence, in view of (1. 2), for each \mu\in M(\overline{G}/G_{0}^{\perp}) ,

\int_{c^{\varphi \mathscr{F}J\mu}}dm_{G}=\int_{\hat{G}}w^{\#}dJ_{\mu}=\int_{\overline{G}/G_{0}^{\perp}}\overline{g}_{w^{n}}d\mu

= \int_{Go}<T_{x}\mathscr{T}h , \varphi>[\int_{\overline{G}/G^{\perp}}(x,\dot{\gamma})d\mu(\dot{\gamma})]dm_{Go}(x)

= \int_{Go}<T_{x}\mathscr{F}h , \varphi>\mathscr{F}\mu(-x)dm_{Go}(x)

= \int_{Go}<T_{-x}\mathscr{F}h , \varphi>\mathscr{F}\mu(x)dm_{Go}(x) .

The proof is complete.
Now we are in a position to state the main result of this section. It

will be a minor generalisation of Inoue’s result mentioned in the introduc-
tion.

THEOREM 1. 3. Let h be a function in C_{+}(\hat{G}) satisfying (1. 1), and
let I be the linear operator from B(G_{0}) into B(G) defined by

I\phi=\mathscr{I}^{-}J_{\mu}(\phi\in B(G_{0}) : \phi=\mathscr{F}\mu, \mu\in M(\overline{G}/G_{0}^{\perp})) .
Then

(i) I is an isometry such that RI is the identity on B(G) ;
(ii) I(A(G_{0}))\subset I(A(G)) ;
(iii) I(B_{+}^{1}(G_{0}))\subset B_{+}^{1}(G) ;
(iv) I(B_{s}(G_{0}))\subset B_{s}(G) :
(v) if G/G_{0} is compact, then I(B_{a}(G_{0}))\subset B_{a}(G) .
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If for a given neighbourhood U of 0 in G, h is such that supp \mathscr{I}^{-}h\subset U,

then
(vi) supp I\phi\subset supp\phi+U for each \emptyset\in B(G_{0}) .

PROOF. ( i) That I is an isometry follows immediately from TheO-
rem 1. 1 ( i ) . By (1. 1) and (1. 2), for each \phi\in B(G_{0}) with \phi=\mathscr{F}\mu(\mu\in

M(\hat{G}/G_{0}^{\perp})) and each x\in G_{0} , we have

I \phi(x)=\int_{\overline{c}/G_{0}^{\perp}}[\int_{G^{\perp}}h(\gamma+\xi)(x, -\gamma-\xi)dm_{Go}\perp(\xi)]d\mu(\dot{\gamma})

= \int_{\hat{c}/G^{\perp}}[\int_{G_{0}^{\perp}}h(\gamma+\xi)dm_{G^{\perp}}(\xi)](_{X}, -\gamma)d\mu(\dot{\gamma})

=\phi(x) ,

showing that RI is the identity in B(G) .
(ii), (iii), (iv) and ( v) are consequences of suitable statements of

Theorem 1. 1.
(vi) results from Theorem 1. 2.

2. A refinement

In this section, we single out a class of functions satisfying (1. 1) and
examine the corresponding lifting operators. The results of this section
will be of direct use in the next section.

Let G be a locally compact Abelian group satisfying the second axiom
of countability and G_{0} be a closed subgroup of G such that G/G_{0} is com-
pact. Let \eta be a section of the canonical epimorphism \pi over G/G_{0} , that
is, \eta is a Borel right inverse of \pi (for the existence of at least one such
section see [14, Theorem 8. 11] ) .

For each \gamma\in\hat{G} , set
h( \gamma)=|\int_{G/Go}(\eta(\dot{x}), \gamma)dm_{G/Go}(\dot{x})|^{2} ; (2. 1)

here we assume that m_{G/Go} has mass equal to 1. Clearly, h is a function
in C_{+}(\overline{G}) with values no greater than 1. It turns out that h satisfies
(1. 1).

