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1. Introduction.

This work grew out of an attempt to understand the problem of
finding a complete, rotationally symmetric metric on R^{n} for n\geq 3 with a
prescribed, rotationally symmetric Ricci tensor. As will be reported else-
where, one runs headlong into the problem of deciding whether a given
“Ricci candidate” on a surface (in particular, on R^{2}) is in fact the Ricci
tensor of a complete metric on the surface. The issue of completeness is
surprisingly delicate, even for surfaces, and so the subject of this paper is
the following:

PROBLEM. Given a symmetric covariant tensor R of rank two on an
open surface S (of fifinite topological type), when does there exist a complete
metric g such that Ric(g)=R on S ?

Of course, by Ric(\#) , we mean the (covariant) Ricci tensor of the metric
g. Once one has existence of such a metric, it becomes reasonable to ask
to what extent the metric is unique (since Ric(cg)=Ric(g) for any positive
constant c , the best uniqueness statement possible is “unique up to a con-
fact multipl\"e). As we shall see below (Lemma 1. 4), it can be directly

determined from the tensor R whether the metric we seek will have finite
or infinite total curvature. We give a fairly complete solution of the prob-
lem in the finite-total-curvature case (Theorem 2. 5), including uniqueness
statements, and we give sufficient conditions for the existence of a com-
plete g in the infinite-total-curvature case (Theorem 3. 3). Examples 3. 1
and 3. 2 indicate why the issue of completeness in the latter case is so
delicate.

On tw0-dimensional manifolds, one can take advantage of the fact
that the Ricci tensor is equal to the Gauss curvature times the metric ten-
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sor , i . e. ,

(1. 1) Ric(g)=K(g)\cdot g .

As remarked in [D1], this gives the obvious necessary condition that in
order for the symmetric tw0-tensor R to be the Ricci tensor of a Rieman-
nian metric, even locally, R must be either positive definite, negative
definite, or zero at each point. More precisely, there must exist a scalar
function \chi and a positive-definite tensor \gamma such that

(1.2) R_{ij}=x\gamma_{ij} .

Given a tensor R which satisfies (1.2), we see from equation (1.1) that
the metric which satisfies Ric(g)=R must be pointwise conformal to \gamma ,
i . e. , g=e^{2u}\gamma for a scalar function u (unless x\equiv 0 on an open set).
Furthermore, one has the following formula which relates the Ricci ten-
sors of g and \gamma :
(1.3) Ric(g)=Ric(\gamma)+(\Delta_{\gamma}u)\gamma

where \Delta_{\gamma} is the Laplacian in the \gamma metric (our sign convention would
yield \Delta u=-u’ on S^{1} ). Since the Laplace equation is always locally solv-
able, we recover the local existence result in [D1]:

PROPOSITION 1. 3. Given a tensor R which satisfifies (1.2) in a neigh-
borhood of p\in R^{2} , there is a metric g defifined in a neighborhood of p such
that Ric(g)=R.

We remark that at points where R\neq 0 , the metric g will be at least as
smooth as R.

To elicit global properties of g from knowledge of R, we observe that
two important tw0-forms are available from the information contained in
R alone. For any tensor T. we define dV_{T} to be \sqrt{\det T} dxdy in local
coordinates, as long as det T\geq 0 .

LEMMA 1. 4. Suppose Ric(g)=R and K is the Gauss curvature of g.
Then, for any decomposition of R of the form (1.2),

(i) KdV_{g}=xdV_{\gamma}

(ii) |K|dV_{g}=dV_{R}=|x|dV_{\gamma} .

Since ( i) is the Gauss-Bonnet integrand, we get a necessary (and
sufficient !) condition for R to be the Ricci curvature of a metric on a
compact surface, namely that the integral of \chi dV_{\gamma} be 2\pi times the Euler
characteristic (this was also reported in [D1]). On open surfaces, we will
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use both ( i) and ( ii) to help us decide whether a complete metric exists
for a given Ricci candidate R. First, we give some examples to show
that the situation can be somewhat complicated.

