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Introduction

A differential operator L on a smooth (=C^{\infty}) manifold M is called
hypoelliptic (cf. [4]), if the solutions u in the sence of distribution of the
equation Lu=f are always smooth where f is smooth. In his interesting
paper [5], H\"ormander gave a sufficient condition for a second order
differential operator to be hypoelliptic.

First of all, we shall repeat his result in a slightly different version
from the original one, for this gives a motivation of this paper. Let
C^{\infty}(M) (resp. C_{0}^{\infty}(M) ) be the space of all smooth functions on M (resp.

with compact support). Let X_{1} , X_{2} ,..., X_{k} be finitely many smooth tan-
gent vector fields on M, and let \mathfrak{h} be the Lie algebra generated by

\{\sum_{1\leqq i\leqq k}f_{i}X_{i} ; f_{i}\in C_{0^{\infty}}(M)\}

THEOREM (cf. [5]). Suppose \mathfrak{h} is infifinitesimatly transitive at every
point p of M. Then, the differential operator L=\Sigma_{1\leqq i\leqq k}X_{i}^{*}X_{\iota} is hypoel-
liptic where X_{i}^{*} is the formal adjoint operator of X_{i} with respect to an
arbitrarily fifixed smooth riemannian metric on M.

Now in this paper, we assume that manifolds are always connected
without boundary and satisfy the second countability axiom.

In the above theorem, remark at first that every Y\in \mathfrak{h} is a complete

vector field. Since M is connected, the infinitesimal transitivity of \mathfrak{h} at
every point p yields easily the transitivity of the group H generated by

{exp Y ; Y=\Sigma f_{i}X_{i} with f_{i},\ldots , f_{k}\in C_{0}^{\infty}(M) }

However it should be remarked that the converse in not necessarily true in
the smooth case. This pathological phenomenon occurs in general if the
Lie algebra \mathfrak{h} has not the property that Ad(exp Y) \mathfrak{h}=\mathfrak{h} for every Y\in \mathfrak{h} .

So if it occurs, such a Lie algebra \mathfrak{h} can not be the Lie algebra of any
“infinite dimensional Lie group” (cf:[8]) , that is, \mathfrak{h} is non-enlargeable. A
typical example of such Lie algebra is as follows (cf. [9]) ; Let
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X_{1}=\partial/\partial x , X_{2}=\zeta(x)\partial/\partial y

be smooth vector fields on a 2-dimensional torus T^{2}=R^{2}/(2\pi Z)^{2} such that
\zeta\neq 0 and supp \zeta\subset[2\pi/3,4\pi/3] . The Lie algebra \mathfrak{h} generated by C^{\infty}(T^{2})X_{1}

+C^{\infty}(T^{2})X_{2} is not infinitesimally transitive at p=(x,y) outside supp \zeta , but
the group generated by exptXi, exptX_{2} , t\in R , acts on T^{2} transitively.
Now, consider the differential operator

L=(\partial/\partial x)^{2}+(\zeta(x)\partial/\partial y)^{2}

on T^{2} . The above operator does not satisfy the H\"ormander condition
outside supp \zeta . However, it is plausible that the transitivity of \mathfrak{h} instead
of infinitesimal transitivity of \mathfrak{h} at every point may cause some nice regu-
larity property of L. Indeed, Fujiwara and the author showed that the
above operator is globally hypoelliptic (cf. [6]), where an operator L on
M is called globally hypoelliptic, if Lu\in C^{\infty}(M) implies u\in C^{\infty}(M) .

The above result permit us to imagine that the regularity of solutions
of

Lu=f, f\in C^{\infty}(M) ,

spreads along the orbit of H. By the theorem of Sussmann[10], every
H-0rbit is a smooth submanifold of M. Hence, it is very likely that u is
smooth on each orbit of H. Such feeling may be summarized in the fol-
lowing:

CONJECTURE: A differential operator L=\Sigma_{1\leqq i\leqq k}X_{i}^{*}X_{i} defined on a
connected smooth riemannian manifold M is globally hypoelliptic, if the
group H generated by \{\exp\Sigma f_{i}X_{i} ; f_{i}\in C^{\infty}(M)\} acts transitively on M.