To see this, notice first that for each x\in G , \pi(x-\eta\pi(x))=0 , so x
-\eta\pi(x) lies in G_{0} . Hence, for each \gamma\in\hat{G} and each \xi\in G_{0}^{\perp} ,

(\eta\pi(x), \gamma+\xi)=(\eta\pi(x), \gamma)(x, \xi) . (2. 2)

Since G_{0}^{\perp} is the discrete dual of G/G_{0} , it follows from Parseval’s identity
and the above identity that
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\sum_{\xi\in G_{0}^{\perp}}h(\gamma+\xi)=\sum_{\xi\in G^{\perp}}|\int_{G/Go}(\eta(\dot{x}),\gamma)(\dot{x}, \xi)dm_{G/Go}(\dot{x})|^{2}

= \int_{G/Go}|(\eta(\dot{x}), \gamma)|^{2}dm_{G/Go}(\dot{x})=1 ,

as was to be shown.
As we saw earlier, for each x\in G , x-\eta\pi(x) is an element of G_{0} . We

shall denote it by [x] and refer to it as the integral part of x . Such a
terminology fits in with the one employed in the special case in which G=
R, G_{0}=Z , and, for each \dot{x}\in R/Z , \eta(\dot{x}) is the unique element of [0, 1) such
that \pi\eta(\dot{x})=\dot{x} .

Now we can state our major result.

THEOREM 2. 1. If I is the lifting operator associated with h given by
(2. 1), then, for each \emptyset\in B(G_{0}) and each x\in G,

I \phi(x)=\int_{G/Go}\phi([x+\eta(\dot{y})])dm_{G/Go}(\dot{y}) .

PROOF. In view of (2. 2) and Parseval’s identity, for each x\in G and
each \gamma\in\hat{G} , we have

\sum_{\xi\in G_{0}^{\perp}}h(\gamma+\xi)(x, -\gamma-\xi)

=(_{X}, _{-\gamma)\sum_{\xi\in G_{0}^{\perp}}(\chi}, - \xi)|\int_{G/Go}(\eta(\dot{y}), \gamma+\xi)dm_{G/Go}(\dot{y})|^{2}

=(x, -\gamma\underline{)\sum_{\xi\in G^{\perp}}\int_{G/Go}(\eta(\dot{x}+\dot{y}),\gamma)(\dot{y},\xi)d}m_{G/Go}(\dot{y})

\cross\int_{G/Go}(\eta(\dot{y}), \gamma)(\dot{y}, \xi)dm_{G/Go}(\dot{y})

=(_{X}, - \gamma)\int_{G/Go}(\eta(\dot{x}+\dot{y})-\eta(\dot{y}), \gamma)dm_{G/G_{0}}(\dot{y}) .

Since, for any x , y\in G , [x+\eta(\dot{y})]=x+\eta(\dot{y})-\eta(\dot{x}+\dot{y}) , we see that

\sum_{\xi\in G^{\perp}}h(\gamma+\xi)(x, -\gamma-\xi)=\int_{G/Go}([x+\eta(\dot{y})], -\gamma)dm_{G/Go}(\dot{y}) .

Now, if \mu\in M(\hat{G}/G_{0}^{\perp}) is such that \phi=\mathscr{F}\mu , then, in view of (1. 2), for each
x\in G ,

I \phi(x)=\mathscr{I}\overline{J}\mu(x)=\int_{\overline{c}/G^{\perp}}[_{\xi\in G^{\perp}}\Sigma h(\gamma+\xi)(x, -\gamma-\xi)]d\mu(\dot{\gamma})

= \int_{\overline{c}/G_{0}^{\perp}}[\int_{G/Go}([x+\eta(\dot{y})], -\gamma)dm_{G/Go}(\dot{y})]d\mu(\dot{\gamma})

= \int_{G/Go}\mathcal{J}^{-}\mu([x+\eta(\dot{y})])dm_{G/Go}(\dot{y})
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= \int_{G/Go}\phi([x+\eta(\dot{y})])dm_{G/Go}(\dot{y}) .

The proof is complete.
It is worth noticing that if one takes R for G , Z for G_{0} , and the natu-

ral mapping from R/Z onto [0, 1) for \eta , then Theorem 2. 1 in conjunction
with Theorem 1. 3 implies the following theorem due to R. Goldberg [7].

THEOREM 2. 2. If (a_{n})_{n\in Z} is the sequence of Fourier coefficients of a

finite Borel measure on [0, 2\pi) , then the function whose graph consists of
the line segments successively joining the points (n, a_{n}) is the Fourier
transform of a finite Borel measure on R.

More generally, the extension to R^{n} of Goldberg’s result due to C. C.
Graham and A. Maclean [8] can immediately be deduced from Theorems
1. 3 and 2. 1.

We close this section with the following

THEOREM 2. 3. If I is the lifting operator associated with h given by
(2. 1), then

I(B_{0}(G_{0}))\subset B_{0}(G) .