EXAMPLE 1. 5. Let R be the standard Euclidean metric on R^{2} . Then
for any C^{\infty} function f, there exists a metric g such that Ric(g)=fR. To
see this, we seek g in the form g=e^{2u}R , where u must satisfy \Delta u=f . A
Runge-theorem argument (see Corollary 3. 5. 2 of [Ho]) guarantees the
existence of such a u . On the other hand, there is no complete metric g
on R^{2} with Ric(g)=R. This follows from the classical inequality of
Cohn-Vossen [CV], which says that if a complete surface has non-negative
Gauss curvature, then

\int KdV\leq 2\pi .

Of course, for our choice of R, this integral is infinite.

EXAMPLE 1. 6. With R as in Example 1. 5, we find that there are
infifinitely many nonisometric complete Riemannian metrics with Ricci ten-
sor -R on R^{2}- In particular, using (1.3) with \gamma=dx^{2}+dy2 on R^{2}- we find
that any metric of the form

e^{\frac{1}{4}(x^{2}+\mathcal{Y}^{2})+h}(dx^{2}+d_{\mathcal{Y}}^{2})

will satisfy Ric(g)=-R, where h is any harmonic function on R^{2} . Vari-
ous choices of quadratic harmonic polynomials for h (with leading
coefficients greater than -1/4) will provide complete metrics.

EXAMPLE 1. 7. On R^{2} . let

R_{C}= \frac{C}{(1+r^{2})^{2}}(dr^{2}+r^{2}(1+r^{2})d\theta^{2}) ,

where r and \theta are the usual polar coordinates on R^{2} . It is an easy com-
putation that

\int_{R^{2}}dV_{R_{C}}=\int_{0}^{2\pi}\int_{0}^{\infty}\frac{Cr}{(1+r^{2})^{3/2}}drd\theta=2\pi C ,

therefore, by Cohn-Vossen’s inequality we can only hope to have a com-
plete metric g_{C} such that Ric(g_{C})=R_{C} for C\leq 1 . However, it will be a
consequence of Theorem 2. 5 that there is no complete metric on R^{2} with
Ric(g)=R_{C} for any C\neq 0 .

EXAMPLE 1. 8. Let f_{A}(r) be the characteristic function of the inter-
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val [0, A] , and set R_{A}=f_{A}(r)(dr^{2}+r^{2}d\theta^{2}) on R^{2}- Our solutions of Ric(g_{A})

=R_{A} will be required to be C^{1} across the circle r=A (one could with
more effort use a smooth function f, but ours is simpler and illustrates our
point more easily). Cohn-Vossen’s inequality applies again to give the
restriction A\leq\sqrt{2} if we are looking for complete metrics. Again, we find
rotationally symmetric solutions of Ric(g_{A})=R_{A} , such that

g_{A}=r^{-A^{2}}(dr^{2}+r^{2}d\theta^{2})

outside the disk where r\leq A . Note that our rotationally symmetric met-
rics g_{A} are complete for all A\leq\sqrt{2}

EXAMPLE 1. 9. Let S=R\cross S^{1} be a cylinder, and let (t, \theta) be coordi-
nates on the cylinder (-\infty<t<\infty, 0\leq\theta<2\pi) so that \gamma=dt^{2}+d\theta^{2} is the
“standard” flat metric on S . As in Example 1. 8, let f_{A}(t) be the charac-
teristic function of the interval [0, A] . Since \Delta_{\gamma}(u)=-(u_{tt}+u_{\theta\theta}) , it is
easy to see that there is no complete metric of the form g=h(t)\gamma with
Ric(g)=f_{A}\gamma for A>0 . Of course, the metric \gamma is itself complete (and flat),
and is in fact the unique complete flat metric in its pointwise conformal
class. Finally there are infinitely many nonisometric complete metrics
such that Ric(g)=-f_{A}\gamma for any A>0 .

