A property of spectrums of measures on certain transformation groups

Hiroshi YAMAGUCHI (Received July 19, 1989)

§1 Introduction.

Let X be a locally compact Hausdorff space. Let $C_0(X)$ be the Banach space of continuous functions on X which vanish at infinity, and let M(X) be the Banach space of complex-valued bounded regular Borel measures on X with the total variation norm. Let $M^+(X)$ be the set of nonnegative measures in M(X). For $\mu \in M(X)$ and $f \in L^1(|\mu|)$, we often write $\mu(f) = \int_X f(x) d\mu(x)$. Let X' be another locally compact Hausdorff space, and let $S: \dot{X} \to X'$ be a continuous map. For $\mu \in M(X)$, let $S(\mu) \in$ M(X') be the continuous image of μ under S. We denote by $\mathscr{B}(X)$ the σ -algebra of Borel sets in X. $\mathscr{B}_0(X)$ means the σ -algebra of Baire sets in X. That is, $\mathscr{B}_0(X)$ is the σ -algebra generated by compact G_{δ} -sets in X.

Let G be a LCA group with dual \hat{G} . M(G) and $L^1(G)$ denote the measure algebra and the group algebra respectively. For $\mu \in M(G)$, $\hat{\mu}$ denotes the Fourier-Stieltjes transform of μ . m_G denotes the Haar measure of G. Let $M_a(G)$ be the set of measures in M(G) which are absolutely continuous with respect to m_G . Then by the Radon-Nikodym theorem we can identify $M_a(G)$ with $L^1(G)$. For a subset E of \hat{G} , $M_E(G)$ denotes the space of measures in M(G) whose Fourier-Stieltjes transforms vanish off E. For a closed subgroup H of G, H^{\perp} stands for the annihilator of H.

Let (G, X) be a (topological) transformation group, in which G is a compact abelian group and X is a locally compact Hausdorff space. That is, suppose that there exists a continuous map $(g, x) \rightarrow g \cdot x$ from $G \times X$ onto X with the following properties:

- (1.1) $x \rightarrow g \cdot x$ is a homeomorphism on X for each $g \in G$ and $0 \cdot x = x$, where 0 is the identity element in G;
- (1.2) $g_1 \cdot (g_2 \cdot x) = (g_1 + g_2) \cdot x$ for $g_1, g_2 \in G$ and $x \in X$.

We note that $(g, x) \rightarrow f(g \cdot x)$ is a Baire function on $G \times X$ for each Baire function f on X. For $\lambda \in M(G)$ and $\mu \in M(X)$, define $\lambda * \mu \in M(X)$ by

H. Yamaguchi

(1.3)
$$\lambda * \mu(h) = \int_X \int_G h(g \cdot x) d\lambda(g) d\mu(x) = \int_G \int_X h(g \cdot x) d\mu(x) d\lambda(g)$$

for $h \in C_0(X)$. Let $J(\mu)$ be the collection of all $f \in L^1(G)$ with $f * \mu = 0$.

DEFINITION 1.1. For $\mu \in M(X)$, define the spectrum $\operatorname{sp}(\mu)$ of μ by $\operatorname{sp}(\mu) = \bigcap_{f \in J(\mu)} \hat{f}^{-1}(0)$.

Let $\pi: X \to X/G$ be the canonical map. For $x \in X$, let $B_x: G \to G \cdot x(\subset X)$ be the continuous map defined by $B_x(g) = g \cdot x$. For $\dot{x} = \pi(x)$, define $m_{\dot{x}} \in M^+(X)$ by $m_{\dot{x}} = B_x(m_G)$. Let $M_{aG}(X)$ be an *L*-subspace of M(X) defined by

(1.4)
$$M_{aG}(X) = \left\{ \mu \in M(X) : \begin{array}{l} \mu \ll \rho * \nu \text{ for some } \rho \in L^1(G) \cap M^+(G) \\ \text{and } \nu \in M^+(X) \end{array} \right\}.$$

Put $M_{aG}(X)^{\perp} = \{ \nu \in M(X) : \nu \perp \mu \text{ for all } \mu \in M_{aG}(X) \}$. Then $M_{aG}(X)^{\perp}$ is also an *L*-subspace of M(X), and $M(X) = M_{aG}(X) \oplus M_{aG}(X)^{\perp}$. That is, for every $\mu \in M(X)$, it can be uniquely represented as follows:

$$(1.5) \qquad \mu = \mu_{aG} + \mu_{sG},$$

where $\mu_{aG} \in M_{aG}(X)$ and $\mu_{sG} \in M_{aG}(X)^{\perp}$. In [16], the author obtained the following theorem as an extension of the F. and M. Riesz theorem of Helson and Lowdenslager type.

THEOREM 1.1. ([16, Theorem 2.1]).

Let (G, X) be a transformation group, in which G is a compact abelian group and X is a locally compact Hausdorff space. Let P be a semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let σ be a positive Radon measure on X that is quasi-invariant. Let $\mu \in M(X)$, and let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to σ . Suppose $sp(\mu) \subset P$. Then both $sp(\mu_a)$ and $sp(\mu_s)$ are also contained in P. If, in addition, $P \cap (-P) =$ $\{0\}$ and $\pi(|\mu|) \ll \pi(\sigma)$, then $sp(\mu_s) \subset P \setminus \{0\}$, where $\pi: X \to X/G$ is the canonical map.

In this paper, we shall prove the following theorem.