PROOF. Let \emptyset be a non-zero element of B_{0}(G_{0}) . Since every Borel
measure on locally compact space satisfying the second axiom of
countability is regular, given \epsilon>0 there exists a compact subset C of G

such that \eta_{*}m_{G/Go}(C)>1-\epsilon/4||\phi||_{\infty,Go} . Since G/G_{0} is compact, the set
\pi^{-1}(\pi(C)) is also compact. Passing if necessary to \pi^{-1}(\pi(C)) , we may
assume with no loss of generality that \pi^{-1}(\pi(C))=C . For each \dot{x}\in G/G_{0} ,

we have
m_{G/Go}(G/G_{0}\backslash \pi(C)\cap(\pi(C)-\dot{x}))

\leq m_{G/Go}(G/G_{0}\backslash (\pi(C))+m_{G/Go}(G/G_{0}\backslash (\pi(C)-\dot{x}))

=2(1-\eta_{*}m_{G/Go}(C)

< \frac{\epsilon}{2||\phi||_{\infty,Go}}

whence

\int_{c/c_{0}\backslash \pi(C)\cap(\pi(C)-x)}\phi([x+\eta(\dot{y})])dm_{G/Go}(\dot{y})<\frac{\epsilon}{2} ; (2. 3)

here, of course,

\pi(C)-\dot{x}= {z.\in G/G_{0} : \dot{z}=\dot{y}-\dot{x} with \dot{y}\in\pi(C) }.
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Let K be a compact subset of G_{0} such that |\phi(z)|<\epsilon/2 for z\in G_{0}\backslash K . The
set K+C-C is compact, so to end the proof, it suffices to show that
|I\phi(x)|<\epsilon for x\in G\backslash (K+C-C) .

Let x\in G\backslash (K+C-C) . Note that if J^{i} is in \pi(C)\cap(\pi(C)-\dot{x}) , then
\eta(\dot{y}) and \eta(\dot{x}+\dot{y}) are in \eta(\pi(C)) . But \pi(\eta(\pi(C)))=\pi(C) and so \eta(\pi(C))

\subset\pi^{-1}(\pi(C))=C . Thus \eta(\dot{y}) and \eta(\dot{x}+\dot{y}) are in C, which implies that x
+\eta(\dot{y})-\eta(\dot{x}+\dot{y}) is in G_{0}\backslash K and next that \phi([x+\eta(\dot{y})])<\epsilon/2 . Consequently
ly

\int_{\pi(C)\cap(\pi(C)-x)}\phi([x+\eta(\dot{y})])dm_{G/Go}(\dot{y})<\frac{\epsilon}{2} .

The latter inequality together with (2. 3) implies that |I\phi(x)|<\epsilon .
The proof is complete.

3. An application

Let G be a locally compact non-compact Abelian group satisfying the
second axiom of countability and \sum be a compact Abelian group satisfy-
ing the second axiom of countability. Suppose that there is a one-t0-0ne
continuous homomorphism \alpha from G onto a dense subgroup of \sum .

A (G, \sum)-cocycle is a Borel function A from \sum\cross G into the circle
group T such that

A(\sigma, x+y)=A(\sigma, x)A(\sigma+\alpha(x), y)

for all \sigma\in\sum and all x , y\in G . Given a (G, \sum)-cocycle A, one defines a
unitary strongly continuous representation U of G in L^{2}( \sum) by setting

(U(x)f)(\sigma)=A(\sigma, x)f(\sigma+\alpha(x)) (x\in G, \sigma\in\Sigma, f\in L^{2}(\Sigma)) .

In virtue of the Stone^{-Na}.imark-Ambrose-Godement theorem (cf. [1, The-
orem 6. 2. 1]), there is a unique regular projection-valued measure E on
\mathfrak{B}(\hat{G}) , taking values in a Boolean algebra of projections in L^{2}( \sum) , such
that, for each x\in G ,

U(x)=1_{\overline{G}}^{(\chi} ,-\gamma)dE(\gamma) ,

where the integral is to be interpreted in the sense of strong convergence.
If, for each f, g \in L^{2}(\sum) , E_{f,g} is the Borel measure on \hat{G} given by