2. Finite total curvature.

In this section, we use some theorems of Huber and Finn concerning
the geometry of complete open surfaces to understand completely our
problem in the case that the tw0-form in part ( ii) of Lemma 1. 4 has a
finite integral. In other words, we will consider the problem of prescrib-
ing a tensor R on our open surface S such that

\int_{s}dV_{R}<\infty .

We begin our study by recalling some results about complete surfaces with
finite total curvature.

PROPOSITION 2. 1. Let (S, g) be a complete surface such that

\int|K|dV_{g}<\infty .

Then
(i) S is homeomorphic to s\eta\{p_{1}, . p_{n}\} , where \overline{S} is a compact

surface and the p_{i} are points of \overline{S},
(ii) Each end of S is parabolic,
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(iii) Each p_{i} has a (punctured) neighborhood on which g is isometric
to the metric

(2. 2) e^{2y_{i}}|z|^{2\beta_{i}}|dz|^{2} .

in terms of a local complex parameter on \overline{S,} where each \beta_{i}\leq-1 ,

each u_{i}\in L^{p} for all 1\leq p<\infty , and \Delta u_{i}\in L^{1} (with respect to some
smooth metric on \overline{S} ),

(iv) The following modifification of the Gauss-Bonnet formula holds:

(2.3) \frac{1}{2\pi}\int_{s}KdV_{g}=\chi(\overline{S})+\sum_{i=1}^{n}\beta_{i}

where the \beta_{i} are as in (iii).

Part ( i) is Theorem 13 and part ( ii) is Theorem 15 in [Hi]. Part
(iii) is Satz 1 in [H2], and part (iv) is the main theorem of [F]. A
resum\’e of these results also appears in [HT].

REMARKS. ( i) The actual statement of Satz 1 in [H2] concerns a
function v defined on the exterior of a disk in C such that \Delta v\in L^{1} (finite
total curvature for the metric e^{2v}|dz|^{2} ) and such that

\int_{\Gamma}e^{v(z)}|dz|=\infty

for any path \Gamma diverging to infinity (completeness). The conclusion is a
representation formula for v as follows:

v(z)= \frac{-1}{2\pi}\iint_{|\zeta|>1}\log|1-\frac{z}{\zeta}|\Delta v(\zeta)d\xi d\eta+\beta\log|z|+h(z)

where \beta is a constant and h is harmonic all the way out to infinity (in
particular h is bounded). One performs the inversion z\mapsto 1/z to pass to
an equivalent formulation in a punctured disk, such that the metric e^{2v}|dz|^{2}

has finite total curvature on the disk and any path which approaches the
origin has infinite length:

(2. 4) v(z)= \beta\log|z|+h(z)-\frac{1}{2\pi}\int\int_{0<|\zeta|<1}\log|z-\zeta|\Delta v(\zeta)d\xi d\eta

and h(z) is harmonic in the whole unit disk (even at the origin). This
immediately yields the representation (2.2) for the metric. The function
u in (2.2) is in L^{p} for all 1\leq p<\infty since it is the sum of a (locally bound-
ed) harmonic function and the convolution of an L^{1} function (\Delta u) with
the function \log|z| , which by Young’s inequality is in L^{p} for all 1\leq p<\infty .
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(ii) A metric with a representation of the form (2.2) near a para-
bolic end, will always be complete at that end provided \beta_{i}<-1 (and

never if \beta_{i}>-1 ). If \beta_{i}=-1 then the metric may or may not be complete,
as demonstrated by Example 1. 8 above and Example 2. 7 below. To show
this for \beta<-1 (we drop the subscript i for the time being), we use (2.2)

and (2.4) to compute that the length of a radial curve \Gamma in 0<|z|<1 which

“diverges” to the origin is L= \int_{\Gamma}e^{u(z)}|z|^{\beta}|dz| . If we apply H\"older’s inequal-

ity to the integral \int_{\Gamma}(|z|^{\beta/p}e^{u/p})e^{-u/p}|dz| , we get that