This conjecture is affirmative, if M is real analytic and X_{i} ’s are real
analytic, because the transitivity of H together with the real analyticity of
X_{i} ’s yields the infinitesimal transitivity of \mathfrak{h} at every point, and hence L
satisfies the H\"ormander condition. However in the smooth case, it can
happen that \mathfrak{h} is nowhere infinitesimally transitive but H acts transitively
on M. Moreover, such an example is not a pathological one, but itcan- be
made very naturally in the theory of holonomy groups of smooth connec-
tions as it will be seen in the last paragraph.

In what follows, we shall assume that M is the total space of a
smooth G-principal bundle over a compact connected smooth riemannian
manifold N without boundary, and that G is a connected compact Lie
group. Consider a smooth G-connection D on M as a G-invariant
smooth horizontal distribution on M, and let \nabla:C^{\infty}(M)arrow\Gamma^{\infty}(\Lambda^{1}(M)) be the
covariant exterior derivative. We denote by \nabla^{*} the formal adjoint opera-
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tor of \nabla with respect to a G-invariant riemannian metric g such that the
horizontal space and the vertical space are perpendicular. Consider the
operator L=\nabla^{*}\nabla and call it the horizontal Laplacian in accordance with
[1]. The feature of this operator is that L commutes with the Laplace
-Beltrami opereator \Delta_{g} on M (cf. \S 2. Lemma 3).

Since M is compact there are finitely many horizontal vector fields X_{1} ,
..., X_{k} on M such that L=\Sigma_{1\leq i\leq k}X_{i}^{*}X_{i} , Let \mathfrak{h} be the Lie algebra generated
by \{\Sigma_{1\leqq i\leqq k}f_{i}X_{i} ; f_{i}\in C^{\infty}(M)\} and let H be the group generated by {exp
\Sigma f_{i}X_{i}\} . It is known (cf. [6]) that \mathfrak{h} is infinitesimally transitive at p if and
only if the infinitesimal holonomy Lie algebra \gamma’(p) at p is equal to the
Lie algebra \gamma of the structure group G, and that H is transitive on M if
and only if the holonomy group \Phi is equal to G. (Cf. \S 2.)

The main theorem of this paper is as follows:

THEOREM A. The horizontal Laplacian L on M is globally hypoel-
liptic, if the holonomy group \Phi of the connection D is equall to G. More-
over, if the closure of \Phi is a proper subgroup of G, then L is not globally
hypoelliptic.

The following is an easy consequence of the above result:

COROLLARY. Let \pi : S^{7}arrow S^{4} be the Hoph fifibration by a 3-sphere S^{3} .
Then, the horizontal Laplacian L made by using arbitrary smooth S^{3_{-}}con-

vect or on S^{7} is always globally hypoelliptic.

Remark also that if dim G\geqq 2 , then there exist G and a smooth
G-connection such that the infinitesimal holonomy Lie algebra \gamma’(p) is a
proper subalgebra of \gamma at every point p\in M but but the holonomy group \Phi

is G itself. Such a phenomenon happens only in smooth cases, and it may
be illustrated as fllows:

Suppose the curvature form \Omega of the connection vanishes on a wide
open subset of M. On such open subset U, the horizontal distribution D
is involutive and defines a smooth foliation. Regarding M as a huge
building built on the ground N with uncountably many stories, each leaf
in U may be understood as a floor. An open area on which the curvature
does not vanish is a place of spiral stairs which reaches from one floor to
other floors. Now, even if there is no place of spiral stairs which reaches
from one floor to all other floors, it can happen one can get any floor by
using spiral stairs which are set here and there in that building M.

\S 1. Actions of diffeomorphisms to the space of distributions.