E_{f,g}(A)=(E(A)f, g) (A\in \mathfrak{B}(\overline{G})) ,

where ( . . ) denotes the scalar product in L^{2}( \sum) , and if
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\mathscr{T}=\{E_{f,g} : f, g\in L^{2}(\Sigma)\} ,

then, as one can show, either \mathscr{I}\subset M_{a}(\overline{G}) , or \mathscr{I}\subset(M_{s}(\overline{G})\backslash M_{a}(\hat{G}))\cup\{0\} , or
\mathscr{T}\subset L^{1}(\overline{G}) . One expresses this property by saying that A is either trivial,
or of singular type, or of Haar type, respectively. Moreover, one has
either \mathscr{I}\subset M_{0}(\overline{G}) or \mathscr{I}\cap M_{0}(\overline{G})=\{0\} and, correspondingly, one says that A
is either of type (C_{0}) or of oscillatory type. Cocycles of different types
exist and play a vital role in harmonic analysis, ergodic theory, and
differential equations (cf. [4]).

Let \hat{\alpha} be the homomorphism from \overline{\sum} into \overline{G} given by

(x,\hat{\alpha}(\chi))=(\alpha(x), \chi) (x\in G, \chi\in\overline{\sum}) .

Let \Gamma be a subgroup of \hat{\alpha}(\hat{\sum}) that is discrete under the topology inherited
from \hat{G} . Let G_{0} be the annihilator of \Gamma in G and K be the closure of
\alpha(G_{0}) in \sum . Of course, G_{0} is a closed subgroup of G and G/G_{0} is com-
pact. Let \eta be a section over G/G_{0} of the canonical epimorphism \pi from
G onto G/G_{0} . It turns out that by means of \eta each (G_{0}, K)-cocycle can be
transferred into a (G, \sum)-cocycle of the same type. The description of
this transfer and its properties is the main objective of the present section.

For each \dot{x}\in G/G_{0} and each k\in K , set
\theta(\dot{x}, k)=\alpha(\eta(\dot{x}))+k .

We first show that \theta is a bijection from G/G_{0}\cross K onto \sum inducing an
isomorphism of the Borel structures of the two groups.

Suppose that \theta(\dot{x}_{1}, k_{1})=\theta(\dot{x}_{2}, k_{2}) for x_{1} , x_{2}\in G and k_{1} , k_{2}\in K . Since \Gamma

is contained in \overline{\alpha}(\hat{\Sigma}) , it follows that \Gamma=\hat{\alpha}(K^{\perp}) . Now \alpha(\eta(\dot{x}_{1})-\eta(\dot{x}_{2}))=k_{2}

-k_{1} is annihilated by K^{\perp} , so \eta(\dot{x}_{1})-\eta(\dot{x}_{2}) is annihilated by \hat{\alpha}(K^{\perp}) and
hence \eta(\dot{x}_{1})-\eta(\dot{x}_{2}) is in G_{0} . Consequently, \pi\eta(\dot{x}_{1})=\pi\eta(\dot{x}_{2}) which amounts
to \dot{x}_{1}=\dot{x}_{2} and next implies that k_{1}=k_{2} . Thus \theta is injective.

Given \sigma\in\Sigma , let (x_{n})_{n\in N} be a sequence in G such that \sigma=\lim_{narrow\infty}\alpha(x_{n}) .
(Note that, in view of second countability, both G and \sum are metrizable.)
By the compactness of G/G_{0} , there exists x in G, a subsequence (x_{n_{k}})_{k\in N} of
(x_{n})_{n\in N} , and a sequence (y_{k})_{k\in N} in G_{0} such that x= \lim_{karrow\infty}(x_{n_{k}}-y_{k}) . In
view of the compactness of K, we may assume that the sequence
(\alpha(y_{k}))_{k\in N} is convergent. Let j be the limit of this suquence. Then \sigma=

\alpha(x)+j . With this representation, it is now easy to see that

\sigma=\theta(\dot{x}, j+\alpha(x-\eta(\dot{x}))) (\dot{x}=\pi(x)) .

This establishes the surjectiveness of \theta .
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It is clear that \theta is a Borel map. Since the Borel structures of G/G_{0}\cross

K and \sum are standard, it follows that \theta^{-1} is also Borel (cf. [11]).
Now we shall show that

\theta_{*}(m_{G/Go}\otimes m_{K})=m_{\Sigma} . (3. 1)

Notice first that

\int_{G/Go}(\eta(\dot{x}), \gamma)dm_{G/Go}(\dot{x})=\{
1, if \gamma=0 ;
0, if \gamma\in\Gamma\backslash \{0\} .