L \geq\frac{(\int_{\Gamma}|z|^{\beta/p}|dz|)^{p}}{(\int_{\Gamma}e^{-qu(z)p}|dz|)^{p/q}},\cdot

We can choose p>1 so that the numerator on the right-hand side is infinite
(since \beta<-1 ). As for the denominator, we first use (2.4) to write

u(z)=h(z)- \frac{1}{2\pi}\int\int_{0<|\zeta|<\epsilon}\log|z-\zeta|\Delta u(\zeta)d\xi d\eta ,

where h is harmonic (hence bounded, say |h(z)|<M ) on |z|<\epsilon . We de-
compose the measure \Delta u(\zeta)d\xi d\eta into positive and negative parts (denoted
d\mu(\pm\zeta)) , we set

u^{\pm}(z)= \frac{-1}{2\pi}\int\int_{0<|\zeta|<\epsilon}\log|z-\zeta|d^{\pm}\mu(\zeta) ,

and we set

T^{\pm}= \int\int_{0<|\zeta|<\epsilon}|d\mu(\pm\zeta)| .

We can now estimate the denominator as follows:

\int_{\Gamma}e^{-qu(z)/p}|dz|\leq e^{M}\{\int_{\Gamma}\exp[\frac{-q}{2\pi p}\int\int_{0<|z|<\epsilon}\log|z-\zeta|d^{+}\mu(\zeta)]|dz|+

+ \int_{\Gamma}\exp[\frac{-q}{2\pi p}\int\int_{0<|z|<\epsilon}\log|z-\zeta|d^{-}\mu(\zeta)]|dz|\}

=e^{M} \{\int_{\Gamma}\exp[\frac{-qT^{+}}{2\pi p}\int\int_{0<|z|<\epsilon}\log|z-\zeta|\frac{d\mu(+\zeta)}{T^{+}}]|dz|+

+ \int_{\Gamma}\exp[\frac{qT^{-}}{2\pi p}\int\int_{0<|z|<\epsilon}\log|z-\zeta|\frac{|d\mu-(\zeta)|}{T^{-}}]|dz|\} .

We can use Jensen’s inequality on the two integrals over 0<|z|<\epsilon to
obtain:
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\int_{\Gamma}e^{-qu(z)/p}|dz|\leq e^{M}\{\int_{\Gamma}\int\int_{0<|\zeta|<\epsilon}|z-\zeta|^{-qT^{+}/(2\pi p)}\frac{d\mu(+\zeta)}{T^{+}}|dz|+

+ \int_{\Gamma}\int\int_{0<|\zeta|<\epsilon}|z-\zeta|^{q\tau-/(2\pi p)}\frac{|d\mu-(\zeta)|}{T^{-}}|dz|\} .

These integrals will be finite for any radial \Gamma provided \epsilon is chosen small

enough so that \frac{-qT^{+}}{2\pi p}>-1 . The proof that the metric is incomplete for

\beta>-1 is similar (see [HT]; the ideas for these proofs originate in [R]).
(iii) Recall that if each end of the complete surface S is parabolic,

then S admits no nonconstant bounded harmonic functions. This portends
the uniqueness statements we will make for metrics on finite-total-
curvature surfaces.

From Proposition 2. 1 (iii), we see that, given a complete metric g on
a surface S with finite total curvature, there is a smooth metric g_{0} on the
compact surface \overline{S} such that g=\rho g_{0} , where \rho is smooth except at the
points \{p_{1}, , p_{n}\} of S\lambda S , and \rho has singularities as indicated in (2.2) at
the p_{i} . For ease of presentation in what follows, we make the following
definition: For any function (distribution) f on S (or on \overline{S} ), we define
the function reg[f] on \overline{S} by

reg[f](p)=\{
f(p) if p\not\in\{p_{1}, . , p_{n}\}

0 if p\in\{p_{1} , . . ’
p_{n}\}

The Ricci tensor of g is of the form xg_{0} , where \chi is smooth on S but could
have singularities at the p_{i} with the restriction that reg[x] is L^{1} on \overline{S} with
respect to g_{0} . This gives another necessary condition which a tensor R

(with finite \int dV_{R} ) must satisfy in order to be the Ricci tensor of a com-
plete metric on the open surface S- namely, there must exist a smooth
metric g_{0} on the compactification \overline{S} (obtained by adding a single point at
each end), and an L^{1} function reg[x] on \overline{S} such that R=xg_{0} .