In this section, we assume that M is a compact, connected smooth
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riemannian manifold without boundary. Let \{L_{2}^{k}(M) ; k\in Z\} be the
Sobolev chain on M. Then, C^{\infty}(M)=\cap L_{2}^{k}(M) and L_{2}^{-\infty}(M)=\cup L_{2}^{k}(M) is
the space of distributions. The inner product of L_{2}(M)=L_{2}^{0}(M) is given
by

\langle u, v\rangle_{0}=\int_{M}u(x)v(x)dV_{x} ,

where dV_{\chi} is the volume form on M. Let Diff(Jf) be the group of all
smooth diffeomorphisms on M, and let \Gamma(TM) be the Lie algebra of all
smooth tangent vector fields on M. For any \phi\in Diffff(M) and u\in C^{\infty}(M) ,
we define \phi^{*}u\in C^{\infty}(M) by (\phi^{*}u)(x)=u(\phi(x)) and \phi u\in C^{\infty} by

(\phi u)(x)=J_{\phi}(\phi^{-1}(x))u(\phi^{-1}(x))

where J_{\emptyset} is the Jacobian defined by \phi^{*-1}dV_{X}=J_{\emptyset}(\phi^{-1}(x))dV_{\phi^{-1}(\chi)} . It is easy
to see that \langle\phi^{*}u, v\rangle_{0}=\langle u, \phi v\rangle_{0} for every u , v\in C^{\infty}(M) and for every \phi\in

Diff(Jf). Let X be an element of \Gamma(TM) . X is regarded as a differential
operator of C^{\infty}(M) into itself, and its formal adjoint operator X^{*} is given
by -X-divX, where divX is the divergence of X. Using these relations,
we see the following:

LEMMA 1. ( i) \phi^{*} , and \phi:C^{\infty}(M)-C^{\infty}(M) can be extended to con-
tinuous linear isomorphisms of L_{2}^{k}(M) onto itself for every k\in Z, and

\langle\phi^{*}u, v\rangle_{0}=\langle u, \phi v\rangle_{0}

for eve\eta u\in L_{2}^{k}(M) , v\in L_{2}^{-k}(M) , k\in Z.

(ii) X and X^{*}: C^{\infty}(M)arrow C^{\infty}(M) can be extended to a continuous
linear mapp\iota^{-}ng of L_{2}^{k+1}(M) into L_{2}^{k}(M) for every k\in Z, and

\langle Xu, v\rangle_{0}=\langle u, X^{*}v\rangle_{0}

for every u\in L_{2}^{k+1}(M) , v\in L_{2}^{-k}(M) , k\in Z.

Now, consider a linear subspace=- of \Gamma(TM) . The purpose of this
section it to show the following:

THEOREM 1. Suppose an element u\in L_{2}^{-\infty}(M) satisfy Xu\in L_{2}^{k}(M) for
every X\in\overline{=} . If the group generated by \{\exp X : X\in_{-}^{-}-\} acts transitively on
M, then u\in L_{2}^{k}(M) .

The above theorem will be proved in several Lemmas below.
Let \phi_{t} be a smooth curve in Diff(M) such that (d/dt)\phi_{t}=X_{t}\phi_{t} , X_{t}\in

\Gamma(TM) . Remark at first that (d/dt)\phi_{t}^{*}u=\phi_{t}^{*}X_{t}u for every u\in C^{\infty}(M) ,
and this equality can be naturally extended to an element u\in L_{2}^{k}(M) . By
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Lemma 1, together with the smoothness property given in [7], \S 4, we have
the following:

LEMMA 2. With the same notations as above, the mapping \Phi : [0, 1]\cross

C^{\infty}(M)arrow C^{\infty}(M) defifined by \Phi(t, u)=\phi_{t^{*}}u can be extended to a continuous
mapping of [0, 1]\cross L_{2}^{k}(M) into L_{2}^{k}(M) for every k\in Z.

LEMMA 3. Suppose u\in L_{2}^{-\infty}(M) satisfifies Xu\in L_{2}^{k}(M) for every X\in\Xi .
Then, (Ad(\exp X)Y)u\in L_{2}^{k-1}(M) for every Y, Y\in_{-}^{-}- .

PROOF. Remark at first that (Ad(\exp X)Y)u=(\exp X)^{*}Y(\exp

-X)^{*}u . Now

Y(\exp-X)^{*}u=Yu+\int_{0}^{1}(d/dt)Y(\exp-tX)^{*}udt

= Yu-\int_{0}^{1}Y(\exp-tX)^{*}Xudt .