THEOREM 1.2. Let (G, X) be a transformation group, in which G is a compact abelian group and X is a locally compact Hausdorff space. Let P be a semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let μ be a measure in M(X) with $sp(\mu) \subset P$. Then both $sp(\mu_{aG})$ and $sp(\mu_{sG})$ are also contained in P. If, in addition, $P \cap (-P) = \{0\}$, then $sp(\mu_{sG}) \subset P \setminus \{0\}$.

REMARK 1.1. (i) Let μ be a measure in M(X). It follows from [15, Proposition 5.1] that $\mu \in M_{aG}(X)$ if and only if μ translates G-

continuously (i. e., $\lim_{g\to 0} \|\mu - \delta_g * \mu\| = 0$, where δ_g is the point mass at $g \in G$).

(ii) Let (G, X) be as in Theorem 1.2. Let E be a Riesz set in \hat{G} (i. e., $M_E(G) \subset L^1(G)$). Then, for any measure $\mu \in M(X)$ with $\operatorname{sp}(\mu) \subset E$, we have $\mu \in M_{aG}(X)$, by [16, Theorem 2.3].

(iii) Let σ be a positive Radon measure on X that is quasi-invariant, and let μ be a measure in M(X). If $\mu \ll \sigma$, then $\mu \in M_{aG}(X)$. In fact, since μ is bounded regular, we may assume that σ is bounded (i. e., $\sigma \in M^+(X)$). It follows from [15, Lemma 1.1] that σ and $m_{G^*\sigma}$ are mutually absolutely continuous. Hence we have $\mu \ll m_{G^*\sigma}$, and so $\mu \in M_{aG}(X)$.

Let G be a LCA group and H a compact subgroup of G. Then we have a transformation group (H, G) such that H acts freely on G.

COROLLARY 1.1. Let G be a LCA group, and let P be an open semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Put $\Lambda = P \cap (-P)$ and $H = \Lambda^{\perp}$. Let μ be a measure in $M_P(G)$. Then

(i) μ_{aH} , $\mu_{sH} \in M_P(G)$, and

(ii) $\hat{\mu}_{sH}(\gamma) = 0 \text{ on } P \cap (-P).$

REMARK 1.2. We obtain [11, Corollary 3 (b)] in a consequence of Corollary 1.1.

REMARK 1.3. Suppose G is a compact abelian group. In Corollary 1.1, let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to the Haar measure of G. If $\mu \in M_P(G)$, then we have μ_a , $\mu_s \in M_P(G)$ (cf. [14, Corollary]). Moreover, if $P \cap (-P) = \{0\}$, then we have $\hat{\mu}_s(0) = 0$ (cf. [13, 8.2.3. Theorem]). However, if $P \cap (-P) \neq \{0\}$, we can not expect that $\hat{\mu}_s(0) = 0$ in general.

REMARK 1.4. Suppose G is a compact abelian group. In Corollary 1.1, if $P \cap (-P) = \{0\}$, then $M_{aH}(G) = L^1(G)$ and $M_{aH}(G)^{\perp} = M_s(G)$. Hence, in this case, Corollary 1.1 is the F. and M. Riesz theorem of Helson and Lowdenslager type ([13, 8.2.3. Theorem]).

In section 2, we shall prove Theorem 1. 2 and Corollary 1.1.

§ 2 Proofs of Theorem 1.2 and Corollary 1.1.

We first state two conditions (D. I) and (D. II).

(D. I) Let (G, X) be a transformation group, in which G is a metrizable compact abelian group and X is a locally compact Hausdorff space. For any $\mu \in M^+(X)$, put $\eta = \pi(\mu)$, where $\pi: X \to X/G$ is the canonical map. Then there exists a family $\{\lambda_k\}_{k \in X/G}$ of measures in $M^+(X)$ with the following properties:

(2.1) $\dot{x} \rightarrow \lambda_{\dot{x}}(f)$ is η -measurable for each bounded Baire function f on X,

- (2.2) $\|\lambda_{\dot{x}}\| = 1$,
- (2.3) supp $(\lambda_{\dot{x}}) \subset \pi^{-1}(\dot{x})$,

(2.4) $\mu(f) = \int_{X/G} \lambda_{\dot{x}}(f) d\eta(\dot{x})$ for each bounded Baire function f on X.

(D. II) Let (G, X) and π be as in (D. I). Let $\nu \in M^+(X/G)$. Suppose $\{\lambda_{x}^{1}\}_{x \in X/G}$ and $\{\lambda_{x}^{2}\}_{x \in X/G}$ are families of measures in M(X) with the following properties:

- (2.5) $\dot{x} \rightarrow \lambda_{x}^{i}(f)$ is ν -integrable for each bounded Baire function f on X(i=1,2),
- (2.6) supp $(\lambda_{k}^{i}) \subset \pi^{-1}(\dot{x})$ (i=1,2),
- (2.7) $\int_{X/G} \lambda_{\dot{x}}^{1}(f) d\nu(\dot{x}) = \int_{X/G} \lambda_{\dot{x}}^{2}(f) d\nu(\dot{x}) \text{ for each bounded Baire func-tion } f \text{ on } X.$

Then $\lambda_{\mathbf{x}}^1 = \lambda_{\mathbf{x}}^2 \nu$ -a. a. $\mathbf{x} \in X/G$.