The Gauss-Bonnet formula (2.3) places even more restrictions on R.
From Lemma 1. 4, we can compute the integral on the left side of (2 S) , in
fact, this integral is equal to \int reg[x]dV_{g0} , where \chi and g_{0} are as in the
previous paragraph. Of course, we know the Euler characteristic of \overline{S} ,
and we arrive at the following:

THEOREM 2. 5. Let the (smooth) tensor R be given on the open sur-
face S_{y} such that
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\int dV_{R}<\infty .

If R is the Ricci curvature of a complete metric on S, then

(i) S is homeomorphic to S\neg\{p_{1}, , p_{n}\} , where \overline{S} is a compact
manifold without boundary.

(ii) R can be realized as R=xg_{0} , where g_{0} is a smooth metric on \overline{S},
reg[x]\in L^{1}(\overline{S}, g_{0}) , and \chi is smooth except at the p_{i} .

(iii)

(2.6) \frac{1}{2\pi}\int_{s}reg[x]dV_{g0}-\chi(\overline{S})\leq-n .

Conversely, for each assignment of \{\beta_{1}, . \beta_{n}\} such that each \beta_{i}\leq-1

and

\sum_{i=1}^{n}\beta_{i}=\frac{1}{2\pi}\int_{s}xdV_{g0}-\chi(\overline{S}) ,

there is a unique {up to constant multiple) metric g such that Ric(g)=R
and g is locally of the form (2.2) near p_{i} . If all the \beta_{i} are chosen strictly
less than -1_{y} then g is guaranteed to be complete. If some \beta_{i}=-1 , then
the metric may or may not be complete at p_{i} .

The only statement which needs proving is the existence of g, given
an appropriate assignment of the \beta_{i} . For this purpose, choose a metric g_{1}

=e^{2\phi}g_{0} on S such that g_{1} is of the form (2.2) at the p_{i} with reg[\Delta_{g0}\phi]\in

L^{1}(\overline{S}, g_{0}) (this is no problem, since (2.2) gives a recipe for \phi near each p_{i} ,

and the metrics on the neighborhoods of the p_{i} can then be smoothly pat-
ched together). By (1.3) and Proposition 2. 1 we get that

Ric(g_{1})=(K_{0}+\Delta_{g0}\phi)g_{0} ,

and reg[K_{0}+\Delta_{g0}\phi] is in L^{1}(\overline{S}, g_{0}) . Note that

\frac{1}{2\pi}\int_{s}(K_{0}+\Delta_{g0}\phi)dV_{g0}=\chi(\overline{S})+\sum_{i=1}^{n}\beta_{i} .

Moreover the function reg[x-(K_{0}+\Delta_{g0}\phi)] is in L^{1}(\overline{S}, g_{0}) and

\int_{\overline{s}}reg[x-(K_{0}+\Delta_{g0}\phi)]dV_{g0}=0 .

Thus, there exists a function v\in L^{1}(\overline{S}, g_{0}) , unique up to an additive con-
stant, such that \Delta_{g0}v=reg[x-(K_{0}+\Delta_{g0}\phi)] . Again using (1.3) and Proposi-
tion 2. 1, we see that the metric g=e^{2v}g_{1} is the metric we seek, and it is
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unique up to a multiplicative constant.