Since Yu , Xu\in L_{2}^{k}(M) and (\exp-tX)^{*} preserves L_{2}^{k}(M) , we see that
Y(\exp-tX)^{*}Xu\in L_{2}^{k-1}(M) by Lemma 1 and hence Y(\exp-X)^{*}u\in

L_{2}^{k-1}(M) by Lemma 1. It follows (Ad(\exp X)Y)u\in L_{2}^{k-1}(M) by Lemma
1 again.

Proof OF THEOREM 1. Since X_{i}u\in L_{2}^{k}(M) , we see that Y(\exp

-X_{1})^{*}\ldots(\exp-X_{s})^{*}X_{s}u\in L_{2}^{k-1}(M) for any X_{1},\ldots,X_{s} , Y\in\overline{=} . By the same
proof as in Lemma 3, we see

Y(\exp-X_{1})^{*}\ldots(\exp-X_{s})^{*}u=Y(\exp-X_{1})^{*}\ldots(\exp-X_{s-1})^{*}u

- \int_{0}^{1}Y(\exp-X_{1})^{*}\ldots(\exp-tX_{s})^{*}X_{s}udt .

If s=1 , then the first term is contained in L_{2}^{k-1}(M) . Hence by induction
with respect to s and the assumption Yu\in L_{2}^{k}(M) , we see that Y(\exp

-X_{1})^{*}\ldots(\exp-X_{S})^{*}u\in L_{2}^{k-1}(M) and hence (Ad (exp X_{s} exp X_{s-1}\ldots exp
X_{1})Y)u\in L_{2}^{k-1}(M) . Thus, for any element Y of the L_{\overline{1}}e algebra spanned
by

\{Ad(\exp X_{S}\ldots\exp X_{1})Y;X_{1}, \ldots, X_{S}, Y\in_{-}^{-}-\} ,

we have Yu\in L_{2}^{k-1}(M) .
Now, suppose the group generated by {exp Y:Y\in\Xi} acts transitively

on M. Then, by the result of Sussmann [10], we see that the above Lie
algebra is infinitesimally transitive at every p. It follows easily that Yu\in

L_{2}^{k-1}(M) for every Y\in\Gamma(TM) . Hence u\in L_{2}^{k}(M) .
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\S 2. Connections and holonomy groups on principal bundles.

In this section, we shall assume that M is the total space of a smooth
G-principal bundle over a compact connected smooth riemannian manifold
N and that G is a connected compact Lie group. M is therefore a com-
pact manifold. Let \pi:Marrow N be the natural projection. A point p\in M

will be sometimes denoted by (p ; a) where x=\pi p , a\in\pi^{-1}(x) . By
definition of principal bundles, the structure group G acts freely on M
from the right hand side. This action will be denoted by R_{g}(x;a)=(x ;
ag) . Let \gamma be the L_{\overline{1}}e algebra of G. Since G acts smoothly on M, every
X\in\gamma defines a smooth vector field \tilde{X} on M given by

\overline{X}(x:a)=(d/dt)_{t=0}(x ; a exp tX).

This will be denoted by (x;aX) . S\overline{l}nce the action is free, if \overline{X}(x;a)=

\overline{X}’(x;a) at a point (x;a)\in M , then X=X’ Thus, one may identify X
with \overline{X} . \gamma(x;a)=\{(x;aX),\cdot X\in\gamma\} forms the tangent space at (x;a) of
the fibre \pi^{-1}(x) , which will be called the vertical space at (x ; a) . A
smooth G-connection on M is a smooth distribution D=\{D_{p} ; p\in M\} on M
sat_{\overline{1}S}fying

(i) d\pi:D_{(x,a)}arrow T_{x}N is a linear isomorphism
(i\dot{1}) dR_{g}D_{(x,a)}=D_{(x,ag)} for every g\in G .