Let $\mu \in M(X)$ and $\eta \in M^+(X/G)$. By an η -disintegration of μ , we mean a family $\{\lambda_i\}_{i \in X/G}$ of measures in M(X) satisfying $(2,1)' \ \dot{x} \to \lambda_i(f)$ is η -integrable for each bounded Baire function f on X and (2,3)-(2,4) in (D. I). If, in addition, $\eta = \pi(|\mu|)$ and $||\lambda_i|| = 1$ for all $\dot{x} \in X/G$, then we call $\{\lambda_i\}_{i \in X/G}$ a canonical disintegration of μ . Thus condition (D. I) says that each $\mu \in M^+(X)$ has a canonical disintegration $\{\lambda_i\}_{i \in X/G}$ with $\lambda_i \in M^+(X)$.

REMARK 2.1. Let (G, X) be a transformation group, in which G is a metrizable compact abelian group and X is a locally compact metric space. Then (G, X) satisfies conditions (D. I) and (D. II) (cf. [15, Remark 6.1]).

LEMMA 2.1. Let (G, X) be a transformation group, in which G is a metrizable compact abelian group and X is a locally compact Hausdorff space. Suppose (G, X) satisfies conditions (D, I) and (D, II). Let μ_1 , $\mu_2 \in M^+(X)$, and let $\eta \in M^+(X/G)$. Let $\{\mu_x^k\}_{k \in X/G}$ be an η -disintegration of μ_k with $\mu_x^k \in M^+(X)$ (k=1, 2). Then the following are equivalent:

- $(i) \quad \mu_1 \ll \mu_2;$
- (ii) $\mu_{\mathbf{x}}^1 \ll \mu_{\mathbf{x}}^2 \eta$ -a. a. $\mathbf{x} \in X/G$.

PROOF. (i) \Rightarrow (ii): Since $\mu_1 \ll \mu_2$, there exists a nonnegative realvalued Baire function F on X such that $\mu_1 = F\mu_2$. Define $\lambda_{\dot{x}} \in M^+(X)$ by $\lambda_{\dot{x}} = F\mu_{\dot{x}}^2$. Then we have

- (1) $\dot{x} \rightarrow \lambda_{\dot{x}}(f)$ is η -integrable for each bounded Baire function f on X,
- (2) supp $(\lambda_{\dot{x}}) \subset \pi^{-1}(\dot{x})$, and
- (3) $\int_{X/G} \mu_{\dot{x}}^{1}(f) d\eta(\dot{x}) = \mu_{1}(f) = \int_{X/G} \lambda_{\dot{x}}(f) d\eta(\dot{x}) \text{ for each bounded Baire function } f \text{ on } X.$

By condition (D. II), we have

 $\mu_{\dot{x}}^1 = \lambda_{\dot{x}} \eta$ -a.a. $\dot{x} \in X/G$,

which yields $\mu_{x}^{1} \ll \mu_{x}^{2} \eta$ -a. a. $\dot{x} \in X/G$.

 $(ii) \Rightarrow (i)$: Let B be a Baire set in X with $\mu_2(B) = 0$. Then

$$0 = \mu_2(B) = \int_{X/G} \mu_{\dot{x}}^2(B) d\eta(\dot{x}),$$

hence

$$\mu_{\dot{x}}^2(B) = 0 \eta$$
-a.a. $\dot{x} \in X/G$.

Accordingly, by the hypothesis, we have

$$\mu_1(B) = \int_{X/G} \mu_{\dot{x}}^1(B) d\eta(\dot{x}) = 0,$$

which together with [15, Proposition 1.3] yields $\mu_1 \ll \mu_2$. This completes the proof.

LEMMA 2.2. Let (G, X) be as in the previous lemma. Let $\mu \in M^+(X)$ and $\eta \in M^+(X/G)$. Let $\{\mu_{\dot{x}}\}_{\dot{x}\in X/G}$ be an η -disintegration of μ with $\mu_{\dot{x}}\in M^+(X)$. If $\mu_{\dot{x}}\perp m_{\dot{x}}$ η -a. a. $\dot{x}\in X/G$, then μ belongs to $M_{aG}(X)^{\perp}$.

PROOF. We may assume that $\mu \neq 0$. Let $\mu = \mu_{aG} + \mu_{sG}$, where $\mu_{aG} \in M_{aG} \cap M^+(X)$ and $\mu_{sG} \in M_{aG}(X)^{\perp} \cap M^+(X)$. Since $\mu_{aG} \leq \mu$, there exists a Baire measurable function F on X such that $0 \leq F \leq 1$ and $\mu_{aG} = F\mu$. Define $\lambda_{\dot{x}} \in M^+(X)$ by $\lambda_{\dot{x}} = F\mu_{\dot{x}}$. Then $\{\lambda_{\dot{x}}\}_{\dot{x} \in X/G}$ is an η -disintegration of μ_{aG} . Since $\mu_{\dot{x}} \perp m_{\dot{x}} \eta$ -a. a. $\dot{x} \in X/G$, we have

(1) $\lambda_{\dot{x}} \perp m_{\dot{x}} \eta$ -a. a. $\dot{x} \in X/G$.