REMARKS. ( i) The particular case of R^{2} (Examples 1. 5 through

1. 8) becomes clearer now: since R^{2}=S^{2}\backslash \{p\} , we see that we must have

\frac{1}{2\pi}\int_{R^{2}}dV_{R}-\chi(S^{2})=\frac{1}{2\pi}\int_{R^{2}}dV_{R}-2\leq-1 ,

which is the same as Cohn-Vossen’s inequality. Moreover, we see that,
since there is only one point in S^{2}\backslash R^{2} , there is only one way to prescribe
\beta , and so there can only be one complete solution of Ric(g)=R up to a
multiplicative constant. In particular, when \beta=-1 , the unique solution
may be complete, as in Example 1. 8 for A=\sqrt{2} . or it might not be com-
plete as in Example 2. 7 below, in which case there is simply no complete
solution.

(ii) In Example 1. 7, note that for C\neq 0 , the tensor R_{C} is a nonzero
multiple of the complete metric g_{0}=dr^{2}+r^{2}(1+r^{2})d\theta^{2}- and g_{0} has a hyper-

bolic end (since \int dr/r\sqrt{1+r^{2}}<\infty , see [M]). The existence of a complete

solution of Ric(g)=R_{C} would contradict Proposition 2. 1 ( ii) and the con-
formal invariance of hyperbolicity.

(iii) Example 1. 9 should also be clearer now. There are two points

in S^{2}\backslash S , and since \frac{1}{2\pi}\int dV_{R}=-A , we see that any choice of \beta_{1} and \beta_{2}

which satisfies \beta_{1}+\beta_{2}=-(2+A) with \beta_{1}\leq-1 and \beta_{2}\leq-1 will give rise to
a complete metric (unique up to constant multiple) such that Ric(g)=f_{A}\gamma .

EXAMPLE 2. 7. For \alpha>0 , let R_{a} be the tensor which is equal to

R_{a}= \frac{2(\alpha+2)}{e^{2}}(dr^{2}+r^{2}d\theta^{2})

for r\leq e , and

R_{a}= \frac{-2}{r^{2}(1ogr)^{2}}(dr^{2}+r^{2}d\theta^{2})

for r>e , where r and \theta are the usual polar coordinates on R^{2} . Since R_{a}

is conformal to the Euclidean metric on R^{2} . the end is parabolic. More-
over, we compute that

\int_{R^{2}}dV_{R_{\alpha}}=2\pi(\int_{0}^{e}\frac{2(\alpha+2)}{e^{2}}rdr+\int_{e}^{\infty}\frac{2}{r(1ogr)^{2}}dr)=2\pi(\alpha+4)<\infty ,

and, if Ric(g)=R_{a} , we would have
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\int_{R^{2}}K_{g}dV_{g}=2\pi(\int_{0}^{e}\frac{2(\alpha+2)}{e^{2}}rdr-\int_{e}^{\infty}\frac{2}{r(1ogr)^{2}}dr)=2\pi\alpha

from Lemma 1. 4. Therefore, Theorem 2. 5 guarantees us a unique (up to
constant multiple) metric g_{a} with Ric(g_{a})=R_{a} (if we insist that g_{a} be C^{1}

across the circle r=e where R_{a} is discontinuous). We find that this met-
ric is given by

g_{a}= \exp(2-\alpha-\frac{\alpha+2}{e^{2}}r^{2})(dr^{2}+r^{2}d\theta^{2})

for r\leq e , and

g_{a}= \frac{l}{r^{2a}(1ogr)^{4}}(dr^{2}+r^{2}d\theta^{2})

if r\geq e . Note that g_{a} is complete if \alpha<1 but is incomplete if \alpha\geq 1 , in
accord with Cohn-Vossen’s inequality, but in contrast to Example 1. 8.

3. Infinite total curvature.

In this section, we examine the problem of prescribing Ricci curvature
when

\int_{s}dV_{R}=\infty .

It was surprising to us that the issue of completeness of the solution of
Ric(g)=R should be so delicate in this case (even if R is assumed to be
strictly negative definite on S).

EXAMPLE 3. 1. One might be tempted to conjecture that, given any
strictly positive function f on R^{2}\wedge there would exist a complete metric g
whose Ricci tensor is equal to

R=-f(x, y)(dx^{2}+dy^{2}) .