D_{(x,a)} is called the horizontal space at (x:a)\in M . Obviously, T_{(x,a)}M=

D_{(x,a)}\oplus\gamma(x:a) . Given a smooth tangent vector field W on N, there exists
uniquely a smooth tangent vector field W^{\#} on M such that d\pi W^{\mu}=W and
W^{\#}(p)\in D_{p} at every p\in M , which will be called the hor\iota^{-}zontal lift of W.
It is easy to see that [ W^{\#},\tilde{X}]=0 for every W\in\Gamma(TN) and X\in\gamma . A \tan-

gent vector field X on M is called a horizontal vector fifield, if X(p)\in D_{p} at
every p. We denote by \Gamma(D) the linear subspace of \Gamma(TM) consisting of
all smooth horizontal vector fields. Since M is compact, there are finite
number of horizontal vector fields X_{1},\ldots,X_{k} such that

\Gamma(D)=\{\sum_{1\leqq i\leqq k}f_{i}X_{i} ; f_{i}\in C^{\infty}(M)\} .

Let \mathfrak{h} be the Lie algebra generated by \Gamma(D) .

Lemma AND DEFINITION 1. A t every p\in M, vertical part of \mathfrak{h}(p) can
be naturally identifified with a Lie subalgebra \gamma’(p) of \gamma, which we shall
call the infifinitesimal holonomy Lie algebra of D at p\in M.

The proof is seen in [6] p96 . Now, let H be the group generated by
\{\exp X,\cdot X\in\Gamma(D)\} . The following is given in [6], p72 :
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LEMMA AND DEFINITION 2. At every p\in M, the vertical part of the
orbit H(p)i. e. H(p)\cap\pi^{-1}(\pi(p)) can be naturally identifified with a Lie sub-
group \Phi(p) of G, which we shall call the holonomy group with the refer-
ence point p.

For a smooth function f on M, we define the covariant exterior deriva-
tive \nabla f by (\nabla f)(Y)=h(Y)f , where h(Y) is the horizontal part of Y\in

TM. \nabla is a linear mapping of C^{\infty}(M) into \Gamma(\Lambda_{M}^{1}) , the space of smooth 1
-forms on M. We see easily Hf=\nabla_{H}f(=(\nabla f)(H)) for H\in D .

Fix a bi-invariant C^{\infty}riemann\overline{l}an metric on G. Using this metric and
the original riemannian metric on N, we define a smooth riemann\dot{l}an met-
ric g on M so that the vertical space and the horizontal space are mutu-
ally perpendicular at every point. Let \nabla^{*} be the formal adjoint operator
of \nabla w\overline{l}th respect to the above riemannian metric on M. Define L by \nabla^{*}\nabla

and call it the horizontal Laplacian on M. S_{\overline{1}}nceG acts on M as an
isometry group we have the following:

LEMMA 3. L commutes with the Laplace-Beltrami operator \Delta_{g} .

PROOF. Let Y_{1},\ldots , Y_{m} be an orthonormal basis of \gamma . By using the
relation [ \overline{Y}, \Delta_{g}]=0 , and the fact Y^{*}=-Y , we have

[L, \Delta_{g}]=[\Delta_{g}-\Sigma_{1\leqq i\leqq m}\overline{Y}_{i}^{*}\tilde{Y}_{i}, \Delta_{g}]=0 ,

Where \sum\overline{Y}_{i}^{*}\overline{Y}_{i} stands for the vertical Laplacian in [1].
Now, suppose the holonomy group \Phi(p) with the reference point p

coincides with the structure group. Then, this implies \Phi(q)=G at every q
\in M and the group H generated by \{\exp X;X\in\Gamma(D)\} acts transitively on
M.

On the contrary, suppose the closure of \Phi(p) is a proper subgroup of
G. Then, the closure \overline{H(p)} is known to be a \overline{\Phi(p)}-principal bundle over
N and smooth subbundle of \{M, G, N\} . Since \overline{H(pg)}=\overline{H(p)g} for all g\in

G, \overline{H(pg)} is a g^{-1}\overline{\Phi(p)}g-principal bundle over N and smooth subbundle of
\{M, G, N\} . Remark that M=\cup\overline{{}_{g\in B}H(p)}g and each \overline{H(p)}g is a closed C^{\infty}

submanifold of M. This gives a smooth fibering of M over the homogene-
ous space \overline{\Phi(p)}\backslash G . Thus, there is a funct\overline{l}onu such that u is constant
on each \overline{H(p)}g but u is not differentiate. Note that L can be regarded
as a differential operator on each \overline{H(p)}g . Hence, we see Lu=0. There-
fore, we have the following \cdot.