On the other hand, it follows from [16, Lemma 4.1] that

 $(2) \qquad \mu_{aG} \ll m_G * \mu_{aG}.$

We note that $\{m_G * \lambda_{\dot{x}}\}_{\dot{x} \in X/G}$ is an η -disintegration of $m_G * \mu_{aG}$ with $m_G * \lambda_{\dot{x}} \in M^+(X)$. Hence, by (2) and Lemma 2.1, we have

$$\lambda_{\dot{x}} \ll m_G * \lambda_{\dot{x}} \eta$$
-a.a. $\dot{x} \in X/G$,

which together with [15, Lemma 1.3] yields

 $\lambda_{\dot{x}} \ll K(\dot{x}) m_{\dot{x}} \eta$ -a. a. $\dot{x} \in X/G$,

where $K(\dot{x}) = \lambda_{\dot{x}}(X)$. Hence

(3) $\lambda_{\dot{x}} \ll m_{\dot{x}} \eta$ -a. a. $\dot{x} \in X/G$.

By (1) and (3), we have $\lambda_{\dot{x}}=0$ η -a. a. $\dot{x} \in X/G$. Since $\{\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ is an η -disintegration of μ_{aG} , we get $\mu_{aG}=0$, and so $\mu = \mu_{sG} \in M_{aG}(X)^{\perp}$. This completes the proof.

LEMMA 2.3. Let (G, X) be a transformation group, in which G is a compact abelian group and X is a locally compact Hausdorff space. Let μ be a measure in $M^+(X)$. If $\mu \perp m_G * \mu$, then μ belongs to $M_{aG}(X)^{\perp}$

PROOF. Let $\mu = \mu_{aG} + \mu_{sG}$, where $\mu_{aG} \in M_{aG}(X) \cap M^+(X)$ and $\mu_{sG} \in M_{aG}(X)^{\perp} \cap M^+(X)$. Since $\mu_{aG} \leq \mu$ and $m_G * \mu_{aG} \leq m_G * \mu$, we have, by the hypothesis,

 $\mu_{aG} \perp m_G * \mu_{aG}.$

On the other hand, it follows from [16, Lemma 4.1] that $\mu_{aG} \ll m_G * \mu_{aG}$. Hence $\mu_{aG} = 0$, and so $\mu = \mu_{sG} \in M_{aG}(X)^{\perp}$. This completes the proof.

Let G be a LCA group and H a compact subgroup of G. Then we have a transformation group (H, G) such that H acts freely on G. For $\mu \in M(G)$, let $sp(\mu)$ be the spectrum of μ defined in Definition 1.1.

LEMMA 2.4. Let G be a LCA group and P an open semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let $\Lambda = P \cap (-P)$ and $H = \Lambda^{\perp}$. Let $\pi_{\Lambda} : \hat{G} \rightarrow \hat{G} / \Lambda$ be the natural homomorphism, and put $\tilde{p} = \pi_{\Lambda}(P)$. Then, for $\mu \in M$ (G), the following are equivalent.

- (i) $\mu \in M_P(G)$;
- (ii) $sp(\mu) \subset \tilde{P}$.

PROOF. (i) \Rightarrow (ii): For $\tilde{\gamma} \in \tilde{P}^c$, choose $\gamma \in \hat{G} \setminus P$ so that $\tilde{\gamma} = \pi_{\Lambda}(\gamma)$. Then $(\gamma + \Lambda) \cap P = \phi$. Hence, for $f \in C_0(G)$, we have

$$\begin{split} \tilde{\gamma}^* \mu(f) &= \int_G \int_H f(h+g) \, \tilde{\gamma}(h) \, dm_H(h) \, d\mu(g) \\ &= \int_G \int_H f(h+g)(h, \, \gamma) \, dm_H(h) \, d\mu(g) \\ &= (\gamma m_H)^* \mu(f) \\ &= 0, \end{split}$$

which shows $\tilde{\gamma} \notin \operatorname{sp}(\mu)$. Hence we have $\operatorname{sp}(\mu) \subset \tilde{P}$.

(ii) \Rightarrow (i): For any $\gamma \in \hat{G} \setminus P$, put $\tilde{\gamma} = \pi_{\Lambda}(\gamma)$. Then $\tilde{\gamma} \notin \operatorname{sp}(\mu)$. Hence we have

$$(\gamma m_H)*\mu=\tilde{\gamma}*\mu=0,$$

which yields $\hat{\mu}(\gamma) = 0$. Hence $\mu \in M_P(G)$, and the proof is complete.

LEMMA 2.5. Let (G, X) be a transformation group, in which G is a metrizable compact abelian group and X is a locally compact Hausdorff space. If (G, X) satisfies conditions (D. I) and (D. II), then the conclusion of Theorem 1.2 holds.

PROOF. Let μ be a measure in M(X) with $\operatorname{sp}(\mu) \subset P$. Let $\pi: X \to X/G$ be the canonical map, and put $\eta = \pi(|\mu|)$. By condition (D. I), $|\mu|$ has a canonical disintegration $\{\lambda_i\}_{i \in X/G}$ with $\lambda_i \in M^+(X)$. Let h be a unimodular Baire function on X such that $\mu = h|\mu|$. Put $\mu_i = h\lambda_i$. Then $\{\mu_i\}_{i \in X/G}$ is a canonical disintegration of μ . Since $\operatorname{sp}(\mu) \subset P$, it follows from [15, Lemma 2.6] that

(1) $\operatorname{sp}(\mu_{\dot{x}}) \subset P \eta$ -a. a. $\dot{x} \in X/G$.