From our previous analyses, we know that such a metric would be of the
form

g=e^{2\mathcal{U}}(dx^{2}+d_{\mathcal{Y}}^{2})

with \Delta u=-f . For completeness, we need that u does not approach -\infty

too fast in any direction. A sufficient condition for completeness therefore
would be for u to be bounded from below. But the positivity of f is not
sufficient to guarantee the existence of a u which is bounded from below,
as the following example (kindly pointed out to us by E. Calabi) shows:

An elementary computation shows that if
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u_{n}(z)=a_{n} \log(\epsilon_{n}+|1-\frac{z}{n}|^{2}) ,

then
\Delta u_{n}(z)=\frac{-4n^{2}\epsilon_{n}a_{n}}{(n^{2}\epsilon_{n}+|n-z|^{2})^{2}}

which is clearly negative, provided a_{n} and \epsilon_{n} are positive. Furthermore,

\int\int_{R^{2}}\Delta u_{n}(z)dxdy=-4\pi a_{n} .

We consider a function u(z) of the form u= \sum u_{n} . In order for the series
to converge uniformly on compact sets, we require \epsilon_{n}arrow 0 faster than 1/n^{3} ,
and a_{n}arrow 0 at least as fast as 1/n . In fact, let us choose a_{n}=1/n and \epsilon_{n}=

e^{-e^{n}} (note that we then have \int\Delta u=-\infty ). On the ball B_{R} of radius R

centered at 0, we can easily estimate u(z)<40R+10(\log R)^{2} but note that

if N is any positive integer, then u_{N}(N)=-e^{N}/N , and so u(N)<- \frac{1}{2}e^{N}/N

if N is sufficiently large. We claim that there is no harmonic function
h(z) such that u(z)+h(z)>0 for all z\in R^{2} . For suppose such an h exist-
ed. Then on the ball of radius 2N, we would need h(z)>-80N-10(\log
2N)^{2} in order for u+h to be positive. Therefore, the function h_{1}(z)=h(z)

+80N+10(\log 2N)^{2} is positive and harmonic on B_{2N} . But the classical
Harnack inequality [PW, page 108] says that h_{1}(N)<3h_{1}(0) , in other
words,

h(N)<3h(0)+160N+20(\log 2N)^{2} .

Since h(N) \geq\frac{1}{2}e^{N}/N , this is a blatant contradiction for N sufficiently

large.

EXAMPLE 3. 2. On the other hand, it is easy to see that if f is any
positive radial function on R^{2}- then there is a (radial) complete metric
satisfying Ric(g)=-f(dx^{2}+dy)2 . One need only integrate the appropriate
ordinary differential equation (the radial version of \Delta u=-f) with u(0)=
u’(0)=0 to obtain the solution.

From the preceding examples, we conclude that some hypotheses on R
must be made in order to guarantee existence of a complete metric on S
satisfying Ric(g)=R. These are summarized in the following theorem.

THEOREM 3. 3. Let S be an open surface of fifinite topological type and
let R be a tensor on S with
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\int dV_{R}=\infty .

Assume that R can be expressed as \phi g_{0} , where \phi is a smooth function on S
and g_{0} is a complete metric on S (this is a necessary condition for exis-
tence). With the conformal sturcture induced by g_{0} , S will have three
kinds of ends.-

(i) Parabolic ends about which \int dV_{R}<\infty

(ii) Parabolic ends about which \int dV_{R}=\infty

(iii) Hyperbolic ends (about which \int dV_{R}=\infty –this is again a neces-
sary condition, see Proposition 2.1 ( ii)) .