LEMMA 4. If the closure of the holonomy group is a proper subgroup
of the structure group G, then the horizontal Laplacian L is not globally
hypoelliptic.
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\S 3. Proof of Theorem A and Corollary

By Lemma 4 in the previous section, we have only to show the global
hypoellipticity of L. Let \{\lambda_{n}^{2}\}_{n=1,2},\ldots and \{\psi_{n}\}_{n=1,2},\ldots are eigen values and
eigen functions of \Delta_{g}=L+\Sigma_{1\leqq i\leq k}\tilde{Y}_{i}^{*}\overline{Y}_{i} respectively. \psi_{n}\in C^{\infty}(M) , and one
may assume that \langle\psi_{m}, \psi_{n}\rangle_{0}=\delta_{mn} . Remark that every v\in L_{2}^{-\infty}(M) can be
expressed by \Sigma_{1\leq n<\infty}a_{n}\psi_{n} and v\in L_{2}^{k}(M) if and only if \Sigma_{1\leqq n<\infty}|a_{n}|^{2}|\mathcal{A}_{n}|^{2k}

<\infty .
Since [L, \Delta_{g}]=0 , one may assume that \psi_{n} ’s are also eigen funct\overline{l}ons of

L. Let \rho_{n^{2}} be the eigen value of L corresponding to the eigen function \psi_{n} .
Since \langle\psi_{m} , \psi_{n}\rangle_{0}=\delta_{mn} , we see that

\langle\nabla\psi_{n}, \nabla\psi_{m}\rangle_{0}=\langle L\psi_{n}, \psi_{m}\rangle_{0}=\rho_{n^{2}}\delta_{nm} .

LEMMA 1. Suppose u\in L_{2}^{-\infty}(M) satisfy Lu\in C^{\infty}(M) . Then, \nabla u=

L_{2}(\Lambda^{1}(M)) .

PROOF. Set u=\Sigma_{n}a_{n}\psi_{n} . Since Lu\in C^{\infty}(M) we see that for every
k\in Z

\Sigma_{1\leq n<\infty}|a_{n}|^{2}\rho_{n^{4}}\mathcal{A}_{n^{2k}}<\infty .

Now remark that \langle\nabla\psi_{n}, \nabla\psi_{m}\rangle_{0}=\rho_{n^{2}}\delta_{nm} . Let N’ be the set of the numbers
n such that \rho_{n}\neq 0 . Then, \{\nabla\psi_{n}/\rho_{n}jn\in N’\} forms a part of orthonormal
basis of L_{2}(\Lambda^{1}(M)) . Since \nabla u=\Sigma a_{n}\nabla\psi_{n} in L_{2}^{-\infty}(\Lambda^{1}(M)) , it follows that
||\nabla u||_{0^{2}}=\Sigma\rho_{n^{2}}a_{n}^{2} . However, remark that u\in L_{2}^{-k}(M) for some k\in Ni . e .
||u||_{-k}=\Sigma\lambda_{n}^{-2k}a_{n}^{2}<\infty , where || ||_{-k} denotes the standard norm in L_{2}^{-k}(M) .
Hence we have

\Sigma^{22}\rho_{n}a_{n}\leqq(\Sigma\lambda_{n}^{2k4}\rho_{n}a_{n}^{2})^{1/2}(\Sigma \mathcal{A}_{\overline{m}^{2k}}a_{m}^{2})^{1/2}=||Lu||_{k}||u||_{-k}<\infty that is, \nabla u\in

L_{2}(\Lambda^{1}(M)) .

WARNING: Since \nabla^{*}\nabla u\in C^{\infty}(M) , we have \langle\nabla^{*}\nabla u, u\rangle_{0}<\infty . However,
this does not necessarily imply \langle\nabla u, \nabla u\rangle_{0}<\infty . The above Lemma does
not hold in general \overline{1}fL has a spectrum other than eigen value.