For $x \in X$, put $\dot{x} = \pi(x)$ and $G_x = \{g \in G : g \cdot x = x\}$. Then G_x is a closed subgroup of G. Define a map $\tilde{B}_x : G/G_x \to G \cdot x$ by $\tilde{B}_x(g+G_x) = g \cdot x$. Then \tilde{B}_x is a homeomorphism. Since $\operatorname{supp}(\mu_{\dot{x}}) \subset \pi^{-1}(\dot{x})$, there exists a measure $\xi_{\dot{x}} \in M(G/G_x)$ such that $\tilde{B}_x(\xi_{\dot{x}}) = \mu_{\dot{x}}$. Then, by (1) and [15, Proposition 1.2], we have

(2)
$$\xi_{\dot{x}} \in M_{P \cap G_{x^{\perp}}}(G/G_{x})$$
 η -a. a. $\dot{x} \in X/G$,

which together with [14, Corollary] yields

$$(3) \quad \xi^a_{\sharp}, \ \xi^s_{\sharp} \in M_{P \cap G_{\chi^{\perp}}}(G/G_{\chi}) \ \eta\text{-a a. } \dot{\chi} \in X/G,$$

where $\xi_{\dot{x}} = \xi_{\dot{x}}^a + \xi_{\dot{x}}^s$ is the Lebesgue decomposition of $\xi_{\dot{x}}$ with respect to m_{G/G_x} . Let $\mu_{\dot{x}} = \mu_{\dot{x}}^a + \mu_{\dot{x}}^s$ be the Lebesgue decomposition of $\mu_{\dot{x}}$ with respect to $m_{\dot{x}}$. Then by [15, Proposition 1.5] we have $\tilde{B}_x(\xi_{\dot{x}}^a) = \mu_{\dot{x}}^a$ and $\tilde{B}_x(\xi_{\dot{x}}^s) = \xi_{\dot{x}}^s$. It follows from (3) and [15, Proposition 1.2] that

115

(4)
$$\operatorname{sp}(\mu_{\mathfrak{x}}^{a})$$
, $\operatorname{sp}(\mu_{\mathfrak{x}}^{s}) \subset P$ η -a. a. $\mathfrak{x} \in X/G$.

Let $\lambda_{\dot{x}} = \lambda_{\dot{x}}^a + \lambda_{\dot{x}}^s$ be the Lebesgue decomposition of $\lambda_{\dot{x}}$ with respect to $m_{\dot{x}}$. It follows from [15, Lemma 2.8] that $\dot{x} \to \lambda_{\dot{x}}^a(f)$ and $\dot{x} \to \lambda_{\dot{x}}^s(f)$ are η -measurable for all bounded Baire functions f on X. Define $\lambda_1, \lambda_2 \in M^+(X)$ by

(5)
$$\lambda_1(f) = \int_{X/G} \lambda_{\dot{x}}^a(f) d\eta(\dot{x}),$$
$$\lambda_2(f) = \int_{X/G} \lambda_{\dot{x}}^s(f) d\eta(\dot{x})$$

for $f \in C_0(X)$. We note that (5) holds for all bounded Baire functions f on X. Put $\sigma = m_G * |\mu|$. Then σ is quasi-invariant and $\pi(\sigma) = \pi(|\mu|) = \eta$. By (5), we have $\pi(\lambda_1) \ll \eta = \pi(\sigma)$. Hence [15, Lemma 2.5] yields $\lambda_1 \ll \sigma = m_G * |\mu|$, which shows

$$(6) \quad \lambda_1 \in M_{aG}(X).$$

By Lemma 2.2, we have

$$(7) \quad \lambda_2 \in M_{aG}(X)^{\perp}$$

Since $\mu_{\mathfrak{x}}^{a} = h\lambda_{\mathfrak{x}}^{a}$ and $\mu_{\mathfrak{x}}^{s} = h\lambda_{\mathfrak{x}}^{s}$, $\dot{\mathfrak{x}} \to \mu_{\mathfrak{x}}^{a}(f)$ and $\dot{\mathfrak{x}} \to \mu_{\mathfrak{x}}^{s}(f)$ are η -measurable for each bounded Baire function f on X. Define $\mu_{1}, \ \mu_{2} \in M(X)$ by

(8)
$$\mu_{1}(f) = \int_{X/G} \mu_{x}^{a}(f) d\eta(\dot{x}), \\ \mu_{2}(f) = \int_{X/G} \mu_{x}^{s}(f) d\eta(\dot{x})$$

for $f \in C_0(X)$. Then, by (5)-(7), we have $\mu_1 \in M_{aG}(X)$ and $\mu_2 \in M_{aG}(X)^{\perp}$, and so $\mu_1 = \mu_{aG}$ and $\mu_2 = \mu_{sG}$. For $\gamma \notin P$, (4) and [15, Remark 1.1 (II.1)] yield $\gamma * \mu_x^a = 0 \eta$ -a. a. $\dot{x} \in X/G$. It follows from [15, Lemma 2.3 (II)] that

$$\gamma * \mu_{aG}(f) = \gamma * \mu_1(f) = \int_{X/G} \gamma * \mu_{\dot{x}}^a(f) d\eta(\dot{x}) = 0$$

for $f \in C_0(X)$. Hence $\gamma * \mu_{aG} = 0$, which together with [15, Remark 1.1 (II. 1)] yields $\gamma \notin \operatorname{sp}(\mu_{aG})$. Thus we get $\operatorname{sp}(\mu_{aG}) \subset P$. By [15, Remark 1.1 (II. 2)], we also have $\operatorname{sp}(\mu_{sG}) = \operatorname{sp}(\mu - \mu_{aG}) \subset P$.