Let \overline{S} be the compactifification of S obtained by adding points \{p_{1}, . p_{m}\}

at the parabolic ends and closed disks \{D_{m+1}, D_{n}\} at the hyperbolic
ends, and so that g_{0}=xg_{1} , where g_{1} is a smooth metric on the compact sur-
face \overline{S} and \chi is smooth on S. About each p_{i} and D_{i}, choose a neighbor-
hood U_{i} so that U_{i}\cap U_{j}=\emptyset if i\neq j and so that g_{1} is uniformized by the
complex parameter z_{i} on U_{i} . For all the ends of types ( ii) and (iii),
assume that x\phi can be decomposed as a sum of two functions x\phi=r_{i}+b_{i} on
U_{i}\backslash \{p_{i}\} (resp. U_{i}\backslash \{D_{i}\} ) with r_{i} smooth, nonnegative, radial ( i. e. , a func-
tion of |z_{i}| alone) and compactly supported in U_{i}, and so that

\int_{U_{i}}|b_{i}|dV_{g1}<\infty .

Then there exists a complete metric (in fact, many complete metrics) g such
that Ric(g)=R on S .

REMARKS. ( i) Despite appearances, the conditions in the theorem
are independent of the choice of g_{0} and g_{1} within their conformal class. Of
course, the existence of g_{1} is guaranteed by the classical uniformization
theorem of Poincar\’e and Koebe.

(ii) Note that the Ricci candidate of Example 3. 1 suffers precisely
from being too wildly nonradial near the end of R^{2} . The last condition in
the theorem is meant precisely to control such behavior.

PROOF. We first prove the theorem assuming that all the ends are
parabolic ( i . e. , of types ( i ) and ( ii) ). Let I= \{i|\int_{U_{i}}dV_{R}=\infty\} and F=

\{i|\int_{U_{i}}dV_{R}<\infty\} . Since the total curvature is infinite, I is nonempty.
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Moreover, by the hypotheses on the behavior of R near the p_{i} for i\in I ,

we see that the measure

d \mu=dV_{R}-\sum_{i\in I}r_{i}dV_{g1}

is integrable on S , and \int_{s}d\mu<\infty . For each i\in F , choose \beta_{i}<-1 (we

could let \beta_{i}=-1 , but the resulting metric might not be complete at p_{i}),
and specify a function \tau_{i} on S which equals \beta_{i}\log|z_{i}| in some neighbor-
hood V_{i}\subset U_{i} and is \equiv 0 outside U_{i} . By adjusting one or more of the r_{i} ’s
(for i\in I) by a radial, g_{1} -integrable function, we can arrange that

\int_{\overline{s}}reg[d\mu-(K_{1}+\Delta_{g1}\sum_{i\in F}\tau_{i})dV_{g1}]=0

where K_{1} is the Gauss curvature of g_{1} . Thus, there exists a function u ,

smooth on S , such that

( \Delta_{g1}u)dV_{g1}=d\mu-(K_{1}+\Delta_{g1}\sum_{i\in F}\tau_{i})dV_{g1}

on S , i . e. ,

\Delta_{g1}u=x\phi-\sum_{i\in I}r_{i}-K_{1}-\Delta_{g1}\sum_{i\in F}\tau_{i} .

Also, by solving ordinary differential equations, we obtain a (unique)
function v such that v\equiv 0 on S\backslash \cup i\in IUi and such that v is radial on U_{i}

with \Delta_{g1}v=r_{i} on U_{i} . The upshot of all this is the equation

\Delta_{g1}(u+v+\sum_{i\in F}\tau_{i})=x\phi-K_{1} ,

which implies

Ric(e^{2(u+v+\Sigma\tau_{i})}g_{1})=R ,

and the metric (and hence the proof in this case) is complete.
It is no harder to deal with hyperbolic ends. When the Ricci candi-

date R is decomposed as \phi g_{0} , with g_{0} complete on S , we need only fill in
the hyperbolic ends with disks rather than points to obtain the conformal
completion \overline{S} of S (by the uniformization theorem again). We adjust the
definition of reg[f] accordingly, by defining reg[f] to be zero throughout
the added disks. One again obtains a smooth metric g_{1} on \overline{S} with g_{0}=xg_{1}

on S , and the assumptions about x\phi near the hyperbolic ends (decomposi-
tion of x\phi into a positive radial function and a g_{1} -integrable function)
yield existence of a complete metric on S with Ric(g)=R.
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