(3. 2)

In fact, for any x , y\in G , \eta(\dot{x})+\eta(\dot{y})-\eta(\dot{x}+\dot{y}) is in G_{0} , so (\eta(\dot{x})+\eta(\dot{y}) ,
\gamma)=(\eta(\dot{x}+\dot{y}), \gamma) whatever \gamma\in\Gamma Hence

((y, \gamma)-1)\int_{G/Go}(\eta(\dot{x}), \gamma)dm_{G/Go}(\dot{x})

=(( \eta(\dot{y}), \gamma)-1)\int_{G/Go}(\eta(\dot{x}), \gamma)dm_{G/c_{0}}(\dot{x})

= \int_{G/Go}(\eta(\dot{x})+\eta(\dot{y}), \gamma)-(\eta(\dot{x}), \gamma))dm_{G/G_{0}}(\dot{x})

= \int_{G/Go}((\eta(\dot{x}+\dot{y}), \gamma)-(\eta(\dot{x}), \gamma))dm_{G/G_{0}}(\dot{x})

=0,

from which (3. 2) follows immediately.
For any x\in\overline{\sum} , we have

(\mathscr{F}\theta_{*}(m_{G/Go}\otimes m_{K}))(\chi)

= \int_{c/Go}(\alpha(\eta(\dot{x})), \chi)dm_{G/Go}(\dot{x})\int_{K}(k, \chi)dm_{K}(k) .

If \chi\oplus K^{\perp} , then

\int_{K}(k, \chi)dm_{K}(k)=0 ;

if \chi\in K^{\perp} . then

\int_{K}(k_{ X},)dm_{K}(k)=1

and, moreover, since \hat{\alpha}(\chi) is in \Gamma . it follows from (3. 1) that

\int_{G/Go}(\alpha(\eta(\dot{x}))_{ X},)dm_{G/Go}(\dot{x})=\{
1, if \chi=0 ;
0, if \chi\neq 0 .

Thus
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(\mathscr{F}\theta_{*}(m_{G/Go}\otimes m_{K}))(\chi)=\{
1, if \chi=0 ;
0, if \chi\neq 0 ,

which establishes (3. 1).

Now we are ready to discuss transference of cocycles.
Let A be a (G_{0}, K)-cocycle. For each x\in G and each \sigma\in\sum , put

\tilde{A}(\sigma, x)=A(k, [x+\eta(\dot{y})]) ,

where (\dot{y}, k)=\theta^{-1}(\sigma)(\dot{y}\in G/G_{0}, k\in K) . One verifies by a direct computa-
tion that \tilde{A} is a (G, \sum)-cocycle. The definition of \tilde{A} in the case where G
=R and G_{0}=Z is due to T. W. Gamelin [6]. The above general definition
of \tilde{A} parallels the one employed by J. Mathew and M. G. Nadkarni in
[12].

The following is the main result of the present section:

THEOREM 3. 1. If a (G_{0}, K)-cocycle A is trivial (resp. of singular
type, of Haar type, of type (C_{0}) , of oscillatory type), then the correspond-
ing (G, \sum)-cocycle \tilde{A} is also trivial (resp. of singular type, of Haar type,
of type (C_{0}) , of oscillatory type).

PROOF. Let U be the unitary representation of G_{0} in L^{2}(K) associated
ed with A and V be the unitary representation of G in L^{2}( \sum) associated
with \overline{A} . Let E and F be the corresponding projection-valued measures.
Then, for each x\in G ,

\mathscr{F}F_{1,1}(x)=(V(x)1,1)=\int_{\Sigma}\tilde{A}(x, \sigma)dm_{\Sigma}(\sigma)

= \int_{G/Go}[\int_{K}A(k, [x+\eta(\dot{y})])dm_{K}(k)]dm_{G/Go}(\dot{y})

= \int_{G/Go}(U([x+\eta(\dot{y})])1,1)dm_{G/Go}(\dot{y})

= \int_{G/G_{0}}\mathscr{F}E_{1,1}([x+\eta(\dot{y})])dm_{G/Go}(jf) .

Hence, by virtue of Theorem 2. 1, \mathscr{F}F_{1,1} is the image of \mathscr{F}E_{1.1} by the lift-
ing operator corresponding to the function h given by (2. 1). That \tilde{A} is
trivial (resp. of singular type, of Haar type, of oscillatory type) now fol-
lows upon applying Theorem 1. 3. To conclude that \tilde{A} is of type (C_{0})

whenever A is so, it suffices to invoke Theorem 2. 3.
The proof is complete.
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