Next we prove the latter half. Suppose $P \cap (-P) = \{0\}$. Then, by (3) and [13, 8.2.3 Theorem], we get $\hat{\xi}_{\hat{x}}^s(0) = 0$ η -a. a. $\hat{x} \in X/G$, and so $0 \notin \operatorname{sp}(\mu_{\hat{x}}^s) \eta$ -a. a. $\hat{x} \in X/G$. Hence $1 * \mu_{\hat{x}}^s = 0$ η -a. a. $\hat{x} \in X/G$, where 1 is the constant function on G with value one. Hence, by a similar argument

above, we have $1*\mu_{sG}=1*\mu_2=0$, which shows $0\notin \operatorname{sp}(\mu_{sG})$. Thus $\operatorname{sp}(\mu_{sG})\subset P\setminus\{0\}$, and the proof is complete.

LEMMA 2.6. Let (G, X) be a transformation group, in which G is a compact abelian group and X is a σ -compact, locally compact metric space. Set $H = \{g \in G : g \cdot x = x \text{ for all } x \in X\}$. Then H is a compact subgroup of G such that G/H is metrizable. Moreover, we have a transformation group (G/H, X) by the action $(g+H) \cdot x = g \cdot x$ for $g+H \in G/H$ and $x \in X$.

PROOF. It is easy to see that H is a closed subgroup of G. Hence H is a compact subgroup of G. Let $\{f_n\}_{n=1}^{\infty}$ be a countable dense subset of $C_0(X)$. Then

$$(1) \qquad H = \bigcap_{k,n=1}^{\infty} \{g \in G : \|f_n \circ g - f_n\|_{\infty} < \frac{1}{k}\},\$$

where $f_n \circ g(x) = f_n(g \circ x)$. Since $\{g \in G : \|f_n \circ g - f_n\|_{\infty} < \frac{1}{k}\}$ is an open set in G, it follows from (1) that H is a G_{δ} -set. Hence G/H is metrizable. Since (G, X) is a transformation group, it is easy to verify that (G/H, X) becomes a transformation group by the action $(g+H) \cdot x = g \cdot x$. This completes the proof.

Let (G, X) and H be as in Lemma 2.6. Let μ be a measure in M(X). For $\lambda \in M(G/H)$, we can define a convolution $\lambda * \mu \in M(X)$ by

(2.8)
$$\lambda * \mu(h) = \int_{X} \int_{G/H} h(\dot{g} \cdot x) d\lambda(\dot{g}) d\mu(x)$$

for $h \in C_0(X)$. Set $J_{G/H}(\mu) = \{f \in L^1(G/H) : f * \mu = 0\}$, and define the spectrum $\operatorname{sp}_{G/H}(\mu)$ of μ by

(2.9)
$$\operatorname{sp}_{G/H}(\mu) = \bigcap_{f \in J_{G/H}(\mu)} \hat{f}^{-1}(0).$$

LEMMA 2.7. Let (G, X) and H be as in Lemma 2.6. Let $\Lambda = H^{\perp}$. Let $\gamma \in \hat{G}$, and let μ be a measure in M(X). Then

(i) $\gamma * \mu = 0$ if $\gamma \in \widehat{G} \setminus \Lambda$, and

(ii)
$$\gamma * \mu = \gamma * \mu i f \gamma \in \Lambda$$
.

In particular, $sp(\mu) = sp_{G/H}(\mu)$.

PROOF. For $g \in G$, \dot{g} denotes the coset g + H. For $\gamma \in \hat{G} \setminus \Lambda$, we have

H. Yamaguchi

$$\gamma * \mu(h) = \int_X \int_G h(g \cdot x) \gamma(g) dm_G(g) d\mu(x)$$

=
$$\int_X \int_{G/H} \int_H h((g+u) \cdot x) \gamma(g+u) dm_H(u) dm_{G/H}(\dot{g}) d\mu(x)$$

=
$$\int_X \int_{G/H} h(\dot{g} \cdot x) \int_H \gamma(g+u) dm_H(u) dm_{G/H}(\dot{g}) d\mu(x)$$

=
$$0 \qquad (\gamma|_H \neq 0)$$

for all $h \in C_0(X)$. Thus we have (i).

Next we prove (ii). For $\gamma \in \Lambda$, we have

$$\gamma * \mu(h) = \int_X \int_G h(g \cdot x) \gamma(g) dm_G(g) d\mu(x)$$

= $\int_X \int_{G/H} h(\dot{g} \cdot x) \int_H \gamma(g + u) dm_H(u) dm_{G/H}(\dot{g}) d\mu(x)$
= $\int_X \int_{G/H} h(\dot{g} \cdot x) \gamma(\dot{g}) dm_{G/H}(\dot{g}) d\mu(x)$
= $\gamma * \mu(h)$

for all $h \in C_0(X)$. Thus (ii) follows.

By (i), (ii) and [15, Remark 1.1 (II.1)], we have $sp(\mu) = sp_{G/H}(\mu)$. This completes the proof.

LEMMA 2.8. Let (G, X) and H be as in Lemma 2.6. Then $M_{aG}(X) = M_{aG/H}(X)$.

PROOF. Let $q_H: G \to G/H$ be the canonical map. Let μ be a measure in M(X). We note that $\delta_g * \mu = \delta_{q_H(g)} * \mu_{G/H}$ for $g \in G$. Hence we have

$$\mu \in M_{aG}(X) \iff \lim_{g \to 0} \|\mu - \delta_g * \mu\| = 0 \quad \text{(by Remark 1.1 (i))}$$
$$\iff \lim_{q_H(g) \to 0} \|\mu - \delta_{q_H(g)} * \mu_{G/H}\| = 0$$
$$\iff \mu \in M_{aG/H}(X). \quad \text{(by Remark 1.1 (i))}$$

This completes the proof.