The above Lemma shows that Hu=\nabla_{H}u\in L_{2}(M) for every horizontal
vector field- H\in\Gamma(D) . Hence by Theorem 1 in the previous section, we
have the following:

LEMMA 2. Suppose the holonomy group \Phi(p) with the reference point
p is G. If Lu\in C^{\infty}(M) , then u\in L_{2}(M) .

Now, we can g_{\overline{1}}ve the proof of the global hypoellipticity of L. Sup-
pose Lu\in C^{\infty}(M) . The above Lemma shows that u\in L_{2}(M) . Replace u
by \Delta_{g}^{m}u . Since [L, \Delta_{g}^{m}]=0 , we have \Delta_{g}^{m}u\in L_{2}(M) for each m\in N .
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Therefore, u\in C^{\infty}(M) by virture of the elliptic regularity theorem.
To prove Corollary, we have only to remark that the holonomy group

of any smooth S^{3_{-}}connection of the Hoph fibering is equal to S^{3} . So sup-
pose for a while that there is a connection such that the holonomy group
\Phi(p) is a proper subgroup of S^{3} . Then, the Hoph bundle must contain a
\Phi(p) -principal bundle E as a subbundle. Consider the following com-
mutative diagram of homotopy groups

0 -\pi_{4}(S^{4})\underline{\partial_{*}}\pi_{3}(S^{3})- 0
|| |i_{*}

\pi_{4}(E)-\pi_{4}(S^{4})\pi_{3}(\Phi(p))-\pi_{3}(E)\underline{\partial_{*}}

where two rows are exact and i_{*} is the induced mapping of the inclusion
i:\Phi(p)arrow S^{3} . If \Phi(p)\subsetneqq S^{3}\wedge then we have i_{*}(\pi_{3}(\Phi(p)))=0 , but this is a con-
tradiction, because \partial_{*}: \pi_{4}(S^{4})arrow\pi_{3}(S^{3}) is an isomorphism of Z onto Z.

Finaly, we shall give an example of a connection D on the triv\overline{l}al

bundle S^{3}\cross S^{2} over S^{2} such that the L_{\overline{1}}e algebra generated by \Gamma(D) is
nowhere infinitesimal trans\overline{l}tive but the group generated by {exp X;X\in
\Gamma(D)\} acts transitively on the total space.

Consider the Hoph S^{1_{-}}bundle S^{3}arrow S^{2}- By the same manner as above,
we see the holonomy group of any S^{1}-connection of that bundle is S^{1} .
Fix a smooth S^{1_{-}}connection D’ such that D’ is flat on the upper hemi
-sphere H_{+} of S^{2} . Now, identify each fiber with a subgroup S^{1}(1) of S^{3} .
What we obtain is an S^{3_{-}}bundle over S^{2} with the naturally extended con-
nection D from D’ . D is also flat on H_{+} .

Now, make a copy of the above S^{3}-bundle with the connection, and
denote it by \{S^{3}(i), S^{2}(i), H_{+}(i), D(i)\} , i=1,2 , but for i=2 , we identify the
fiber S^{1}(2) of the Hoph S^{1}-bundle with a subgroup of S^{3} other than S^{1}(1) .

Now, make a connected sum S^{2}(1)\# S^{2}(2) of the base spaces at points
p_{1} , p_{2} of hemi-spheres H_{+}(1) , H_{+}(2) , and glue the fibers by the identity
mapping. The resulted bundle is a S^{3_{-}}bundle over S^{2}\# S^{2}=S^{2} . The resulted
ed connection D=D(1)\# D(2) is flat on H_{+}(1)\# H_{+}(2) , but the holonomy
group restr\overline{l}cted to the lower hemi-spheres H_{-}(1) , H_{-}(2) are S^{1}(1) , S^{1}(2)

respectively.
Note that any two distinct connected subgroups of S^{3} generate S^{3} .

Thus, holonomy group over the total base space is S^{3} . This is a desired
example, since this is a tr\overline{l}V\overline{l}al bundle.
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