PROPOSITION 2.1. Let (G, X) be a transformation group, in which G is a compact abelian group and X is a locally compact metric space. Then the conclusion of Theorem 1.2 holds.

PROOF. Since a measure in M(X) is bounded regular, we may assume that X is σ -compact. Put $H = \{g \in G : g \cdot x = x \text{ for all } x \in X\}$. It follows from Lemma 2.6 that H is a compact subgroup of G such that G/H is metrizable. Moreover, by Lemma 2.6, we have a transformation

118

group (G/H, X) by the action $(g+H) \cdot x = g \cdot x$ for $g \in G$ and $x \in X$. Hence the conclusion of Theorem 1.2 follows from Remark 2.1 and Lemmas 2.5, 2.7 and 2.8. This completes the proof.

The following lemma is due to [16].

LEMMA 2.9 (cf. [16, Lemma 3.1]).

Let (G, X) be a transformation group, in which G is a compact abelian group and X is a σ -compact, locally compact Hausdorff space. Let μ_1 be a nonzero measure in M(X), and let μ_2 and σ_2 be mutually singular measures in $M^+(X)$. Then there exists an equivalence relation " \sim " on X with the following properties :

- (i) X/\sim is a σ -compact metrizable, locally compact Hausdorff space with respect to the quotient topology;
- (ii) (G, X/ \sim) becomes a transformation group by the action $g \cdot \tau(x) = \tau(g \cdot x)$ for $g \in G$ and $x \in X$;
- (iii) $\tau(\mu_1) \neq 0$;
- (iv) $\tau(\mu_2) \perp \tau(\sigma_2)$,

where $\tau: X \rightarrow X/\sim$ is the canonical map.

Now we prove Theorem 1.2. We may assume that X is σ -compact (cf. the proof of [16, Theorem 2.1]). Let μ be a measure in M(X) with $\operatorname{sp}(\mu) \subset P$. In order to prove the first assertion, it suffices to show that $\operatorname{sp}(\mu_{sG}) \subset P$. We may assume that $\mu_{sG} \neq 0$. Suppose there exists $\gamma_0 \in \widehat{G} \setminus P$ with $\gamma_0 \in \operatorname{sp}(\mu_{sG})$. Then $\gamma_0 * \mu_{sG} \neq 0$. Since $|\mu_{sG}| \perp m_G * |\mu_{sG}|$, it follows from Lemma 2.9 that there exists an equivalence relation " \sim " on X satisfying (i)-(iv) in Lemma 2.9 with $\mu_1 = \gamma_0 * \mu_{sG}$, $\mu_2 = |\mu_{sG}|$ and $\sigma_2 = m_G * |\mu_{sG}|$. Hence we have

- (2.10) $\tau(\gamma_0 * \mu_{sG}) \neq 0$, and
- (2.11) $\tau(|\mu_{sG}|) \perp \tau(m_G * |\mu_{sG}|),$

where $\tau: X \to X/\sim$ is the canonical map. By [16, Lemma 2.1] and (2. 11), we have $\tau(|\mu_{sG}|) \perp m_G * \tau(|\mu_{sG}|)$. It follows from Lemma 2.3 that $\tau(|\mu_{sG}|) \in M_{aG}(X/\sim)^{\perp}$. By [16, Lemma 2.1], we have $\tau(\mu_{aG}) \in M_{aG}(X/\sim)$. Thus, since $\tau(\mu) = \tau(\mu_{aG}) + \tau(\mu_{sG})$, we have

$$\tau(\mu)_{aG} = \tau(\mu_{aG})$$
 and $\tau(\mu)_{sG} = \tau(\mu_{sG})$.

By [16, Lemma 2.2], we have $\operatorname{sp}(\tau(\mu)) \subset \operatorname{sp}(\mu) \subset P$. Hence, by Proposition 2.1, we have $\operatorname{sp}(\tau(\mu_{sG})) = \operatorname{sp}(\tau(\mu)_{sG}) \subset P$. On the other hand, (2.10) implies that $\gamma_0 * \tau(\mu_{sG}) = \tau(\gamma_0 * \mu_{sG}) \neq 0$, and so $\gamma_0 \in \operatorname{sp}(\tau(\mu_{sG}))$. Hence we

have $\gamma_0 \in P$, which contradicts the choice of γ_0 . Thus we have $\operatorname{sp}(\mu_{sG}) \subset P$.

Next we prove the second half of Theorem 1.2. It is sufficient to prove that $0 \notin \operatorname{sp}(\mu_{sG})$. Suppose $0 \in \operatorname{sp}(\mu_{sG})$. Then $1 * \mu_{sG} \neq 0$, where 1 is the constant function on G with value one. Since $|\mu_{sG}| \perp m_G * |\mu_{sG}|$, it follows from Lemma 2.9 that there exists an equivalence relation " \approx " on X such that

- (2.12) X/\approx is a σ -compact metrizable, locally compact Hausdorff space with respect to the quotient topology,
- (2.13) (G, X/\approx) becomes a transformation group by the action $g \cdot \tau'(x) = \tau'(g \cdot x)$ for $g \in G$ and $x \in X$,
- (2.14) $\tau'(1*\mu_{sG})\neq 0$, and
- (2.15) $\tau'(|\mu_{sG}|) \perp \tau'(m_G * |\mu_{sG}|),$

where $\tau': X \to X/\approx$ is the canonical map. Then, as seen in the first half, we have $\tau'(\mu) = \tau'(\mu_{aG}) + \tau'(\mu_{sG})$, $\tau'(\mu)_{aG} = \tau'(\mu_{aG})$ and $\tau'(\mu)_{sG} = \tau'(\mu_{sG})$. Since $\operatorname{sp}(\tau'(\mu)) \subset \operatorname{sp}(\mu) \subset P$, it follows from Proposition 2.1 that $\operatorname{sp}(\tau'(\mu_{sG})) \subset P \setminus \{0\}$, which yields

 $1 \ast \tau'(\mu_{sG}) = 0.$

Since $\tau'(1 * \mu_{sG}) = 1 * \tau'(\mu_{sG})$, this contradicts (2.14). Hence $0 \notin \operatorname{sp}(\mu_{sG})$, and the proof of Theorem 1.2 is complete.

Finally we prove Corollary 1.1. We note that H is a compact subgroup of G. We first prove (i). Let μ be a measure in $M_P(G)$. Let $\pi_{\Lambda}: \hat{G} \to \hat{G}/\Lambda$ be the natural homomorphism, and put $\tilde{P} = \pi_{\Lambda}(P)$. Then \tilde{P} is a semigroup in \hat{G}/Λ such that $\tilde{P} \cup (-\tilde{P}) = \hat{G}/\Lambda$ and $\tilde{P} \cap (-\tilde{P}) = \{0\}$. By Lemma 2.4, we have $\operatorname{sp}(\mu) \subset \tilde{P}$, which together with Theorem 1.2 yields $\operatorname{sp}(\mu_{aH}) \cup \operatorname{sp}(\mu_{sH}) \subset \tilde{P}$. Hence (i) follows from Lemma 2.4. Next we we prove (ii). By Lemma 2.4 and the latter half of Theorem 1.2, we have $\operatorname{sp}(\mu_{sH}) \subset \tilde{P} \setminus \{0\}$. Let γ be any element in $P \cap (-P)$. Then, by the argument in the proof of Lemma 2.4 and [15, Remark 1.1 (II)], we have

$$(\gamma m_{H})*\mu_{sH} = \pi_{\Lambda}(\gamma)*\mu_{sH}$$

=1*\mu_{sH} (by \gamma \in P \cap (-P))
=0. (by \sp(\mu_{sH}) \cap \tilde{P} \{0\})

This shows that $\hat{\mu}_{sH}$ vanishes on $P \cap (-P)$ since $(\gamma m_H)^{\wedge}$ is the characteristic function of $P \cap (-P)$. Hence we get (ii), and the proof of Corollary 1.1 is complete.

Acknowledgment: This work was completed while I was visiting Kansas State University. I take pleasure in thanking Professors B. Burckel and S. Saeki for helpful conversations. I would like to thank Josai University for its financial support. I would also like to express my thanks to the hospitality of the Department of Mathematics, Kansas State University.

References

- [1] N. BOURBAKI, Intégration, Éléments de Mathématique, Livre VI, ch. 6, Paris, Herman, 1959.
- [2] K. DELEEUW and I. GLICKSBERG, Quasi-invariance and analyticity of measures on compact groups, Acta Math. 109 (1963), 179-205.
- [3] C. DELLACHERIE and P. A. MEYER, Probabilities and Potential (North-Holland Mathematics Studies Vol. 29), North-Holland, Amsterdam-New York-Oxford, 1978.
- [4] G. B. FOLLAND, Real Analysis: Modern Techniques and Their Applications, Wiley-Interscience, New York, 1984.
- [5] F. FORELLI, Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33-57.
- [6] H. HELSON and D. LOWDENSLAGER, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958), 165-202.
- [7] E. HEWITT and K. A. ROSS, Abstract Harmonic Analysis, Volumes I and II, New York-Heidelberg-Berlin, Springer-Verlag, 1963 and 1970.
- [8] R. A. JOHNSON, Disintegration of measures on compact transformation groups, Trans. Amer. Math. Soc. 233 (1977), 249-264.
- [9] D. MONTGOMERY and L. ZIPPIN, Topological Transformation Groups, Interscience, New York, 1955.
- [10] L. PIGNO and S. SAEKI, Fourier-Stieltjes transforms which vanish at infinity, Math. Z. 141 (1975), 83-91.
- [11] L. PIGNO and B. SMITH, On measures of analytic type, Proc. Amer. Math. Soc. 82 (1981), 541-547.
- [12] Y. TAKAHASHI and H. YAMAGUCHI, On measures which are continuous by certain translation, Hokkaido Math. J. 13 (1984), 109-117.
- [13] W. RUDIN, Fourier Analysis on Groups, Interscience, New York, 1962.
- [14] H. YAMAGUCHI, A property of some Fourier-Stieltjes transforms, Pacific J. Math. 108 (1983), 243-256.
- [15] H. YAMAGUCHI, The F. and M. Riesz theorem on certain transformation groups, Hokkaido Math. J. 17 (1988), 289-332.
- [16] H. YAMAGUCHI, The F. and M. Riesz theorem on certain transformation groups, II, Hokkaido Math. J. 19 (1990), 345-359.

Department of Mathematics Josai University Sakado, Saitama Japan